
Journal of Logic & Analysis 3:7 (2011) 1–28
ISSN 1759-9008

1

Ends of groups: a nonstandard perspective
ISAAC GOLDBRING1

Abstract: We give a nonstandard treatment of the notion of ends of proper geodesic
metric spaces. We then apply this nonstandard treatment to Cayley graphs of finitely
generated groups and give nonstandard proofs of many of the fundamental results
concerning ends of groups. We end with an analogous nonstandard treatment of
the ends of relatively Cayley graphs, that is Cayley graphs of cosets of finitely
generated groups.
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1 Introduction

Nonstandard analysis made its first serious impact on geometric group theory via the
work of van den Dries and Wilkie [7] on Gromov’s theorem on polynomial growth.
Indeed, the complicated limit used to form the asymptotic cone of a metric space was
replaced by an ultrapower, simplifying the proof considerably. More recently, the author
used nonstandard methods to settle the local version of Hilbert’s fifth problem; see
Goldbring [12].

In this paper, we treat the notion of ends of a finitely generated group from a nonstandard
perspective. Roughly speaking, the ends of a topological space are its “path components
at infinity.” An analysis of the ends of the Cayley graph of a finitely generated group
yields a significant amount of algebraic information about the group. Using the language
of nonstandard analysis, the aforementioned heuristic description of the ends of a proper
geodesic metric space can be made precise, leading to much simpler and intuitive proofs
of many of the fundamental results of the subject.

The aim of this article is two-fold: First, we present nonstandard proofs of several basic
facts about the ends of spaces and groups. The idea is to show how the intuitive proofs
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2 Isaac Goldbring

of these facts can be made into rigorous nonstandard arguments, whence avoiding the
sometimes tedious details involved in the standard proofs. Ideally, it is our hope that the
language and techniques of nonstandard methods can provide simpler proofs of deeper
theorems, e.g. Stallings Theorem on groups with infinitely many ends (see Section 5),
as well as lead to proofs of new results.

Secondly, we aim to show that certain notions arising naturally in the nonstandard
language may lead to classical notions that have yet to be studied. For example, we
discuss a nonstandard property that a finitely generated group can possess, namely
that the group have multiplicative ends; see Section 6. This notion suggests itself
immediately once the nonstandard framework is developed, begging the question of the
standard counterpart of the notion. We present several standard characterizations of this
notion, one of them being that the group is a semidirect product of a finite group by an
infinite cyclic group. It is our belief that there are other such transparent nonstandard
notions whose standard counterparts may have yet to be analyzed.

The author would like to thank Alberto Delgado for suggesting that we consider ends
of groups in a nonstandard way. We would also like to thank Lou van den Dries, Ilya
Kapovich, and Patrick Reynolds for useful discussions concerning this work and an
anonymous referee for providing useful references concerning the known results about
relative ends appearing in the last section of the paper.

Notations and Conventions

We assume that the reader is familiar with elementary nonstandard analysis; otherwise,
consult Davis [6] or Henson [13] for a friendly introduction. Alternatively, van den
Dries and Wilkie [7] contains a short introduction to the subject for group theorists.
Here we just fix notations and terminology. To each relevant “basic” set S corresponds
functorially a set S∗ ⊇ S , the nonstandard extension of S . In particular, N and R extend
to N∗ and R∗ , respectively. Also, any (relevant) relation R and function F on these
basic sets extends functorially to a relation R∗ and function F∗ on the corresponding
nonstandard extensions of these basic sets. For example, the linear ordering < on
N extends to a linear ordering <∗ on N∗ . Likewise, if G is a group, then the group
multiplication m : G×G→ G extends to a group operation m∗ : G∗ ×G∗ → G∗ . For
the sake of readability we only use a star in denoting the nonstandard extension of a
basic set, but drop the star when indicating the nonstandard extension of a relation or
function on these basic sets. For example, when x, y ∈ R∗ we write x + y and x < y
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Ends of groups: a nonstandard perspective 3

rather than x +∗ y and x <∗ y. The nonstandard universe is an elementary extension
of the standard universe, and when using this fact, we often say that we are using the
transfer principle or that we are arguing by transfer.

We remind the reader of the important notion of an internal set. If S and its powerset
P(S) are basic sets, then we assume that the membership relation ∈ is a basic relation
between S and P(S). Under this assumption, we can canonically identify P(S)∗ with a
subset of P(S∗). After this identification, we call A ⊆ S∗ internal if it is an element
of P(S)∗ . For internal subsets of N∗ , there are two important principles that we use
frequently throughout the paper, namely overflow and underflow. Overflow states that
if A ⊆ N∗ is internal and contains arbitrarily large elements of N, then A contains an
element of N∗ \ N. Dually, underflow states that if A ⊆ N∗ is internal and contains
arbitrarily small elements of N∗ \ N, then A contains an element of N.

We also assume that our nonstandard universe is κ-saturated for some sufficiently large
cardinal κ (although ℵ1 -saturation is probably all that is necessary). We remind the
reader that this assumption means that whenever (Ai | i < κ) is a family of internal sets
with the finite intersection property, then

⋂
i<κ Ai 6= ∅.

Throughout this paper, (X, x0) will denote an unbounded pointed metric space. For
any point x ∈ X and any R ∈ R, B(x,R) will denote the closed ball centered at x with
radius R. For x ∈ X , we let µX(x) (or simply µ(x) if there is no risk of confusion)
denote the monad of x in X , that is the set of points y ∈ X∗ for which d(x, y) is
infinitesimal. We set Xns :=

⋃
x∈X µ(x), the set of nearstandard elements, that is the

set of elements of X∗ which are infinitely close to an element of X . We also set
Xfin := {x ∈ X∗ | d(x0, x) ∈ Rns}, the set of elements of X∗ which are within a finite
distance to some (equiv. any) element of X . We let Xinf := X∗ \ Xfin .

We will also need the following basic nonstandard criteria for compactness due to
Robinson: X is compact if and only if Xns = X∗ (see Davis [6] for a proof). In fact, this
characterization holds more generally for hausdorff topological spaces (X, τ ), where,
for x ∈ X , we set µ(x) :=

⋂
{U∗ | U ∈ τ, x ∈ U}.

When we specialize to the case of groups, we assume that all groups are finitely
generated. To avoid trivialities, we also assume that all groups are infinite.

We always suppose m, n, and N , sometimes subscripted, range over N := {0, 1, 2, . . .}.

2 Proper spaces and maps

Recall that a metric space is said to be proper if every closed ball is compact. The
following result is well-known, but we include a proof for the sake of completeness.
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4 Isaac Goldbring

Lemma 2.1 X is proper if and only if Xns = Xfin .

Proof (⇒) We always have the inclusion Xns ⊆ Xfin . Now suppose x ∈ Xfin , say
d(x, x0) ≤ R with R ∈ R. Since B(x0,R) is compact, we have B(x0,R)∗ ⊆ Xns , whence
we see that x ∈ Xns .

(⇐) Given any x ∈ X and any R ∈ R, we have B(x,R)∗ ⊆ Xfin = Xns . Thus, given
y ∈ B(x,R)∗ , there is z ∈ X such that y ∼ z. Since d(x, z) ≤ R+d(y, z) and d(x, z) ∈ R,
it follows that d(x, z) ≤ R and z ∈ B(x,R)ns . Hence, B(x,R) is compact.

Recall that a map f : X → Y between topological spaces is said to be proper if
f−1(C) ⊆ X is compact for every compact C ⊆ Y .

Lemma 2.2 Suppose X and Y are proper metric spaces and f : X → Y is continuous.
Then f is proper if and only if f (Xinf) ⊆ Yinf .

Proof (⇒) Suppose f is proper. Fix a basepoint y0 for Y . Since B(y0, n) is compact
for every n, there is Nn such that d(y0, f (x)) > n for every x ∈ X with d(x0, x) ≥ Nn .
Hence, for x ∈ Xinf , we have d(y0, f (x)) > n for every n, i.e. f (x) ∈ Yinf .

(⇐) Suppose that f is not proper. Let C ⊆ Y be compact and such that f−1(C) is not
compact. Since f−1(C) is closed, we must have that f−1(C) is unbounded. Hence, by
overflow, there is x ∈ Xinf satisfying f (x) ∈ C∗ ⊆ Yns = Yfin .

The following special case of the previous lemma is all we will really need. Recall that
a ray in X is just a continuous function r : [0,∞)→ X .

Corollary 2.3 Suppose X is proper and r : [0,∞)→ X is a ray. Then r is proper if
and only if r(σ) ∈ Xinf for every σ ∈ R+

inf .

3 The Space of Ends of a Proper Geodesic Metric Space

In this section, we assume that our unbounded pointed metric space (X, x0) is also
proper. We will use the following definition of the ends of a proper metric space.

