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Modular functionals and perturbations of Nakano spaces

ITAÏ BEN YAACOV

Abstract: We settle several questions regarding the model theory of Nakano spaces
left open by the PhD thesis of Pedro Poitevin [11].

We start by studying isometric Banach lattice embeddings of Nakano spaces,
showing that in dimension two and above such embeddings have a particularly
simple and rigid form.

We use this to show that in the Banach lattice language the modular functional
is definable and that complete theories of atomless Nakano spaces are model
complete. We also show that up to arbitrarily small perturbations of the exponent
Nakano spaces are ℵ0 -categorical and ℵ0 -stable. In particular they are stable.
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Introduction

Nakano spaces are a generalisation of Lp function spaces in which the exponent p is
allowed to vary as a measurable function of the underlying measure space. The PhD
thesis of Pedro Poitevin [11] studies Nakano spaces as Banach lattices from a model
theoretic standpoint. More specifically, he viewed Nakano spaces as continuous metric
structures (in the sense of continuous logic, see [6]) in the language of Banach lattices,
possibly augmented by a predicate symbol Θ for the modular functional, showed that
natural classes of such structures are elementary in the sense of continuous first order
logic, and studied properties of their theories.

In the present paper we propose to answer a few questions left open by Poitevin.

• First, Poitevin studies Nakano spaces in two natural languages: that of Banach
lattices, and the same augmented with an additional predicate symbol for the
modular functional. It is natural to ask whether these languages are truly distinct,
i.e., whether adding the modular functional adds new structure.
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• Even if the naming of the modular functional does not add structure, it does
give quantifier elimination in atomless Nakano spaces. While it is clear that
without it quantifier elimination is impossible, it is natural to ask whether model
completeness is.

• Poitevin showed that the theory of atomless Nakano space where the exponent
function is bounded away from one is stable. What about the general case?

• Similarly, if the exponent is constant, i.e., if we are dealing with classical
atomless Lp spaces, it is known (see [4]) that the theory of these spaces is ℵ0 -
categorical and ℵ0 -stable. On the other hand, it is quite easy to verify complete
theories of atomless Nakano spaces are non ℵ0 -categorical and non ℵ0 -stable
once the essential range of the exponent is infinite. It is therefore natural to ask
whether, up to small perturbations of the exponent, a complete theory of atomless
Nakano spaces is ℵ0 -categorical and ℵ0 -stable. A positive answer would mean
that the theory of atomless Nakano spaces is stable settling the previous item as
well.

In this paper we answer all of these questions positively (where a negative answer to
the first question is considered positive). It is organised as follows:

Section 1 consist purely of functional analysis, and requires no familiarity with model
theory. After a few general definitions we study mappings between vector lattices of
measurable functions and then more specifically between Nakano spaces. Our main
result is:

Theorem Let θ : Lp(·)(X,B, µ) ↪→ Lq(·)(Y,C, ν) be a Banach lattice isometric embed-
ding of Nakano spaces of dimension at least two. Then up to a measure density change
on Y and identification between subsets of X and of Y (and thus between measurable
functions on X and on Y ) θ is merely an extension by zeros from X to Y ⊇ X . In
particular p = q�X and µ = ν�B .

It follows that such embeddings respect the modular functional and extend the essential
range of the exponent function.

In Section 2 we expose the model theoretic setting for the paper. In particular, we
quote the main results of Poitevin’s PhD thesis [11].

In Section 3 we prove our main model theoretic results:

Theorem The modular functional is definable in every Nakano Banach lattice (i.e.,
naming it in the language does not add structure). Moreover, it is uniformly definable
in the class of Nakano spaces of dimension at least two, and in fact both sup-definable
and inf -definable there.
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Theorem The theory of atomless Nakano spaces with a fixed essential range for the
exponent function is model complete in the Banach lattice language.

In Section 4 we study perturbations of the exponent function, showing that small per-
turbations thereof yield small perturbations of the structures. Up to such perturbations
the theory of atomless Nakano spaces is ℵ0 -stable, and every completion thereof is
ℵ0 -categorical. In particular all Nakano space are stable.

Appendix A consist of the adaptation to continuous logic of a few classical model
theoretic results and tools used in this paper.

Finally, Appendix B contains some approximation results for the modular functional
which were used in earlier versions of this paper to be superseded later by Theorem 1.10,
but which nonetheless might be useful.

1 Some functional analysis

1.1 Nakano spaces

Let (X,B, µ) be an arbitrary measure space, and let L0(X,B, µ) be the space of all
measurable functions f : X → R up to equality a.e. (Since we wish to consider function
spaces as Banach lattices it will be easier to consider the case of real-valued functions.)

Let p : X → [1,∞) be an essentially bounded measurable function. We define the
modular functional Θp(·) : L0(X,B, µ)→ [0,∞] by:

Θp(·)(f ) =
∫
|f (x)|p(x)dµ.

We define the corresponding Nakano space as:

Lp(·)(X,B, µ) = {f ∈ L0(X,B, µ) : Θp(·)(f ) <∞}.

If f ∈ Lp(·)(X,B, µ) then there exists a unique number c ≥ 0 such that Θp(·)(f/c) = 1,
and we define ‖f‖ = ‖f‖p(·) = c. This is a norm, making Lp(·)(X,B, µ) a Banach
space. With the point-wise minimum and maximum operations it is a Banach lattice.

Remark In the literature Θp(·) is usually merely referred to as the modular. Being par-
ticularly sensitive regarding parts of speech we shall nonetheless refer to it throughout
as the modular functional.
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1.2 Strictly localisable spaces

In this paper we shall consider the class of Nakano spaces from a model-theoretic
point of view. This means we shall have to admit arbitrarily large Nakano spaces (e.g.,
κ-saturated for arbitrarily big κ) and therefore arbitrarily large measure spaces. In
particular, we cannot restrict our attention to σ -finite measure spaces. In order to avoid
pathologies which may arise with arbitrary measure spaces we shall require a weaker
assumption. Recall from [7]:

Definition 1.1 A measure space (X,B, µ) is strictly localisable if it can be expressed
as a disjoint union of measure spaces of finite measure, i.e., if X admits a partition as⋃

i∈I Xi such that:

(i) For all i ∈ I : Xi ∈ B and µ(Xi) <∞.

(ii) For all A ⊆ X : A ∈ B if and only if A ∩ Xi ∈ B for all i ∈ I , in which case
µ(A) =

∑
µ(A ∩ Xi).

In this case the family {Xi}i∈I witnesses that (X,B, µ) is strictly localisable.

For example every σ -finite measure space is strictly localisable. On the other hand, if
(X,B, µ) is an arbitrary measure space we can find a maximal family X = {Xi}i∈I ⊆ B

of almost disjoint sets with 0 < µ(Xi) < ∞. Let (X′,B′, µ′) =
∐

i∈I(Xi,B�Xi
, µ�Xi

),
where the disjoint union of measure spaces is defined precisely so that the result is
strictly localisable. We also have an obvious mapping θ : L0(X,B, µ)→ L0(X′,B′, µ′).
This does not lose any information that interests us: in particular, θ restricts to an
isometric isomorphism of Nakano spaces θ : Lp(·)(X,B, µ)→ Lθp(·)(X′,B′, µ′).

We may therefore allow ourselves:

Convention 1.2 In this paper every measure space is assumed to be strictly localisable.

Let us state a few very easy facts concerning strictly localisable measure spaces. The
following is immediate:

Fact 1.3 Let X = {Xi}i∈I witness that (X,B, µ) is strictly localisable. If X ′ =
{X′j}j∈J ⊆ B is another partition of X refining X , splitting each Xi into at most
countably many subsets, then X ′ is a witness as well.

The Radon-Nikodým Theorem is classically stated for finite measure spaces, with
various occurrences in the literature in which the finiteness requirement on the ambient
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space is relaxed. See for example [7, Corollaries 232F,G]. These are corollaries to
[7, Theorem 232E], which allows an arbitrary ambient measure space at the cost of
an additional concept, that of a truly continuous functional. Another generalisation
appears in [8, Theorem 327D], but again the smaller measure is assumed there to be
finite. We shall require a different generalisation of the Radon-Nikodým Theorem in
which all finiteness requirements are replaced with strict localisability.

Let (X,B) be a measurable space and let µ and ν be two measures on (X,B). Assume
also that ν(X) <∞. Then ν is said to be absolutely continuous with respect to µ, in
symbols ν � µ, if for every ε > 0 there exists δ > 0 such that µ(A) < δ =⇒ ν(A) < ε

for every A ∈ B. Equivalently, if µ(A) = 0 =⇒ ν(A) = 0 for every A ∈ B.

In the general case, i.e., when ν is not required to be finite, we shall use the notation
ν � µ to mean that µ and ν are both strictly localisable with a common witness
{Xi}i∈I , and that ν is absolutely continuous with respect to µ on each Xi . It follows
directly from this definition that if ν � µ and µ(A) = 0 for some A ∈ B then
ν(A) = 0 as well, so ν is absolutely continuous with respect to µ on every set of finite
ν -measure. This has two important consequences. First, if ν � µ then every common
witness of strict localisability for both µ and ν also witnesses that ν � µ. Second,
in case ν(X) <∞, the definition of ν � µ given in this paragraph coincides with the
classical definition appearing in the previous paragraph.

Fact 1.4 Let (X,B, µ) be a measure space (strictly localisable, by our convention)
and let L+

0 (X,B, µ) denote the set of positive functions in L0(X,B, µ).

(i) Let ζ ∈ L+
0 (X,B, µ), and for A ∈ B define νζ(A) =

∫
ζ dµ. Then νζ is a

measure and νζ � µ.

(ii) Conversely, every measure ν � µ on (X,B) is of the form ν = νζ for a
unique (up to equality µ-a.e.) ζ ∈ L+

0 (X,B, µ), and we write ζ = dν
dµ , the

Radon-Nikodým derivative of ν with respect to µ. In this case we also have∫
f dν =

∫
f dν

dµ dµ for every f ∈ L+
0 (X,B, µ).

In particular, we obtain a bijection between {ν : ν � µ} and L+
0 (X,B, µ).

Proof For the first item, let {Xi}i∈I witness that µ is strictly localisable. We may
assume that in addition ζ is bounded on each Xi , for if not, we may split each Xi into
Xi,n = {x ∈ Xi : n ≤ ζ(x) < n + 1} for n ∈ N. Then {Xi}i∈I also witnesses that νζ is
strictly localisable and it is clear that νζ � µ.

For the converse, let {Xi}i∈I witness that ν � µ. We may apply the classical Radon-
Nikodým theorem on each Xi , obtaining a measurable function ζi : Xi → R+ for all
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i ∈ I , and define ζ : X → R+ so that ζ�Xi
= ζi . Then ζ is measurable and∫

f dν =
∑∫

Xi

f dν =
∑∫

Xi

f ζi dµ =
∫

f ζ dµ

for f ∈ L+
0 (X,B, µ). In particular ν(A) =

∫
A ζdµ for all A ∈ B, which determines ζ

up to equality µ-a.e. �1.4

Let us say that two measures µ and ν on (X,B) are equivalent if µ � ν and
ν � µ. In this case each is obtained from the other by a mere density change and the
corresponding Nakano spaces are naturally isomorphic.

Fact 1.5 Let µ and ν be two equivalent measures on (X,B), and let p : X → [1, r]
be measurable. Let (N,Θ) = Lp(·)(X,B, µ) and (N′,Θ′) = Lp(·)(X,B, ν) be the
corresponding Nakano spaces with their modular functionals. For f ∈ N define
Dµ,ν f = ( dµ

dν )1/pf . Then Dµ,ν f ∈ N′ and Dµ,ν : (N,Θ) ' (N′,Θ′) is an (isometric)
isomorphism.

Proof One calculates:

Θ′(Dµ,ν f ) =
∫ (

( dµ
dν )1/p|f |

)p
dν

=
∫
|f |p dµ

dν dν

=
∫
|f |p dµ = Θ(f ).

It follows that f ∈ N =⇒ Dµ,ν f ∈ N′ . In addition to Θ, Dµ,ν clearly also respects the
linear and lattice structures, and therefore the norm, and admits an inverse Dν,µ . �1.5

1.3 Mappings between function space lattices

For the following results we shall be considering two measure spaces (X,B, µ) and
(Y,C, ν), as well as a partial mapping θ : L0(X,B, µ) 99K L0(Y,C, ν). Its domain
L ⊆ L0(X,B, µ) is a vector subspace which contains all characteristic functions of
finite measure sets. For example, L could be a Nakano space Lp(·)(X,B, µ) or just
the space of simple functions on X with finite measure support. Assuming that θ
sends characteristic functions to characteristic functions, we shall allow ourselves the
following abuse of notation: if A ∈ B has finite measure and θ(χA) = χB , B ∈ C then
we write θA = B (even though this is only defined up to null measure). In particular,
instead of writing θ(χA) we write χθA .
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Lemma 1.6 Let L ⊆ L0(X,B, µ) be a vector subspace which contains all character-
istic functions of finite measure sets and let θ : L → L0(Y,C, ν) be a linear mapping
respecting point-wise countable suprema when those exist in L , and which in addition
sends characteristic functions to characteristic functions.

