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Radically elementary analysis of an interacting
particle system at an unstable equilibrium

HEINZ WEISSHAUPT1

Abstract: We investigate an interacting particle system consisting of two types of
particles located at a finite point-lattice. The particles randomly change their type
and neighboring particles randomly interchange positions. The system seems to
remain at equilibrium for a substantial amount of time until it suddenly, at a critical
time T , leaves equilibrium along what seems to be a deterministic trajectory. The
analysis reveals, however, that the trajectories are determined randomly, but only
by the systems behavior at very early times, much prior to T . In the nonstandard
model used, the system randomly ‘chooses’ the trajectory in an infinitesimal interval
[0, ε], ε ≈ 0, but this choice only becomes visible in the interval [T − ε,T]. The
underlying reason for this behavior is revealed by a decomposition of the systems
trajectories with respect to an eigenbasis (gk)k∈K of the discrete Laplace operator
4 . It shows that after an initial random period the system’s dynamics behaves,
coordinate-wise, like t 7→ e(λ+µk)(t−T)υk(ω), where λ is unlimited (‘infinitely
large’), µkgk = 4gk and υk(ω) denotes a random quantity. The hyperfinite result
obtained is translated into a standard limit theorem.
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1 Introduction

Interacting particle systems have been a prospering field of mathematical studies in a
standard setting (Griffeath [11] and Liggett [15]) as well as a nonstandard one (Helms
and Loeb [12], and Albeverio, Fenstad, Høegh-Krohn and Lindstrøm [1, Chapter 7]),
the most prominent being the Ising model.
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2 Heinz Weisshaupt

The model under consideration is presented within a nonstandard setting. It shares with
the Ising model the property of being a Markovian lattice model and that there exist two
states for each particle, or equivalently that there are two particle types, or particles and
holes. It differs, however, in that a large number of particles occupies one position at a
time. In this regard, it possesses similarities with discrete-time zero-range processes (in
the sense of Evans and Hanney [10]) or reaction diffusion processes (in the sense of
Chen [7, Section 13.2]).

The system’s dynamics is at first defined only if particles of both types are present at
any position.

We investigate the evolution starting in the unique unstable equilibrium of a correspond-
ing deterministic system (briefly discussed in Remark 5.5). We are only interested
in the way the system leaves this equilibrium. This can equally well be investigated
within any extension of the original system. Thus we extend the system’s dynamics
in a mathematically appropriate way to arbitrary (negative, real valued) quantities of
particles. For the sake of simplicity, we describe the extended dynamics by the deviation
of the pointwise particle concentration from the equilibrium.

The system’s evolution can be divided into three periods. The first and the third period
are very short compared to the second one. During the first and second period the
system stays infinitesimally close to the unstable equilibrium, and during the third
period it drives with high velocity away from this initial state.

In the first period the system’s evolution is particularly governed by stochasticity. In the
second and third one each path of the system stays infinitesimally close to a deterministic
trajectory.2 Thus the system’s behavior in periods two and three is approximately
described by a probability distribution on a family of deterministic trajectories. The
effect of stochasticity in periods two and three, therefore, originates approximately
from a random choice of a deterministic trajectory made during period one, while the
additional influence of randomness during periods two and three is rather negligible.

To obtain an intuition for the system’s behavior, suppose that we are unable to recognize
infinitesimal differences. Then the system seems to stay in equilibrium during periods
one and two. In period three we observe that the system drives away from the unstable
equilibrium along a randomly chosen, but deterministic trajectory. We know, however,
that the system has already come to the random decision for this particular trajectory
during period one.

2We use the terms trajectory and path in the sense of time-indexed families of
states/configurations, i.e., trajectories and path are functions from time into the state space of
our dynamical system.
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The deterministic trajectories associated with the system are solutions of a linear
system of first order infinitesimal difference equations yt+δt = Lyt , where the linear
transformation L is diagonalizable with respect to an eigenbasis of the discrete Laplace
operator. Stochastically the system shows a Gaussian behavior: Projections of the
system’s random-state onto orthogonal eigenvectors of the Laplacian are approximately
independent, approximately normally distributed random variables. The variances of
these variables increase geometrically with time. The velocity of the increase depends
on the corresponding eigenvalues of the Laplacian. This leads to a preference of low
frequencies and represents a certain degree of coherence induced by stochasticity,
although the term ‘stochastic coherence’ seems usually to be associated only with
nonlinear systems (e.g. Sagues, Sancho and Garcia-Ojalvo [23]).

We are interested in the system’s behavior for large numbers of particles. This is
within standard mathematics expressed by limit theorems. Largeness can however
be directly expressed within a nonstandard framework. In such a setting hyperfinite
collections are large compared to standard finite ones. It is further possible to obtain
from results concerning the hyperfinite situation corresponding limit results in standard
mathematical terms. In this way Lindeberg type limit theorems have been proved
in Weisshaupt [28]. Following this idea we characterize the system’s dynamics for
hyperfinite particle-collections first (Theorem 6.5), and apply afterward transfer and the
permanence principle to obtain a corresponding standard limit result (Theorem 7.9).
The article follows Nelson’s axiomatic approach IST [18] to nonstandard analysis. It is
radically elementary in the sense that it is based on (hyper)-finite probability spaces and
the IST-axioms of idealization and transfer, while the IST-axiom of standardization is
not used in the whole article. Only in the formulation of Corollary 7.11 do we make
use of uncountable probability spaces, since the standard limit object involved can not
be defined on a finite probability space. For this reason we also included appendix B
that connects our internal concepts to standard measure theoretic ones. Note however,
that appendix B is still radically elementary in the sense that it only uses idealization
and transfer to establish this connection.

2 Organization of the Article

In Section 3 we describe the basic dynamics of the interacting particle system and
indicate how this dynamics relates to the extended dynamics defined in Section 5. We
further outline the main result and discuss the outline in some detail. We briefly indicate
how our simple interacting particle systems may relate to more complex systems in
chemical reaction kinetics. Finally we discuss the main proof-steps.
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4 Heinz Weisshaupt

Section 4 introduces some fundamental notions and results in nonstandard analysis
like infinitesimals, uniform S-continuity, near intervals and the symbol �. We further
introduce the discrete Laplace operator and its eigenbasis, which becomes in Section
5 the fundamental tool for the investigation of the extended dynamics. Finally the
concepts of conditional probability, partially defined random variable, stochastic process
and approximately normally distributed variable are introduced.

In Section 5 we introduce the extended model in a mathematically self contained way
not relying on Section 3, however without the motivation and explanation already given
before. The main purpose of Section 5 is to obtain a description of the extended dynamics
in coordinates with respect to the eigenbasis of the discrete Laplacian introduced in
Section 4.

In Section 6 we prove the main results of this article in their internal form (Theorem 6.5
and Theorem 6.9). Both theorems describe the coordinate-wise deviation (with respect
to the eigenbasis of the discrete Laplace operator) of the system from deterministic
trajectories. While Theorem 6.5 deals with the case of a small (standard finite) number
of available particle-positions, the Theorem 6.9 is concerned with the hyperfinite case.
The proof of Theorem 6.5 is based on Theorem A.7, the description of the system’s
dynamics obtained in Section 5 and the Doob inequality (stated as Proposition C.3).
Theorem 6.9 is a consequence of Theorem 6.5 and the axion of idealization.

Section 7 finally turns Theorem 6.5 into the standard limit Theorem 7.9. For this purpose
the mathematical objects in the preceding sections have to be replaced by standard
sequences. The relations fulfilled by the nonstandard elements of these sequences
coincide with the relations fulfilled by the objects of the preceding sections. To obtain
standard limit theorems we translate these relations into assertions concerning the
limits of these sequences. It turns out that this is possible without the use of the
standardization-axiom.

Appendix A is concerned with the internal central limit theorems A.5 and A.7. Under
the hypotheses of these theorems the concatenation of a group homomorphism into
the real numbers with the final state of certain Markov chains (on abelian groups) is
approximately normally distributed. The proof of Theorem A.5 exploits the relationship
between infinitesimal diffusion processes and the diffusion equation in analogy with
Weisshaupt [28], while Theorem A.7 is just a modification of Theorem A.5 obtained by
a time transform. We regard these theorems—as well as their proofs—as interesting in
their own right.

Appendix B relates our external concept of an ‘approximately N(0, id) distributed
random variable’ (Definition 4.22) via the Cramer-Wold device to the standard concept
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of ‘convergence toward a N(0, id) distributed random variable’, while Appendix C
collects miscellaneous results.

The article is largely self-contained. It only makes use of some very elementary results
from nonstandard analysis (Remark 4.3), elementary facts concerning discrete Fourier
analysis and the discrete Laplacian (also collected in Section 4), the well-known Doob
inequality (displayed for the readers convenience at the end of Appendix C) and a
consequence (Proposition B.4) of the Cramér-Wold device. We do not make use of
other auxiliary results. We especially state and prove in Appendix A a central limit
theorem along the lines of [28] that is fundamental for the proof of our main results.
Note however that it would have been possible to apply the martingale central limit
theorem (Bhattacharya and Majumdar [4, Section 5.4, Proposition 4.1]) to prove our
main results instead.

3 Description of the basic dynamics

The particle systems under consideration consist of a constant finite number N of
particles described by their position and their type. At a given time-point t a particle
possesses a position x in the finite point lattice H := hZ/Z with 1/h ∈ N and is either
of type A or of type B.

We suppose for arbitrary x ∈ H that the number of particles located at x is independent
of time and equals hN ∈ N. We further assume that particles of the same type are only
distinguished by their position, but are otherwise indistinguishable. Thus at any time
t the system is completely described by the spatial distribution of type-A or type-B
particles.

Using a nonstandard framework it is convenient to model time by near intervals [ 0 . . . T ],
i.e., hyperfinite—and thus discrete—subsets of [0, T] introduced in Definition 4.4, and
to denote small time steps corresponding to the spacings of points in near intervals by
δt .

In a small piece of time δt , one particle may change its type and two neighboring
particles may interchange their position. Which particles interchange and if there is
any interchange at all is a uniformly distributed pure random event independent of the
particle-configuration. The probability that a particular particle at position x changes its
type also depends on the configuration, at position x. The influence of randomness on
the system is expressed by random elements ω in some hyperfinite space Ω.
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6 Heinz Weisshaupt

We describe the random evolution of our particle system by consecutive reaction and
diffusion steps. We suppose that the reaction steps take place in the time intervals
(t, t + δt/2] while the diffusion steps follow in (t + δt/2, t + δt], with the time-points
t being elements of the discrete set [ 0 . . .T ]. Instead of t + δt/2 we write t+ . In a
reaction step a particle may change its type, while in a diffusion step two particles may
interchange. It is sufficient to describe the interchange of particles of different types in
the diffusion step, since we are unable to observe the interchange of particles of the
same type.

Let NA,t(ω) ∈ {0, . . . , hN}H denote the number of type-A particles at time t under the
random influence ω at different positions x ∈ H before the reaction step. Let further
NA,t+(ω) ∈ {0, . . . , hN}H denote the number of type-A particles at time t+ under
the random influence ω at different positions x ∈ H before the diffusion step. The
evolution of the system can be described by the functions t 7→ NA,t and t 7→ NA,t+ , with
t ∈ [ 0 . . .T ]. We note that the evolution of the system can equivalently be described
by the number of type-B particles given by hN − NA,t and hN − NA,t+ . We further
let εj,k = 1 if j = k and εj,k = 0 for j 6= k and define functions ex : H → {0, 1} by
ex(y) := εx,y and 1IK : Z→ {0, 1} by 1IK(x) := supk∈K εk,x .

Considering particles of type A only and regarding particles of type B as holes (free
space that may be occupied by particles of type A), our dynamical system is described
by hopping of particles to neighboring positions3 (instead of an interchange of particles)
and the overall particle number is not conserved any more. It shares these properties
with discrete-time zero-range processes with non-conservation of particle numbers
in the sense of [10] or reaction-diffusion processes in the sense of [7, Section 13.2].
Fluid limits of reaction-diffusion processes have been considered in [7, Chapter 16] and
Boldrighini, De Masi and Pellegrinotti [6]. Condensation phenomena for zero-range
process with non-conservation of particle numbers have been investigated in Angel,
Evans, Levine and Mukamel [3]. The dynamics considered in all these instances
differ from ours in at least three points: Unstable equilibria (similar to ours) are not
investigated (and thus obtained results are entirely different), hopping rates of particles
do not depend on the occupation number at a neighboring site and reaction-rates are not
‘infinitely’ large compared to diffusion-rates.