Definition 3.1 Two proper rays r1, r2 : [0,∞)→ X are said to converge to the same
end if for every R ∈ R>0 , there exists N such that r1[N,∞) and r2[N,∞) are contained
in the same path component of X \ B(x0,R). This defines an equivalence relation on
the set of proper rays; the equivalence class of r will be denoted by end(r). The set of
equivalence classes will be denoted by Ends(X).
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Ends of groups: a nonstandard perspective 5

Before we give a nonstandard characterization of two proper rays having the same end,
we must introduce and analyze a few nonstandard notions.

Definition 3.2 For x, y ∈ X∗ , we write x ∝ y if there is α ∈ C([0, 1],X)∗ such that
α(0) = x , α(1) = y, and α(t) ∈ Xinf for all t ∈ [0, 1]∗ .

Heuristically, one should think of the relation x ∝ y as saying that x and y are in the
same “path component at infinity”, for there is an internal path connecting x and y
which is contained in the infinite portion of the space.

Definition 3.3 For x, y ∈ X and R ∈ R>0 , we write x ∝R y if there is α ∈ C([0, 1],X)
such that α(0) = x, α(1) = y, and α(t) ∈ X \ B(x0,R) for all t ∈ [0, 1]. Note that
∝R is an equivalence relation on X for each R ∈ R>0 . We will also use ∝σ for
σ ∈ R∗ \ R, which is the internal relation on X∗ given by x ∝σ y if and only if there
is α ∈ C([0, 1],X)∗ such that α(0) = x, α(1) = y, and α(t) ∈ X∗ \ B(x0, σ) for all
t ∈ [0, 1]∗ .

Remark 3.4 Suppose x, y ∈ X∗ . If σ ∈ R∗ \ R and x ∝σ y, then x ∝ y. Conversely,
if x ∝ y, then, by underflow, there exists ν ∈ N∗ \ N such that x ∝ν y; of course such
a ν depends on x and y.

Remark 3.5 The choice of [0, 1]∗ in the above definitions is purely arbitrary. In fact,
let Path(X) denote the set of paths in X , that is α ∈ Path(X) if and only if there are
r, s ∈ R such that α : [r, s] → X is continuous. Note that any α ∈ Path(X) has a
reparametrization in C([0, 1],X). Hence, by transfer, if there is α ∈ Path(X)∗ , say
α : [σ, τ ]→ X∗ , such that α(σ) = x , α(τ ) = y, and α(t) ∈ Xinf for all t ∈ [σ, τ ], then
x ∝ y; likewise for the notion of ∝ν . (Here σ and τ are in R∗ and [σ, τ ] denotes the
interval determined by σ and τ in R∗ .) It follows that ∝ is an equivalence relation on
Xinf .

In proper geodesic spaces, we can find a “discrete” formulation of ∝. Recall that
X is a geodesic metric space if for any x, y ∈ X , there is an isometric embedding
α : [0, r]→ X such that α(0) = x and α(r) = y, where r := d(x, y); we call such an α
a geodesic segment connecting x and y.

Lemma 3.6 Suppose X is a proper geodesic space. Fix x, y ∈ X∗ . Then the following
are equivalent:

(1) x ∝ y
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6 Isaac Goldbring

(2) for every ε ∈ (R>0)∗ , there is a hyperfinite sequence a0, . . . , aν in Xinf such that
a0 = x , aν = y, and d(ai, ai+1) < ε for each i < ν

(3) there is a hyperfinite sequence a0, . . . , aν in Xinf such that a0 = x , aν = y, and
d(ai, ai+1) ∈ Rfin for each i < ν

Proof (1) ⇒ (2): Fix ε ∈ (R>0)∗ . Fix α ∈ C([0, 1],X)∗ witnessing that x ∝ y.
Since α is internally uniformly continuous, there is ν ∈ N∗ \ N such that for all
t, t′ ∈ [0, 1]∗ , if |t − t′| ≤ 1

ν , then d(α(t), α(t′)) < ε. The desired sequence is then
given by ai := α( i

ν ).

(2)⇒ (3) is trivial.

(3)⇒ (1): Let the hyperfinite sequence a0, . . . , aν be as guaranteed to exist by (3). For
each i < ν , let [ai, ai+1] denote an internal geodesic segment connecting ai and ai+1 .
Since d(ai, ai+1) ∈ Rfin , these segments are contained entirely in Xinf . Concatenating
these segments and applying Remark 3.5, we see that x ∝ y.

We are now prepared to give a nonstandard characterization of two proper rays having
the same end.

Lemma 3.7 Suppose r1, r2 : [0,∞) → X are proper rays. Then the following are
equivalent:

(1) end(r1) = end(r2)

(2) for all σ, τ ∈ R>0
inf , r1(σ) ∝ r2(τ )

(3) for some σ, τ ∈ R>0
inf , r1(σ) ∝ r2(τ )

Proof (1)⇒ (2): Suppose end(r1) = end(r2) and let σ, τ ∈ R>0
inf . Given n, there is

N such that for all s, t ∈ R>0 with s, t ≥ N , we have r1(s) ∝n r2(t). Consider the
internal set

A := {ν ∈ N∗ | r1(σ) ∝ν r2(τ )}.

By the transfer principle, N ⊆ A. Thus, by overflow, we have ν ∈ N∗ \ N with
r1(σ) ∝ν r2(τ ), yielding that r1(σ) ∝ r2(τ ).

(2) ⇒ (1): Suppose end(r1) 6= end(r2). Then there is some R ∈ R>0 such that
r1[N,∞) and r2[N,∞) do not lie in the same path component of X \ B(x0,R) for every
N ; that is, for every N , there are s, t ∈ R>0 with s, t ≥ N such that r1(s) 6∝R r2(t). For
each N , consider the internal set

BN := {(s, t) ∈ R∗ × R∗ | s, t ≥ N and r1(s) 6∝R r2(t)}.
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By assumption, each BN is nonempty. By saturation, there exists (σ, τ ) ∈
⋂
{BN | N ∈

N}. Then σ, τ ∈ R>0
inf and r1(σ) 6∝R r2(τ ), which implies that r1(σ) 6∝ r2(τ ).

(2)⇒ (3) is trivial.

(3)⇒ (2): Suppose σ, τ ∈ R>0
inf are such that r1(σ) ∝ r2(τ ) and let σ′, τ ′ ∈ R>0

inf be
arbitrary. Then (2) follows from the fact that r1(σ) ∝ r1(σ′) and r2(τ ) ∝ r2(τ ′), which
in turn follows from Lemma 2.3 and Remark 3.5 (2).

The following lemma combines Lemmas 3.6 and 3.7.

Lemma 3.8 Suppose X is a proper geodesic space and r1, r2 : [0,∞)→ X are proper
rays. Then the following are equivalent:

(1) end(r1) = end(r2)

(2) For all (equiv. for some) σ, τ ∈ R>0
inf , r1(σ) ∝ r2(τ )

(3) For all (equiv. for some) σ, τ ∈ R>0
inf and every ε ∈ (R∗)>0 , there is a hyperfinite

sequence a0, . . . , aν in Xinf such that a0 = r1(σ), aν = r2(τ ) and d(ai, ai+1) < ε

for each i < ν

(4) For all (equiv. for some) σ, τ ∈ R>0
inf , there is a hyperfinite sequence a0, . . . , aν

in Xinf such that a0 = r1(σ), aν = r2(τ ) and d(ai, ai+1) ∈ Rfin for each i < ν

For x ∈ Xinf , let [x] denote its equivalence class under ∝ and refer to [x] as the infinite
path component of x . We denote the set of infinite path components of X by

IPC(X) := {[x] | x ∈ Xinf}.

Fix σ ∈ R>0
inf . Then Lemma 3.7 allows us to define a map

Θ : Ends(X)→ IPC(X), Θ(end(r)) = [r(σ)].

Lemma 3.7 further implies that Θ is injective and independent of the choice of σ .

Lemma 3.9 Suppose X is a proper geodesic space. Then Θ is a bijection.