Then θ extends to a unique vector lattice homomorphism θ̂ : L0(X,B, µ)→ L0(Y,C, ν)
which respects countable suprema. Moreover, for every Borel function ϕ : Rn → R
which fixes zero (i.e., which sends 0 ∈ Rn to 0 ∈ R) and every tuple f̄ ∈ L0(X,B, µ)
we have θ̂(ϕ ◦ f̄ ) = ϕ ◦ (θf̄ ).

Proof Let us write L0 for L0(X,B, µ), and let L+
0 be its positive cone.

Let us first consider the case where µ(X), ν(Y) <∞. In this case L contains all simple
measurable functions. For f ∈ L+

0 and 0 < k ∈ N define f (k)(x) = dkf (x)e
k+1 ∧ k , where

dre denotes the least integer greater than r . Thus f (k) ↗ f point-wise and f (k) ∈ L for
all k . We then have no choice but to define θ̂ as follows:

θ̂f = θ̂

(∨
k∈N

f (k)

)
=
∨
k∈N

θf (k) for f ∈ L+
0 ,

θ̂f = θ̂(f + − f−) = θ̂f + − θ̂f− for general f ∈ L0.

We now need to make sure this verifies all the requirements.

First of all we need to check that if f ∈ L+
0 then θ̂f =

∨
k∈N θf (k) exists, i.e., that it

is finite a.e. Let Ak = {f ≥ k} = {x ∈ X : f (x) ≥ k}. Then the sequence {χAk}
decreases to zero, whereby {χθAk} decrease to zero as well. We have f (k+m) ≤ k+mχAk

whereby θf (k+m) ≤ k + mχθAk , so θf (k+m) ≤ k outside θAk , for all m. Thus θ̂f ≤ k
outside θAk , and we can conclude that θ̂f ∈ L0(Y,C, ν). Since θ respects countable
suprema, θ̂ agrees with θ on L+ .

We claim that θ̂ respects countable suprema on L+
0 . Indeed, assume that

∨
m∈N fm

exists for fm ∈ L+
0 . Notice that in general

∨
mdame = d

∨
m ame, whereby

θ̂

(∨
m∈N

fm

)
=
∨
k∈N

θ

(∨
m∈N

fm

)(k)
 =

∨
k∈N

θ

(∨
m∈N

f (k)
m

)
=

∨
m∈N,k∈N

θ(f (k)
m ) =

∨
m∈N

θ̂(fm).

If f =
∑

m∈N fm where fm ∈ L+
0 , fm ∧ fm′ = 0 for m 6= m′ then θ(fm) ∧ θ(fm′) = 0 as

well and θ̂(f ) = θ̂(
∨

m fm) =
∨

m θ̂(fm) =
∑

m θ̂(fm).

Next we claim that if A ⊆ (0,∞)n is a Borel set and f̄ ∈ (L+
0 )n then θ{f̄ (x) ∈

A} = {θ̂f̄ (y) ∈ A}. Indeed, for a single f we have θ̂f = θ̂(
∨

t∈Q+ tχ{f>t}) =

Journal of Logic & Analysis 1:1 (2009)
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∨
t∈Q+ tχθ{f>t} , whereby {θ̂f > t} = θ{f > t}. Our claim follows for the case

A = (t0,∞)× . . .× (tn−1,∞). On the other hand we have

θ

{
f̄ (x) ∈

⋃
m

Am

}
=
⋃
m

θ{f̄ (x) ∈ Am},{
θ̂f̄ (y) ∈

⋃
m

Am

}
=
⋃
m

{θ̂f̄ (y) ∈ Am},

θ{f̄ (x) ∈ (0,∞)n r A} = θ{f̄ > 0}r θ{f̄ (x) ∈ A},
{θ̂f̄ (y) ∈ (0,∞)n r A} = θ{f̄ > 0}r {θ̂f̄ (y) ∈ A}.

We may thus climb up the Borel hierarchy and prove the claim for all Borel A.

Assume now that f̄ (x) ∈ (0,∞)n ∪ {0} for all x ∈ X and that ϕ ≥ 0. Letting
At = {x ∈ (0,∞)n : ϕ(x) > t}:

θ{ϕ ◦ f̄ > t} = θ{f̄ ∈ At} = {θ̂f̄ ∈ At} = {ϕ ◦ (θ̂f̄ ) > t},

whereby θ̂(ϕ ◦ f̄ ) = ϕ ◦ (θ̂f̄ ). For general f̄ , let S = {1, 0,−1}n r {0}, and for
s ∈ S let As = {x ∈ X : sgn(f̄ ) = s}. On each As we may drop those fi ’s which are
constantly zero and replace those which are negative with their absolute value, making
the necessary modifications to ϕ, obtaining by the previous argument

θ̂(ϕ ◦ (χAs f̄ )) = ϕ ◦ (θ̂(χAs f̄ )),

whereby:

θ̂(ϕ ◦ f̄ ) =
∑
s∈S

θ̂(ϕ ◦ (χAs f̄ )) =
∑
s∈S

ϕ ◦ (θ̂(χAs f̄ )) = ϕ ◦ (θ̂f̄ )

Finally, for general ϕ we can split it to the positive and negative part and then put
them back together by linearity. Among other things, this holds when ϕ is +, ∨, ∧,
or multiplication by scalar. Thus θ̂ is a vector lattice homomorphism. It follows that
θ̂ agrees with θ on all of L . This concludes the case where both X and Y have finite
total measure.

Now let us consider the case where X is an arbitrary measure space. Let {Xi}i∈I ⊆ B

be a maximal family of almost disjoint sets of finite non zero measure such that in
addition θ(χXi) 6= 0. Since ν(Y) is assumed finite such a family must be at most
countable, so we can write it as {Xk}k∈N . Let X′ =

⋃
Xk . Then for every f ∈ L we

have θ(f ) = θ(fχX′) =
∑

k θ(fχXk ) (verify first for f ≥ 0 and then extend by linearity),
so we may restrict to each Xk , reducing to the case already considered, then checking
that θ̂(f ) =

∑
k θ̂(fχXk ) works.
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Finally, if (Y,C, ν) is merely strictly localisable then let this be witnessed by {Yi}i∈I .
Then we can first extend θi = χYiθ : L → (Yi,C�Yi

, ν�Yi
) to θ̂i and then obtain θ̂ by

gluing. �1.6

Lemma 1.7 Continue with previous assumptions, and add that if µ(A) < ∞ then
ν(θA) = µ(A). Then for every function f ∈ L1(X,B, µ):

∫
f dµ =

∫
θ̂f dν .

Proof This holds by assumption for characteristic functions of finite measure sets,
from which we deduce it for simple positive functions, positive functions and finally
general functions. �1.7

1.4 Embeddings of Nakano Banach lattices

We now prove the main functional analysis results of this paper.

Lemma 1.8 Let N = Lp(·)(X,B, µ) and N′ = Lq(·)(Y,C, ν) be two Nakano spaces,
and let θ : N → N′ be an isometric embedding of Banach lattices which sends char-
acteristic functions to characteristic functions. Assume furthermore that dim N ≥ 2.
Then:

(i) θ̂(p) = qχθ̂X .

(ii) For all finite measure A ∈ B: ν(θA) = µ(A).

Proof First of all the hypotheses of Lemma 1.6 are verified with N = L , so θ̂ exists.
Let Y0 = θ̂X ∈ C be the support of the range of θ .

C1 = {y ∈ Y0 : θ̂p(y) < q(y)},
C2 = {y ∈ Y0 : θ̂p(y) > q(y)},
C = C1 ∪ C2 = {y ∈ Y0 : θ̂p(y) 6= q(y)}

Then C1,C2,C ∈ C and we need to show that ν(C) = 0. Let A,B ∈ B be such that
0 < µ(A), µ(B) <∞. For t ∈ [0, 1], let

ft = χA

(
t

µ(A)

) 1
p(x)

+ χB

(
1− t
µ(B)

) 1
p(x)

,

gt = θ(ft) = χθA

(
t

µ(A)

) 1
θ̂p(y)

+ χθB

(
1− t
µ(B)

) 1
θ̂p(y)

,
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Then Θ(ft) = 1 =⇒ ‖ft‖ = 1 =⇒ ‖gt‖ = 1 =⇒ Θ′(gt) = 1. In other words:

Θ′(gt) =
∫
θA

(
t

µ(A)

) q
θ̂p

dν +
∫
θB

(
1− t
µ(B)

) q
θ̂p

dν = 1

Substituting t = 0 and t = 1 we see that in particular ν(A) and ν(B) are both positive
and finite. We may therefore differentiate under the integral sign for t ∈ (0, 1),
obtaining:

0 =
d
dt

Θ′(gt) =
∫
θA∩C

q
µ(A)θ̂p

(
t

µ(A)

) q
θ̂p
−1

dν +
∫
θArC

q
µ(A)θ̂p

dν

−
∫
θB∩C

q
µ(B)θ̂p

(
1− t
µ(B)

) q
θ̂p
−1

dν −
∫
θBrC

q
µ(B)θ̂p

dν

If ν(θA ∩ C2) > 0 then limt→0
d
dt Θ
′(gt) = +∞ 6= 0 which is impossible, so ν(θA ∩

C2) = 0, and considering t→ 1 we see that ν(θB∩C2) = 0 as well. We may therefore
substitute t = 0 and t = 1 and obtain:

0 =
∫
θArC

q
µ(A)θ̂p

dν

−
∫
θB∩C

q
µ(B)θ̂p

(
1

µ(B)

) q
θ̂p
−1

dν −
∫
θBrC

q
µ(B)θ̂p

dν

=
∫
θA∩C

q
µ(A)θ̂p

(
1

µ(A)

) q
θ̂p
−1

dν +
∫
θArC

q
µ(A)θ̂p

dν

−
∫
θBrC

q
µ(B)θ̂p

dν,

whereby∫
θA∩C

q
µ(A)θ̂p

(
1

µ(A)

) q
θ̂p
−1

dν = −
∫
θB∩C

q
µ(B)θ̂p

(
1

µ(B)

) q
θ̂p
−1

dν

This is only possible if both are zero, i.e., if ν(θA ∩ C) = ν(θB ∩ C) = 0.

We have shown that ν(θA ∩ C) = ν(θB ∩ C) = 0 for every A,B ∈ B disjoint of finite
non zero measure. If N had dimension ≤ 1 this would be vacuous, but as we assume
that it has dimension ≥ 2 we have in fact ν(θA ∩ C) = 0 for all A ∈ B such that
µ(A) <∞. It follows that ν(C) = ν(Y0 ∩ C) = 0, i.e., that θ̂p = qχY0 .

Now let A ∈ B be of finite non zero measure, h = µ(A)−1/p(x) . Then Θ(h) = 1 =⇒
1 = Θ′(θ(h)) = ν(θA)/µ(A). �1.8

Remark A special case of this result was independently obtained at the same time by
Poitevin and Raynaud [12, Lemma 6.1].
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The technical assumption that θ sends characteristic functions to such (i.e., acts on
measurable sets) is easy to obtain via a density change:

Lemma 1.9 Let N = Lp(·)(X,B, µ) and N′ = Lq(·)(Y,C, ν) be two Nakano spaces,
and let θ : N → N′ be an isometric embedding of Banach lattices. Then there is a
measure λ on (Y,C), equivalent to ν , such that Dν,λ ◦ θ : N → N′′ = Lq(·)(Y,C, λ)
sends characteristic functions to characteristic functions, where Dν,λ : N′ → N′′ is the
density change isomorphism from Fact 1.5.

Proof Let {Xi}i∈I ⊆ B and {Yj}j∈J ⊆ C witness that X and Y are strictly localisable.
Possibly replacing them with refinements as in Fact 1.3 we may assume that I ⊆ J and
that for i ∈ I the set Yi is the support of θ(χXi). Define ζ : Y → R+ by

ζ =
∑
i∈I

θ(χXi)
q +

∑
j∈JrI

χYj .

This function is measurable and non zero a.e., allowing us to define another measure λ
by dλ = ζdν . Then ν and λ are equivalent measures, and Dν,λ ◦ θ(χXi) = χYi . Since
this is an embedding of Banach lattices it follows that it sends every characteristic
function to a characteristic function. �1.9

Putting everything together we obtain:

Theorem 1.10 Let N = Lp(·)(X,B, µ) and N′ = Lq(·)(Y,C, ν) be two Nakano spaces,
dim N ≥ 2, and let θ : N → N′ be an isometric embedding of Banach lattices. Then
up to a measure density change on Y :

(i) θ sends characteristic functions to such.

(ii) θ̂p = qχθ̂X .

(iii) For all finite measure A: ν(θA) = µ(A).

Proof Immediate from Lemma 1.9 and Lemma 1.8. �1.10

Corollary 1.11 Let (N,Θ) = Lp(·)(X,B, µ), (N′,Θ′) = Lq(·)(Y,C, ν) be two Nakano
spaces, dim N ≥ 2, and let θ : N → N′ be an embedding of Banach lattices. Then θ
respects the modular functional: Θ = Θ′ ◦ θ .