We describe the reaction and the diffusion steps in more detail:

3Note that in such a description the hopping rates of particles in our dynamical system do
depend on particle concentration at neighboring sites.
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Reaction step:

For NA,t(ω) = nA,t ∈ {1, . . . , hN − 1}H we let

NA,t+(ω) :=NA,t(ω) + QA,t(ω) with(1)

QA,t(ω) ∈{0} ∪
⋃

x∈H
{−ex, ex}(2)

i.e., the number of type-A particles remains unchanged or changes at exactly one
position by ±1. This formalizes the fact that in one reaction step at most one particle in
the system reacts, i.e., changes its type.

The conditional probabilities (Definition 4.15) for these reactions/changes are given by:

P(QA,t = ex|NA,t = nA,t) := δt
λ

2
nA,t(x),(3)

P(QA,t = −ex|NA,t = nA,t) := δt
λ

2
(
hN − nA,t(x)

)
(4)

By equation (3) the probability that one of the type-B particles located at position x
reacts to a type-A particle is proportional to the number of type A particles located at x ,
while by equation (4) the same statement holds true with the particle-types interchanged.

Diffusion step:

For NA,t+(ω) = nA,t+ ∈ {1, . . . , hN − 1}H we let

NA,t+δt(ω) :=NA,t+(ω) + QA,t+(ω) with(5)

QA,t+(ω) ∈{0} ∪
⋃

x∈H
{−ex + ex−h,−ex + ex+h},(6)

i.e., the system remains unchanged or the number of type-A particles at some position x
decreases by 1 while the number of type-A particles at position x− h or x + h increases
by 1. This formalizes the interchange of a type-A particle at some position x with a
type-B particle at a neighboring position.

The probabilities for this interchange of particles are given by:

P(QA,t+ = −ex + ex±h|NA,t+ = nA,t+) :=
δt
h2 nA,t+(x)

(
1−

nA,t+(x± h)
hN

)
(7)

i.e., the probability that one of the type A particles located at position x interchanges
with a type B particle at a neighboring position is proportional to the number of type A
particles located at x and proportional to the concentration of type B particles located
at the neighboring position.
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8 Heinz Weisshaupt

We are interested in the system’s dynamics when the reaction rate λ in equations (3)
and (4) is large compared to 1, i.e., we are interested in situations when reactions occur
much more frequently than interchanges of particles.

Extended dynamics

Note that the reaction and diffusion steps have till now only been defined if

NA,t(ω),NA,t+(ω) ∈ {1, . . . , hN − 1}H.

An extension of this system’s dynamics is introduced in Section 5. It is based on random
variables Ξt and Ξt+ that fulfill Ξt(ω) =

NA,t(ω)
hN − 1

2 and Ξt+(ω) =
NA,t+ (ω)

hN − 1
2 as long

as NA,t(ω),NA,t+(ω) are defined. Note that the random variables Ξt and Ξt+ model the
deviations of generalized concentrations of type-A particles from 1/2. They may take
on arbitrary values in RH . Some of these values do not correspond to actual particle
numbers and can not be interpreted as actual particle concentrations. However, up to
the random time

τω := max{t ∈ [ 0 . . . T ]|min
x∈H

[NA,t(ω)](x) ≥ 2 and max
x∈H

[NA,t(ω)](x) ≤ hN − 2}

the original and the extended system are indistinguishable. The fact that the effects we
are interested in are caused while t ≤ τω ensures that the extended dynamics captures
the behavior of the particle system.

Outline of the main result

We now outline the main result of the paper. A stronger coordinate-wise version is
provided by Theorem 6.5. The following outline as well as Theorem 6.5 are formulated
within a nonstandard setting. A corresponding formulation as a limit theorem is provided
by Theorem 7.9.

3.1 Theorem Suppose that the particle number N is hyperfinite4 and that h and thus
H = hZ/Z is standard. Let the reaction rate λ be such that

(8) e2λT = 4hN for some limited T ∈ (0,∞).

Let the length of the time steps δt be a constant δ independent of t and sufficiently
small. Suppose that the initial state of the system is given by Ξ0 = 0 and that the
evolution of the dynamical system is governed by Definition 5.3. Then there exists
an approximately N(0, id) distributed random variable ΓT : Ω → RH and a jointly
diagonalizable family (Φ−t)t∈[ 0...T ] of linear mappings Φ−t : RH → RH (Definition

4For a definition of the terms ‘hyperfinite’, ‘limited’ and ‘appreciable’ see Notation 4.1.
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Radically elementary analysis of a particle system 9

6.2) such that for any unlimited ν ∈ (0,∞) with ν/λ ∈ ( 0 . . .T ) infinitesimal, such
that T − ν/λ ∈ ( ν/λ . . .T ) and any standard ε > 0

P
(

ΓT 6= 0 ∧ max
t∈[ ν/λ...T ]

‖Ξt(ω)− [Φ−t ◦ ΓT ](ω)‖2
2

‖Φ−t ◦ ΓT (ω)‖2
2

≥ e−ν(1−ε)
)
≤ ε.(9)

Further for any standard ε > 0

P
(

max
t∈[ 0...T−ν/λ ]

‖Ξt‖2
2 ≥ e−νh−1

)
≤ e−ν(h−1 + ε).(10)

3.2 Remark Theorem 3.1 is a consequence of Theorem 6.5 and Corollary 6.7. A
proof is given in Section 6.

Discussion

Equation (8) relates the reaction rate λ, the overall particle-number N , the number
of available positions 1/h and the approximate time T it takes till an effect becomes
visible. If ln(1/h) is small compared to ln(N) (as it is under the hypothesis that h is
standard and N is hyperfinite), then T equals approximately ln(N)/2λ and the influence
of h on T is negligible. For times smaller than T − ν/λ the system stays by (10)
infinitesimally close to 0, while for times larger than ν/λ it shows by (9) already
an approximately deterministic behavior. The system ‘approximately decides’ in the
first time period [ 0 . . . ν/λ ) for some deterministic trajectory (yt(ω))t∈[ ν/λ...T ] :=
([Φ−t ◦ΓT ](ω))t∈[ ν/λ...T ] . It will follow (yt(ω))t∈[ ν/λ...T ] during the second time period
[ ν/λ . . .T − ν/λ ), when it stays infinitesimally close to 0, and during the third time
period [ T − ν/λ . . .T ], when it takes on appreciable values.

By Remark 6.6 the deterministic trajectory (yt(ω))t∈[ ν/λ...T ] fulfills yt+δt = Lyt with
L the linear transformation given by Lgk = (1 + µkδt)(1 + λδt)gk , where (gk)k∈K
denotes an eigenbasis of the discrete Laplace operator and µk denotes the eigenvalue
corresponding to gk .

Our investigations are partially motivated by the following simple chemical reaction
system:

(11) 2A + B→ 3A and 2B + A→ 3B,

Let [A] and [B] denote the concentrations of the chemical species A and B. Suppose
that [A] + [B] = 1 and that the kinetic constant of both reactions equals 2λ. Introduce
further the variable ξ = [A]− 1

2 . Then the kinetic equation of the reaction system is
given by dξ

dt = λξ − 4λξ3 . A first order approximation of this kinetic equation at the
unstable equilibrium ξ = 0 gives dξ

dt = λξ . Replacing dξ by E[Qt|Ξ = ξt] and dt by
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10 Heinz Weisshaupt

δt exhibits an analogy between the first order approximation and (27), i.e., the reaction
steps of our interacting particle system can—in conditional expectation—be viewed as
infinitesimal steps in a first order approximation (at ξ = 0) of the dynamics of (11).

Thus the interacting particle system under consideration may be considered as a
linearization of interacting particle systems modeling the spatio-temporal behavior
of more complex chemical reactions. We do not further dwell on the question of
linearization of more complex models in this article.

3.3 Remark Before we start with our introduction to nonstandard analysis, the formu-
lation of the exact hypotheses for our extended model etc., we outline the main steps of
our investigation that lead to the proof of our main results, the Theorems 6.5 and 3.1.

The Hypotheses 5.1 and 5.3 give us the stochastic model under consideration. It
is a discrete time Markov process (Ξ0, . . . ,Ξt,Ξt+ , . . . ,ΞT ). However, by the use of
nonstandard analysis, our model may be considered as quasi-continuous.

By Proposition 5.4 and Definition 5.6 we split the short term evolution of our process Ξ

into a conditional deterministic and a pure random part, summarized in Remark 5.7 by
the formula:

Ξt+ = (1 + λδt) Ξt + Σt and Ξt+δt = (id + δt4h) Ξt+ + Σt+

with Σt and Σt+ random variables possessing expectation 0.

In Proposition 5.9 the conditional covariance E[〈Σt|η1〉〈Σt|η2〉 | Ξt = ξt] of the
projections of Σ onto directions η1 and η2 is investigated. In Proposition 5.11 the same
is done for the conditional variance E[〈Σt+ |η〉2 | Ξt+ = ξt+]. These investigations lead
to the insight that mutually orthogonal projections of the random variables Σt show
almost independent behavior, while the variables Σt+ are rather small. Consequently it
seems obvious to expand the system with respect to an orthonormal basis. Since the
dynamics involves (id + δt4h) Ξt+ an eigenbasis of the Laplace operator should be a
good choice.

Thus we describe the systems dynamics in Remark 5.13 with respect to such an
eigenbasis (gk)k∈K as

Ξt+δt =
∑
k∈K

Ξt+δt,k gk =
∑
k∈K

(1 + δtµk) ((1 + λδt) Ξt,k + Σt,k) gk + Σt+,k gk.
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Letting Σ̃t,k := (1 + δtµk)Σt,k + Σt+,k we obtain by recursion in Proposition 6.11 that

Ξt,k =
∑

s∈[ 0...t )

 ∏
u∈( s...t )

(1 + λδu)(1 + µkδu)

 Σ̃s,k.

By rescaling the random variables Σ̃s :=
∑

Σ̃s,k gk by linear transformations Φs (with
approximately inverse transformations Φ−s , introduced in Definitions 6.2 and 6.3) the
equality above can also be expressed by (see Proposition 6.11):

Ξt = Φ−t(Γt) with Γt :=
∑

s∈[ 0...t )

δΓs and δΓs := Φs(Σ̃s).

Note that the operators Φ−t are defined in such a way, that—for δt = δ independent of
t and λ2δ infinitesimally small—we obtain (compare with Proposition 6.4)

(12) (Φ−t ◦ ΓT )k =� eλ(t−T)eµkt(1 +�)ΓT,k,

i.e., t 7→ (Φ−t ◦ ΓT )k shows approximately exponential growth with rate λ+ µk and
ΞT,k =� eµkT (1 +�)ΓT,k . (The symbol � is introduced in Notation 4.6.)

The Proposition 5.17 is obtained from the Propositions 5.9 and 5.11 via the Propositions
5.14 and 5.15. Proposition 5.17 shows that the random variables Σ̃t,k and Σ̃t,j are
for k 6= j almost independent, possess expectation 0 and possesses approximately a
variance of λ

2
δt
hN . From this we derive the formula (77) for the conditional variances of

δΓs . We show in Lemma 6.14 that

λ

2
δ

hN

∑
s∈[ 0...ν/λ )

(1 + λδ)2(T−s)/δ

(1 + µkδ)2s/δ
=�(1 +�)

e2λT

4hN

This is applied (in the proof of Lemma 6.15) to sum the conditional variances of δΓs

given by equation (77) in Proposition 6.12. Since the random variables δΓs are for
t 6= s independent, we know from Theorem A.7 that the random variables Γt are for
sufficiently large t approximately normally distributed. Altogether we obtain by the scal-
ing e2λT = 4hN(1+�) that Γt ∼� N(0, idK) for any t in [ ν/λ . . . T ] with ν unlimited.

It finally remains to prove that the path of our stochastic process Ξ stay almost
surely infinitesimally close to 0 on the near interval [ 0 . . .T − ν/λ ] and that they
follow almost surely the deterministic trajectories [Φ−t ◦ ΓT ](ω) on the near interval
[ ν/λ . . . T ], i.e., to prove formulas (66) and (65) in Theorem 6.5 (and thus (10) and (9)
in Theorem 3.1). This aim is achieved by application of the Doob inequality and use of
the linear transformations Φ−t in the second step of the proof of Lemma 6.15 and at the
end of Section 6. While (66) and (10) bound the absolute deviation of stochastic paths
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12 Heinz Weisshaupt

from 0, the inequalities (65) and (9) bound the relative deviations of stochastic paths
from deterministic trajectories.