Proof Let x ∈ Xinf and let σ := d(x, x0) ∈ R>0
inf . Let r̂ : [0, σ]→ X∗ be an internal

geodesic connecting x0 and x. Note that r̂(t) ∈ Xfin = Xns for t ∈ R>0
fin . We may

thus define r : [0,∞) → X by r(t) := st(r̂(t)). Note that r is a geodesic ray: for
t, t′ ∈ [0,∞), we have

d(r(t), r(t′)) = d(st(r̂(t)), st(r̂(t′))) = st(d(r̂(t), r̂(t′))) = st(|t − t′|) = |t − t′|.
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To finish the proof of the lemma, it suffices to show that r(σ) ∝ x , as then Θ(end(r)) =

[x]. Fix ε ∈ R>0 . Then the set

{ν ∈ N∗ | ν ≤ σ ∧ d(r̂(ν), r(ν)) < ε}

is internal and contains all of N. By overflow, we must have ν ∈ N∗ \ N such that
ν ≤ σ and d(r(ν), r̂(ν)) < ε. Connecting r(ν) and r̂(ν) by an internal geodesic, we see
that r(ν) ∝ r̂(ν). Since r(σ) ∝ r(ν) and r̂(ν) ∝ r̂(σ) = x , we are finished.

Remark 3.10 The above lemma makes it immediately clear that the proper geodesic
space Rn , equipped with its usual metric, has two ends if n = 1 and one end if n ≥ 2.

Notation: Let Gx0(X) denote the set of geodesic rays in X emanating from x0 .

Corollary 3.11 The map r 7→ end(r) : Gx0(X)→ Ends(X) is surjective.

Proof Immediate from the proof of Lemma 3.9.

A useful property of a space with finitely many ends is that one can “separate" the ends
with a ball centered around x0 of finite radius. This may not be possible for a space
with infinitely many ends. However, we can separate the ends with a ball centered at x0

of hyperfinite radius.

Lemma 3.12 Suppose that X has infinitely many ends. Let {ri | i ∈ I} ⊆ Gx0(X) be
distinct such that {end(ri) | i ∈ I} enumerates the ends of X . Then for every σ ∈ N∗ \N
and for all distinct i, j ∈ I , we have ri(σ) 6∝ rj(σ).

Proof Immediate from Lemma 3.7.

If X is a proper geodesic space, then Ends(X) can be topologized in the following
manner. Fix r ∈ Gx0(X). For n > 0, let Ṽn(r) be the set of r′ ∈ Gx0(X) such that
r′(m) ∝n r(m) for all (equiv. some) m > n. Let Vn(r) := {end(r′) | r′ ∈ Ṽn(r)}. Then
the sets Vn(r) form a neighborhood basis of end(r) in Ends(X).

We now give a nonstandard description of the topology on Ends(X) by giving a
description of the monad system of Ends(X). By Corollary 3.11, we can think of
Ends(X) as Gx0(X) modulo the equivalence relation of two rays having the same end.
By the Transfer Principle, Gx0(X)∗ is the set of internally geodesic rays in X∗ emanating
from x0 and Ends(X)∗ is the quotient of Gx0(X)∗ modulo the equivalence relation which
is the extension of the equivalence relation of two rays having the same end. One should
note that if r ∈ Gx0(X)∗ , then r(σ) ∈ Xinf for σ ∈ R>0

inf .
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Lemma 3.13 For r ∈ Gx0(X) and r′ ∈ Gx0(X)∗ , we have end(r′) ∈ µ(end(r)) if and
only if r′(σ) ∝ r(σ) for some (equivalently, all) σ ∈ R>0

inf .

Proof (⇒) Suppose end(r′) ∈ µ(end(r)). Consider the internal set

A := {ν ∈ N∗ | (∀σ ∈ R∗)(σ > ν → r(σ) ∝ν r′(σ)}.

Since r′ ∈ Ṽn(r)∗ for each n, we have N ⊆ A. By overflow, there is ν ∈ N∗ \ N such
that ν ∈ A. Hence, if σ ∈ R∗ is such that σ > ν , then r(σ) ∝ r′(σ).

(⇐) Suppose σ ∈ R>0
inf is such that r′(σ) ∝ r(σ). Fix n > 0. We want to show that

end(r′) ∈ Vn(r)∗ . For m > n, consider the internal path connecting r′(m) and r(m)
obtained by first connecting r′(m) and r′(σ) using r′ , then connecting r′(σ) and r(σ)
with an internal path contained entirely in Xinf , then finally connecting r(σ) and r(m)
using r . This internal path lies entirely in X∗ \ B(x0, n)∗ , so end(r′) ∈ Vn(r)∗ .

Corollary 3.14 Ends(X) is a compact hausdorff space.

Proof Lemmas 3.7 and 3.13 make it clear that any two distinct monads are disjoint,
whence Ends(X) is hausdorff. Now suppose r′ ∈ Gx0(X)∗ . To show that Ends(X)
is compact, we need to find r ∈ Gx0(X) such that end(r′) ∈ µ(end(r)). The desired
geodesic ray is obtained by defining r(t) := st(r′(t)); the details are identical to those in
the proof of Lemma 3.9.

Equip IPC(X) with the unique topology which makes Θ a homeomorphism. The next
lemma gives a more concrete description of this topology on IPC(X).

Lemma 3.15 Fix [x] ∈ IPC(X). Let Vn([x]) := {[x′] | x′ ∝n x}. Then the family of
sets Vn([x]) form a basis of neighborhood of [x] in IPC(X).

Proof Fix r ∈ Gx0(X) such that Θ(end(r)) = [x]. We show that Θ(Vn(r)) = Vn([x]).
The fact that Θ(Vn(r)) ⊆ Vn([x]) follows immediately from the definitions and the
transfer principle. Now suppose that [x′] ∈ Vn([x]). Choose r′ ∈ Gx0(X) such that
Θ(end(r′)) = [x′]. Then r′(σ) ∝n r(σ), whence it follows that r′ ∈ Ṽn(r) and hence
[x′] ∈ Θ(Vn(r)).
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10 Isaac Goldbring

4 Ends and Quasi-Isometries

In this section, we use our nonstandard description of ends to give a proof of the fact
that quasi-isometries between two proper geodesic spaces induce homeomorphisms on
the corresponding end spaces. We begin by defining quasi-isometries and proving a few
facts concerning quasi-isometries in the nonstandard framework.

Definition 4.1 Suppose that (X, dX) and (Y, dY ) are metric spaces. For λ ∈ R≥1 and
ε ∈ R>0 , a (not necessarily continuous) function f : X → Y is a (λ, ε)-quasi-isometric
embedding if, for all x, x′ ∈ X , we have

1
λ

dY (f (x), f (x′))− ε ≤ dX(x, x′) ≤ λdY (f (x), f (x′)) + ε.

If f : X → Y is a (λ, ε)-quasi-isometric embedding, we call f a (λ, ε)-quasi-isometry
if there is C ∈ R>0 such that the C-neighborhood of f (X) equals Y . We say that
f : X → Y is a quasi-isometric embedding if it is a (λ, ε)-quasi-isometric embedding
for some λ and ε. Similarly, f : X → Y is a quasi-isometry if it is a (λ, ε)-quasi-
isometry for some λ and ε. It can be shown that if f : X → Y is a quasi-isometry,
then there is a quasi-inverse for f , which is a quasi-isometry g : Y → X for which
there is K ∈ R>0 such that, for all x ∈ X and y ∈ Y , we have dX(g(f (x)), x)) ≤ K and
dY (f (g(y)), y) ≤ K .

Lemma 4.2 Suppose X and Y are proper geodesic spaces and f : X → Y is a
quasi-isometric embedding. Then:

(1) For all x, x′ ∈ X∗ , d(x, x′) ∈ Rfin if and only if d(f (x), f (x′)) ∈ Rfin .

(2) If x, x′ ∈ Xinf are such that x ∝ x′ , then f (x) ∝ f (x′). Moreover, if f is a
quasi-isometry, then for all x, x′ ∈ Xinf , x ∝ x′ if and only if f (x) ∝ f (x′).

Proof (1) follows immediately from the definition of a quasi-isometric embedding.
For (2), fix x, x′ ∈ Xinf such that x ∝ x′ . By Lemma 3.6, there is a hyperfinite sequence
a0, . . . , aν from Xinf such that a0 = x, aν = y, and d(ai, ai+1) ∈ Rfin for all i < ν .
Then by (1), f (a0), . . . , f (aν) is a hyperfinite sequence from Yinf such that f (a0) = f (x),
f (aν) = f (x′), and d(f (ai), f (ai+1)) ∈ Rfin for all i < ν , whence f (x) ∝ f (x′) by Lemma
3.6. Now suppose that f is a quasi-isometry and f (x) ∝ f (x′). Let g : Y → X be a
quasi-inverse for f . By the first part of (2), we have g(f (x)) ∝ g(f (x′)). Since g(f (x))
and x are within a finite distance from each other, we have g(f (x)) ∝ x; likewise
g(f (x′)) ∝ x′ , whence we have x ∝ x′ .
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We now have the following well-known standard corollary.

Corollary 4.3 Suppose X and Y are proper geodesic spaces and f : X → Y is a
quasi-isometric embedding. Then for every n, there is m such that for all x, x′ ∈ X , if
x ∝m x′ , then f (x) ∝n f (x′).