Journal of Logic & Analysis 1:1 (2009)



12 Itaı̈ Ben Yaacov

Proof According to Fact 1.5 a density change on Y does not alter Θ′ . Thus we may
assume that θ is as in the conclusion of Theorem 1.10. By Lemma 1.7 we then obtain
for all f ∈ N :

Θ′ ◦ θ(f ) =
∫
|θ(f )|q dν =

∫
|θ(f )|θ̂p dν =

∫
θ̂(|f |p) dν =

∫
|f |p dµ = Θ(f ).

�1.11

Corollary 1.12 Let (N,Θ) = Lp(·)(X,B, µ) and (N′,Θ′) = Lq(·)(Y,C, ν) be two
Nakano spaces, dim N ≥ 2, and let θ : N → N′ be an embedding of Banach lattices.
Then ess rng p ⊆ ess rng q. If the band generated by θ(N) in N′ is all of N′ (so in
particular, if θ is an isomorphism) then ess rng p = ess rng q.

Proof The density change does not modify p and thus neither its range, so again we
may assume that θ is as in the conclusion of Theorem 1.10. It is also not difficult to
see that ess rng p = ess rng θ̂p r {0} ⊆ ess rng q. If the band generated by θ(N) in N′

is all of N then θ̂X = Y and q = θ̂p. �1.12

In the case where θ is an isomorphism this has already been proved by Poitevin [11,
Proposition 3.4.4].

2 Model theory of Nakano spaces

2.1 The model theoretic setting

We assume familiarity with the general setting of continuous first order logic, as
exposed in [6] or [5]. Since continuous logic only allows bounded metric structures we
cannot treat Banach spaces directly. The two standard solutions for this are either to
consider a Banach space as a multi-sorted structure, with a sort for B̄(0, n) (the closed
ball of radius n) for each n, or to restrict our consideration to the first of these sorts,
i.e., the closed unit ball. (There exists also a third solution which we shall not consider
here, namely to treat the entire Banach lattice as an unbounded metric structure, see
[2].) While Poitevin chose to use the former we consider the latter to be preferable, so
a few words regarding the difference in approaches is in order.

The unit ball of a Banach space is, first of all, a complete convex space, i.e., a complete
metric space equipped with a convex combination operation from an ambient Banach
space. Such structures were characterised by Machado [9] in a language containing all
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convex combinations, and this characterisation can be expressed in continuous logic.
There are advantages to a minimalistic language, though, so we prefer to work in
a language consisting of a single function symbol x+y

2 . Convex combinations with
coefficients of the form k

2n can be obtained as more complex terms in this language,
and arbitrary convex combinations with real coefficients are obtained as limits (as our
structures are by definition complete), so this language is quite sufficient. While it
follows from Machado’s work that an axiomatisation of unit balls of Banach spaces
exists in this language, it seems preferable to put an explicit axiomatisation of this kind
on record along with a complete (outline of a) proof.

Let Tcvx consist of the following axioms:

∀x
[ x+x

2 = x
]
, i.e., sup

x

[
d
( x+x

2 , x
)]

= 0,(ID)

∀xyzt
[1

2

( x+y
2 + z+t

2

)
= 1

2

( z+x
2 + t+y

2

)]
, etc.(PRM)

∀xyz
[
d
( x+z

2 , y+z
2

)
= d(x,y)

2

]
.(HOM)

we shall usually be interested in subsets of Banach spaces which are not only convex,
but also contain zero and are symmetric around it (i.e., −x exists for all x). The unit
ball is such a space, but is not the only interesting one (another one is the unit ball of a
von Neumann algebra with a normalised finite trace τ : it is a proper subset of the unit
ball of the Hilbert spaces with inner product 〈x, y〉 = τ (x∗y)). The natural language
for such symmetric convex spaces is

LBs = {0,−, x+y
2 , ‖ · ‖}.

we shall use x−y
2 as shorthand for x+(−y)

2 . Since we wish to admit the unit ball of
a Banach space as a structure in this language we shall interpret the distinguished
distance symbol as half the usual distance d(x, y) = ‖ x−y

2 ‖, noticing the latter is an
atomic formula. We define Tsc (for symmetric convex) as Tcvx along with:

∀x
[ x−x

2 = 0
]

(SYM)

∀x
[
d(x, 0) = 1

2‖x‖
]

(NORM)

Finally, we define TBs , the theory of (unit balls of) Banach spaces as Tsc along with

∀x∃y
[
‖x‖ ≥ 1

2 or y
2 = x

]
i.e., sup

x
inf

y

[(1
2 −
. ‖x‖

)
∧ d( y+0

2 , x)
]

= 0(FULL)

Theorem 2.1 (i) The models of Tcvx are precisely complete convex subsets of
diameter ≤ 1 of Banach spaces.

Journal of Logic & Analysis 1:1 (2009)



14 Itaı̈ Ben Yaacov

(ii) The models of Tsc are precisely complete convex subsets of unit balls of Banach
spaces which are symmetric around zero.

(iii) The models of TBs are precisely closed unit balls of Banach spaces.

Proof For each of the assertions it is clear that all the said structures are models, so
we prove the converse. we shall start by examining the case of Tcvx , reducing it to that
of Tsc .

From the axioms we can deduce commutativity and a variant of the triangle inequality:
x+y

2 = 1
2

( x+x
2 + y+y

2

)
= 1

2

( y+x
2 + y+x

2

)
= y+x

2(COMM)

d
( x+y

2 , z+w
2

)
≤ d

( x+y
2 , z+y

2

)
+ d

( z+y
2 , z+w

2

)
= d(x,z)+d(y,w)

2(TRI2)

Now let C � Tcvx . Let C−C be the set of all formal differences x−y for x, y ∈ C , and
define d0(x− x′, y− y′) = d( x+y′

2 , y+x′
2 ). This is a pseudo-metric. Indeed, symmetry

and reflexivity are clear, and for transitivity one checks:

d( x+z′
2 , z+x′

2 ) = 2d
(

1
2

(
x+z′

2 + y+y′
2

)
, 1

2

(
z+x′

2 + y+y′
2

))
= 2d

(
1
2

(
x+y′

2 + y+z′
2

)
, 1

2

(
z+y′

2 + y+x′
2

))
≤(TRI2) d

(
x+y′

2 , y+x′
2

)
+ d

(
y+z′

2 , z+y′
2

)
Thus d0(x−y, z− t) = 0 defines an equivalence ∼ relation on C−C , and d0 induces a
metric on C− = (C− C)/∼ = {[x− y] : x, y ∈ C}. It is straightforward to verify that
[x−y]+[z−t]

2 =
[ x+z

2 −
y+t

2

]
, 0 = [x− x] and −[x− y] = [y− x] are well defined and

render C− a model of Tsc . Finally, if x0 ∈ C is any fixed element then x 7→ [x− x0] is
an embedding of C in C− which respects convex combination and shrinks distances
by a factor of 2. It follows that if we prove that C− embeds in a Banach space, so does
C . We thus reduced the first assertion to the second.

We now work modulo Tsc . First, observe that d(x, y) = 2d( x−y
2 , y−y

2 ) = 2d( x−y
2 , 0) =

‖ x−y
2 ‖. Thus the relation between the distance and the norm is as expected.

A similar reasoning shows that x+y
2 = 0 implies d(y,−x) = 2d( x+y

2 , x−x
2 ) = 0, so

y = −x . It follows that −(−x) = x and that − x+y
2 = −x−y

2 (since 1
2

( x+y
2 + −x−y

2

)
=

1
2

( x−x
2 + y−y

2

)
= 0+0

2 = 0).

Fix a model S � Tsc . For x ∈ S , let us define 1
2 x = x+0

2 , and by induction we can
further define 2−nx for all n. If there is y such that x = 1

2 y then y is unique (indeed,
if z were another such element then 0 = d(x, x) = 1

2 d(y, z) so y = z), and we may
unambiguously write y = 2x . If 2 x+y

2 exists we write it as x + y. It follows from the
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Modular functionals and perturbations of Nakano spaces 15

definition that x + 0 = x and x + (−x) = 0. By definition we have 1
2 (x + y) = x+y

2
(provided that x+y exists), and applying the permutation axiom we get 1

2 x+ 1
2 y = x+y

2 ,
from which it follows that 1

2 (−x) = − 1
2 x and 1

2 (x + y) = 1
2 x + 1

2 y (provided x + y
exists).

From the commutativity of x+y
2 it follows that x + y = y + x , by which we mean that

one exists if and only if the other does, in which case they are equal. Similarly, by the
permutation axioms, if x + y and y + z exist then (x + y) + z = x + (y + z). This
means we can write something like

∑
i<k xi unambiguously, without having to specify

either parentheses or order, as long as we know that for every subset w ⊆ k the partial
sum

∑
i∈w xi exists in some order and with some organisation of the parentheses. In

particular, this means that
∑

i<m ki2−nixi always makes sense for ni ∈ N, ki ∈ Z
satisfying

∑
2−ni |ki| ≤ 1, and that sums and differences of such expressions behave

as expected (in particular: 2−n−1x + 2−n−1x = 2−nx). It follows that k2−n(`2mx) =
(k`)2−n−mx .

It follows directly from the axioms that ‖ 1
2 x‖ = 1

2 d( 1
2 x, 0) = 1

2 ·
1
2 d(x, 0) = 1

2 ‖x‖.
We obtain ‖x‖ = 2d(0, x) = 2

∥∥ 0−x
2

∥∥ = ‖ − x‖, and if x + y exists then ‖x + y‖ =

2d(x + y, 0) ≤ 2d(x + y, y) + 2d(y, 0) = 2
∥∥∥ (x+y)−y

2

∥∥∥ + 2
∥∥∥ y−0

2

∥∥∥ = ‖x‖ + ‖y‖. By

induction on n one proves first that ‖2−nx‖ = 2−n‖x‖, and then that for all 0 ≤ k ≤ 2n :
‖k2−nx‖ = k2−n‖x‖. It follows that ‖

∑
i<m ki2−nxi‖ ≤ 2−n∑ |ki|.

Thus for every α ∈ [−1, 1] we can define αx as a limit of kn2−nx . We obtain that∑
αixi always makes sense if

∑
|αi| ≤ 1, α(βx) = (αβ)x , (α + β)x = αx + βx

(provided that |α + β| ≤ 1), α(x + y) = αx + αy (provided that x + y exists), and
‖αx‖ = |α|‖x‖. We also have d(αx, αy) =

∥∥ αx−αy
2

∥∥ = |α|
∥∥ x−y

2

∥∥ = |α|d(x, y), so in
particular αx = αy =⇒ x = y for |α| 6= 0.

We can now define B0 = R>0 × S , and define (α, x) ∼ (β, y) if α
α+β x = β

α+β y.
It is straightforward to verify using results from the previous paragraph that ∼ is an
equivalence relation, and that the following operations are well defined on B = B0/∼
and render it a normed vector space over R:

β[α, x] =


[αβ, x] β > 0

[−αβ,−x] β < 0

[1, 0] β = 0

[α, x] + [β, y] =
[
α+ β,

α

α+ β
x +

β

α+ β
y
]

‖[α, x]‖ = α‖x‖.
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16 Itaı̈ Ben Yaacov

Our structure S embeds in the unit ball of B via x 7→ [1, x].

The last assertion now follows immediately. �2.1

When dealing with models of TBs we allow ourselves to omit the halving operation
when no ambiguity may arise. Thus, for example, we write x + y + z = t + w instead
of 1

2

( x
2 + y+z

2

)
= 1

2
t+w

2 , and so on.

We shall now extend this to Banach lattices. We recall a few definitions from [10]:

Definition 2.2 (i) An ordered vector space (E,≤) is a vector space E equipped
with a partial ordering ≤, over an ordered field (k,≤), satisfying

v ≤ u ⇐⇒ v + w ≤ u + w ⇐⇒ αv ≤ αu

for all v, u,w ∈ E and α ∈ k>0 .

(ii) An ordered vector space is a vector lattice (or a Riesz space) if it is a lattice, i.e.,
if every two v, u ∈ E admit a least upper bound (or join) v ∨ u and a greatest
lower bound (or meet) v ∧ u. In this case we write |v| = v ∨ (−v), v+ = v ∨ 0,
v− = (−v) ∨ 0.

(iii) A normed vector lattice is a vector lattice over R, equipped with a norm satisfying
|v| ≤ |u| =⇒ ‖v‖ ≤ ‖u‖.

(iv) A Banach lattice is a complete normed vector lattice.

We shall consider (unit balls of) Banach lattices in a language augmented with a
1-Lipschitz function symbol:

LBl = LBs ∪ {| · |}.