Note that (65) and (12) together imply that t 7→ Ξt,k(ω) behaves for almost all ω
and t ∈ [ ν/λ . . . T ] approximately like t 7→ e(λ+µk)(t−T)eµkT ·ΓT,k(ω), i.e., t 7→ Ξt,k(ω)
shows approximately exponential growth with rate λ+ µk .

So, to understand the main ideas of the article, one has to decompose the system’s
dynamics with respect to an eigenbasis (gk)k∈K of the Laplacian ∆, to admit formula
(54), to have a look at the derivation of (77) from (54) in the proof of Proposition
6.12, and the derivation of Lemma 6.14. Going trough the first part of the proof of
Lemma 6.15 one concludes (80)-(83) from Proposition 6.12, Lemma 6.14 and Theorem
A.7. One proceeds with the second part of the proof of Lemma 6.15 that shows (65).
Theorem 6.5 finally follows by some further simple computations.

4 Preliminaries

The notation and argumentation used in this article is supplied by the axiomatic system
IST (see Nelson [18] or F and M Diener [8] and Kanovei and Reeken [13, Chapter 3])
that provides, beside the binary ZFC-predicate ∈, also an unary predicate st(.) called
standard. The results and arguments used in this paper however remain valid in other
approaches to nonstandard analysis as well.

The reader familiar with a model theoretic approach (as found in Robinson [21], Stroyan
and Bayod [24] or Lindstrøm [16]), or the axiom system HST [13, Chapter 1], has to
keep in mind that the plain term set is used synonymously with the term internal set and
that we work within one single model. We do not use a ∗ -operation and denote by N
and R the standard sets of all natural and real numbers, i.e., the sets N and R contain
standard as well as nonstandard elements.

The reader new to nonstandard analysis is advised to have a look at the first pages of
[18] or [8] to make himself familiar with the notions of standard, internal and external
formula, the principles of transfer and idealization and some elementary consequences
thereof.

To keep notation simple we write ∀stxφ(x) instead of ∀x(st(x) ⇒ φ(x)) and ∃stxφ(x)
instead of ∃x(st(x)∧φ(x)). Given a set M we use x ∈ M as shorthand for x ∈ M ∧ st(x)
and x ∈ M as shorthand for x ∈ M ∧ ¬st(x).
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Radically elementary analysis of a particle system 13

4.1 Notation Let (X, ‖.‖) be a normed space. We say that x ∈ (X, ‖.‖) is limited
and write ‖x‖ � +∞ if ∃stn ∈ N such that ‖x‖ < n; otherwise, we say that x is
unlimited. In the case that (X, ‖.‖) = (R, |.|) we also write −∞� x� +∞ instead
of ‖x‖ � +∞. For positive unlimited r ∈ (R, |.|) we write r ≈ ∞. We say that
x ∈ (X, ‖.‖) is infinitely small or infinitesimal if ∀stε > 0 ‖x‖ < ε. If x− x′ is infinitely
small we write x ≈ x′ . Thus if x is infinitely small we write x ≈ 0. We say that x ∈ R
is appreciable if it is limited but not infinitesimal. We call a set hyperfinite if it is finite
and of unlimited (=hyperfinite) cardinality. Note that all the concepts introduced above
are external.

We state some elementary results and definitions that can be obtained in IST without
the axiom of standardization.

4.2 Definition Let (Y, ‖.‖) be a normed space. We say that the sequence

(yn)n∈N ∈ YN S-converges to y∞ ∈ (Y, ‖.‖), iff ∀ν ∈ N yν ≈ y∞.

Let Z be a subset of a normed space (X, ‖.‖). We say that a function f : Z → Y is
uniformly S-continuous, if

∀z, z0 ∈ Z ∧ z ≈ z0 ⇒ f (z) ≈ f (z0).

4.3 Remark A standard sequence (xn)n∈N S-converges if and only if there exists a
standard x∞ such that (xn)n∈N converges (in the usual ZFC-based sense) to x∞ . A
standard function f is uniformly S-continuous if and only if it is uniformly continuous
in the usual sense. Both assertions follow from the permanence principle (e.g. Van den
Berg [5, Chapter IV, Section 1]) and transfer. Further a bounded standard function is
limited.

4.4 Definition (Compare with [19, first paragraph of Chapter 6].) Let t0,T ∈ R be
limited. A near interval [ t0 . . .T ] is a finite subset of [t0,T] such that {t0,T} ⊂
[ t0 . . . T ] and the distance of consecutive elements is infinitesimally small. We denote
by t + δt ∈ [ t0 . . . T ] the successor of t ∈ [ t0 . . . T ] with respect to the usual ordering
≤ on [ t0 . . .T ]. We say that the near interval [ 0 . . .T ] is equally spaced if δt is a
constant δ independent of t and call δ the spacing of the near interval [ 0 . . . T ].

We let [ t0 . . . T ) := [ t0 . . . T ] \ {T}, ( t0 . . . T ] := [ t0 . . . T ] \ {t0} and ( t0 . . . T ) :=
[ t0 . . . T ] \ {t0,T}.

4.5 Remark It is convenient to use in some steps (Lemma 6.14) of the proof of
Theorem 6.5 (and thus also in its statement) an equally spaced near interval. However,
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14 Heinz Weisshaupt

we use general near intervals in the formulation of Theorem A.7 and some other results,
since such a formulation may turn out to be useful for further applications. Note that if
we speak of a near interval [ t0 . . . T ] we presuppose the limitedness of t0 and T .

4.6 Notation The domain and the range of a function F is denoted by dom(F) and
ran(F). We further introduce the symbol � and the notations ≤� and =� . We use
them to handle calculations with non explicitly stated infinitesimal quantities, which
simplify our notational effort. Let F(x) and G(y) denote functions of the variables x
and y. We define

F(�) ≤� G(�) :⇐⇒
(∀o ∈ dom(F) o ≈ 0⇒ ∃ô ∈ dom(G) ô ≈ 0 ∧ F(o) ≤ G(ô)).

(13)

The symbol � is used in the same manner if the character ≤ in (13) is replaced by the
character =, i.e.,

F(�) =� G(�) :⇐⇒
(∀o ∈ dom(F) o ≈ 0⇒ ∃ô ∈ dom(G) ô ≈ 0 ∧ F(o) = G(ô)).

Note that =� is not symmetric. (For example, we have ρ =� � for any infinitesimal
ρ, but � 6=� ρ for any ρ ∈ R.) Our definitions imply that

F(�) ≤� G(�) ∧ G(�) ≤� H(�) ⇒ F(�) ≤� H(�)

F(�) ≤� G(�) ⇒ F(�) + H(�) ≤� G(�) + H(�)

(∀stε > 0) (� ≤� ε).and

For a different definition of the symbol � leading to the same use in calculus see
Koudjeti and Van den Berg [14].

Discrete Fourier Analysis and the Laplacian

We will make use of the following well-known results from discrete Fourier analysis.
For more information on the topic of discrete Fourier Analysis consult Terras [25] or
Luong [17].

4.7 Definition Let h be such that 1/h ∈ N. Let H := hZ/Z. Let K(h) := {k ∈
Z| − 1

2h + 1
2 ≤ k ≤ 1

2h} and let for k ∈ K(h) functions gk ∈ RH be given by

gk(x) :=
√

h cos(2πkx) for k = 1/(2h), provided that 1/(2h) ∈ N

gk(x) :=
√

2h cos(2πkx) for 1/(2h) > k > 0

gk(x) :=
√

2h sin(2πkx) for k < 0 and

g0(x) :=
√

h.
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4.8 Definition Let 〈.|.〉 : RH×RH → [0,∞) denote the usual euclidean inner product
given by 〈f |g〉 :=

∑
x∈H[f · g](x). We further define the 2-norm (euclidean norm)

‖.‖2 : RH → [0,∞) by ‖f‖2 :=
√
〈f |f 〉 and let S(RH) := {ξ ∈ RH | ‖ξ‖2 = 1}

denote the unit sphere.

4.9 Notation We denote the imaginary unit by i and the exponential function by
x 7→ ex or x 7→ exp(x).

4.10 Remark Note that the family (gk)k∈K(h) of functions gk ∈ RH defined in 4.7
forms an orthonormal bases of RH with respect to 〈. | .〉, i.e., 〈gk | gl〉 = εk,l . This is
most easily seen using the identities

cos(2πkx) =
[
e2πikx + e−2πikx] /2 and sin(2πkx) =

[
e2πikx − e−2πikx] /2i

and that for k, l ∈ K(h) we have

h
∑
x∈H

e2πi(k−l)x = εk,l and h
∑
x∈H

e2πi(k+l)x = ε(k+l mod 1/h),0

4.11 Definition Let 1/h ∈ N and let H := hZ/Z. Define the discrete Laplace operator
4h : RH → RH by [4hf ](x) = (f (x− h) + f (x + h)− 2f (x))h−2 .

4.12 Remark Note that the functions gk provided by Definition 4.7 are the eigenvectors
of 4h , i.e., 4hgk = µkgk . Further

(14) µk = µ−k =
2
h2 [cos(2πkh)− 1] ≤ 0.

This is most easily seen using the identity e2πikx = cos(2πkx) + i sin(2πkx) and
calculating

4he2πikx =
1
h2

[
e2πik(x+h) + e2πik(x−h) − 2e2πikx]

= e2πikx 2
h2 [cos(2πkh)− 1].

4.13 Remark For standard k ∈ K(h)—and thus especially for any k ∈ K(h) provided
that h is standard—we have −∞� µk ≤ 0.

Journal of Logic & Analysis 3:10 (2011)



16 Heinz Weisshaupt

Probabilities and Distributions

4.14 Notation (Compare with Nelson [19, Chapter 1]) Our considerations will be
based on a finite non-degenerate probability space (Ω,P), where Ω denotes a finite
set and P a non-degenerate probability on 2Ω , i.e., P : 2Ω → [0, 1] fulfills P(Ω0) =∑

ω∈Ω0
P({ω}), P(Ω) = 1 and ∀ω ∈ Ω P({ω}) > 0. We call a function X a (partially

defined) random variable if ∅ 6= dom(X) ⊆ Ω. If X and Y are random variables we
denote by Y = y the set {ω | Y(ω) = y} and let X|Y=y denote the restriction of the
function X to dom(X) ∩ {ω|Y(ω) = y} =: dom(X|Y=y).

4.15 Definition (Compare with [19, Chapters 1 and 2]) Let X and Y be random
variables. Let P(X = x) := P(X=x)

P(dom(X))
. Note that dom(X) = Ω implies that

P(X = x) = P(X = x). Given a function f with ran(X) ⊆ dom(f ) and ran(f ) ⊆ RJ
(with J an arbitrary set), we let E[f ◦ X] =

∑
x P(X = x)f (x). In the case that

dom(X|Y=y) 6= ∅ we define by P(X = x|Y = y) := P(X|Y=y = x) the conditional
probability that X = x under the hypothesis that Y = y. The conditional expectation
E(f ◦X|Y = y) is defined by replacing the probabilities in the definition of the expectation
above by conditional probabilities. Given a function F with ran(Y) ⊆ dom(F) we use
P(X = x|Y) = F ◦ Y as a shorthand notation for

(∀y ∈ ran(Y)) (dom(X|Y=y) 6= ∅ =⇒ P(X = x|Y = y) = F(y)).

4.16 Definition (Compare with [19, Chapters 3 and 9]) A stochastic process X =

(Xt)t∈[ t0...T ] with time [ t0 . . .T ] and state space M is an indexed family of random
variables Xt ∈ MΩ0 with Ω0 ⊆ Ω. A stochastic process X is Markov if for all t ∈
( t0 . . .T ) and all (xs)s∈[ t0...t ] ∈ M[ t0...t ] such that (xs)s∈[ t0...t ] ∈ ran

(
(Xs(ω))s∈[ t0...t ]

)
we have

P(Xt+δt = xt+δt|Xt = xt) = P(Xt+δt = xt+δt|(Xs)s∈[ t0...t ] = (xs)s∈[ t0...t ])

and it is a martingale if M = RJ (for some arbitrary set J ) and

s < t ∧ xs ∈ ran(Xs) ⇒ E[Xt|Xs = xs] = xs.