Proof Suppose, towards a contradiction, that there is n such that for every m, there
are xm, x′m ∈ X such that xm ∝m x′m and f (xm) 6∝n f (x′m). Then by saturation, there is
x, x′ ∈ X∗ such that x ∝m x′ for all m and yet f (x) 6∝n f (x′). Set

Am := {α ∈ C([0, 1])∗ | α(0) = x, α(1) = x′, ∀t ∈ [0, 1]∗(d(x0, α(t)) ≥ m)}.

By choice of x and x′ , Am has the finite intersection property, so by saturation, there is
α ∈

⋂
m Am . Then α witnesses that x ∝ x′ . However, f (x) 6∝ f (x′), contradicting the

previous lemma.

The composition of two quasi-isometries is once again a quasi-isometry. In order to form
the quasi-isometry group of X , we first need to identify two quasi-isometries which are a
bounded distance away from each other. More precisely, for two functions f , g : X → X ,
say that f and g are equivalent if there is R ∈ R such that d(f (x), g(x)) ≤ R for all
x ∈ X . Then QI(X), the quasi-isometry group of X , will denote the set of equivalence
classes of quasi-isometries of X equipped with the operation induced by composition
of quasi-isometries.

Lemma 4.4 Suppose that X and Y are proper geodesic spaces. Then every quasi-
isometry f : X → Y induces a homeomorphism fe : IPC(X)→ IPC(Y). The map

f 7→ fe : QI(X)→ Homeo(IPC(X))

is a group homomorphism.

Proof By Lemma 4.2, we can define fe([x]) := [f (x)]. We claim that fe is continuous.
Fix [x] ∈ IPC(X) and n. The transfer principle applied to Corollary 4.3 shows that
there is m such that fe(Vm([x])) ⊆ Vn([f (x)]), from which the continuity of fe follows.
Now suppose that g : Y → X is also a quasi-isometry. Then

ge(fe([x])) = ge([f (x)]) = [(g(f (x))] = (g ◦ f )e([x]).

If g happened to be a quasi-inverse to f , then the fact that d(g(f (x)), x) ∈ Rfin shows
that g(f (x)) ∝ x , whence ge(fe([x])) = [x] and ge is the inverse to fe .
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Corollary 4.5 [2, Proposition 8.29] Suppose that X and Y are proper geodesic spaces.
Then every quasi-isometry f : X → Y induces a homeomorphism fe : Ends(X) →
Ends(Y). The map

f 7→ fe : QI(X)→ Homeo(Ends(X))

is a group homomorphism.

Proof This is immediate from the previous lemma and Lemma 3.9. The constructions
involved show that fe(end(r)) is the end associated to f (r(σ)) for any σ ∈ R>0

inf .

5 Application to Cayley Graphs of Finitely Generated Groups

In this section, we specialize to the case that X is the metric space associated to the
Cayley graph of a finitely generated group. We first consider the more general context
of a locally finite combinatorial graph.

Suppose that (V, E) is a locally finite combinatorial graph, that is a combinatorial graph
for which every vertex has only finitely many edges emanating from it. We can turn
(V, E) into a metric space X := X(V, E) by identifying each edge with an isometric
copy of the interval [0, 1] and then declaring, for x, y ∈ X , d(x, y) to be the infimum
of the lengths of paths from x to y; see Bridson and Haefliger [2] for more details. In
this way, X becomes a proper geodesic space. Let us fix a basepoint x0 of X , which
we assume to be an element of V . Let us agree to write Vfin for Xfin ∩ V∗ and Vinf

for V∗ \ Vfin . Since V ∩ B(x0, n) is finite for any n, we see that Vfin = V (whence
Vinf = V∗ \ V ). Also, by the Transfer Principle, for every x ∈ X∗ , there is v ∈ V∗ with
d(x, v) ≤ 1, whence every infinite path component has a representative from Vinf , that is

IPC(X) := {[v] | v ∈ Vinf}.

Lemma 5.1 For v, v′ ∈ Vinf , we have v ∝ v′ if and only if there is a hyperfinite
sequence g0, . . . , gν from Vinf such that g0 = v, gν = v′ , and (gi, gi+1) ∈ E∗ for all
i < ν .

Proof The backward direction is immediate from the direction (3)⇒ (1) of Lemma
3.6. For the proof of the forward direction, suppose v ∝ v′ . By (1) ⇒ (2) of
Lemma 3.6, we have a hyperfinite sequence a0, . . . , aη in Xinf such that a0 = v,
aη = v′ , and d(ai, ai+1) < 1

2 for all i < η . Now define the internal set R ⊆ N∗ × V∗
by (i, x) ∈ R if and only if ai and ai+1 lie on the interiors of distinct edges (so in
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particular, ai, ai+1 /∈ V∗ ) and x is the unique vertex lying in between ai and ai+1 . Let
π1 : N∗ × V∗ → N∗ and π2 : N∗ × V∗ → V∗ denote the projections onto N∗ and V∗
respectively. Note that π2(R) ⊆ Vinf . For j ∈ π1(R), let bj ∈ V∗ be such that (j, bj) ∈ R.
Let η′ := η + |π1(R)| and define a hyperfinite sequence c0, . . . , cη′ from X∗ × {0, 1}
by internal recursion as follows. Let c0 = (v, 0). Suppose that i > 0 and that ci−1 has
been defined. Then define ci by

ci =


(aj+1, 0) if ci−1 = (aj, 0) and j /∈ π1(R)

(bj, 1) if ci−1 = (aj, 0) and j ∈ π2(R)

(aj+1, 0) if ci−1 = (bj, 1).

The idea here is to insert vertices into the original sequence which lie in between
consecutive elements of the original sequence. We use 0 and 1 as labels to distinguish
original members of the sequence from newly added members of the sequence. Let
π : X∗ × {0, 1} → X∗ be the projection map. Let

η′′ := |π(X∗ × {0, 1}) ∩ V∗|.

Define the hyperfinite sequence d0, . . . , dη′′ from V∗ by internal recursion as follows.
Let d0 = v = π(c0). Now suppose that i > 0 and di−1 = π(cj). Then define
di = π(ck), where k ∈ {1, . . . , η′} is minimal satisfying the requirements that k > j
and π(ck) ∈ V∗ . Note that successive di ’s are either equal or a distance 1 apart. Let
ν := |{di | i ≤ η′′}| and define the hyperfinite sequence g0, . . . , gν by internal recursion
as follows. Let g0 = v = d0 . Now suppose that i > 0 and gi−1 = dj . Then define
gi = dk where k ∈ {1, . . . , η′′} is minimal satisfying k > j and dk 6= dj . This sequence
is as desired.

Fix a group G, which by the convention established in the introduction is assumed to be
finitely generated and infinite. Fix a finite generating set S for G. We let Cay(G, S), the
Cayley graph of G with respect to the generating set S , be the locally finite graph
with V = G and edge relation given by (g, h) ∈ E if and only if there is s ∈ S±1 such
that h = gs. (Here, S±1 = S ∪ S−1 , where S−1 := {s−1 | s ∈ S}.) We let X denote the
metric space associated to Cay(G, S). We take x0 = 1 as our basepoint in X . If S′ is
also a finite generating set for G and X′ is the metric space associated to Cay(G, S′),
then X′ is quasi-isometric to X (see [2], Chapter I.8, Example 8.17(3)), whence Ends(X)
and Ends(X′) are homeomorphic by Lemma 4.4. Hence, defining Ends(G) := Ends(X)
gives us a space which is uniquely determined up to homeomorphism.

For g ∈ G, let |g| := d(1, g). We have Gfin = G = {g ∈ G∗ | |g| ∈ Rfin},
Ginf = G∗ \ G, and IPC(X) = {[g] | g ∈ Ginf}.
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The following group-theoretic interpretation of when g ∝ g′ follows immediately from
Lemma 5.1.

Lemma 5.2 For g, g′ ∈ Ginf , we have g ∝ g′ if and only if there is a hyperfinite
sequence s0, . . . , sη ∈ S±1 such that gs0 · · · sη = g′ and gs0 · · · si ∈ Ginf for all
i ∈ {1, . . . , η}.

The action of G on itself by left multiplication extends to an isometry of X (as it
preserves the relation E ), whence Lemma 4.4 yields a group morphism

g 7→ ([x] 7→ [gx]) : G→ Homeo(IPC(X)).

Let H be the kernel of this group morphism, so for h ∈ H and x ∈ Ginf , we have
hx ∝ x . We will call H the end stabilizer of G. By Lemma 4.2, H is independent of
the choice of S . Under the identification between IPC(X) and Ends(X), this morphism
becomes

g 7→ (end(r) 7→ end(g · r)) : G→ Homeo(Ends(X)).