Using the function symbol | · | we may define other common expressions which have
the intended interpretations in Banach lattices:

x+ = |x|+x
2 , x− = |x|−x

2 ,
x∨y

2 = 1
2

( x+y
2 +

∣∣ x−y
2

∣∣) , x∧y
2 = 1

2

( x+y
2 −

∣∣ x−y
2

∣∣) .
On the other hand we cannot expect to define x ∨ y or x ∧ y without halving since the
unit ball of a Banach lattice need not be closed under these operations.
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Modular functionals and perturbations of Nakano spaces 17

We define TBl to consist of TBs along with the following axioms. We shall follow the
convention (which will be justified later) that x ≥ 0 is shorthand for x = |x|.

|αx| = |α||x| α ∈ [−1, 1] dyadic(BL1)
|x|+|y|

2 ≥ 0(BL2)

‖x‖ = ‖|x|‖ ≤ ‖|x|+ |y|‖(BL3)

|x+| = x+(BL4)
z
2 −

x∨y
2 + ( z−x

2 )− + ( z−y
2 )− ≥ 0(BL5)

(Some halving is omitted from BL3,5.)

Theorem 2.3 If (E,≤) is a Banach lattice then the unit ball of E is closed under the
absolute value operation | · | and as a LBl -structure is a model of TBl . Conversely, every
model of TBl is the unit ball of a Banach lattice, where the absolute value operation is
extended to the entire Banach space by |x| = ‖x‖

∣∣∣ x
‖x‖

∣∣∣ and the order is recovered by
x ≤ y⇐⇒ x− y = |x− y|.

Proof The first statement is immediate so we only prove the converse. If (E1, |·|) � TBl

then E is the unit ball of a Banach space E . By BL1 we may extend the absolute value
operation to all of E as in the statement of the Theorem and have |αx| = |α||x| for all
α ∈ R, x ∈ E . By BL2 ||x|+ |y|| = |x|+ |y|.

Define a relation ≤ on E as in the statement. Clearly x− x = 0 = |0| whereby x ≤ x .
If x ≤ y ≤ x then 0 = |x − y| + |y − x| and by BL3 ‖x − y‖ ≤ 0, i.e., x = y. If
x ≤ y ≤ z then z− x = |y− x|+ |z− y| whereby z− x = |z− x|, i.e., x ≤ z. Thus ≤ is
an ordering and it is now clear that it renders E an ordered vector space. In particular,
x ≥ 0⇐⇒ x = |x|, justifying our notation.

Define x ∨ y = x+y
2 +

∣∣ x−y
2

∣∣, x ∧ y = x+y
2 +

∣∣ x−y
2

∣∣. Then x ∨ y − x =
( y−x

2

)+
, and

by BL4 x ∨ y ≥ x . The inequalities x ∨ y ≥ y and x, y ≥ x ∧ y are proved similarly.
Assume now that z ≥ x, y. Then ( z−x

2 )− = 1
2 (z − x)− and similarly for z − y, and

by BL5 z ≥ x ∨ y. Thus x ∨ y is the join of x and y. It is not difficult to check that
x ∧ y = −((−x) ∨ (−y)) is the meet of x and y, so (E,≤) is a Riesz space. Immediate
calculations also reveal that |x| = x ∨ (−x), x+ = x ∨ 0, x− = (−x) ∨ 0.

Finally, if |x| ≤ |y|, applying BL3 to |x| and |y|−|x| we obtain ‖x‖ = ‖|x|‖ ≤ ‖|y|‖ =
‖y‖. This completes the proof. �2.3

There is nothing sacred in our choice of language, and some may prefer to name the
operations x∨y

2 , x∧y
2 instead of the absolute value, thus working in L′Bl = LBs ∪
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18 Itaı̈ Ben Yaacov

{ x∨y
2 , x∧y

2 }. We have seen that x∨y
2 , x∧y

2 can be written as terms using | · |, so every
atomic L′Bl -formula can be translated to an atomic LBl -formula. The converse is not
true, but we may still write |x|

2 = x∨(−x)
2 . An easy induction on the complexity of

terms yields that every atomic LBl -formula can be expressed as an atomic L′Bl -formula
up to a multiplicative factor of the form 2k , and therefore as a quantifier-free L′Bl -
formula. We may therefore say that the two languages are quantifier-free interpretable
in one another. By Theorem A.9, model theoretic properties such as axiomatisability,
quantifier elimination, model completeness, and so on, transfer from any class of
Banach lattices viewed as structures in one language to the same class viewed as
structures in the other. One could also formalise Banach lattices by naming the
operation x+ (or x− ), and the same argument would hold.

Since we are dealing specifically with Nakano spaces, we may consider them in the
language LΘ

Bl = LBl ∪ {Θ} where Θ will interpret the modular functional. However,
there is a small caveat here: the modular functional Θp(·) is indeed uniformly continuous
on the unit ball of Lp(·)(X,B, µ), but its precise uniform continuity modulus depends
on the essential bound of the exponent function p.

Convention 2.4 We fix here, once and for all, a uniform bound 1 ≤ r < ∞ on p.
Thus all Nakano spaces considered henceforth will be of the form Lp(·)(X,B, µ) where
p : X → [1, r].

Let K ⊆ [1, r] be compact. we shall consider the following classes of structures:

NΘ
K = {LΘ

Bl-structures isomorphic to some (Lp(·)(X,B, µ),Θp(·)) with ess rng p = K},
NK = {N�LBl

: N ∈ NΘ
K }

= {LBl-structures isomorphic to some Lp(·)(X,B, µ) with ess rng p = K},

NΘ
⊆K =

⋃
{NΘ

K′ : ∅ 6= K′ ⊆ K compact},

= {LΘ
Bl-structures isomorphic to some (Lp(·)(X,B, µ),Θp(·)) with ess rng p ⊆ K},

N⊆K =
⋃
{NK′ : ∅ 6= K′ ⊆ K compact} = {N�LBl

: N ∈ NΘ
⊆K}

= {LBl-structures isomorphic to some Lp(·)(X,B, µ) with ess rng p ⊆ K}.

(Of course, strictly speaking, these are the classes of the unit balls rather than of entire
spaces.)

Given the uniform bound we fixed before, the largest classes we may consider are
N⊆[1,r] and NΘ

⊆[1,r] , respectively.

Fact 2.5 Each of the classes NΘ
K , NK , NΘ

⊆K and N⊆K is elementary.
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Proof This is just [11, Proposition 3.8.2]. While the case of NΘ
⊆K is not mentioned

there explicitly all the ingredients are there (in particular, as each class of the form NΘ
K

is closed under ultraroots, so are classes of the form NΘ
⊆K ). �2.5

We may impose additional requirement, such as the dimension being greater than 1, or
the lattice (equivalently, the underlying measure space) being atomless. These are first
order conditions as well. For the first one we would like to say that there are functions
x and y such that ‖x‖ = ‖y‖ = 1 and |x| ∧ |y| = 0, i.e.:

inf
x,y
¬‖x‖ ∨ ¬‖y‖ ∨ ‖|x + y| − |x− y|‖ = 0.

Similarly, atomlessness is expressible by:

sup
x

inf
y
|‖y‖ − ‖x‖2 | ∨ ‖|x| − |x− 2y|‖ = 0.

The classes of Nakano spaces of dimension at least 2 will be denoted 2NK , 2NΘ
K , etc.

The classes of atomless Nakano spaces will be denoted ANK , ANΘ
K , etc.

Fact 2.6 Assume Lp(·)(X,B, µ) ∈ 2NK (∈ 2N⊆K ). Then ess rng p = K (⊆ K ).

Proof This is a consequence of [11, Proposition 3.4.4], which can be also obtained as
a special case of Corollary 1.12. �2.6

Fact 2.7 The theory Th(ANΘ
K ) eliminates quantifiers. It follows that it is complete,

as is Th(ANK).

Proof [11, Theorem 3.9.4]. �2.7

Fact 2.8 Let K ⊆ (1,∞) be compact (so min K > 1). Then the theory Th(ANK) is
stable.

Proof [11, Theorem 3.10.9]. �2.8

In fact, we are cheating here a little, as Poitevin proved his results in a somewhat
different language. He follows the approach described in the paragraphs following [6,
Example 4.5], viewing a Banach space N as multi-sorted structure consisting of a sort
Nm = B̄(0,m) for each 0 < m < ω . The corresponding language for Banach lattices,
which we may denote here by LBl,ω , consists of the obvious embedding mappings
between sorts, plus multiplication by (say, rational) scalars and the binary operations
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+, ∧ and ∨ going from sorts or pairs of sorts to an appropriate target sort (e.g.,
+ : Nm × Nk → Nm+k , or 1

2 x : N2 → N1 ). The predicate symbols norm and distance
can have values greater than one, but they are still bounded on each sort and thus still
fit in the framework of continuous logic. Similarly, one can define LΘ

Bl,ω as LBl,ω

along with a predicate symbol Θ on each sort, and again in every Nakano space Θ is
uniformly continuous and bounded on each sort.

It will be convenient to notice that even in this approach, multiple sorts are not required.
Since all the sorts Nm of a Banach space stand in a natural bijection with the unit
ball sort N1 via dilation x 7→ x

m , we may interpret the entire language LBl,ω on
the single sort N1 . Thus, for example, instead of + : Nm × Nk → Nm+k we would
have +m,k : N1 × N1 → N1 sending ( x

m ,
y
k ) 7→ x+y

m+k . Viewing N1 as itself, rather
than as a scaled copy of Nm , Nk or Nm+k , obtain the convex combination operation
x +m,k y = mx+ky

m+k . In particular, x +1,1 y = x+y
2 .

Viewed in this way, LBl (LΘ
Bl ) is a sub-language of LBl,ω (LΘ

Bl,ω ). It is also fairly
immediate to check that every atomic LBl,ω -formula agrees (in any Banach lattice) with
a quantifier-free LBl -formula. Thus LBl and LBl,ω are quantifier-free bi-interpretable,
in the sense of Appendix A.2, on the class of Banach lattices. By Theorem A.9, model
theoretic properties such as elementarity, model completeness, quantifier elimination,
and so on, transfer between classes of Banach lattices formalised in LBl and in LBl,ω .
(The reader may worry that in the single sorted versions of LBl and LΘ

Bl we may
construct terms and formulae which do not come from the multi-sorted version due to
sort discrepancy, for example the term x +m,k (y +`,t z) where k 6= ` + t . This term,
however, agrees with the “legitimate” term x +m(`+t),k(`+t) (y +k`,kt z) in every Banach
lattice. In this fashion we can translate every term or quantifier-free formula of LBl,ω to
one which would make sense in the multi-sorted version, so this is not a true problem.)

Let us now consider the case of LΘ
Bl ⊆ LΘ

Bl,ω . The language LΘ
Bl,ω contains for every m

a predicate symbol Θm : N1 → R+ , Θm(x) = Θ(mx) (the range of Θm is bounded and
the bound depends only on r and m), while LΘ

Bl only contains the first one of those,
Θ = Θ1 . Unlike the predicates for norm and distance on Nm which are homogeneous
and can therefore be recovered from their counterparts on N1 by simple dilation, in
order to recover Θm from Θ1 a little more work is required. Our argument here is
very close to the proof of [11, Lemma 3.4.1]. Let us first recall a version of the
Stone-Weierstrass Density Theorem:

Fact 2.9 Let X be a compact Hausdorff space and let A ⊆ C(X,R) be a sub-algebra
which separates points and vanishes nowhere (i.e., for each x ∈ X there is f ∈ A such
that f (x) 6= 0). Then A is dense in C(X,R).
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Lemma 2.10 For every 0 < m ∈ N there exists a quantifier-free LΘ
Bl -definable

predicate ϕm(x) which coincides with v 7→ Θ(mv) on the unit ball of every Nakano
space N = Lp(·)(X,B, µ) (with ess rng(p) ⊆ [1, r]).

Proof Let A ⊆ C([1, r],R) consist of all functions of the form f (x) =
∑

i<n ak2−kx ,
where n ∈ N and ak ∈ R. Then A satisfies the assumptions of the Stone-Weierstrass
Density Theorem cited above, and is therefore dense in C([0, 1],R).

Let us fix ε > 0. By the previous paragraph there is a function of the form
f (x) =

∑
k<n ak2−kx ∈ A which is ε-close to g(x) = mx on [1, r]. Then

ϕm,ε(v) =
∑

k<n akΘ(2−kv) is a quantifier-free definable predicate in LΘ
Bl .

Now assume that v ∈ N = Lp(·)(X,B, µ), ‖v‖ ≤ 1. Passing to |v| we may assume
that v ≥ 0 and up to a density change we may assume that v = χA for some A ∈ B.
Then ‖v‖ ≤ 1 implies that µ(A) ≤ 1. Consider the restriction p�A : A → [1, r], and
let ν be the image measure of µ�A under this mapping. For every α > 0 we have

Θ(αv) =
∫

A
αp(x) dµ =

∫
[1,r]

αx dν,

whereby

|Θ(mv)− ϕm,ε(v)| =

∣∣∣∣∣
∫

[1,r]
mx dν −

∑
k<n

∫
[1,r]

2−kx dν

∣∣∣∣∣
≤
∫

[1,r]
|f (x)− g(x)| dν ≤ εµ(A) ≤ ε.