4.17 Definition Given a topological space X , we denote by (Cb(X ), ‖.‖∞) the space
of all bounded continuous functions f : X → R endowed with the ‖.‖∞ -norm defined
by ‖f‖∞ := supx∈X |f (x)|. We further denote by Cn

b (R) the space of all n-times
differentiable functions from R to R such that all derivatives (including the 0th ) are
continuous and bounded functions. We let C∞b (R) :=

⋂
n∈N Cn

b (R).
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4.18 Definition (Compare with Weisshaupt [28, Definition 3.3]) Let Y : Ω→ R and
let σ ∈ (0,∞) be limited. We say that the random variable Y is approximately N(0, σ2)
distributed and write Y ∼� N(0, σ2), if

(15) (∀stf ∈ Cb(R))
(
E[f ◦ Y] ≈

∫
y∈R

f (y)
exp(−y2/(2σ2))√

2πσ
dy
)

with
∫

y∈R denoting the integral in the sense of Riemann.

4.19 Remark Note that in contrast to [28, Definition 3.3] our Definition 4.18 does not
presuppose almost limitedness of the random variable Y and we do not make use of the
concept of almost limitedness in this article. (For a definition of the concept of almost
limitedness see for example [28, Definition 3.2].) However, an approximately normally
distributed random variable in the sense of Definition 4.18 is almost limited in the sense
of [28, Definition 3.2].

4.20 Remark Let Y be approximately N(0, 1) distributed and let ρ ≈ 0. Then
P(Y2 ≤ ρ) ≈ 0.

4.21 Definition Let J be a finite set. We let S∗(RJ ) denote the family of all
functionals ψ∗ : RJ → R of the from ψ∗(ξ) =

∑
j∈J ψj〈ξ|ej〉, with ψj ∈ R and∑

j∈J ψ
2
j = 1.

4.22 Definition Let J be a finite set and let X : Ω→ RJ . We say that the random
variable X is approximately N(0, id) distributed on RJ and write X ∼� N

(
0, idJ

)
or

simply X ∼� N(0, id) if

(16) (∀ψ∗ ∈ S∗(RJ )) (ψ∗(X) ∼� N(0, 1)).

4.23 Remark Definition 4.22 is partially justified by Proposition B.6 in Appendix B.
Note however that the finite set J is supposed to be standard in Proposition B.6, while
this is not the case in Definition 4.22.

4.24 Remark Note that X ∼� N(0, id) is equivalent with

(17) (∀stf ∈ Cb(R)) (∀ψ∗ ∈ S∗(RJ ))
(
E[f ◦ ψ∗(X)] ≈

∫
y∈R

f (y)
exp(−y2/2)√

2π
dy
)

which is further equivalent with

(∀stε > 0) (∀stf ∈ Cb(R)) (∀ψ∗ ∈ S∗(RJ ))∣∣∣∣E[f ◦ ψ∗(X)]−
∫

y∈R
f (y)

exp(−y2/2)√
2π

dy
∣∣∣∣ < ε.

(18)
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18 Heinz Weisshaupt

5 The Model

5.1 Hypothesis Suppose that N ∈ N, λ ≈ ∞ and that h ∈ (0, 1] is such that

1
h
∈ N.(19)

H := hZ/Z, K(h) :=
{

k ∈ Z
∣∣∣∣ − 1

2h
+

1
2
≤ k ≤ 1

2h

}
Let

X :=
{

m
hN
− 1

2

∣∣∣∣m ∈ N and 1 ≤ m ≤ hN − 1
}H
⊂ RH.and let

Let [ 0 . . . T ] be a near interval5 such that

(20) ∀t ∈ [ 0 . . . T ] δtλhN ≈ 0.

Let further (gk)k∈K(h) denote the eigenbasis of the discrete Laplace operator, introduced
in Definition 4.7, and denote by µk the eigenvalue corresponding to gk .

5.2 Remark Suppose that NA,t(ω),NA,t+(ω) denote the numbers of type-A particles
introduced in Section 3. Then Ξt(ω) and Ξt+(ω), provided by Definition 5.3 be-
low, model the deviation of the concentration of type A particles from 1

2 , i.e., for
NA,t(ω),NA,t+(ω) ∈ {0, . . . , hN}H we have that

(21) Ξt(ω) =
NA,t(ω)

hN
− 1

2
and Ξt+(ω) =

NA,t+(ω)
hN

− 1
2

and the dynamics specified by (23) and (25) coincides via

Qt(ω) =
QA,t(ω)

hN
and Qt+(ω) =

QA,t+(ω)
hN

with the dynamics given by (3), (4) and (7).

5.3 Hypothesis Let (Ξt)t∈[ 0...T ] and (Ξt+)t∈[ 0...T ) be indexed families of random
variables Ξt,Ξt+ : Ω→ RH such that

Ξ := (Ξ0,Ξ0+ , . . . ,Ξt,Ξt+ , . . . ,ΞT )

forms a Markov Chain. We specify this Markov chain by its transitions from Ξt to Ξt+

and Ξt+ to Ξt+δt given by random variables Qt and Qt+ respectively, i.e., we suppose
that Ξ0(ω) = 0 ∈ RH independent of ω and let

(22) Ξt+ := Ξt +Qt and Ξt+δt := Ξt+ +Qt+ .

5Note that this presupposes that T is limited, although we are not going to make use of this
fact before Section 6.
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If ξt ∈ X and P(Ξt = ξt) > 0 we let Qt ∈
{

0,− ex
hN ,+

ex
hN

∣∣ x ∈ H}Ω be such that

(23) P
(
Qt = ± ex

hN

∣∣∣Ξt = ξt

)
= p±λ,t(ξt, x) := δt

λ

2
hN
(

1
2
± ξt(x)

)
If ξt ∈ RH \ X, P(Ξt = ξt) > 0 let Qt ∈

{
δtλ ξt, δtλ ξt − ex

hN , δtλ ξt + ex
hN

∣∣ x ∈ H}Ω

be such that

(24) P
(
Qt = δtλξt ±

ex

hN

∣∣∣Ξt = ξt

)
= p±λ,t(ξt, x) := δt

λ

4
hN.

If ξt+ ∈ X and P(Ξt+ = ξt+) > 0 let Qt+ ∈
{

0, −ex+ex+h
hN ,

−ex+ex−h
hN

∣∣∣ x ∈ H}Ω
be such

that

P
(
Qt+ =

−ex + ex±h

hN

∣∣∣∣Ξt+ = ξt+

)
= p±4,t(ξt+ , x)

:=
δt
h2 hN

(
1
2

+ ξt+(x)
)(

1
2
− ξt+(x± h)

)
≤ 1

4
δt
h2 hN.

(25)

If ξt+ ∈ RH \ X and P(Ξt+ = ξt+) > 0 we define Qt+ by

(26) Qt+ |Ξt+=ξt+
:= δt4hξt+ .

5.4 Proposition Suppose that the Hypotheses 5.1 and 5.3 are fulfilled. For ξt, ξt+ ∈ RH
with P(Ξt = ξt) > 0, P(Ξt+ = ξt+) > 0 we have:

E[Qt|Ξt = ξt] = δtλ ξt(27)

E[Qt+ |Ξt+ = ξt+] = δt4hξt+(28)

Proof In the case that ξt ∈ RH \ X equation (27) is immediately derived from (24),
since in this case p+

λ,t(ξ, x) = p−λ,t(ξ, x). If ξt ∈ X then (27) holds since by (23)

E[Qt | Ξt = ξt](x) =
1

hN
p+
λ,t(ξt, x)− 1

hN
p−λ,t(ξt, x) = δtλ ξt(x).

Thus (27) holds for any ξt ∈ RH . In the case that ξt+ ∈ RH \ X equation (28) is a
consequence of (26). Finally if ξt+ ∈ X we obtain from (25) that

E[Qt+ |Ξt+ = ξt+](x)

=
δt
h2

[
−
(

1
2

+ ξt+(x)
)(

1
2
− ξt+(x + h)

)
−
(

1
2

+ ξt+(x)
)(

1
2
− ξt+(x− h)

)
+

(
1
2
− ξt+(x)

)(
1
2

+ ξt+(x + h)
)

+

(
1
2
− ξt+(x)

)(
1
2

+ ξt+(x− h)
)]

=
δt
h2 (ξt+(x− h) + ξt+(x + h)− 2ξt+(x)) = δt4hξt+(x).

Thus (28) has been shown for any ξt+ ∈ R.
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5.5 Remark We may associate with the stochastic dynamical system fulfilling the
Hypotheses 5.1 and 5.3 a deterministic system given by:

(29) ξt+ = ξt + δtλ ξt and ξt+δt = ξt+ + δt4hξt+

While the increments of the stochastic system are given by Qt and Qt+ the increments
of the deterministic system (29) coincide (by Proposition 5.4) in the cases that P(Ξt =

ξt) > 0, P(Ξt+ = ξt+) > 0 with the conditional expectations E[Qt|Ξt = ξt] and
E[Qt+ |Ξt+ = ξt+]. Note further that ξ = 0 is an equilibrium of the associated
deterministic system, i.e., ξt = 0 ⇒ ξt+δt = 0. For standard h and unlimited λ the
equilibrium ξ = 0 is unique and unstable, since ‖ξt+δt‖2 ≥

(
1 + δtλ2

)
‖ξt‖2 . This last

fact follows from an expansion of the dynamics with respect to the eigenbasis (gk)k∈K(h)

of ∆h provided by6

ξt+δt =
∑

k∈K(h)

ξt+δt,k gk = (1 + δtλ)(1 + δtµk)ξt,k gk

that implies, using −∞� µk (Remark 4.13 and 1/h ∈ N) and λ ≈ +∞,

‖ξt+δt‖2
2 =

∑
k∈K(h)

ξ2
t+δt,k ≥

∑
k∈K(h)

(1 + δtλ)2(1 + δtµk)2ξ2
t,k

≥
∑

k∈K(h)

(1 + δtλ/2)2ξ2
t,k = (1 + δtλ/2)2‖ξt‖2

2.

5.6 Definition To investigate Ξt further we define:

Σt := Qt − E[Qt|Ξt]
(a)
= Qt − δtλΞt(30)

Σt+ := Qt+ − E[Qt+ |Ξt+]
(b)
= Qt+ − δt4hΞt+(31)

5.7 Remark Note that the equalities (a) and (b) in (30) and (31) follow from (27) and
(28) respectively. From (22), (30) and (31) we obtain that:

(32) Ξt+ = (1 + λδt) Ξt + Σt and Ξt+δt = (id + δt4h) Ξt+ + Σt+

5.8 Remark As a consequence of Definition 5.6 we obtain for all ξt, ξt+ ∈ RH with
P(Ξt = ξt) > 0, P(Ξt+ = ξt+) > 0 that

(33) E[Σt|Ξt = ξt] = 0, E[Σt+ |Ξt+ = ξt+] = 0

Further for all ω ∈ Ω we obtain from Definition 5.6 and Definition 5.3 that:

(34) ‖Σt(ω)‖2 ≤
2

hN
, ‖Σt+(ω)‖2 ≤

√
2

2
hN

6Compare with equation (44) in Remark 5.13.
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5.9 Proposition Suppose that the Hypotheses 5.1 and 5.3 are fulfilled and suppose
that η1, η2 ∈ S(RH) , ξt ∈ RH and P(Ξt = ξt) > 0. Then

(35) E[〈Qt|η1〉|Ξt = ξt] = 〈E[Qt|Ξt = ξt]|η1〉 = δtλ〈ξt|η1〉.
For Σt given by (30) we obtain

(36) E[〈Σt|η1〉〈Σt|η2〉|Ξt = ξt] =�
λ

2
δt
hN

(〈η1|η2〉+�)

in the case that ξt ∈ X (which implies that ξt is limited) and also in the case ξt ∈ RH\X.

Proof (35) holds by (27) and because the finite sums involved in the calculation of the
conditional expectation E[.|Ξt = ξt] and the inner product 〈. | η1〉 interchange. We
prove (36) for ξt ∈ X first. From (23) we obtain

(37) P
(
Q2

t =
ex

h2N2

∣∣∣Ξt = ξt

)
= p+

λ,t(ξt, x) + p−λ,t(ξt, x) = δt
λ

2
hN

and thus further that

E[〈Qt|η1〉〈Qt|η2〉|Ξt = ξt] =
∑
x∈H

P
(
Q2

t =
ex

h2N2

∣∣∣Ξt = ξt

)η1(x)η2(x)
h2N2

=
λ

2
δt
hN
〈η1|η2〉.