Then for h ∈ H and end(r) ∈ Ends(X), we have end(h · r) = end(r).

We now use everything that we have developed thus far to give a nice nonstandard proof
of one of the fundamental theorems of the subject.

Theorem 5.1 (Hopf [14]) Suppose that G has finitely many ends. Then G has at
most two ends.

Proof Suppose that G has finitely many ends but, towards a contradiction, at least 3
ends, say e1, e2, e3 . For i = 1, 2, let ri ∈ G1(X) be such that end(ri) = ei . Since H
has finite index in G, we see that there is a fixed constant K such that every element
of G is within K of an element of H . Thus there is a proper ray r : [0,∞)→ X with
end(r) = e3 and such that |r(n)| ≥ n and r(n) ∈ H for each n. We will need the
following claim.

Claim: There are β, ν ∈ N∗ \ N such that r(β)ri(ν) ∈ Ginf and r(β)ri(ν) ∝ ri(ν) for
i = 1, 2.

The reason that the claim is not trivially true by overflow is that the relation ∝ is
external, that is, not internal. Fix γ ∈ R>0

inf . For each n > 0, apply the transfer principle
to the fact that

end(r(n) · r1) = end(r1) and end(r(n) · r2) = end(r2)
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to obtain ν ∈ N∗ with ν > γ satisfying

r(n) · r1(ν) ∝γ r1(ν) and r(n) · r2(ν) ∝γ r2(ν).

Now we can apply overflow to obtain β ∈ N∗ \N such that there is ν ∈ N∗ with ν > γ

such that r(β) · r1(ν) ∝γ r1(ν) and r(β) · r2(ν) ∝γ r2(ν), proving the claim.

Fix β and ν as in the Claim. Let h := r(β) and xi := ri(ν), i = 1, 2. Note that we
can write x1 = s1 · · · sν , where sη ∈ S±1 and |s1 · · · sη| = η for all η ∈ {1, . . . , ν}.
Likewise, x2 = t1 · · · tν , where tη ∈ S±1 and |t1 · · · tη| = η for all η ∈ {1, . . . , ν}.
Since hx1 ∝ x1 6∝ h, Lemma 5.2 implies that hs1 · · · sη ∈ G for some η < ν . Likewise,
ht1 · · · tζ ∈ G for some ζ < ν . Since h ∈ Ginf , we must have s1 · · · sη, t1 · · · tζ ∈ Ginf ,
whence η, ζ ∈ N∗\N. Since s−1

η · · · s−1
1 t1 · · · tζ ∈ G, it follows that s1 · · · sη ∝ t1 · · · tζ ,

and since x1 ∝ s1 · · · sη and x2 ∝ t1 · · · tζ , we get x1 ∝ x2 , a contradiction.

Remark 5.3 There are finitely generated groups with exactly one end. Indeed, the
Cayley graph of Z ⊕ Z is quasi-isometric to R2 , whence Z ⊕ Z has one end. (We
will consider a generalization of this fact in Lemma 5.5.) Note that the Cayley graph
of Z is quasi-isometric to R, whence Z has two ends. In fact, G has two ends if and
only if it is virtually Z, that is if and only if it has a subgroup of finite index which
is isomorphic to Z. The “if” direction of this result follows from the fact that if G is
a finitely generated group with finite generating set S and G′ is a finitely generated
subgroup of finite index in G with generating set S′ ⊆ S , then the natural inclusion
Cay(G′, S′) ↪→ Cay(G, S) of Cayley graphs is a quasi-isometry. The “only if” direction
is due to Hopf and will be proved here in Theorem 6.1.

While the proof of Theorem 5.1 given above has the advantage of being rather elementary,
we can give an even shorter proof once we establish the following general lemma about
the nonstandard extension of the end stabilizer of a group.

Lemma 5.4 Let W ⊆ Ginf be internal. Then there is ν ∈ N∗ \ N such that hx ∈ Ginf

and hx ∝ x for all x ∈ W and all h ∈ H∗ with |h| ≤ ν .

Proof Let An := {η ∈ N∗ | η > n}, and for h ∈ H , let

Bh := {η ∈ N∗ | hx ∝η x for all x ∈ W}.

For each h ∈ H , we have N ⊆ Bh , so the family

{An | n ∈ N} ∪ {Bh | h ∈ H}
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is a family of internal sets with the finite intersection property, so by saturation, there is
γ ∈

⋂
n An ∩

⋂
h Bh . Consider the internal set

C := {η ∈ N∗ | (∀h ∈ H∗)(∀x ∈ W) (|h| ≤ η → hx ∝γ x)}.

Since N ⊆ C , there is ν ∈ N∗ \ N with ν ∈ C . This ν is as desired.

Here now is a shorter proof of Theorem 5.1. Let x1, x2 ∈ Ginf be such that x1 6∝ x2 .
Fix ν ∈ N∗ \ N such that hxi ∝ xi for i = 1, 2 and all h ∈ H∗ with |h| ≤ ν . Fix
h ∈ Hinf such that |h| ≤ ν and such that h 6∝ x1 and h 6∝ x2 ; this is possible since there
is K ∈ N such that every element of G is within a distance of K from an element of H ,
whence every element of G∗ is within a distance of K from an element of H∗ . The
proof now proceeds as in the final paragraph of the proof given above. (The fact that
|x1| = |x2| was irrelevant in the proof of Theorem 5.1 given above. Of course, one
could take x1, x2 ∈ Ginf such that x1 6∝ x2 and |x1| = |x2|.)

Let us mention one more application of Lemma 5.2.

Lemma 5.5 If G1 and G2 are infinite, finitely generated groups, then G1 × G2 has
one end.

Proof We show that if (g1, g2), (h1, h2) ∈ (G1 × G2)inf , then (g1, g2) ∝ (h1, h2). First
suppose that g1 = h1 ∈ (G1)inf . Write g2 = h2s1 · · · sν , where si ∈ S±1 for each i ≤ ν ;
here S denotes the generating set for G2 . Then (g1, g2) = (h1, h2) · (1, s1) · · · (1, sν)
and each initial segment (h1, h2) · (1, s1) · · · (1, si) is certainly in (G1 × G2)inf , whence
(g1, g2) ∝ (h1, h2) by Lemma 5.2. One deals with the case that g2 = h2 ∈ (G2)inf in a
similar manner. Now suppose that g1 ∈ (G1)inf and h2 ∈ (G2)inf . Then by the special
cases just treated above, we have that

(g1, g2) ∝ (g1, h2) ∝ (h1, h2).

Finally, suppose that g1, h1 ∈ (G1)inf . Fix x ∈ (G2)inf . Then

(g1, g2) ∝ (g1, x) ∝ (h1, x) ∝ (h1, h2).

Remark 5.6 The preceding lemma actually appears in Cohen [4] as a corollary of
the following more general result: If G contains an infinite, finitely generated normal
subgroup H such that G/H is infinite, then G has one end. The proof of this fact is a
rather straightforward combinatorial argument, and we were unable to find a nonstandard
one simpler than it.
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We end this section with a short discussion of amalgamated free products and HNN
extensions. This material will be needed in the next section.

Definition 5.7

(1) Suppose that G1 and G2 are groups with subgroups H1 and H2 respectively.
Further suppose that φ : H1 → H2 is an isomorphism. Then the amalgamated
free product of G1 and G2 with respect to φ is the group

G1 ∗φ G2 := 〈G1,G2 | φ(h)h−1, h ∈ H1〉.

A more common notation for this amalgamated free product is G1 ∗H G2 , where
H is a group isomorphic to both H1 and H2 .

(2) Suppose that G is a group, H1 and H2 are subgroups of G, and φ : H1 → H2 is
an isomorphism. Then the HNN extension of G via φ is the group

G∗φ := 〈G, t | tht−1φ(h)−1, h ∈ H1〉,

where t is an element not in G, called the stable letter of G∗φ . A more common
notation for the HNN extension of G via φ is G∗H , where H is a group isomorphic
to both H1 and H2 .

The following theorem is considered one of the most important theorems in the theory
of ends of finitely generated groups. It would be a triumph to find a simple, nonstandard
proof of this theorem.

Theorem 5.2 (Stallings [18], Bergman[1]) G has more than one end if and only if
one of the following holds:

• G ∼= A ∗C B, where C is a finite group and A 6= C and B 6= C , or

• G ∼= A∗C , where C is a finite subgroup of A.

We end with the Reduced Form Theorems for amalgamated free products (see Magnas,
Karras, and Solitar [15, Theorem 4.1]) and HNN extensions (see Britton [3] and Cohen
[5, Theorem 32]). The reduced form theorem for HNN extensions is also referred to as
Britton’s Lemma.