Since this can be done for every ε > 0 the statement is proved. �2.10

Thus LΘ
Bl and LΘ

Bl,ω are also quantifier-free bi-interpretable for Nakano spaces, so
axiomatisability, quantifier elimination and so on transfer between the two formalisms.
This also means that once we show that the modular functional of a Nakano space is
LBl -definable in the unit ball (e.g., Theorem 3.1), it follows that it is LBl -definable on
the m-ball for every m.

3 Definability of the modular functional

This section contains the main model theoretic results of this paper. We start with the
definability result.
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Theorem 3.1 The modular functional Θ is uniformly LBl -definable in 2NΘ
⊆[1,r] .

Moreover, it is both uniformly inf -definable and sup-definable and can be used to
axiomatise 2NΘ

⊆[1,r] modulo the axioms for 2N⊆[1,r] .

More precisely:

(i) There exists a LBl -definable predicate ϕΘ(x) such that (N,Θ) � Θ(x) = ϕΘ(x)
for all (N,Θ) ∈ 2NΘ

⊆[1,r] .

(ii) There quantifier-free LBl -formulae ψn(x, ȳn) and χn(x, z̄n) such that in all
Nakano spaces of dimension at least two:

Θ(x) = ϕΘ(x) = lim
n→∞

inf ȳnψn(x, ȳn) = lim
n→∞

supz̄n
χn(x, z̄n),

each of the limits converging uniformly and at a uniform rate.

(iii) The theory Th(2NΘ
⊆[1,r]) is equivalent to Th(2N⊆[1,r]) ∪ {Θ(x) = ϕΘ(x)}.

Proof By Corollary 1.11 every N ∈ 2N⊆[1,r] admits at most one expansion to
(N,Θ) ∈ 2NΘ

⊆[1,r] . As these are elementary classes, one can apply Theorem A.1
(Beth’s theorem for continuous logic) in order to obtain ϕΘ .

Using Corollary 1.11 again we see that ϕΘ is constant in 2N⊆[1,r] (see Definition A.2).
By Theorem A.4 it is both inf -definable and sup-definable there.

The last item is immediate. �3.1

Corollary 3.2 For a fixed compact K ⊆ [1, r], the modular functional is uniformly
LBl -definable in NΘ

K .

In particular the modular functional is LBl -definable in every Nakano Banach lattice.

Proof If K = {p0} is a single point, we have Θ(f ) = ‖f‖p0 . Otherwise NΘ
K =

2NΘ
K ⊆ 2NΘ

⊆[1,r] and we can apply Theorem 3.1. �3.2

We have shown that naming the modular functional does not add structure. Still, in the
case of an atomless Nakano space naming Θ does give something, namely quantifier
elimination. It is clear that without Θ quantifier elimination would be impossible:
the complete LΘ

Bl -type of a function contains, among other information, the essential
range of p on its support, and there is no way of recovering this information from the
quantifier-free LBl -type of a single positive function, as it is determined by its norm
alone.

A next-best would be to obtain model completeness. Indeed, all the work for obtaining
it is already done.
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Theorem 3.3 For every compact K ⊆ [1, r] the (theory of the) class ANK is model
complete.

Proof Follows from Corollary 1.11 and the quantifier elimination in ANΘ
K . �3.3

The next and last result of this section is quite quick and straightforward to prove for
a person who is quite familiar with the notion of a measure algebra and understands
that Theorem 1.10 is actually a result about measure algebras rather than about mea-
sure spaces. Having intentionally avoided all mention of measure algebras so far, a
longer approach is required, presenting this somewhat different point of view. We in-
troduce measure algebras in a very sketchy fashion, as an abstract version of a (strictly
localisable) measure space. For a comprehensive treatment we refer the reader to [8].

Let (X,B, µ) be a measure space. Let Bf ⊆ B be the lattice of finite measure
sets. As an algebraic structure, (Bf ,∪,∩,r) is a relatively complemented distributive
lattice (and if it contains a maximal element then it is a Boolean algebra). The
measure µ : Bf → R+ induces a pseudo-metric d(x, y) = µ(x4y) on Bf . The kernel
of this pseudo-metric, namely the equivalence relation d(x, y) = 0, is compatible
with the algebraic structure, yielding a quotient relatively complemented distributive
lattice (B,∩,∪,r). The measure function µ induces an additive “measure function”
µ̄ : B → R+ , and d(x, y) = µ̄(x4y) is a metric on B, with respect to which the
operations ∩,∪,r are 1-Lipschitz. Moreover, it follows from σ -additivity of the
original measure that B is a complete metric space. For the purpose of the discussion
that follows, we call (B,∪,∩,r, µ̄) the measure algebra associated to (X,B, µ).

Conversely, let (C,∪,∩,r, ν) be an abstract measure algebra, namely a relatively
complemented distributive lattice where ν : C→ R+ is additive, such that in addition
d(x, y) = ν(x4y) is a complete metric on C. Assume first that C contains a maximal
element 1, i.e., that C is a Boolean algebra. Let C̃ be its Stone space. For x ∈ C let
x̃ ⊆ C̃ be the corresponding clopen set, and define ν̃0(x̃) = ν(x). Then Carathéodory’s
Extension Theorem applies and we may extend ν̃0 uniquely to a regular Borel measure
ν̃ on C̃. It is now easy to check that (C,∪,∩,r, ν) is the measure algebra associated
to the measure space (C̃, ν̃) (equipped with the Borel σ -algebra). In the general case
let {ai}i∈I ⊆ C be a maximal disjoint family of non-zero members. For each i let
Ci = {b ∩ ai}b∈C be the restriction of C to ai . Restriction the other operations we
obtain a measure algebra (Ci,∪,∩,r, νi) with a maximal element ai , so the previous
argument works. The disjoint union

∐
i∈I(C̃i, ν̃i) is a strictly localisable measure space,

and it is not difficult to check that its measure algebra is (canonically identified with)
C.
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Definition 3.4 Let α > 0 be an ordinal, {Ni}i<α an increasing chain of members of
2N⊆[1,r] (as usual, all inclusions are assumed to be isometric).

A compatible presentation for this sequence is a sequence of presentations Ni ∼=
Lpi(·)(Xi,Bi, µi) such that each inclusion Ni ⊆ Nj sends characteristic functions to
characteristic functions.

Lemma 3.5 Let α > 0 be a limit ordinal, {Ni}i<α an increasing chain of members
of 2N⊆[1,r] . Let Ni ∼= Lpi(·)(Xi,Bi, µi), i < α , be a compatible presentation for this
sequence. Let Nα =

⋃
i<α Ni in the sense of continuous logic, namely the metric

completion of the set-theoretic union. Then Nα ∈ 2N⊆[1,r] as well.

Moreover, there exists a presentation Nα ∼= Lpα(·)(Xi,Bi, µi) which extends the orig-
inal compatible presentation to one for the sequence {Ni}i≤α , and ess rng pα =⋃

i ess rng pi

Proof For i < α let Bi be the measure algebra associated to the measure space
(Xi,Bi, µi). The compatibility assumption tells us precisely that for i < j < α , the
embedding Ni ⊆ Nj induces an embedding Bi ⊆ Bj which respects the algebraic

structure as well as the measure. We may therefore define C =
⋃̂

i<α Bi (i.e., the
completion of the union). Since the algebraic (lattice) operations as well as the measure
function are uniformly continuous, they extend uniquely to C, rendering it an abstract
measure algebra. By the discussion above we may identify it with the measure algebra
Bα of some measure space (Xα,Bα, µα).

For each i < j ≤ α , the embedding Bi ⊆ Bj induces a partial map-
ping L0(Xi,Bi, µi) 99K L0(Xj,Bj, µj) defined on the space of simple functions.
By Lemma 1.6 this extends uniquely to a total mapping θ̂ij : L0(Xi,Bi, µi) →
L0(Xj,Bj, µj). Moreover, for i < j < k ≤ α we have θ̂jk ◦ θ̂ij = θ̂ik and θ̂ij�Ni

coincides with the inclusion Ni ⊆ Nj .

By Theorem 1.10 we have θ̂ijpi = χθ̂ijXi
pj , whence θ̂iαpi�θ̂iαXi

= θ̂jαpj�θ̂iαXi
for

i < j < α . It is also not difficult to check that Xα =
⋃

i<α θ̂iαXi up to null measure
(more precisely, that every finite measure A ∈ Bα is contained, up to arbitrarily
small measure, by some θ̂iαXi ), so there exists a unique measurable pα : Xα → [1, r]
such that θ̂iαpi = χθ̂iαXi

pα for all i < α , and its essential range is as stated. Let
N′α = Lpα(·)(Xα,Bα, µα). We obtain embeddings θ̂i,α�Ni

: Ni → N′α . Moreover, every
characteristic function of a finite measure set in N′α is arbitrarily well approximated by
members of the set union

⋃
i θ̂i,α(Ni) (by construction of C). It follows that the image of

the set union is dense, whence we get an isomorphism Nα ∼= N′α = Lpα(·)(Xα,Bα, µα)
which respects characteristic functions, as desired. �3.5
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Theorem 3.6 The (theories of the) classes NK , N⊆K , NΘ
K , NΘ

⊆K , and similarly with
prefixes 2 and A, are all inductive.

Proof It is immediate from the previous Lemma that 2N⊆K and 2NΘ
⊆K are inductive.

It follows that N⊆K and NΘ
⊆K are inductive, since every infinite increasing chain in

this classes has a tail in 2N⊆K or in 2NΘ
⊆K . Since the atomlessness axiom is inductive,

the classes AN⊆K and ANΘ
⊆K are inductive. The same reasoning works for K instead

of ⊆ K . (Of course, for ANK and ANΘ
K , inductiveness follows directly from model

completeness). �3.6

4 Perturbations of the exponent

Intuitively, a small change to the exponent function p should not change the structure
of a Nakano space by too much. We formalise this intuitive idea, showing that small
perturbations of the exponent form indeed a perturbation system in the sense of [2].
We show that up to such perturbations, every complete theory of Nakano spaces
is ℵ0 -categorical and ℵ0 -stable. In case p is constant (i.e., K is a singleton), we
already know (see, e.g., [4]) that the theory is ℵ0 -stable and ℵ0 -categorical without
perturbation. Indeed, no perturbation of p is possible in this case, so it is a special case
of what we prove below.

4.1 Preliminary computations

We seek bounds for 1 + γs in terms of (1 + γ)s , and for 1− γs in terms of (1− γ)s ,
where γ ∈ [0, 1] and s ∈ [1/r, r]. The function 1+γs

(1+γ)s is well behaved, i.e., continuous

as a function of two variables, and will not cause trouble. The function 1−γs

(1−γ)s is badly
behaved near γ = 1, so we shall only use it for γ ∈ [0, 1

2 ]. For γ ∈ [ 1
2 , 1] we shall

have to consider another function, namely ϕ(γ, s) = ln(1−γs)
ln(1−γ) , which is, for the time

being, only defined for γ ∈ (0, 1) and s > 0. We calculate its limit as γ → 1 for a
fixed s > 0 making several uses of l’Hôpital’s rule (marked with ∗):

lim
γ→1

ln(1− γs)
ln(1− γ)

=∗ lim
γ→1

−sγs−1(1− γs)−1

−(1− γ)−1 = lim
γ→1

sγs−1(1− γ)
1− γs

=∗ lim
γ→1

s(s− 1)γs−2 − s2γs−1

−sγs−1 =
−s
−s

= 1.

It is therefore natural to extend ϕ by ϕ(1, s) = 1. This function is continuous in
each variable for s > 0 and γ ∈ (0, 1], and we wish to show that it is continuous
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as a function of two variables. In fact, all we need is to show it is continuous on
[ 1

2 , 1]× [1, r].

Assume γ ∈ (0, 1), s ∈ [1, r]. A straightforward verification leads to:

ln(1− γr)
ln(1− γ)

≤ ln(1− γs)
ln(1− γ)

≤ 1,

whereby: ∣∣∣∣1− ln(1− γs)
ln(1− γ)

∣∣∣∣ ≤ ∣∣∣∣1− ln(1− γr)
ln(1− γ)

∣∣∣∣ .
Thus limγ→1

ln(1−γs)
ln(1−γ) = 1 uniformly for s ∈ [1, r], and ϕ(γ, s) is indeed continuous

on [ 1
2 , 1]× [1, r].

We now define for 1 ≤ s ≤ r :

As = inf
{

ln(1− γs)
s ln(1− γ)

: γ ∈ [ 1
2 , 1)

}
≤ 1

s
,

B−s = sup
{

1− γt

(1− γ)t : γ ∈ [0, 1
2 ], t ∈ [1/s, s]

}
,

B+
s = sup

{
1 + γt

(1 + γ)t : γ ∈ [0, 1], t ∈ [1/s, s]
}
,

Bs = max{B−s ,B+
s }.

By continuity of ϕ(γ, s), and since ϕ(γ, 1) = 1 for all γ : lims→1 As = lims→1
1
s = 1.

Similarly lims→1 Bs = 1.

In particular we have for s ∈ [1, r] and γ ∈ [ 1
2 , 1): As ≤ ln(1−γs)

s ln(1−γ) whereby sAs ln(1−
γ) ≥ ln(1− γs) and thus (1− γ)sAs ≥ 1− γs .