(38)

We derive (36) by calculating

E[〈Σt|η1〉〈Σt|η2〉|Ξt = ξt]
(a)
= E[〈Qt|η1〉〈Qt|η2〉|Ξt = ξt]− E[〈Qt|η1〉|Ξt = ξt] · E[〈Qt|η2〉|Ξt = ξt]

(b)
=
λ

2
δt
hN
〈η1|η2〉 − δt2λ2〈ξt | η1〉〈ξt | η2〉

(c)
=�

λ

2
δt
hN

(〈η1|η2〉+�)

with (a) a consequence of (30), equality (b) concluded from (35), (38) and equality (c)
implied by (20) and the fact that ξt ∈ X is limited.

In the case ξt ∈ RH \ X we conclude E[〈Σt|η1〉〈Σt|η2〉|Ξt = ξt] = λ
2
δt
hN 〈η1|η2〉 using

(30) by calculations analogous to (37) and (38) with Qt replaced by Σt .

5.10 Remark Suppose that we are given a function η ∈ RH . Then

(39)
∑
x∈H
〈ex+h − ex|η〉2 =

∑
x∈H
〈ex−h − ex|η〉2

and

E[〈Qt+ |η〉|Ξt+ = ξt+]
(a)
= 〈E[Qt+ |Ξt+ = ξt+]|η〉 (b)

= δt〈4hξt+ |η〉
(c)
= δt〈ξt+ |4hη〉.

(Equality (a) follows by the interchange of finite sums, equality (b) follows from (28)
and equality (c) from the fact that 4h is symmetric, i.e., 4h acts on RH as a self-adjoint
operator.)
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5.11 Proposition Suppose that the Hypotheses 5.1 and 5.3 are fulfilled. Let η ∈ RH
and let Σt+ be given by (31). Suppose that ξt+ ∈ X and P(Ξt+ = ξt+) > 0. Then

(40) E[〈Σt+ |η〉2|Ξt+ = ξt+] ≤ 1
2
δt
hN

1
h

∫
R/Z

(η̃′)2(x) dx

with η̃ : R/Z → R denoting a differentiable extension of η and η̃′ denoting the
derivative of η̃ .

Proof We calculate for ξt ∈ X
E[〈Σt+ |η〉2|Ξt+ =ξt+] ≤ E[〈Qt+ |η〉2|Ξt+ = ξt+]

(a)
≤ 1

4
δt
hN

∑
x∈H

[
1
h2 〈ex+h − ex|η〉2 +

1
h2 〈ex−h − ex|η〉2

]
(b)
=

1
2
δt
hN

∑
x∈H

1
h2 〈ex+h − ex|η〉2 =

1
2
δt
hN

∑
x∈H

(
η(x + h)− η(x)

h

)2

(c)
≤ 1

2
δt
hN

1
h

∫ 1

0
(η̃′)2(x) dx.

Note that inequality (a) follows from (25), equality (b) from (39) and inequality (c)
from C.2.

5.12 Definition Given a random variable X : Ω → RH we define random Fourier
coefficients Xk for k ∈ K(h) by series expansion of X with respect to the basis
(gk)k∈K(h) , i.e., we let

X =:
∑

k∈K(h)

Xkgk or equivalently Xk := 〈X|gk〉.(41)

Replacing the letter X in (41) by Ξt , Ξt+ , Σt , Σt+ , Γt and (Φ−t ◦ Γt) we analogously
define random coefficients Ξt,k , Ξt+,k , Σt,k , Σt+,k , Γt,k and (Φ−t ◦ Γt)k by series
expansion of the random variables Ξt , Ξt+ , Σt , Σt+ , Γt and (Φ−t ◦ Γt). (The random
variables Γt are introduced in Definition 6.3.)

5.13 Remark From (32) and Definition 5.12 we obtain that

(42) Ξt+,k gk = (1 + λδt) Ξt,k gk + Σt,k gk

and from (32), Definition 5.12 and Remark 4.12 that

(43) Ξt+δt,k gk = Ξt+,k(id + δt4h) gk + Σt+,k gk = Ξt+,k(1 + δtµk) gk + Σt+,k gk.

From (42) and (43) we obtain that

(44) Ξt+δt,k = (1 + δtµk) ((1 + λδt) Ξt,k + Σt,k) + Σt+,k.
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5.14 Proposition Suppose that the Hypotheses 5.1 and 5.3 are fulfilled, that Σt and
Σt+ denote the random variables introduced in Definition 5.6 and that the subscript k
refers to coordinates with respect to the series expansion introduced in Definition 5.12.
Then for ξt, ξt+ ∈ RH , with P(Ξt = ξt) > 0, P(Ξt+ = ξt+) > 0 we have:

E[(Σt+,k)2|Ξt+ = ξt+] ≤ 1
2
δt
hN

(2πk)2(45)

E[(Σt+,k)2|Ξt = ξt] ≤
1
2
δt
hN

(2πk)2(46)

Proof From (40) we obtain that

ξt+ ∈ X =⇒ E[(Σt+,k)2|Ξt+ = ξt+] = E[〈Σt+ |gk〉2|Ξt+ = ξt+]

≤ 1
2
δt
hN

1
h

∫
R/Z

(g̃′k)2(x) dx ≤ 1
2
δt
hN

(2πk)2(47)

with g̃′k : R/Z→ R given by

g̃′k(x) = −2πk
√

h sin(2πkx) for k = 1/(2h), provided 1/(2h) ∈ N

g̃′k(x) = −2πk
√

2h sin(2πkx) for 1/(2h) > k > 0

g̃′k(x) = 2πk
√

2h cos(2πkx) for k < 0

and g̃′0 = 0.

From (26) and (31) we obtain that

(48) ξt+ ∈ RH \ X =⇒ E[(Σt+,k)2|Ξt+ = ξt+] = 0

and from(47) and (48) we conclude that (45) holds. Since

(Ξ0,Ξ0+ , . . . ,Ξt,Ξt+ , . . . ,ΞT )

is a Markov chain we obtain from (45) that

E[(Σt+,k)2|Ξt = ξt] =
∑
ξt+∈Υt

P(Ξt+ = ξt+ |Ξt = ξt) · E[(Σt+,k)2|Ξt+ = ξt+]

≤ 1
2
δt
hN

(2πk)2

with Υt := {ξt+ | P(Ξt+ = ξt+) > 0}, i.e., we obtain that (46) holds.

5.15 Proposition Suppose that the Hypotheses 5.1 and 5.3 are fulfilled, that Σt and
Σt+ denote the random variables introduced in Definition 5.6 and that the subscript k
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refers to coordinates with respect to the series expansion introduced in Definition 5.12.
Then for all ξt ∈ R with P(Ξt = ξt) > 0 we obtain:

E[Σt,j · Σt,k|Ξt = ξt] =�
λ

2
δt
hN

(εj,k +�)(49)

E[Σt+,j · Σt+,k | Ξt = ξt] ≤
1
2
δt
hN

(2π)2jk(50)

E[Σt,j · Σt+,k | Ξt = ξt] ≤�
√
λ

2
δt
hN

(2πk)(1 +�).(51)

Proof We obtain from (36) that

E[Σt,j · Σt,k|Ξt = ξt] = E[〈Σt|gj〉 · 〈Σt|gk〉|Ξt = ξt]

=�
λ

2
δt
hN

(〈gj|gk〉+�) =�
λ

2
δt
hN

(εj,k +�).

Thus (49) holds for any ξt ∈ R. From (46) we obtain that

E[Σt+,j · Σt+,k | Ξt = ξt] ≤
√

E[(Σt+,j)2|Ξt = ξt]
√
E[(Σt+,k)2|Ξt = ξt]

≤ 1
2
δt
hN

(2π)2jk.

which proves (50). From (46) and (49) we obtain that

E[Σt,j · Σt+,k | Ξt = ξt) ≤
√
E[Σ2

t,j|Ξt = ξt]
√

E[Σt+,k
2|Ξt = ξt]

≤�
√
λ

2
δt
hN

(2πk)(1 +�).

which proves (51).

5.16 Definition Suppose that Σt and Σt+ denote the random variables introduced in
Definition 5.6 and that the subscript k refers to coordinates with respect to the series
expansion introduced in Definition 5.12. Let

Σ̃t,k := (1 + δtµk)Σt,k + Σt+,k and let Σ̃t :=
∑

k∈K(h)

Σ̃t,kgk.

5.17 Proposition Suppose that the Hypotheses 5.1 and 5.3 are fulfilled, that Σ̃t,k and
Σ̃t denote the random variables introduced in Definition 5.16. Then for all ω ∈ Ω and
all ξt ∈ R with P(Ξt = ξt) > 0 we have:

‖Σ̃t(ω)‖2 ≤
8

hN
(52)

E[Σ̃t | Ξt = ξt] = 0 ∈ RH(53)

E[Σ̃t,j · Σ̃t,k | Ξt = ξt] =� (εj,k +�)
λ

2
δt
hN

(54)
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Proof Equation (52) is a consequence of (34), −∞ � µk ≤ 0 (Remark 4.13) and
Definition 5.16, while (53) follows from (33) and Definition 5.16 by

E[Σ̃t,k|Ξt = ξt] = E[(1 + δtµk)Σt,k|Ξt = ξt] + E[Σt+,k|Ξt = ξt]

= 0 +
∑
ξt+∈Υt

P(Ξt+ = ξt+ |Ξt = ξt) · E[(Σt+,k)|Ξt+ = ξt+] = 0

with Υt := {ξt+ | P(Ξt+ = ξt+) > 0}. We finally obtain (54) since

E[Σ̃t,j · Σ̃t,k |Ξt = ξt]

= E[((1 + δtµj)Σt,j + Σt+,j) · ((1 + δtµk)Σt,k + Σt+,k) | Ξt = ξt]
(a)
=� (1 +�)(E[Σt,j · Σt,k|Ξt = ξt] + E[Σt,j · Σt+,k|Ξt = ξt]

+ E[Σt+,j · Σt,k|Ξt = ξt] + E[Σt+,j · Σt+,k | Ξt = ξt])
(b)
≤� (1 +�)

(
(εj,k +�)

λ

2
δt
hN

+
√
λ
δt
hN

2π(j + k) +
δt
hN

(2π)2jk
)

(c)
≤� (1 +�)(εj,k +�)

λ

2
δt
hN

(1 +�+�) ≤� (εj,k +�)
λ

2
δt
hN

(55)

with (a) a consequence of −∞ � µk ≤ 0 (Remark 4.13), (b) a consequence of
Proposition 5.15 and (c) a consequences of λ ≈ ∞ and standardness of j, k ∈ Z.

6 The main Theorem

6.1 Remark We use—throughout section 6—the random variables Σ̃t introduced in
Definition 5.16 and the random coefficients of the series expansions with respect to
(gk)k∈K(h) introduced in Definition 5.12.

6.2 Definition We define linear operators Φ−t : RH → RH by:

(56) gk 7→ Φ−t(gk) :=

∏
u∈[ 0...T )(1 + µkδu)∏

u∈[ t...T )(1 + µkδu)(1 + λδu)
gk =

∏
u∈[ 0...t )(1 + µkδu)∏
u∈[ t...T )(1 + λδu)

gk

with (gk)k∈K(h) the eigenbasis of the discrete Laplace operator ∆h introduced in
Definition 4.7 and µk the respective eigenvalue of ∆h that corresponds to gk .

6.3 Definition Let Φs : RH → RH be the linear operator given by

gk 7→ Φs(gk) :=

∏
u∈( s...T )(1 + µkδu)(1 + λδu)∏

u∈[ 0...T )(1 + µkδu)
gk =

∏
u∈( s...T )(1 + λδu)∏
u∈[ 0...s ](1 + µkδu)

gk
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and note that for t > s

(57) [Φ−t ◦ Φs](gk) =
∏

u∈( s...t )

(1 + µkδu)(1 + λδu) gk

Let further δΓs := Φs(Σ̃s) and let Γt :=
∑

s∈[ 0...t ) δΓs . Define further for t ∈
[ ν/λ . . .T ] random variables7

(58) Γ̃t :=
∑

s∈[ ν/λ...t )

δΓs = Γt − Γν/λ.

6.4 Proposition Suppose that Hypothesis 5.1 holds, let [ 0 . . . T ] be an equally spaced
near interval with spacing δ and let λ2δ ≈ 0. Then for s ∈ [ 0 . . . T ] we obtain

Φ−s(gk) =� eλ(s−T)eµks(1 +�)gk(59)

‖Φs‖2 := sup
ξ∈S(RH)

‖Φs(ξ)‖2 ≤� eλT (1 +�)(60)

Proof Equation (59) is a consequence of (56) and Proposition C.1, while (60) is a
consequence of Definition 6.3, λ ≈ ∞ and the fact that by Remark 4.13 we have
−∞� µk ≤ 0.