Fact 5.8
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(1) Suppose that C is a common subgroup of the groups A and B. Then every
element g ∈ A ∗C B can be written in a reduced form

g = cg1 · · · gn,

where c ∈ C , g1, . . . , gn ∈ (A ∪ B) \ C , and for all i ∈ {1, . . . , n − 1},
gigi+1 /∈ A ∪ B. Moreover, the number n is uniquely determined by g and is
called the length of g, denoted `(g).

(2) Suppose that A is a group and φ : C1 → C2 is an isomorphism between two
subgroups of A. Let t be the stable letter of A∗φ . Then every element g ∈ A∗φ
can be written in a reduced form

g = g0tε1g1 · · · tεngn,

where εi ∈ {−1, 1} for all i ∈ {1, . . . , n}, gi ∈ A for all i ∈ {0, . . . , n}, and
there are no subwords of the form t−1ait with ai ∈ C1 or tait−1 with ai ∈ C2 .
Moreover, the number n is uniquely determined by g and is called the length of
g, denoted `(g).

A nonstandard consequence of this fact is that if G is an amalgamated free product or
HNN extension and g ∈ G∗ is such that `(g) ∈ N∗ \ N, then g ∈ Ginf .

6 Groups with at Least Two Ends

In this section, we continue to let X denote the metric space associated to Cay(G, S).
We further suppose that G has at least two ends. We fix N such that X \ B(1,N) has at
least two unbounded path components. V will always denote the set of vertices of an
unbounded path component of X \ B(1,N). Following Cohen [4], call E ⊆ G almost
invariant if the symmetric difference Eg4E is finite for all g ∈ G.

Lemma 6.1 V is almost invariant.

Proof Fix g ∈ G and h ∈ Vinf . Note that hg−1, hg ∝ h, whence hg−1, hg ∈ V∗ . It
follows by underflow that for all h ∈ V with |h| sufficiently large, one has that h ∈ Vg
and hg ∈ V .

Fact 6.2 For all but finitely many g ∈ V , we have gV ⊆ V or G \ V ⊆ gV .
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Proof This is actually a special case of Cohen [4, Lemma 1.4], which states that
given any two almost invariant subsets E1 and E2 of G, then for all but finitely many
g ∈ E1 , one has either gE2 ⊆ E1 or G \ E1 ⊆ gE2 . (Cohen’s Lemma 1.4 has a rather
straightforward proof and we have been unable to find a nonstandard proof simpler than
his.) Taking E1 = E2 = V , which is almost invariant by Lemma 6.1, we see that for
almost all g ∈ V , either gV ⊆ V or G \ V ⊆ gV .

Recall that H denotes the end stabilizer of G.

Lemma 6.3 For any g ∈ H , we have gV4V is finite.

Proof Fix g ∈ H and h ∈ Vinf . Then since gh, g−1h ∝ h, we have gh, g−1h ∈ V∗ . So
by underflow, we have that for h ∈ V with |h| sufficiently large, we have gh, g−1h ∈ V ,
finishing the proof.

Corollary 6.4 For all but finitely many g ∈ V ∩ H , we have gV ⊆ V .

Proof By Fact 6.2, for all but finitely many g ∈ V∩H , we have gV ⊆ V or G\V ⊆ gV .
However, since G \ V is infinite (as G has at least two ends), the latter alternative
contradicts Lemma 6.3.

Corollary 6.5 For any g ∈ Vinf ∩ H∗ , one has gV∗ ⊆ V∗ .

The proof of the following theorem is essentially the same as in Cohen [4], but we
include it here for completeness.

Theorem 6.1 (Hopf [14], Cohen [4]) If G has at least two ends and has infinite end
stabilizer, then G is virtually Z (whence it has exactly two ends). In particular, if G
has exactly two ends, then G is virtually Z.

Proof Fix V as in the beginning of this section. Choose g ∈ V ∩H such that gV ⊆ V ;
this is possible by Corollary 6.4 and the fact that H is infinite. Note that then gn ∈ V
for all n (whence g has infinite order) and that g−1 /∈ V . Now note that every x ∈ V
can be written as x = gmv, for some m and some v ∈ V \ gV . Indeed, if x ∈

⋂
n gnV ,

then g−n ∈ Vx−1 for all n; but Lemma 6.1 tells us that Vx−1 differs from V by a finite
number of elements of G, yielding a contradiction to the fact that g−n /∈ V for all n.
Likewise, since G \ V is almost invariant, every x ∈ G \ V can be written in the form
x = g−mv, for some m and some v ∈ (G \ V) \ (g−1(G \ V)). Lemma 6.3 tells us that
V \ gV is finite (whence (G \ V) \ (g−1(G \ V)) is also finite), and hence the subgroup
of G generated by g has finite index in G.
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Note that in a group with one end, we have G = H and g ∝ g−1 for every g ∈ Ginf =

Hinf . Contrast this with the following lemma.

Lemma 6.6 Suppose that G has two ends. Then for all g ∈ Hinf , g 6∝ g−1 .

Proof Consider g ∈ Hinf and fix V such that g ∈ V∗ . By Corollary 6.5, we have
gV∗ ⊆ V∗ . If g ∝ g−1 , then g−1 ∈ V∗ , whence 1 ∈ V∗ , a contradiction.

Lemma 6.7 Suppose that G has two ends. Then for every hyperfinite sequence
g1, . . . , gη of elements of Hinf such that gi ∝ gj for all i, j ∈ {1, . . . , η}, we have
g1 · · · gη ∈ Hinf and g1 · · · gη ∝ g1 . In particular, for every g ∈ Hinf and every
η ∈ N∗ \ {0}, we have gη ∈ Hinf and gη ∝ g.

Proof Let V be such that gi ∈ V∗ for all i ∈ {1, . . . , η}. By Corollary 6.5, we
have giV∗ ⊆ V∗ for each i ∈ {1, . . . , η}. By internal induction, one can show
that gη−i · · · gη ∈ V∗ for all i ∈ {0, . . . , η − 1}, whence g1 · · · gη ∈ V∗ . Hence
g1 · · · gη ∝N g1 . Notice that the same argument can be applied to any n ≥ N , whence
g1 · · · gη ∝n g1 for all n ≥ N . Hence, by overflow, there is ν ∈ N∗ \ N such that
g1 · · · gη ∝ν g1 , finishing the proof.

Example 6.8 The free product G := Z2 ∗ Z2 is a group with two ends which does not
equal its own end stabilizer; here Z2 denotes the group of two elements. Let a and b
be distinct generators for the two factors of Z2 . To see that G has two ends, notice that
reduced words of infinite length are in the same infinite path component if and only if
they both begin with a or both begin with b. It then follows that left multiplication by a
permutes the two ends of G, so G does not equal its own end stabilizer. Another way to
see that G does not equal its own end stabilizer is the observation that any reduced word
of infinite length which begins and ends with the same element (e.g. abab · · · a︸ ︷︷ ︸

ν factors, ν∈N∗\N

)

has order 2, whence cannot be in the nonstandard extension of the end stabilizer by
Lemma 6.7.

Lemma 6.7 leads us to ask what groups G have multiplicative ends: for all infinite
g, g′ ∈ G∗ , if g ∝ g′ , then gg′ ∈ Ginf and gg′ ∝ g? It turns out that there is a
standard characterization of groups with this property. We first provide a well-known
consequence of Stalling’s Theorem for which we were unable to find a reference. The
outline of the proof was communicated to me by Ilya Kapovich. Recall that a group
G is a (internal) semidirect product of K by Q if K and Q are subgroups of G, K is
normal in G, G = KQ, and K ∩ Q = {1}.
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Lemma 6.9 A finitely generated group G has two ends if and only if G is a semidirect
product of a finite group by a group which is isomorphic to Z or Z2 ∗ Z2 .

Proof The “if" direction follows from Example 6.8 and the fact that a virtually two-
ended group is itself two-ended. We now prove the “only if" direction. By Stallings’
theorem (Theorem 5.2), G admits a simplicial cocompact action on a simplicial line T
with finite-edge stabilizers. We thus obtain a homomorphism α : G → Aut(T) with
finite kernel K . We claim that α(G) is isomorphic to Z or Z2 ∗ Z2 .

Case 1: α(G) only contains translations. Choose g ∈ G such that the translation
distance of α(g) is minimal with respect to the translation distances of the elements of
α(G \ K). We claim that α(G) = 〈α(g)〉, the subgroup of Aut(T) generated by α(g),
yielding that α(G) is isomorphic to Z. Indeed, let n > 0 equal the translation distance
of α(g). Fix h ∈ G \ K and let m equal the translation distance of α(h). Let q, r ∈ N
be such that m = qn + r , where q > 0 and r ∈ {0, . . . , n− 1}. Since α(g−qh) is an
element of α(G) of translation distance r , it follows by choice of g that α(g−qh) = idT

and hence α(h) is in the subgroup of Aut(T) generated by α(g).