Lemma 4.1 Let α, β ∈ [−1, 1] and 1/s ≤ t ≤ s. Then

| sgn(α)|α|t − sgn(β)|β|t| ≤ max
{
|α− β|Ast,Bs|α− β|t

}
.

Proof We may assume that |α| ≥ |β| by symmetry. We may further assume that
α, β 6= 0. Assume first that sgn(αβ) = −1. Then:

| sgn(α)|α|t − sgn(β)|β|t| = |α|t(1 + |β/α|t)
≤ |α|tBs(1 + |β/α|)t

= Bs|α− β|t.
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A similar argument shows that when sgn(αβ) = 1 and |β/α| ≤ 1/2:

| sgn(α)|α|t − sgn(β)|β|t| ≤ Bs|α− β|t.

Finally, assume sgn(αβ) = 1 and |β/α| ≥ 1/2. We use the fact that |α| ≤ 1 and
As ≤ 1/s < 1 imply that |α| ≤ |α|As :

| sgn(α)|α|t − sgn(β)|β|t| = |α|t(1− |β/α|t) ≤ |α|t(1− |β/α|s)
≤ |α|t(1− |β/α|)Ass

≤ |α|Ast(1− |β/α|)Ast

= |α− β|Ast.

This completes the proof. �4.1

Lemma 4.2 For all γ, t ∈ [0, 1] : t(1− γ) + γt ≤ 1 (where 00 = 1).

Proof This is clear for t ∈ {0, 1}. So let t ∈ (0, 1), and let ft(γ) = t(1 − γ) + γt .
Then ft(1) = 1, and for 0 < γ < 1 and t − 1 < 0 we have γt−1 > 1 whereby:

d
dγ

ft = −t + tγt−1 > −t + t = 0.

Thus ft(γ) ≤ 1 for all γ ∈ [0, 1]. �4.2

For 1 ≤ s ≤ r and 0 ≤ x ≤ 2, define:

ηs(x) =

{
xAs/s x ≤ 1

xs 1 < x ≤ 2

η̂s(x) = 21−AsBsηs(x)/As.

Lemma 4.3 As s → 1, the functions ηs converge uniformly to the identity. As a
consequence, η̂s → id uniformly as s→ 1.

Proof For ηs , one verifies uniform convergence separately for x 7→ xAs/s on [0, 1]
and for x 7→ xs on [1, 2]. Uniform convergence of η̂s follows. �4.3

For 1 ≤ s ≤ r , define:

C1
s = sup

{∣∣∣∣sgn
(
α+β

2

) ∣∣∣α+β
2

∣∣∣t − sgn(α)|α|t+sgn(β)|β|t
2

∣∣∣∣ : α, β ∈ [−1, 1], t ∈ [1/s, s]
}
,

C2
s = sup{|x− η̂s(x)| : x ∈ [0, 2]},

Cs = max{C1
s ,C

2
s}.

Then lims→1 Cs = 0.
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4.2 Perturbing the exponent

Definition 4.4 Let (X,B, µ) be a measure space and p, q : X → [1, r] measurable.
We define Ep,q : L0(X,B, µ)→ L0(X,B, µ) by:

(Ep,qf )(x) = sgn(f (x))|f (x)|p(x)/q(x).

Lemma 4.5 We continue with the assumptions of Definition 4.4. Let (N,Θ) =
(Lp(·)(X,B, µ),Θp(·)) and (N′,Θ′) = (Lq(·)(X,B, µ),Θq(·)).

(i) For each f ∈ L0(X,B, µ) we have Θ(f ) = Θ′(Ep,qf ). Thus in particular Ep,q

sends N into N′ and the unit ball of N into the unit ball of N′ .

(ii) The mapping Ep,q is bijective, its inverse being Eq,p . It restricts to a bijection
between N and N′ , as well as to a bijection between their respective unit balls.

(iii) The mapping Ep,q commutes with measure density change. More precisely, as-
sume ν is another measure on (X,B), equivalent to µ, say dν(x) = ζ(x)dµ(x).
Let M = Lp(·)(X,B, ν), M′ = Lq(·)(X,B, ν). Let Dp

µ,ν : N → M and
Dq
µ,ν : N′ → M′ be the respective density change mappings. Then Dq

µ,ν ◦Ep,q =
Ep,q ◦ Dp

µ,ν : N → M′ .

Proof For the first item we calculate that:

Θ′(Ep,qf ) =
∫
|f (x)|p(x)dµ = Θ(f ).

The second item follows. Finally, we calculate:

(Dq
µ,νEp,qf )(x) = ζ(x)−1/q(x)(Ep,qf )(x)

= ζ(x)−1/q(x) sgn(f (x))|f (x)|p(x)/q(x)

= sgn(ζ(x)−1/p(x)f (x))|ζ(x)−1/p(x)f (x)|p(x)/q(x)

= sgn((Dp
µ,ν f )(x))|(Dp

µ,ν f )(x)|p(x)/q(x)

= (Ep,qDp
µ,ν f )(x),

proving the third item. �4.5

Proposition 4.6 We continue with the notation and assumptions of Lemma 4.5. As-
sume that s is such that 1/s ≤ q(x)/p(x) ≤ s (for example, we can take s = r).
Then for every f , g ∈ N1 (the unit ball of N ): ‖Ep,qf − Ep,qg‖ ≤ η̂s(‖f − g‖) and
‖f − g‖ ≤ η̂s(‖Ep,qf − Ep,qg‖).
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Proof Let f , g ∈ N1 . By Lemma 4.5(iii) we may assume that |f | ∨ |g| = χS for some
set S ∈ B, so f (x), g(x) ∈ [−1, 1]. Let

h(x) = | sgn(f (x))|f (x)|p(x)/q(x) − sgn(g(x))|g(x)|p(x)/q(x)|

S1 =
{

x ∈ S : h(x) ≤ |f (x)− g(x)|Asp(x)/q(x)
}

S2 = S r S1 ⊆
{

x ∈ S : h(x) ≤ Bs|f (x)− g(x)|p(x)/q(x)
}
.

We observe that as ‖f‖, ‖g‖ ≤ 1 we have µ(S) ≤ 2. Observe also that Asq(x)/s ≤
q(x)/s ≤ p(x) and that sq(x)/As ≥ sq(x) ≥ p(x). It follows that if ‖f − g‖ ≤ 1 then:

‖f − g‖p(x) ≤ ηs(‖f − g‖)q(x)/As = ‖f − g‖q(x)/s

≤ ηs(‖f − g‖)q(x) = ‖f − g‖Asq(x)/s.

Otherwise 1 < ‖f − g‖ ≤ 2, and:

‖f − g‖p(x) ≤ ηs(‖f − g‖)q(x) = ‖f − g‖sq(x)

≤ ηs(‖f − g‖)q(x)/As = ‖f − g‖sq(x)/As .

Let γ =
∫

S1

|f (x)−g(x)|p(x)

‖f−g‖p(x) dµ(x) and a = η̂s(‖f − g‖) = 21−AsBsηs(‖f − g‖)/As . Then:

Θ′
(

Ep,qf − Ep,qg
a

)
=
∫

S

h(x)q(x)

aq(x) dµ(x)

≤
∫

S1

|f (x)− g(x)|Asp(x)

aq(x) dµ(x) +
∫

S2

Bq(x)
s |f (x)− g(x)|p(x)

aq(x) dµ(x)

We work on each integral separately.∫
S1

|f (x)− g(x)|Asp(x)

aq(x) dµ(x) =
∫

S1

µ(S1)Aq(x)
s

(21−AsBs)q(x)

(
|f (x)− g(x)|p(x)

ηs(‖f − g‖)q(x)/As

)As dµ(x)
µ(S1)

≤ µ(S1)
21−As

∫
S1

(
|f (x)− g(x)|p(x)

‖f − g‖p(x)

)As dµ(x)
µ(S1)

≤ µ(S1)
21−As

(∫
S1

|f (x)− g(x)|p(x)

‖f − g‖p(x)
dµ(x)
µ(S1)

)As

=
µ(S)1−As

21−As
γAs ≤ γAs .

And: ∫
S2

Bq(x)
s |f (x)− g(x)|p(x)

aq(x) dµ(x) =
∫

S2

(AsBs)q(x)

(21−AsBs)q(x)
|f (x)− g(x)|p(x)

ηs(‖f − g‖)q(x) dµ(x)

≤ As

∫
S2

|f (x)− g(x)|p(x)

‖f − g‖p(x) dµ(x) = As(1− γ).
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Thus:

Θ′
(

Ep,qf − Ep,qg
a

)
≤ γAs + As(1− γ) ≤ 1

We conclude that ‖Ep,qf − Ep,qg‖ ≤ a = η̂s(‖f − g‖). Since 1/s ≤ p(x)/q(x) ≤ s as
well we have ‖f − g‖ = ‖Eq,pEp,qf − Eq,pEp,qg‖ ≤ η̂s(‖Ep,qf − Ep,qg‖). �4.6

Corollary 4.7 The mapping Ep,q : N1 → N′1 is uniformly continuous, the modulus of
uniform continuity depending solely on r .

Proof Define ∆r(ε) = min
{(

2Ar−1Arε/Br
)r/Ar , 1

}
. Then for all ε > 0 we have

∆r(ε) > 0 and ‖f − g‖ < ∆r(ε) =⇒ ‖Ep,qf − Ep,qg‖ ≤ ε. �4.7

Proposition 4.8 Let Ep,q : N → N′ be as in Definition 4.4, and let f , g ∈ N1 . Then:

(i) Ep,q0 = 0; −Ep,qf = Ep,q(−f ); Ep,q(|f |) = |Ep,qf |.
(ii) |‖f − g‖ − ‖Ep,qf − Ep,qg‖| ≤ Cs .

(iii) ‖Ep,q
f +g

2 −
Ep,qf +Ep,qg

2 ‖ ≤ 2Cs .

Proof The first item is clear. For the second we use Proposition 4.6:

‖Ep,qf − Ep,qg‖ − ‖f − g‖ ≤ η̂s(‖f − g‖)− ‖f − g‖ ≤ Cs,

‖f − g‖ − ‖Ep,qf − Ep,qg‖ ≤ η̂s(‖Ep,qf − Ep,qg‖)− ‖Ep,qf − Ep,qg‖ ≤ Cs.

We may assume that |f | ∨ |g| = χS for some measurable set S , so µ(S) ≤ 2. By
definition of Cs we have

∣∣∣Ep,q
f +g

2 (x)− Ep,qf +Ep,qg
2 (x)

∣∣∣ ≤ Cs for x ∈ S , and we get:

Θ

(
Ep,q

f +g
2 −

Ep,qf +Ep,qg
2

2Cs

)
≤
∫

S
2−q(x) dµ(x) ≤ µ(S)

2 ≤ 1.

The third item follows. �4.8

We now wish to define a perturbation system p for LBl -structures. We do this by
defining a p(ε)-perturbation of structures N and N′ directly as a bijection θ : N → N′

such that for all f , g, h ∈ N :

θ0 = 0,

θ(−f ) = −θf ,

θ(|f |) = |θf |,∣∣∣d ( f +g
2 , h

)
− d

(
θf +θg

2 , θh
)∣∣∣ ≤ ε,

|‖f‖ − ‖θf‖| ≤ ε,
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and:

e−εeεd(f , g)eε ≤ d(θf , θg) ≤ eεd(f , g)e−ε .

(While for most symbols we can just allow to “change by ε”, we need to take special
care with the distance symbol.) This indeed defines a perturbation system, as it clearly
verifies the following characterisation:

Fact 4.9 Let T be a theory, and assume that for each r ∈ R+ and M,N ∈ Mod(T),
Pert′r(M,N) is a set of bijections of M with N satisfying the following properties:

(i) Monotonicity: Pert′r(M,N) =
⋂

s>r Pert′s(M,N).

(ii) Non-degenerate reflexivity: Pert′0(M,N) is the set of isomorphisms of M with
N .

(iii) Symmetry: f ∈ Pert′r(M,N) if and only f−1 ∈ Pert′r(N,M).

(iv) Transitivity: if f ∈ Pert′r(M,N) and g ∈ Pert′s(N,L) then g ◦ f ∈ Pert′r+s(M,L).

(v) Uniform continuity: for each r ∈ R+ , all members of Pert′r(M,N), where M,N
vary over all models of T , satisfy a common modulus of uniform continuity.

(vi) Ultraproducts: If fi ∈ Pert′r(Mi,Ni) for i ∈ I , and U is an ultrafilter on I
then

∏
U fi ∈ Pert′r

(∏
U Mi,

∏
U Ni

)
. (Note that

∏
U fi exists by the uniform

continuity assumption).

(vii) Elementary substructures: If f ∈ Pert′r(M,N), M0 � M , and N0 = f (M0) � N
then f �M0

∈ Pert′r(M0,N0).

Then there exists a unique perturbation system p for T such that Pert′r(M,N) =
Pertp(r)(M,N) for all r , M and N .

Proof [3, Theorem 4.4]. �4.9

Recall that given two n-types p, q we say that dp(p, q) ≤ ε if there are LBl -structures
N,N′ and an ε-perturbation θ : N → N′ sending a realisation of p to one of q.