We display now the main theorem in the case that the number 1
h ∈ N of positions

occupied by particles in our dynamical system is standard.

6.5 Theorem Suppose that the Hypotheses 5.1 and 5.3 are fulfilled.8 Let T , N , λ and
h be such that

(61) e2λT =� 4hN(1 +�).

Let the near interval [ 0 . . . T ] be equally spaced and let the spacing δ be such that

(62) λ2δ ≈ 0.

Let ΓT be the random variable introduced in Definition 6.3. Then

(63) ΓT ∼� N(0, idK(h)).

Let ν ≈ ∞ be such that

(64) ν/λ ∈ ( 0 . . . T ) is infinitesimal and T − ν/λ ∈ ( ν/λ . . .T )

7We will specify ν ≈ ∞ in (64).
8Remember that T ∈ (0,∞) is limited by Hypothesis 5.1.
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and let Φ−t be the linear operators introduced in Definition 6.2. Then for any k ∈ K(h)

(65) P

(
max

t∈[ ν/λ...T ]

|Ξt,k − (Φ−t ◦ ΓT )k|2

|(Φ−t ◦ ΓT )k|2
≥ 4e−ν

Γ2
T,k

∧ ΓT,k 6= 0

)
≤� e−ν(1 +�),

∀t0 ∈ [ ν/λ . . .T − ν/λ ] P
(

max
t∈[ 0...t0 ]

Ξ2
t,k ≥ e−λ(T−t0)

)
≤� e−λ(T−t0)(1 +�) ≈ 0.

(66)

6.6 Remark Note that in the case that T is appreciable (61) and (20) imply (62).
Note that λ ≈ ∞ and (62) imply λδ ≈ 0. Further (56) implies that the trajectories
(yt(ω))t∈[ ν/λ...T ] := ([Φ−t ◦ ΓT ](ω))t∈[ ν/λ...T ] fulfill yt+δt = Lyt with L the linear
transformation given by Lgk = (1 + µkδt)(1 + λδt)gk .

6.7 Corollary Under the hypotheses of Theorem 6.5 (ν ≈ ∞ etc.) we obtain for any
standard ε > 0 that
(67)

P
(

max
t∈[ ν/λ...T ]

|Ξt,k − (Φ−t ◦ ΓT )k|2

|(Φ−t ◦ ΓT )k|2
≥ e−ν(1−ε)

∣∣∣∣Γ2
T,k ≥ 4e−νε

)
≤� e−ν(1 +�).

Derivation of Corollary 6.7 from Theorem 6.5 We calculate

P
(

max
t∈[ ν/λ...T ]

|Ξt,k − (Φ−t ◦ ΓT )k|2

|(Φ−t ◦ ΓT )k|2
≥ e−ν(1−ε)

∣∣∣∣Γ2
T,k ≥ 4e−νε

)
· P
(
Γ2

T,k ≥ 4e−νε
)

≤ P

(
max

t∈[ ν/λ...T ]

|Ξt,k − (Φ−t ◦ ΓT )k|2

|(Φ−t ◦ ΓT )k|2
≥ 4e−ν

Γ2
T,k

∣∣∣∣∣Γ2
T,k ≥ 4e−νε

)
· P
(
Γ2

T,k ≥ 4e−νε
)

≤ P

(
max

t∈[ ν/λ...T ]

|Ξt,k − (Φ−t ◦ ΓT )k|2

|(Φ−t ◦ ΓT )k|2
≥ 4e−ν

Γ2
T,k

∧ ΓT,k 6= 0

)
(65)
≤ � e−ν(1 +�).

(68)

From (63), Remark 4.20 and ν ≈ ∞ we obtain that

(69) P
(
Γ2

T,k ≥ 4e−νε
)

=� 1 +�

and from (68) and (69) we obtain that (67) holds.

Derivation of Theorem 3.1 from Theorem 6.5 and Corollary 6.7 Formula (10) is
an immediate consequence of (66) (consider the case t0 = T − ν/λ), while (9) holds
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since for all standard ε > 0

P
(

ΓT 6= 0 ∧ max
t∈[ ν/λ...T ]

‖Ξt(ω)− [Φ−t ◦ ΓT ](ω)‖2
2

‖Φ−t ◦ ΓT (ω)‖2
2

≥ e−ν(1−ε)
)

≤
∑

k∈K(h)

P
(

max
t∈[ ν/λ...T ]

|Ξt,k − (Φ−t ◦ ΓT )k|2

|(Φ−t ◦ ΓT )k|2
≥ e−ν(1−ε)

∣∣∣∣Γ2
T,k ≥ 4e−νε

)
+
∑

k∈K(h)

P
(
Γ2

T,k ≤ 4e−νε
)

(a)
≤� e−ν(1 +�)h−1 +�h−1 (b)

≈ 0

with (a) a consequence of (69) and (67) and (b) a consequence of ν ≈ ∞ and the
standardness of h.

6.8 Remark By the axiom of idealization Theorem 6.5 extends to the hyperfinite
situation:

6.9 Theorem There exists a χ ∈ N such that Theorem 6.5 still holds if the hypothesis
(19) is replaced by

(70) N 3 1
h
≤ χ.

Derivation of Theorem 6.9 from Theorem 6.5 By Remark 4.24 formula (63) says
that for any standard ε ∈ (0,∞) and for any standard f ∈ Cb(R) we have that:

(∀ψ∗ ∈ S∗(RK(h)))
(∣∣∣∣E[f ◦ ψ∗(ΓT )]−

∫
y∈R

f (y)
exp(−y2/2)√

2π
dy
∣∣∣∣ < ε

)
(71)

Since Theorem 6.5 holds for any h ∈ {1/n | n ∈ N} we obtain that (71) holds for any
(h, f , ε) with (h, f , ε) ∈ {1/n | χ ≥ n ∈ N} × C × E with C × E an arbitrary standard
finite subset of Cb(R)×(0,∞) and χ ∈ N standard. By an application of the idealization
axiom of IST we obtain that (71) holds for any (h, f , ε) ∈ {1/n | χ̃ ≥ n ∈ N} × C × E
with χ̃ ∈ N and C × E a finite set containing all standard elements of Cb(R)× (0,∞).
I.e., (71) holds for any standard ε ∈ (0,∞), for any standard f ∈ Cb(R) and any
h ∈ {1/n | χ̃ ≥ n ∈ N}, and thus (63) holds for any h that fulfills (70). That there
exists a χ̂ ∈ N such that (65) and (66) hold for any h that fulfills N 3 1/h ≤ χ̂ is
obtained by application of idealization in an analogous manner. To complete the proof
of the theorem simply let χ := min(χ̃, χ̂).

6.10 Remark Before we prove Theorem 6.5 we prove Proposition 6.11 that expresses
the system’s dynamics with respect to Γt , Proposition 6.12 that provides some informa-
tion concerning δΓs , Lemma 6.14 that gives a formula for summing the variances of
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the δΓs and Lemma 6.15 that proves (65) and prepares for the final steps in the proof of
Theorem 6.5.

6.11 Proposition Suppose that the linear operators Φ−t are given by Definition 6.2
and the random variables δΓt and Γt by Definition 6.3. Then

Ξt,k =
∑

s∈[ 0...t )

 ∏
u∈( s...t )

(1 + λδu)(1 + µkδu)

 Σ̃s,k(72)

or equivalently

(73) Ξt =
∑

s∈[ 0...t )

[Φ−t ◦ Φs](Σ̃s) =
∑

s∈[ 0...t )

Φ−t(δΓs) = Φ−t(Γt).

Proof By Definition 5.16 the recursion (44) becomes

(74) Ξu+δu,k = (1 + µkδu)(1 + λδu)Ξu,k + Σ̃u,k.

From Ξ0 = 0 and (74) we obtain by recursion that the coordinate wise system’s
dynamics is given by (72), while equation (73) is just a reformulation of (72) using the
Definition 6.3 and especially (57).

6.12 Proposition Suppose that the hypotheses of Theorem 6.5 are fulfilled, and that
δΓs , Γs and Φs are given by Definition 6.3. Let ψ∗ ∈ S∗(RH) be arbitrarily given and
let ψk := ψ∗(gk). Then (denoting the inverse of Φ−s by Φ−1

−s )

∀ω ∈ Ω ‖δΓs(ω)‖2 ≈ 0(75)

E[ψ∗ ◦ δΓs|Γs] = E[ψ∗ ◦ Φs ◦ Σ̃s | Φ−1
−s ◦ Ξs] = 0(76)

E[(ψ∗)2 ◦ δΓs|Γs] =� (1 +�)
λ

2
δ

hN

∑
k∈K(h)

(1 + λδ)2(T−s)/δ

(1 + µkδ)2s/δ
ψ2

k ≈ 0.(77)

Proof We conclude (75) from

‖δΓs(ω)‖2 = ‖Φs ◦ Σ̃s(ω)‖2 ≤ ‖Φs‖2‖Σ̃s(ω)‖2

(a)
≤� eλT 8

hN
(1 +�)

(b)
≤� 32e−λT (1 +�) ≈ 0

with (a) a consequence of (60) and (52), and (b) a consequence of (61). Further (76) is
a consequence of (73), Definition 6.3, (53) and the linearity of ψ∗ ◦ Φs . Finally we
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obtain (77) by the following calculation:

E((ψ∗)2◦δΓs|Γs) = E[(ψ∗ ◦ Φs ◦ Σ̃s)2|Φ−1
−s ◦ Ξs]

= E[(ψ∗ ◦ Φs ◦
∑

k∈K(h)

Σ̃s,k gk)2|Φ−1
−s ◦ Ξs]

(a)
= E


 ∑

k∈K(h)

∏
u∈( s...T )(1 + λδ)∏
u∈[ 0...s ](1 + µkδ)

ψkΣ̃s,k

2
∣∣∣∣∣∣∣Φ−1
−s ◦ Ξs


=�

∑
j,k∈K(h)

(1 + λδ)2(T−s)/δ(1 +�)
(1 + µjδ)s/δ(1 + µkδ)s/δ

ψjψk E[Σ̃s,j · Σ̃s,k|Φ−1
−s ◦ Ξs]

(b)
=� (1 +�)

∑
k∈K(h)

(1 + λδ)2(T−s)/δ

(1 + µkδ)2s/δ
ψ2

k
λ

2
δ

hN
≤�

e2λT

4hN
2λδ(1 +�)

(c)
≈ 0.

Equality (a) follows since ψk = ψ∗(gk). Equality (b) follows from (54) since K(h) is a
standard finite set, while (c) follows from (61) and λδ ≈ 0 (Remark 6.6).

6.13 Remark Note that for any k ∈ K(h) the stochastic processes (Γt,k)t∈[ 0...T ] and
(Γ̃t,k)t∈[ ν/λ...T ] are by (76) with ψ∗(γ) = 〈γ|gk〉 and Definition 6.3 martingales.

6.14 Lemma Suppose that λ ≈ ∞, ν ≈ ∞, 0 ≈ ν/λ < T � ∞, λ2δ ≈ 0,
−∞� µk ≤ 0 and e2λT =� 4hN(1 +�). Then

(78)
λ

2
δ

hN

∑
s∈[ 0...ν/λ )

(1 + λδ)2(T−s)/δ

(1 + µkδ)2s/δ
=�(1 +�)

e2λT

4hN
=� (1 +�)

Proof Equation (78) is proved by the following calculation

λ

2
δ

hN

∑
s∈[ 0...ν/λ )

(1 + λδ)2(T−s)/δ

(1 + µkδ)2s/δ

=
λ

2
δ

hN
1

(1 + µkδ)2T/δ

∑
s∈[ 0...ν/λ )

((1 + λδ)(1 + µkδ))2(T−s)/δ

(a)
=
λ

2
δ

hN
1

(1 + µkδ)2T/δ

((1 + λδ)(1 + µkδ))2T/δ+2 − ((1 + λδ)(1 + µkδ))2(T− ν
λ

)/δ+2

((1 + λδ)(1 + µkδ))2 − 1

=
λ

2
δ

hN
(1 + λδ)2T/δ ((1 + λδ)(1 + µkδ))2 − ((1 + λδ)(1 + µkδ))−2 ν

λ
/δ+2

((1 + λδ)(1 + µkδ))2 − 1

(b)
=�(1 +�)

λ

2
δ

hN
e2λT · (1 +�)− (1 +�)e−2(λ+µk) ν

λ

2(λ+ µk +�)δ
=�(1 +�)

e2λT

4hN
(c)
=� (1 +�).
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Here (a) follows from an application of the formula
∑n

j=m xj = xn+1−xm

x−1 for summing
finite geometric series, while (b) follows by application of Proposition C.1 in the
cases (κ, t) = (λ, T), (κ, t) = (λ, ν/λ) and (κ, t) = (µk, ν/λ). The equality (c) finally
follows from ν ≈ ∞, λ/(λ+ µk +�) =� (1 +�) and (61).