Case 2: α(G) contains an orientation-reversing element α(g). We first claim that α(G)
also contains a nontrivial translation. Since α has a finite kernel, we have that α(G)
is infinite. Choose h ∈ G such that α(h) /∈ {idT , α(g)}. If α(h) is not a translation,
then α(h) is an orientation-reversing element, whence α(g)α(h) = α(gh) is a nontrivial
translation. Choose h ∈ G such that α(h) is a nontrivial translation and the translation
distance of α(h) is minimal with respect to the translation distances of the translations
in α(G \ K). Let g′ := gh. We next claim that α(G) = 〈α(g), α(g′)〉, the subgroup
of Aut(T) generated by α(g) and α(g′). Fix y ∈ G \ K . If α(y) is a translation, then
α(y) ∈ 〈α(h)〉 as in Case 1. If α(y) is an orientation reversing element, then α(gy) is a
translation, whence α(y) ∈ 〈α(g), α(h)〉. Now it is easy to prove that the natural map
〈g〉 ∗ 〈g′〉 → α(G) is an isomorphism, whence it follows that α(G) is isomorphic to
Z2 ∗ Z2 .

In either case, the exact sequence 1→ K → G→ α(G)→ 1 admits a splitting, i.e. a
group homomorphism β : α(G)→ G such that αβ = idα(G) . It then follows that G is
a semidirect product of K by α(G).

Proposition 6.10 For a finitely generated group G, the following are equivalent:

(1) G has two ends and equals its own end stabilizer

(2) G has multiplicative ends

(3) for all g ∈ Ginf , g 6∝ g−1
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(4) G is a semidirect product of a finite group by an infinite cyclic group

(5) G has two ends and has an infinite cyclic central subgroup

Proof (1)⇒ (2) is immediate from Lemma 6.7.

(2)⇒ (3) is trivial.

(3) ⇒ (1): G cannot have one end, for then we have g ∝ g−1 for all g ∈ Ginf .
Now suppose that G has two ends, but is not equal to its own end stabilizer. Then
H has index 2 in G, say G = H t xH . Let h be in Hinf and set g := xh. Then, by
Lemma 6.6, we have h 6∝ h−1 , and since x permutes the two ends of G, it follows
that g = xh ∝ h−1 ∝ h−1x−1 = g−1 , whence (3) fails. It remains to eliminate the
case that G has infinitely many ends. By Stalling’s Theorem, we know that G is either
isomorphic to an amalgamated free product A ∗C B or an HNN extension A∗C , where C
is finite, [A : C] ≥ 3, and [B : C] ≥ 2. We show that both of these situations contradict
(3). First consider the case of the amalgamated free product G = A ∗C B. Without loss
of generality, we suppose that C is a common subgroup of A and B. Fix a ∈ A \C and
b ∈ B \ C . Fix ν ∈ N∗ \ N. Let g := abab · · · a︸ ︷︷ ︸

ν factors

. By the reduced form theorem for

amalgamated free products, we have that the elements gbg−1 and gb−1g−1 are both
infinite and in the same infinite path component as g. Hence, gbg−1 ∝ (gbg−1)−1 ,
contradicting (3). Now consider the case of the HNN extension G = A∗φ , where
φ : C1 → C2 is an isomorphism between two subgroups of A. Let t be the stable letter
of G. Fix a ∈ A \ C1 and ν ∈ N∗ \ N. Then by Britton’s Lemma, the elements t−νatν

and t−νa−1tν are both infinite and in the same infinite path component as t−ν , yielding
t−νatν ∝ (t−νatν)−1 , contradicting (3).

(1)⇒ (4) If G were isomorphic to a semidirect product of a finite group by Z2 ∗ Z2 ,
then G has infinite elements of order 2 (see the argument of Example 6.8), whence
G does not equal its own end stabilizer by Lemma 6.7. By Lemma 6.9, G must be
isomorphic to a semidirect product of a finite group by Z.

(4)⇒ (5): Suppose G is a semidirect product of the finite group K by an infinite cyclic
group L with generator l . Since G is virtually Z, we know that G has two ends. Since
conjugation by l is an automorphism of K and K is finite, there must be n such that
lnkl−n = k for all k ∈ K . It follows that ln is central in G (and has infinite order).

(5)⇒ (1): Suppose that G has two ends and has an infinite cyclic central subgroup L
generated by l. Suppose, towards a contradiction, that G is not equal to its own end
stabilizer. Choose x ∈ G such that x permutes the two ends of G. Fix ν ∈ N∗ \ N.
Then xlν = lνx ∝ lν , contradicting the fact that x permutes the ends of G.
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As is well-known, semidirect products are sensitive to the order of the factors; the next
lemma exemplifies this fact.

Lemma 6.11 If G is a semidirect product of an infinite cyclic group L by a finite
group K , then G is a finitely generated group with two ends which is not equal to its
own end stabilizer unless G is the direct product of L and K .

Proof If G is not isomorphic to the direct product of L and K , there must be k ∈ K
such that for every l ∈ L , klk−1 = l−1 . Let l ∈ Zinf be arbitrary. Then

(lk) · (lk) = l(klk−1)k2 = k2 ∈ G,

whence G does not have multiplicative ends, and hence, by Lemma 6.10, G is not equal
to its own end stabilizer.

Now we consider the situation when G has infinitely many ends, whence the end
stabilizer H of G is finite. Let G/H denote the set of right cosets of H in G. In general,
we have (G/H)∗ = G∗/H∗ . Since H is finite, we have H∗ = H , so (G/H)∗ = G∗/H .
Let us assume that S = S−1 and let S̃ := S \ H . Note that the image of S̃ under the
natural map G → G/H is a generating set for G/H not containing the trivial coset
H . Let X̃ := Cay(G/H, S̃). As before, we have that (G/H)fin = G/H and hence that
(G/H)inf = Ginf/H .

Lemma 6.12 If G has infinitely many ends, then G/H has trivial end stabilizer.

Proof Suppose g ∈ G is such that Hg fixes the ends of IPC(X̃). Fix g′ ∈ Ginf .
Then by hypothesis, we have Hg′ ∝ Hgg′ , so there are s0, . . . , sν ∈ S̃ such that
Hgg′ = Hg′s0 · · · sν and satisfying Hg′s0 · · · si ∈ (G/H)inf for every i ∈ {0, . . . , ν}.
Write gg′ = hg′s0 · · · sν , where h ∈ H . It now follows that

gg′ = hg′s0 · · · sν ∝ g′s0 · · · sν ∝ g′.

Since g′ ∈ Ginf was arbitrary, we have that g ∈ H , completing the proof of the
lemma.

Corollary 6.13 If G has infinitely many ends, then Ends(G) is homeomorphic to
Ends(G′), where G′ is a group with trivial end stabilizer.

Proof Since H is a finite normal subgroup of G, Cay(G) and Cay(G/H) are quasi-
isometric, whence Ends(G) and Ends(G/H) are homeomorphic. Take G′ = G/H .
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To summarize, if G is a group with at least two ends, then G has infinite end stabilizer
if and only if G has exactly two ends. If G has infinitely many ends, then we know that
its end stabilizer must be finite, and then in this case, G is quasi-isometric with a group
with trivial end stabilizer.

7 Relative Ends

In this section, we still assume that G is an infinite, finitely generated group with finite
generating set S . We further suppose that K is a subgroup of G of infinite index in G.
We let Cay(G,K, S), the relative Cayley graph of G with respect to K and S , be the
locally finite graph with V = G/K , the set of right cosets of K in G, and such that
(Kg,Kg′) ∈ E if there is s ∈ S±1 such that Kg′ = Kgs. We let X denote the metric
space obtained from Cay(G,K, S). As in the case of the ordinary Cayley graph, if S′ is
also a finite generating set for G and X′ is the metric space obtained from Cay(G,K, S′),
then X and X′ are quasi-isometric, whence we can speak of Ends(G,K) and IPC(G,K)
as the spaces of ends and infinite path components of any relative Cayley graph of G
with respect to K .

Since G ∩ K∗ = K , the natural map

ι : G/K → (G/K)∗ = G∗/K∗, ι(Kg) = K∗g,

is injective. Note that, for g ∈ G∗ , we have K∗g ∈ (G/K)fin if and only if there are
s1, . . . , sn ∈ S±1 such that K∗g = K∗s1 · · · sn , that is (G/K)fin = ι(G/K). In other
words, K∗g ∈ (G/K)fin if and only if there is x ∈ G such that gx ∈ K∗ . This leads to
the following definitions.