Lemma 4.10 For every ε > 0 there exists s > 1 such that if N = Lp(·)(X,B, µ),
N′ = Lq(·)(X,B, µ) and Ep,q : N → N′ is as in Definition 4.4 (so in particular 1/s ≤
p(x)/q(x) ≤ s for almost all x ∈ X ), then Ep,q is a p(ε)-perturbation.

Proof By Proposition 4.6, Proposition 4.8 and the fact that lims→1 Cs = 0. �4.10
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Lemma 4.11 Fix a compact K ⊆ [1, r] and s > 1. Then there is a finite set
Ks ⊆ [0, 1] such that for every atomless measure space (X,B, µ) and p : X → [1, r]
with ess rng(p) = K there exists q : X → [1, r] such that ess rng(q) = Ks and for
almost all x ∈ X : 1 ≤ q(x)/p(x) ≤ s.

Proof By compactness we can cover K with finitely many open intervals [1, r] ⊆⋃
{(ai, bi) : i < n}, with 1 < bi/ai ≤ s. We may assume that K ∩ (ai, bi) 6= ∅ for all

i < n. We then define Ks = {bi : i < n}.

Assume now that (X,B, µ) is atomless and p : X → [1, r] satisfies ess rng(p) = K .
We can then split X into a finite disjoint union of positive measure sets X =

⋃
i<n Xi

such that the essential range of pi = p�Xi
is contained in (ai, bi). Define q(x) = bi

when x ∈ Xi . Then q is as required. �4.11

Fact 4.12 For K consisting of a single point, the theory Th(ANK) is ℵ0 -categorical
and ℵ0 -stable.

Proof [4]. �4.12

Lemma 4.13 Let K ⊆ [1, r] be finite. Then Th(ANK) is ℵ0 -categorical and ℵ0 -
stable.

Proof Let K = {pi : i < n}, p0 < . . . < pn−1 . If N = Lp(·)(X,B, µ) ∈ ANK then
X can be written as a disjoint union X =

⋃
i<n Xi where Xi ∈ B, µ(Xi) > 0 and

p�Xi
≡ pi a.e. For i < n let Ni be the Banach lattice χXiN . Thus the Ni are orthogonal

bands in N and N =
⊕

i<n Ni . Since we can recover Θ from the norm on each Ni we
can recover Θ on N , and thus we can recover the norm on N . Similarly, as the Ni are
orthogonal bands we can recover the lattice structure on N from that of Ni .

Now, if N is separable (and atomless), each Ni is separable and atomless, and thus
uniquely determined by pi up to isomorphism, whereby N is uniquely determined by
K . This proves ℵ0 -categoricity.

Similarly, let N′ � N be a separable elementary sub-model and let N′i = N′ ∩ Ni .
By ℵ0 -stability of Th(Ni), SNi

` (N′i ) is metrically separable for each i. Now let f̄ =
f 0, . . . , f `−1 ∈ N , and let f j =

∑
i<n f j

k where f j
i ∈ Ni . Naming Θ and using quantifier

elimination we see that tpN(f̄/N′) is uniquely determined by (tpNi(f̄i/N′i ) : i < n),
and we might as well write tpN(f̄/N′) =

∑
i<n tpNi(f̄i/N′i ). If q =

∑
i<n qi and

q′ =
∑

i<n q′i are two such decompositions then we have d(q, q′) ≤
∑

i<n d(qi, q′i).
Thus SN

` (N′) is metrically separable. �4.13
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We can now conclude:

Theorem 4.14 The theory Th(AN⊆[1,r]) is p-ℵ0 -stable, and every completion thereof
(which is of the form Th(ANK)) is p-ℵ0 -categorical.

Proof Combining Lemma 4.10 and Lemma 4.11 we see that for every ε > 0 there
is a finite set K′ ⊆ [1, r] such that every separable N,N′ ∈ ANK admit p(ε/2)-
perturbations with separable Ñ, Ñ ∈ ANK′ , respectively. But Ñ ∼= Ñ′ by Lemma 4.13,
so N and N′ admit a p(ε)-perturbation.

Similarly for p-ℵ0 -stability. �4.14

Corollary 4.15 The theory Th(AN⊆[1,r]) is stable.

Proof By [3, Proposition 4.11] λ-p-stability implies stability. (See [3, Section 4.3]
for more properties and characterisations of ℵ0 -stability up to perturbation.) �4.15

Remark It is in fact also true that the theory Th(N{p0}) (i.e., constant p, but possibly
with atoms) is ℵ0 -stable, although this fact is not proved anywhere in the literature at
the time of writing. By the same reasoning, the theory Th(N⊆[1,r]) is p-ℵ0 -stable and
in particular stable.

A Some basic continuous model theory

A.1 Definability and monotonicity

Theorem A.1 (Beth’s definability theorem for continuous logic) Let L0 ⊆ L be
continuous signatures with the same sorts (i.e., L does not add new sorts on top of
those existing in L0 ) and T an L-theory such that every L0 -structure M0 admits at
most a single expansion to an L-structure M which is a model of T . Then every
symbol in L admits an explicit L0 -definition in T . That is to say that for every
predicate symbol P(x̄) ∈ L is equal in all models of T to some L0 -definable predicate
ϕP(x̄), and for every function symbol f (x̄) ∈ L the predicate d(f (x̄), y) is equal in all
models of T to some L0 -definable predicate ϕf (x̄).

Proof For convenience we shall assume that the language is single sorted, but the
same proof holds for a many sorted language.
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Let P ∈ L be an n-ary function symbol, and consider the mapping θn : Sn(T) →
Sn(L0), the latter being the space of all complete n-types in the language L0 . It is
known that θn is continuous, and we claim it is injective.

Indeed, let p, p′ ∈ Sn(T) be such that θn(p) = θn(p′) = q. Let M � p(ā) and
M′ � p′(ā′), so Then tpL0(ā) = tpL0(ā′) = q.

Claim There exists an elementary extension M � M1 and an L0 -elementary embed-
ding M′ ↪→ M1 sending ā′ to ā.

Proof of claim We need to verify that ThL(M)(M) ∪ ThL0(M′) ∪ {ā = ā′} is consis-
tent. But the assumptions on the types tell us precisely that ThL0(M′) ∪ {ā = ā′} is
approximately finitely satisfiable in (M, ā). �Claim

we shall identify M′ as a set with its image in M1 , and in particular assume that ā = ā′ .

Claim Let N and N′ be two L-structures, and assume that N �L0 N′ (but needn’t
even be an L-substructure). Then there exists N′′ � N such that N′ �L0 N′′ .

Proof of claim The assumption N �L0 N′ implies that ThL0(N′)(N′) is approximately
finitely satisfiable in N , so ThL(N)(N) ∪ ThL0(N′)(N′) is consistent. �Claim

Using the claim we can extend the pair M′ = M′0 �L0 M1 to a chain of L-structures
We now construct a sequence of structures M′0 �L0 M1 �L0 M′1 �L0 M2 �L0 M′2 . . .
such that Mi � Mi+1 and M′i � M′i+1 .

Let Mω =
⋃

Mi , M′ω =
⋃

M′i . Then both Mω and M′ω are models of T and have the
same L0 -reduct, and are therefore the same. It follows that p = tpMω (ā) = tpM′ω (ā) =
p′ .

Once we have established that θn is an injective continuous mapping between compact
Hausdorff spaces it is necessarily an embedding (i.e., a homeomorphism with its image).
We may identify the predicate P with a continuous function P : Sn(T) → [0, 1]. By
Tietze’s extension theorem there exists a continuous function ϕP : Sn(L0) → [0, 1]
such that P = ϕP ◦ θn . Then ϕP is the required L0 -definable predicate.

If f is a function symbol, apply the preceding argument to d(f (x̄), y). �A.1

Definition A.2 Let T be a theory, ϕ(x̄) a definable predicate. We say that ϕ is
increasing (decreasing) in T if whenever M ⊆ N are both models of T and ā ∈ M we
have ϕ(ā)M ≤ ϕ(ā)N (ϕ(ā)M ≥ ϕ(ā)N ). We say that ϕ is constant in T if it is both
increasing and decreasing in T .
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Definition A.3 A sup-formula is a formula of the form supȳ ϕ(x̄, ȳ) where ϕ is
quantifier-free.

A sup-definable predicate is a definable predicate which can be written syntactically as
F limϕn(x̄) where each ϕn is a sup-formula. (See [6, Definition 3.6] and subsequent
discussion for the definition and properties of the forced limit operation F lim.) Notice
that every such predicate is equal to a uniform limit of sup-formulae.

We make the analogous definitions for inf .

Theorem A.4 Let T be a theory, ϕ(x̄) a definable predicate. Then ϕ is increasing
(decreasing) in T if and only if ϕ is equivalent modulo T to a sup-definable (inf -
definable) predicate.

Proof Clearly it suffices to prove the case of increasing definable predicates. Right to
left being immediate, we prove left to right.

Assume therefore that ϕ(x̄) is increasing in T . Let Ψ be the collection of all sup-
formulae ψ(x̄) = supȳ ψ̃(x̄, ȳ) such that T ` ψ(x̄) ≤ ϕ(x̄). Notice that the latter
means that T ` ψ̃(x̄, ȳ) ≤ ϕ(x̄). If for every n < ω there is ψn ∈ Ψ such that
T ` ϕ(x̄)−. 2−n ≤ ψ(x̄) then ϕ = F limψn and we are done. In order to conclude we
shall assume the converse and obtain a contradiction.

We assume then that there is n < ω such that T ∪ {ϕ(x̄)−. ψ(x̄) ≥ 2−n} is consistent
for all ψ ∈ Ψ. As Ψ is closed under ∨ and ϕ −. (ψ ∨ ψ′) ≥ 2−n =⇒ ϕ −. ψ ≥ 2−n ,
the set Σ = T ∪ {ϕ −. ψ ≥ 2−n}ψ∈Ψ is consistent. Let (M, ā) be a model for it, and
let r = ϕ(ā)M .

Let Σ′ = T ∪ Diaga(M) ∪ {ϕ(ā) ≤ r − 2−n}. Here Diaga(M) denotes the atomic
diagram of M , namely the family of all conditions of the form χ(ā) = χ(ā)M where
χ(x̄) is an atomic formula and ā ∈ M , so a model of Diaga(M) is a structure in which M
is embedded. If Σ′ were consistent we would get a contradiction to ϕ being increasing,
so Σ′ is contradictory. By compactness there exists a quantifier-free formula χ(x̄, ȳ)
and b̄ ∈ M such that χ(ā, b̄)M = 0 and T ∪ {χ(x̄, ȳ) = 0} ∪ {ϕ(x̄) ≤ r − 2−n} is
contradictory. It follows there is some m such that T ∪ {χ(x̄, ȳ) ≤ 2−m} ∪ {ϕ(x̄) ≤
r−2−n} is contradictory. Let r′ ∈ (r−2−n, r) be a dyadic number, and let ψ̃ = r′−. 2mχ.
Then ψ̃ is a quantifier-free formula, and we claim that T ` ψ̃(x̄, ȳ) ≤ ϕ(x̄). indeed, for
any model N � T and any c̄, d̄ ∈ N :

ϕ(c̄)N ≥ r′ =⇒ ϕ(c̄)N ≥ r′ ≥ ψ̃(c̄, d̄)N

ϕ(c̄)N ≤ r′ =⇒ χ(c̄, d̄)N ≥ 2−m =⇒ ϕ(c̄)N ≥ 0 = ψ̃(c̄, d̄)N .
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Thus ψ(x̄) = supȳ ψ̃(x̄, ȳ) ∈ Ψ, whereby ϕ(ā)M −. ψ(ā)M ≥ 2−n . But χ(ā, b̄)M = 0,
so ψ(ā) ≥ r′ whereby ϕ(ā)M ≥ r′ + 2−n > r , a contradiction. This concludes the
proof. �A.4

Corollary A.5 A continuous theory T is model complete if and only if every formula
(definable predicate) is equivalent modulo T to an inf -definable predicate.

Proof Left to right is by Theorem A.4. For right to left, every formula ϕ is decreasing
in T , and considering ¬ϕ every formula is increasing as well, and therefore constant
in T , which means precisely that T is model complete. �A.5

A.2 Interpretations

We turn to treat the issue of passage from one language to another in a structure, which
has arisen several times in this paper. We start with a somewhat watered down notion
of a structure being interpretable in another.

Definition A.6 (Interpretation schemes) Let L0 and L1 be two single sorted sig-
natures. A (restricted) interpretation scheme Φ : L0 → L1 consists of a mapping
assigning to every atomic L1 -formula ϕ(x̄) an L0 -definable predicate ϕΦ(x̄).

Let M be an L0 -structure. We define Φ(M) to be any L1 -structure, should one exist,
equipped with a mapping ι : M → Φ(M) with a dense image, such that for every every
atomic L1 -formula ϕ(x̄):

ϕ(ιā)Φ(M) = ϕΦ(ā)M for all ā ∈ M.(1)

It is not difficult to check that the pair
(
Φ(M), ι

)
, if it exists, is unique up to a unique

isomorphism, justifying the notation. By a convenient abuse of notation we shall omit
ι altogether, identifying ā ∈ M with ιā ∈ Φ(M).