6.15 Lemma Suppose that the hypotheses of Theorem 6.5 are fulfilled, that linear
operators Φ−t are given by Definition 6.2 and random variables δΓt , Γt and Γ̃t by
Definition 6.3. Then we obtain for t ∈ [ ν/λ . . .T ], k ∈ K(h), ψ∗ ∈ S∗(RH) and
ψk := ψ∗(gk) that:

The random variable Ξt can be decomposed by linearity of Φ−t as

(79) Ξt = Φ−t(Γ ν
λ

+ Γ̃t) =
(

Φ−t(Γ ν
λ

) + Φ−t(Γ̃t)
)

The variances E[(ψ∗)2 ◦ Γ̃t0] and E[(ψ∗)2 ◦ Γt0] can be estimated by

(∀t0 ∈ [ ν/λ . . .T ]) (E[(ψ∗)2 ◦ Γ̃t0] ≤� e−2ν(1 +�))(80)

(∀t0 ∈ [ ν/λ . . .T ]) (E[(ψ∗)2 ◦ Γt0] =� (1 +�))(81)

The distributions of ψ∗ ◦ Γ ν
λ

and ψ∗ ◦ Γ̃T fulfill

ψ∗ ◦ Γ̃T ∼� N
(
0 , e−2ν(1 +�)

)
(82)

ψ∗ ◦ Γ ν
λ
∼� N (0 , (1 +�))(83)

The maximum of Γ̃2
t,k is bounded by

P
(

max
t∈[ ν/λ...T ]

Γ̃2
t,k ≥ e−ν

)
≤ eν E[Γ̃2

T,k] ≤� e−ν(1 +�)(84)

and (65) holds.

Proof Equation (79) that describes the system’s dynamics with respect to the random
variable Γ ν

λ
and the stochastic process (Γ̃t)t∈[ ν/λ...T ] follows from (73) and (58).

Next we show that the distribution-properties of Γ and Γ̃ displayed in (82) and (83)
are consequences of (80), (81) and Proposition 6.12. (We just prove (81)⇒(83)
since (80)⇒(82) follows completely analogous.) To this end we apply Theorem A.7
to the Markov process (Γt)t∈[ 0...ν/λ ] introduced in Definition 6.3. We notice that

δΓt =
◦∑
{θ|(t,θ)∈G} δΓt,θ where

◦∑
denotes disjoint union,9 δΓt denotes the increments

of (Γt)t∈[ 0...ν/λ ] introduced in Definition 6.3, and G, δΓt,θ denote the objects introduced

9We identify functions with their graphs.
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in Theorem A.7. Since [ 0 . . . ν/λ ) is (by (20) and since ν ≈ ∞) hyperfinite the
conclusions of Proposition 6.12 imply the hypotheses of Theorem A.7 with

σ2
t =

λ

2
δ

hN

∑
k∈K(h)

(1 + λδ)2(T−s)/δ

(1 + µkδ)2s/δ
ψ2

k .

Theorem A.7 therefore applies and—making use of (81) with t0 = ν/λ—proves (83),
i.e., (81)⇒(83) and (80)⇒(82) hold.

The equations (80) and (81) are simple consequences of (76) and∑
s∈[ 0...ν/λ )

E[(ψ∗)2 ◦ δΓs|Γs] =� (1 +�)(85)

∑
s∈[ ν/λ...T )

E[(ψ∗)2 ◦ δΓs|Γs] =� e−2ν(1 +�).(86)

We just prove (85), since the proof of (86) is analogous. To prove (85), however, it is by
(77) and

∑
k∈K(h) ψ

2
k = 1 clearly sufficient to prove

λ

2
δ

hN

∑
s∈[ 0...ν/λ )

(1 + λδ)2(T−s)/δ

(1 + µkδ)2s/δ
=� (1 +�),

i.e., to apply Lemma 6.14. Consequently we established (85), (86) and thus (80), (81)
and further (82), (83).

Inequality (84) is a consequence of (80) with ψ∗(γ) = 〈γ|gk〉, Remark 6.13 and the
Doob inequality stated as Proposition C.3.

Thus it remains to prove (65). Under the hypothesis ΓT,k 6= 0 we calculate:

max
t∈[ ν/λ...T ]

|Ξt,k − (Φ−t ◦ ΓT )k|2

|(Φ−t ◦ ΓT )k|2
(a)
= max

t∈[ ν/λ...T ]

|(Φ−t(Γt))k − (Φ−t(ΓT ))k|2

|Φ−t(ΓT )k|2

(b)
= max

t∈[ ν/λ...T ]

|Γt,k − ΓT,k|2

|ΓT,k|2
(c)
≤ max

t∈[ ν/λ...T ]

(|Γ̃t,k|+ |Γ̃T,k|)2

|ΓT,k|2
≤ max

t∈[ ν/λ...T ]

4Γ̃2
t,k

Γ2
T,k

(87)

with (a), (b) and (c) consequences of (73), (56) and (58), respectively. We conclude that

P

(
max

t∈[ ν/λ...T ]

|Ξt,k − (Φ−t ◦ ΓT )k|2

|(Φ−t ◦ ΓT )k|2
≥ 4e−ν

Γ2
T,k

∧ ΓT,k 6= 0

)
(a)
≤ P

(
max

t∈[ ν/λ...T )
4Γ̃2

t,k ≥ 4e−ν
)

(b)
≤� e−ν(1 +�)

with (a) a consequence of (87) and (b) a consequence of (84), i.e., we conclude that (65)
holds.
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Proof of Theorem 6.5 From (83) and (82) we obtain

(88) ∀ψ∗ ∈ S∗(RH) ψ∗ ◦ ΓT = ψ∗ ◦ Γν/λ + ψ∗ ◦ Γ̃T ∼� N(0, (1 +�)).

From (88) we obtain by Definition 4.22 that ΓT ∼� N(0, idK(h)), i.e., (63) has been
proved. Since (65) has already been proved (Lemma 6.15) it remains to show (66). This
is done by calculating for t0 ∈ [ ν/λ . . .T ]

P
(

max
t∈[ 0...t0 ]

Ξ2
t,k ≥ e−λ(T−t0)

)
(a)
= P

(
max

t∈[ 0...t0 ]
(Φ−t ◦ Γt)2

k ≥ e−λ(T−t0)
)

(b)
≤� P

(
max

t∈[ 0...t0 ]
Γ2

t,k ≥� eλ(T−t0)e−2µkt0(1 +�)
)

(c)
≤� P

(
max

t∈[ 0...t0 ]
Γ2

t,k ≥� eλ(T−t0)(1 +�)
)

(d)
≤� e−λ(T−t0)(1 +�)−1E[Γ2

t0,k]

(e)
≤� e−λ(T−t0)(1 +�)

with (a) a consequence of (73), (b) a consequence of (59), (c) a consequence of the fact
that µk ≤ 0 (Remark 4.13), (d) a consequence of Remark 6.13 and Proposition C.3,
and (e) a consequence of (81).

7 Reformulation as a standard limit theorem

7.1 Remark In this section we formulate a limit result (Theorem 7.9). This limit
theorem is still formulated within the realm of finite probability spaces. Its corollary
7.11 makes however use of random variables that are N(0, id) distributed in the usual
ZFC based sense (not in our IST based approximate sense). Such random variables can
not be defined on a finite or countable probability space. For general measure theoretic
probability theory adequate for dealing with random variables on uncountable spaces
we refer the reader to Dudley [9].

7.2 Remark We reformulate parts of Theorem 6.5 as a limit theorem in standard
mathematical terms. To do this we have to consider sequences of interacting particle
systems instead of a single system. We therefore replace the mathematical objects N ,λ,
δ , Ω, [ 0 . . . T ], X, Ξ, Σ̃ Γ, Γ̃ and Φ introduced in the sections 5 and 6 by sequences
(Nβ)β∈N , (λβ)β∈N , (δβ)β∈N , (Ωβ)β∈N , ([ 0 . . . Tβ ])β∈N , (Xβ)β∈N , (Ξβ)β∈N , (Σ̃β)β∈N ,
(Γβ)β∈N , (Γ̃β)β∈N and (Φβ)β∈N . Note that ([ 0 . . .Tβ ])β∈N denotes a sequence of
finite sets, whose terms are not necessarily near intervals, i.e., [ 0 . . .Tβ ] denotes in
this section a finite set that is not necessarily a near interval.
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7.3 Hypothesis Let (Nβ)β∈N ∈ NN , (λβ)β∈N ∈ (0,∞)N be sequences such that
limβ∈N Nβ = ∞, limβ∈N λ

β = ∞. Let ([ 0 . . .Tβ ])β∈N be a sequence of equally
spaced finite sets [ 0 . . . Tβ ] with spacings δβ such that {0, Tβ} ⊆ [ 0 . . . Tβ ] ⊂ [0, Tβ]
and lim supβ∈N Tβ ∈ [0,∞). Let h ∈ {1

n | n ∈ N} be independent of β and suppose

(89) lim
β→∞

δβλβhNβ = 0, lim
β→∞

(λβ)2δβ = 0 and lim
β→∞

e2λβTβ

4hNβ
= 1.

7.4 Hypothesis Let (Nβ)β∈N , (λβ)β∈N , (Ξβ)β∈N etc. be sequences, such that for any
β ∈ N Hypothesis 5.3 holds with N , λ, Ξ etc. replaced by Nβ , λβ , Ξβ etc. (with Xβ ,
H , K(h) provided in analogy with Hypothesis 5.1).

7.5 Definition Define a sequence (Φβ
−)β∈N of parametric families Φβ

− = (Φβ
−t)t∈[ 0...Tβ ]

of linear operators Φβ
−t : RHβ → RHβ by:

(90) gk 7→ Φβ
−t(gk) :=

∏
u∈[ 0...t )β (1 + µkδu) gk∏

u∈[ t...Tβ )(1 + λβδu)

with [ 0 . . . t )β := {u ∈ [ 0 . . .Tβ ) | u < t}, [ t . . .Tβ ) := {u ∈ [ 0 . . .Tβ ) | t ≤
u < Tβ}, (gk)k∈K(h)β the eigenbasis of the discrete Laplace operator ∆h introduced in
Definition 4.7 and µk the respective eigenvalue of ∆h that corresponds to gk .

7.6 Definition Define the sequence (ΓβTβ )β∈N of random variables ΓβTβ in analogy
with the definitions given in the sections 5 and 6 starting with Ξβ instead of Ξ and
replacing objects like Σ̃, Φ etc. in the consecutive Definitions 5.6, 5.12, 5.16 and 6.3
by consecutively defined objects Σ̃β , Φβ etc.

7.7 Hypothesis Let (Nβ)β∈N ∈ NN and (λβ)β∈N ∈ (0,∞)N be sequences such that
for all β ∈ N we have Nβ ∈ N, λβ ≈ ∞. Suppose that ([ 0 . . . Tβ ])β∈N is a sequence
of equally spaced finite sets [ 0 . . .Tβ ] with spacings δβ such that ∀β ∈ N the set
[ 0 . . .Tβ ] is a near interval and 0 < Tβ �∞. Let h ∈ {1

n | n ∈ N} be independent
of β and suppose that:

(91) (∀β ∈ N)
(
δβλβhNβ ≈ 0, (λβ)2δβ ≈ 0 and e2λβTβ =� 4hNβ(1 +�)

)
7.8 Proposition For standard sequences (Nβ)β∈N , (λβ)β∈N , (δβ)β∈N , ([ 0 . . . Tβ ])β∈N
and for standard h, the Hypotheses 7.3 and 7.7 are equivalent.

Proof Proposition 7.8 is a consequence of transfer (using that [ 0 . . . Tβ ] ⊂ [0, Tβ] ⇔
Tβ 6= 0).
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7.9 Theorem Suppose that the Hypotheses 7.3 and 7.4 are fulfilled. Then

∀f ∈ Cb(R) ∀ψ∗ ∈ S∗(RK(h)) lim
β→∞

E[f ◦ ψ∗(ΓβTβ )] =

∫
y∈R

f (y)
exp(−y2/2)√

2π
dy.