Definition 7.1

(1) Gfin,K := {g ∈ G∗ | there exists x ∈ G such that gx ∈ K∗};

(2) Ginf,K = G∗ \ Gfin,K = {g ∈ G∗ | for all x ∈ G we have gx /∈ K∗}.

Note that G ⊆ Gfin,K and Gfin,K = G (whence Ginf,K = Ginf ) if and only if K is finite.
These definitions were made so that the identities

(G/K)fin = {K∗g | g ∈ Gfin,K}

and
(G/K)inf = {K∗g | g ∈ Ginf,K}

would hold tautologically.
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Lemma 7.2

(1) K∗ · Gfin,K ⊆ Gfin,K .

(2) K∗ · Ginf,K ⊆ Ginf,K .

Proof For (1), suppose that g ∈ Gfin,K , so there is x ∈ G such that gx ∈ K∗ . But then
if h ∈ K∗ , we have (hg)x = h(gx) ∈ K∗ , whence hg ∈ Gfin,K . (2) follows easily from
(1).

The following is immediate from Lemma 5.1.

Lemma 7.3 Suppose that K∗g,K∗g′ ∈ (G/K)inf (so g, g′ ∈ Ginf,K ). Then K∗g ∝ K∗g′

if and only if there is a hyperfinite sequence s0, · · · , sν ∈ S±1 such that K∗gs0 · · · sν =

K∗g′ and K∗gs0 · · · si ∈ (G/K)inf for all i ∈ {1, . . . , ν}.

We now formulate the relation ∝ for (G/K)∗ in terms of a related notion in G∗ .

Definition 7.4 For g, g′ ∈ Ginf,K , define g ∝K g′ if there exists a hyperfinite sequence
s0, · · · , sν ∈ S±1 such that gs0 · · · sν = g′ and gs0 · · · si ∈ Ginf,K for all i ∈ {1, . . . , ν}.

Note that the relation ∝K is an equivalence relation, whence we can speak of the
K -infinite path components of G∗ . Note that g ∝K g′ implies that g ∝ g′ , and if K
is finite, then the notion ∝K is just the notion ∝. The definitions were made so that the
following lemma would be a tautology.

Lemma 7.5 For g, g′ ∈ Ginf,K , we have K∗g ∝ K∗g′ if and only if there exists h ∈ K∗

such that g ∝K hg′ .

Let NG(K) := {g ∈ G | ghg−1 ∈ K for all h ∈ K} be the normalizer of K in G. Notice
that NG(K)/K acts on G/K by left multiplication and this action preserves the relation
E , whence we can extend this action to an isometry of X . By Lemma 4.4, we obtain a
group homomorphism

Kg 7→ ([K∗x] 7→ [K∗gx]) : NG(K)/K → Homeo(IPC(X)).

Let L be the normal subgroup of NG(K) such that L/K is the kernel of the above
morphism, so for l ∈ L and K∗x ∈ (G/K)inf , we have K∗lx ∝ K∗x .

For x ∈ G, let |Kx| := d(K,Kx) so K∗x ∈ (G/K)fin if and only if |K∗x| ∈ N.
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Lemma 7.6 Let W ⊆ (G/K)inf be internal. Then there is ν ∈ N∗ \ N such that
K∗lx ∈ (G/K)inf and K∗lx ∝ K∗x for all K∗x ∈ W and all K∗l ∈ (L/K)∗ with
|K∗l| ≤ ν .

Proof Exactly like the proof of Lemma 5.4.

Theorem 7.1 [10, Theorem 13.5.21] If NG(K)/K is infinite and Ends(G,K) is finite,
then |Ends(G,K)| ≤ 2.

Proof Suppose, towards a contradiction, that 3 ≤ |Ends(G,K)| < ∞. Choose
K∗x1,K∗x2 ∈ (G/K)inf such that K∗x1 6∝ K∗x2 . Since L/K has finite index in NG(K)/K ,
we must have that L/K is infinite. Choose ν ∈ N∗ \ N such that K∗lxi ∝ K∗xi for
i = 1, 2 and all K∗l ∈ (L/K)∗ with |K∗l| ≤ ν . Choose K∗l ∈ (L/K)∗ ∩ (G/K)inf

such that |K∗l| ≤ ν and such that K∗l 6∝ K∗x1 and K∗l 6∝ K∗x2 . Write K∗x1 =

K∗s0 · · · sη , K∗x2 = K∗t0 · · · tζ , where η, ζ ∈ N∗ \ N, each si, tj ∈ S±1 , and such
that |K∗s0 · · · si| = i + 1 and |K∗t0 · · · tj| = j + 1 for all i ∈ {1, . . . , η} and all
j ∈ {1, . . . , ζ}. Since K∗lx1 ∝ K∗x1 6∝ K∗l, we must have K∗ls0 · · · si ∈ (G/K)fin

for some i < η . Similarly, K∗lt0 · · · tj ∈ (G/K)fin for some j < ζ . We now must
have g ∈ G such that ls0 · · · sig−1t−1

j · · · t
−1
0 l−1 ∈ K∗ . Since l ∈ NG(K)∗ , we have

K∗s0 · · · si = K∗t0 · · · tjg. Since l ∈ (L/K)inf , we must have i, j ∈ N∗ \ N, whence we
have

K∗x1 ∝ K∗s0 · · · si ∝ K∗t0 · · · tjg ∝ K∗t0 · · · tj ∝ K∗x2,

which is a contradiction.

We should remark that much less is known about spaces of relative ends than about
ordinary end spaces. There are, however, a few known results about relative ends,
although they are much more difficult and much less developed than in the case of
ordinary ends. For example, although there is no direct analog of Stallings’ theorem
for relative ends, there are results of Sageev [16] and Gerasimov [11] saying that
having Ends(G,K) > 1 essentially corresponds to the existence of an isometric action
of G on a CAT(0) cubing X (rather than a tree as in Stallings’ theorem), where K
is commensurate to the stabilizer of an essential hyperplane. There are some more
situations (see Scott-Swarup [17] and Dunwoody-Swenson [8] on algebraic torus and
annuli theorems), where one can, under some additional assumptions, actually get an
action on a tree. Perhaps nonstandard reasoning will be useful in further studying
relative end spaces.

Journal of Logic & Analysis 3:7 (2011)



Ends of groups: a nonstandard perspective 27

References

[1] G. Bergman, On groups acting on locally finite graphs, Annals of Math. 88 (1968),
335-340; MR0228574.

[2] M. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, Fundamental
Principles of Mathematical Sciences 319, Springer-Verlag, Berlin, 1999.

[3] J. L. Britton, The Word Problem, Ann. of Math. 77 (1963), 16-32; MR0168633.

[4] D.E. Cohen, Ends and Free Products of Groups, Math. Z. 114 (1970), 9-18;
doi:10.1007/BF01111864.

[5] D.E. Cohen Combinatorial Group Theory: A Topological Approach, Cambridge Univ.
Press, Cambridge, 1989.

[6] M. Davis, Applied Nonstandard Analysis, John Wiley and Sons Inc., 1977.

[7] L. van den Dries and A. Wilkie, Gromov’s theorem on groups of polynomial growth and
elementary logic, J. Algebra 89 (1984), 349-374; doi:10.1016/0021-8693(84)90223-0.

[8] M.J. Dunwoody and E.L. Swenson, The algebraic torus theorem, Invent. Math. 140
(2000), no. 3, 605-637; doi:10.1007/s002220000063.

[9] D. Farley, A Proof That Thompson’s Groups Have Infinitely Many Ends, preprint, arXiv
0708.1334.

[10] R. Geoghegan, Topological Methods in Group Theory, Graduate Texts in Mathematics
243, Springer Science+Busines Media, LLC, New York, 2008.

[11] V.N. Gerasimov, Semi-splittings of groups and actions on cubings, Algebra, geometry,
analysis and mathematical physics (Novosibirsk, 1996), Vol. 190, Izdat. Ross. Akad.
Nauk Sib. Otd. Inst. Math., Novosibirsk, 1997, 91-109; MR1624115.

[12] I. Goldbring, Hilbert’s fifth problem for local groups, Annals of Math, Vol. 172 (2010),
no. 2, 1269-1314; doi:10.4007/annals.2010.172.1269.

[13] C.W. Henson, Foundations of Nonstandard Analysis: A Gentle Introduction to Non-
standard Extensions; Nonstandard Analysis: Theory and Applications, L. O. Arkeryd,
N. J. Cutland, and C. W. Henson, eds., NATO Science Series C:, Springer, 1997 (first
published as NATO ASI Series, Series C, Vol 493, Kluwer Academic Publishers, 1997).
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