We define KΦ to be the class of L0 -structures M for which Φ(M) exists. More
generally, if K is a class of L1 -structures, we define Φ−1(K) = {M ∈ KΦ : Φ(M) ∈
K}.

By induction on the structure of L1 -formulae on extends the mapping ϕ 7→ ϕΦ from
atomic formulae to arbitrary ones. If ϕ is an L1 -definable predicate it can always be
written as F limϕn where ϕn are formulae, and we may then define ϕΦ = F lim(ϕn)Φ .
It is straightforward to check that if M ∈ KΦ then (1) holds for every formula or
definable predicate ϕ.
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We qualified this notion of interpretation as “restricted”, since it uses the entire home
sort of the interpreting structure, whereas the tradition notion of interpretation in
classical logic allows the interpretation to take place on an arbitrary definable set. We
could extend the definition by letting the domain of the mapping ι, rather than be
all of M , be some definable subset X ⊆ Mn , where d(x̄,X) is given uniformly by a
definable predicate χΦ(x̄) which is also prescribed by Φ. Everything we prove here
regarding interpretations goes through with this more general definition. In particular,
the class of structures in which χΦ defines the distance to a set (the zero set of χΦ )
is elementary. For details on definable sets in continuous logic and their properties we
refer the reader to [1, Section 1].

Lemma A.7 Let Φ : L0 → L1 be an interpretation scheme. Then the class KΦ is
elementary and we may write TΦ = Th(KΦ). More generally, if K = Mod(T) is a
an elementary class of L1 -structures then Φ−1(K) is elementary as well, and we may
write Φ−1(T) = Th

(
Φ−1(K)

)
.

Proof In the case where L1 is purely relational, TΦ merely consists of axioms
expressing that the predicate symbols respect the uniform continuity moduli prescribed
by L1 . In case there are also function symbols we need more axioms (all free variables
are quantified universally):

• Axioms expressing that d(f (x̄), y)Φ respects the uniform continuity moduli of f
in the x̄ and is 1-Lipschitz in y.

• The axioms d(y, z)Φ ≤ d(f (x̄), y)Φ+d(f (x̄), z)Φ and infy d(f (x̄), y)Φ = 0. Notice
that if d(f (x̄), yn)Φ → 0 as n→∞ then {yn} is a Cauchy sequence and therefore
admits a limit. Thus for all x̄ there exists a unique y such that d(f (x̄), y)Φ = 0,
and for all other z: d(f (x̄), z)Φ = d(y, z)Φ . We may then legitimately write
y = f Φ(x̄).

• Finally, axioms expressing that other atomic formulae are interpreted appropri-
ately. For example, for an atomic formula P(f (x, g(y)), z) we need to say that
PΦ(f Φ(x, gΦ(y)), z) = P(f (x, g(y)), z)Φ , expressed by

inf
t,w

(
d(g(y),w)Φ ∨ d(f (x,w), t)Φ ∨ |P(t, z)Φ − P(f (x, g(y)), z)Φ|

)
= 0.

It is relatively straightforward to check that the collection of these axioms does define
the class KΦ .

Assume now that K = Mod(T) is an elementary class of L1 -structures and let
Φ−1(T) = TΦ ∪ {ϕΦ}ϕ∈T . Then Φ−1(K) = Mod(Φ−1(T)), as desired. �A.7
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Definition A.8 (Composition of interpretation schemes, bi-interpretability) Assume
now that Ψ : L1 → L2 is another interpretation scheme. We then define an interpre-
tation scheme Ψ ◦ Φ : L0 → L2 by ϕΨ◦Φ = (ϕΨ)Φ for each atomic L2 -formula ϕ.
Again it is straightforward to check that Φ−1(KΨ) ⊆ KΨ◦Φ , and that if M ∈ Φ−1(KΨ)
then Ψ(Φ(M)) = Ψ ◦ Φ(M).

Finally, consider interpretation schemes Φ : L0 → L1 and Ψ : L1 → L0 , and a class K
of L0 -structures. Assume that K ⊆ Φ−1(KΨ) and that Ψ◦Φ(M) = M (with ι = idM )
for all M ∈ K . We then say that K and K′ = Φ(K) = {Φ(M)}M∈K are (strongly)
bi-interpretable by (Φ,Ψ). Notice that this is a symmetric notion, namely that in this
case K′ ⊆ Ψ−1(KΦ), K = Ψ(K′) and Φ ◦Ψ(N) = N for all N ∈ K′ .

Again, our notion of bi-interpretability is stronger than strictly necessary, and for many
applications it suffices to assume that the mapping ι : M → Ψ ◦ Φ(M) is uniformly
definable.

Theorem A.9 Let Φ : L0 → L1 and Ψ : L1 → L0 be two interpretation schemes, and
let K and K′ be classes of L0 - and of L1 -structures, respectively. Assume moreover
that K and K′ are bi-interpretable via (Φ,Ψ).

(i) The class K is elementary if and only if K′ is.

(ii) Assume that for each atomic L1 -formula ϕ, the definable predicate ϕΦ is
constant in K , and similarly that ϕΨ is constant in K′ for every atomic L0 -
formula ϕ. Then K is model complete (respectively, inductive) if and only if
K′ is.

(iii) Assume that for each atomic L1 -formula ϕ, the definable predicate ϕΦ is
quantifier-free, and similarly that ϕΨ is quantifier-free for every atomic L0 -
formula ϕ (we say that Φ and Ψ are quantifier-free, or that K and K′ are
quantifier-free bi-interpretable). Then K eliminates quantifiers if and only if K′
does.

Proof Assume that K = Mod(T). Let T ′ be the theory consisting of Ψ−1(T) along
with all the axioms of the form ϕ(x̄) = ϕΦ◦Ψ(x̄), where ϕ varies over atomic L1 -
formulae. Clearly, if N ∈ K′ then N � T ′ . Conversely, assume that N � T ′ . Then
N � Ψ−1(T), so Ψ(N) ∈ K . Thus Φ ◦ Ψ(N) ∈ K′ , and the second group of axioms
ensures that N = Φ ◦Ψ(N). Thus K′ = Mod(T ′) is elementary, proving the first item
(by symmetry).

For the second item, the assumption tells us that if M0 ⊆ M1 are both in K then
Φ(M0) ⊆ Φ(M1) in K′ , and similarly in the direction from K′ to K . So assume first
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that K is model complete and let N0 ⊆ N1 in K′ . Then Ψ(N0) ⊆ Ψ(N1) in K , so
Ψ(N0) � Ψ(N1) and thus N0 = Φ ◦ Ψ(N0) � Φ ◦ Ψ(N1) = N1 . Assume now that
K is inductive and let {Ni}i<α be an increasing chain in K′ . Then {Ψ(Ni)}i<α is
an increasing chain in K , so M =

⋃
Ψ(Ni) ∈ K (this being a union of complete

structures, i.e., the metric completion of the set union). In particular, M ⊇ Ψ(Ni) for
each i, so Φ(M) ⊇ Φ ◦ Ψ(Ni) = Ni , i.e., Φ(M) ⊇

⋃
Ni . We now use the fact that

the L0 -definable predicate dL1(x, y)Φ is necessarily uniformly continuous, and that the
set union of Ψ(Ni) is dense in M (both with respect to dL0 ) to conclude that the set
union of the Ni is dense in Φ(M). Considering the complete structure union we have⋃

Ni = Φ(M) ∈ K′ , as desired.

We now turn to the last item. The assumption tells us that if ϕ is any quantifier-free
L0 -formula, or even a quantifier-free L0 -definable predicate, then ϕΨ is quantifier-free
as well, and similarly in the other direction. Assume K eliminates quantifiers, and let
ϕ(x̄) be and L1 -formula. Then ϕΦ is equivalent in K to a quantifier-free definable
predicate, say ψ(x̄), and ψΨ(x̄) is quantifier-free as well. It will be enough to show
that ψΨ coincides with ϕ in K′ . Indeed, let N = Φ ◦Ψ(N) ∈ K′ , ā ∈ N . Then

ϕ(ā)N = ϕ(ā)Φ◦Ψ(N) = ϕΦ(ā)Ψ(N) = ψ(ā)Ψ(N) = ψΨ(ā)N .

This completes the proof. �A.9

B A convergence rate for approximations of the modular
functional

We conclude with a result that was used in earlier versions of this paper in Section
3, later superseded by a more direct approach. We chose to keep it here since it is
relatively easy and does provide some uniformity for approximations of Nakano spaces
by ones in which the essential range of p is finite. Such uniformity may come in handy
for an explicit axiomatisation of Nakano spaces, which, at the time of writing, does not
yet exist in the literature.

A naı̈ve manner to try to approximate the modular functional is by Θ(f ) ≈
∑
‖fk‖pk

where f =
∑

fk consists of cutting the domain of f into chunks such that the exponent
function p(·) is almost constant pk on each chunk. We show here that these approxi-
mations do converge to Θ(f ) at a uniform rate: the difference is always smaller than
C
√

∆ where ∆ is the maximum of diameters of the range of p on the chunks and C
is a constant.
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Lemma B.1 Let (N,Θ) = Lp(·)(X,B, µ), and assume that ess rng p ⊆ [s, s+ε] where
1 ≤ s < s + ε ≤ r . Let f ∈ N , and assume that ‖f‖ ≤ 1. Then |Θ(f ) − ‖f‖s+ε| ≤
ε
s | ln Θ(f )|Θ(f ).

Proof We may assume that f ≥ 0 and ‖f‖ > 0. Let a = ‖f‖, so Θ(f/a) = 1, and
for all t :

at = at
(∫

(f/a)pdµ
)

=
∫

f pat−pdµ,

Notice that for all x we have s− p(x) ≤ 0 =⇒ as−p(x) ≥ 1 while s + ε− p(x) ≥ 0 =⇒
as+ε−p(x) ≤ 1, so:

as+ε =
∫

f pas+ε−pdµ ≤
∫

f pdµ ≤
∫

f pas−pdµ = as.

In other words: as+ε ≤ Θ(f ) ≤ as . It follows that Θ(f )1+ ε
s ≤ as+ε ≤ Θ(f ), whereby

|Θ(f )− as+ε| ≤ |Θ(f )−Θ(f )1+ ε
s | ≤ ε

s
| ln Θ(f )|Θ(f ),

as desired. �B.1

Lemma B.2 There is a constant C such that for every 0 < n ∈ N and every sequence
(ak : k < ω) such that ak ≥ 0 and

∑
ak ≤ 1:∑ ak| ln ak|

k + n
≤ C√

n
, (0 ln 0 = 0).

Proof At first let us assume that ak ≤ 1
e for all k , noting that θ(x) = −x ln x is strictly

increasing on [0, 1
e ].

We may assume that the sequence is ordered so that ak| ln ak| is decreasing. It follows
that (ak : k < ω) is a decreasing sequence. Since

∑
ak ≤ 1 we have ak ≤ 1

k+1 <
1
e

for all k ≥ 2, whereby ak| ln ak| ≤ ln(k+1)
k+1 . Let C0 =

∑ ln(k+3)
(k+3)3/2 <∞. Then:∑

k≥2

ak| ln ak|
k + n

≤
∑
k≥2

ln(k + 1)
(k + n)(k + 1)

≤ 1√
n

∑
k≥2

ln(k + 1)
(k + 1)3/2 =

C0√
n
.

In this calculation we ignored the first two terms of the sum. In addition, in the general
case there may be at most 2 indexes k such that ak >

1
e . Together these account for at

most 4
en ≤

4
e
√

n . Thus
∑ ak| ln ak|

k+n ≤ C√
n where C = C0 + 4

e . �B.2
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Lemma B.3 Let (N,Θ) = Lp(·)(X,B, µ) be a Nakano space and let 0 < n < ω be
fixed. Let ` > n(r − 1), and for k < ` let Kk = [ n+k

n , n+k+1
n ), Xk = p−1(Kk). Let C

be the constant from Lemma B.2.

Then every f ∈ N can be expressed as f =
∑

k<` fk where fk = f �Xk
∈

Lp�Xk
(·)(Xk,B�Xk

, µ�Xk
). If ‖f‖ ≤ 1 then we have:∣∣∣∣∣Θp(·)(f )−

∑
k<`

‖fk‖
n+k+1

n

∣∣∣∣∣ ≤ C√
n
.

Proof We have
∑

k<` Θ(fk) = Θ(f ) ≤ 1, whereby∣∣∣∣∣Θ(f )−
∑
k<`

‖fk‖
n+k+1

n

∣∣∣∣∣ ≤∑
k<`

∣∣∣Θ(fk)− ‖fk‖
n+k+1

n

∣∣∣
≤
∑
k<`

1/n
(n + k)/n

| ln(Θ(fk))|Θ(fk)

=
∑
k<`

1
n + k

| ln(Θ(fk))|Θ(fk) ≤ C√
n
,

as desired. �B.3
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