(92)

For any sequence (νβ)β∈N ∈ (0,∞)N with

lim
β→∞

νβ =∞, lim
β→∞

νβ/λβ = 0, νβ/λβ ∈ ( 0 . . . Tβ )

and Tβ − νβ/λβ ∈ ( νβ/λβ . . . Tβ )
(93)

we obtain

∀ε > 0 ∃b ∈ N ∀β > b ∀k ∈ K(h)

P

 max
t∈[ νβ/λβ ...Tβ ]

|Ξβt,k − (Φβ
−t ◦ ΓβTβ )k|2

|(Φβ
−t ◦ ΓβTβ )k|2

≥ 4e−ν
β

|ΓβTβ ,k|
2
∧ ΓβTβ ,k 6= 0

 ≤ e−ν
β

(1 + ε)

(94)

and ∀tβ0 ∈ [ νβ/λβ . . . Tβ − νβ/λβ ]

P

(
max

t∈[ 0...tβ0 ]
(Ξβt,k)2 ≥ e−λ

β (Tβ−tβ0 )

)
≤ e−λ

β (Tβ−tβ0 )(1 + ε).(95)

Proof The theorem is a statement of ZFC. By an application of transfer we suppose
without loss of generality that all objects named in the theorem (including h) are
standard. Thus, by Proposition 7.8, Hypotheses 7.3 implies that Hypothesis 7.7 holds.

The Hypotheses 7.4 and 7.7 imply together with standardness of h that for any β ∈ N
the hypotheses of Theorem 6.5 are fulfilled with N , λ, δ and [ 0 . . .T ] replaced by
Nβ , λβ , δβ and [ 0 . . . Tβ ], respectively. Thus also the conclusions of Theorem 6.5 are
fulfilled with the respective replacements, i.e.,

(96) ∀β ∈ N ΓβTβ ∼� N
(
0, idK(h)

)
and for any sequence (νβ)β∈N ∈ (0,∞)N such that

(
∀β ∈ N

)
νβ ∈ N, νβ/λβ ≈ 0, νβ/λβ ∈ ( 0 . . . Tβ ) and Tβ − νβ/λβ ∈ ( νβ/λβ . . . Tβ )

(97)
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we have

(
∀β ∈ N

)
P

 max
t∈[ νβ/λβ ...Tβ ]

|Ξβt,k − (Φβ
−t ◦ ΓβTβ )k|2

|(Φβ
−t ◦ ΓβTβ )k|2

≥ 4e−ν
β

|ΓβTβ ,k|
2
∧ ΓβTβ ,k 6= 0


≤� e−ν

β
(1 +�),

(98)

i.e., (97) implies (98). Since (93) implies (97)—by standardness of the involved
sequences—and (98) implies (by the permanence principle) (94), the formula (94) has
been derived. The proof of (95) is similar to the proof of (94) and thus omitted. It
remains to prove (92). Formula (96) is by Remark 4.24 equivalent with

(∀β ∈ N) (∀stf ∈ Cb(R)) (∀ψ∗ ∈ S∗(RK(h)))(
E[f ◦ ψ∗(ΓβTβ )] ≈

∫
y∈R

f (y)
exp(−y2/2)√

2π
dy
)(99)

which further implies by Definition 4.2, Remark 4.3 and standardness of the sequence
(ΓβTβ )β∈N that:

(∀stf ∈ Cb(R)) (∀stψ∗ ∈ S∗(RK(h)))(
lim
β→∞

E[f ◦ ψ∗(ΓβTβ )] =

∫
y∈R

f (y)
exp(−y2/2)√

2π
dy
)(100)

By transfer and the fact that the sequence (ΓβTβ )β∈N is standard the formulas (100) and
(92) are equivalent and consequently (92) has been proved.

7.10 Remark The meaning of the phrase ‘converges in distribution’ used in Corollary
7.11 is introduced in Definition B.2.

7.11 Corollary Under the hypotheses of Theorem 7.9 the sequence (ΓβTβ )β∈N of
random variables ΓβTβ converges in distribution to an N(0, id) distributed random
variable Γ∞ on RK(h) .

Proof Corollary 7.11 follows by application of Proposition B.4 to (92). It can also be
derived by application of B.6 and transfer to the sequence (ΓTβ )β∈N , since for β ∈ N
we have by (99) that ΓTβ ∼� N(0, idK(h)).
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A An internal central limit theorem

A.1 Proposition (Compare with [28, Proposition 3.4]) Let σ ∈ (0,∞) be limited. A
random variable Y : Ω→ R is approximately N(0, σ2) distributed if and only if:

(101) (∀stg ∈ C∞b (R))
(
E[g ◦ Y] ≈

∫
y∈R

g(y)
exp(−y2/(2σ2))√

2πσ
dy
)

Proof Since C∞b (R) ⊆ Cb(R) it is by Definition 4.18 clear that for an approximately
N(0, σ2) distributed random variable Y formula (101) holds. To prove the proposition it
thus remains to show the converse, i.e., to prove that (101) implies (15). Let f ∈ Cb(R)
be an arbitrary standard function and let ε ∈ (0,∞) be standard but otherwise arbitrarily
chosen. Then there exists a standard n ∈ N such that

(102)
∫

y∈R\[−n+1,n−1]

exp(−y2/(2σ2))√
2πσ

dy <
ε

6‖f‖
.

Let χ : R→ [0, 1] be a standard C∞b (R)-functions with χ(y) = 0 for y ∈ [−n+1, n−1]
and χ(y) = 1 for y ∈ R \ [−n, n] with n ∈ N arbitrary. We obtain from (101) applied
with g = χ and (102) that E(χ ◦ Y) ≤� ε

6‖f‖ +� and thus further that

(103) P(Y 6∈ [−n, n]) ≤�
ε

6‖f‖
+�.

Application of the theorem of Stone Weierstrass (see Willard [29, Theorem 44.6] or
Segal and Kunze [26, Theorem 5.1]) and transfer shows the existence of a standard
function g ∈ C∞b (R) such that

(104) sup
y∈[−n,n]

|f (y)− g(y)| ≤ ε

12 n
and ‖g‖∞ ≤ ‖f‖∞.

From (101), (102), (103) and (104) we obtain that∣∣∣∣E[f ◦ Y]−
∫

y∈R
f (y)

exp(−y2/(2σ2))√
2πσ

dy
∣∣∣∣ ≤� ε+�.(105)

Since f ∈ Cb(R) and ε > 0 are standard but otherwise arbitrarily chosen we conclude
(15) from (105).

A.2 Definition Given a function v : R → R we write v′′(x) to denote the second
order derivative of v at x . In doing so we implicitly assume that this derivative exists.
In the case that v depends additionally on further parameters we use ∂2

∂x2 v to denote
the second order derivative of v with respect to x. Given u : [0, S] × R → R we
write us(.) to denote the function us : R → R given by us(x) := u(s, x). We further
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write u̇s(.) to denote the pointwise derivative of the function s 7→ us(.), i.e., we let
u̇s(x) := limr→0

us+r(x)−us(x)
r . By displaying u̇s we implicitly assume that the pointwise

derivative exists.

A.3 Proposition Let f ∈ C2
b (R). Suppose that f ′′ is uniformly S-continuous and

limited (which is especially the case for standard f with uniformly continuous second
derivative f ′′ ). Let S ∈ (0,∞). A solution u : [0, S]× R→ R of

(106) u̇s(x) +
u′′s (x)

2
= 0 with uS(x) = f (x)

exists and is for s ∈ [0, S) given by
(107)

us(x) = [f?φ](x) :=
∫

f (y)φs(x−y) dy with φs(z) :=
1√

2π(S− s)
exp

(
− z2

2(S− s)

)
.

Further u′′s = f ′′ ? φs and the functions (s, x) 7→ u′′s (x) and (s, x) 7→ u̇s(x) are uniformly
S-continuous and limited on [0, S]× R.

Proof That (107) is a solution of (106) is well known and easily calculated. That
u′′s = (f ? φs)′′ = f ′′ ? φs is an easily calculated special case of a well known result
in the theory of generalized functions (see Rudin [22, Theorem 6.30]). Since f ′′ is
uniformly S-continuous and limited the assertion concerning (s, x) 7→ u′′s (x) is obtained
from u′′s = f ′′ ? φs and the special form of the convolution kernels φs . (Note that the
weak limit lims→S φs is the Dirac measure at 0 and that lims→t φs(z) = φt(z) for t < S .)
The assertion concerning (s, x) 7→ u̇s(x) then follows from (106).

A.4 Lemma Let f ∈ C2
b (R) be standard with uniformly continuous second derivative.

Let S ∈ R be limited. Let Θ be an abelian group and let ψ∗ : Θ → R be a group
homomorphism, i.e., let ψ∗(θ + ϑ) = ψ∗(θ) + ψ∗(ϑ). Let (Ws : Ω→ Θ)s∈[ 0...S ] be a
finite Markov chain. Let W := {(s, θ) | P(Ws = θ) > 0}. For (s, θ) ∈W let

δWs,θ := (Ws+δs − θ)|Ws=θ

and suppose that for (s, θ) ∈W

(108) ψ∗(δWs,θ) ≈ 0, E[ψ∗(δWs,θ)] = 0 and E[(ψ∗)2(δWs,θ)] =� (1 +�)δs.

Let ûf◦ψ∗ : W→ R be recursively defined by

(109) ûf◦ψ∗(S, θ) := [f ◦ ψ∗](θ) and ûf◦ψ∗(s, θ) := E[ûf◦ψ∗(s + δs, θ + δWs,θ)]

If u is a solution of (106) then

(110) ∀s ∈ [ 0 . . . S ] max
{θ|(s,θ)∈W}

|ûf◦ψ∗
s (θ)− [us ◦ ψ∗](θ)| ≈ 0.
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Proof To simplify notation we let û := ûf◦ψ∗ . Since x 7→ u′′s+δs(x) is by Proposi-
tion A.3 uniformly S-continuous and ψ∗(δWs,θ) ≈ � a second order expansion of
u(s + δs, ψ∗(θ) + ψ∗(δWs,θ)) with respect to ψ∗(δWs,θ) gives

u(s + δs, ψ∗(θ) + ψ∗(δWs,θ))− u(s + δs, ψ∗(θ))

=� ψ
∗(δWs,θ) · u′(s + δs, ψ∗(θ)) + (ψ∗(δWs,θ))2 ·

(
u′′(s + δs, ψ∗(θ))

2
+�

)
(111)

Using the linearity of E[.] we calculate

E[u(s + δs, ψ∗(θ) + ψ∗(δWs,θ))]− u(s + δs, ψ∗(θ))

(a)
=� E[(ψ∗(δWs,θ))2] ·

(
u′′(s + δs, ψ∗(θ))

2
+�

)
(b)
=� −(1 +�)δs[u̇(s + δs, ψ∗(θ)) +�]

(c)
=� −δs[u̇(s + δs, ψ∗(θ)) +�]

(112)

with (a) a consequence of (111) and (108), (b) a consequence of (106) and (108), and
(c) a consequence of the fact that s 7→ u̇s+δs(ψ∗(θ)) is by Proposition A.3 limited.
By the fact that s 7→ u̇s+δs(ψ∗(θ)) is by Proposition A.3 uniformly S-continuous a first
order expansion of u(s + δs, ψ∗(θ)) with respect to −δs gives

(113) u(s + δs, ψ∗(θ))− u(s, ψ∗(θ)) =� δs[u̇(s + δs, ψ∗(θ)) +�].

By adding (112) and (113) we obtain that

(114) |E[u(s + δs, ψ∗(θ) + ψ∗(δWs,θ))]− u(s, ψ∗(θ))| ≤� δs � .

We calculate using that ψ∗ is a group homomorphism

|ûs(θ)− [us ◦ ψ∗](θ)| (a)
= |E[ûs+δs(θ + δWs,θ)]− [us ◦ ψ∗](θ)|
≤ |E[ûs+δs(θ + δWs,θ)]− E[[us+δs ◦ ψ∗](θ + δWs,θ)]|

+ |E[us+δs(ψ∗(θ) + ψ∗(δWs,θ))]− us(ψ∗(θ))|
(b)
≤� max

{ϑ|(s+δs,ϑ)∈W}
|ûs+δs(ϑ)− [us+δs ◦ ψ∗](ϑ)|+ δs�

(115)

with (a) a consequence of (109) and (b) a consequence of (114). From (115) we obtain
that

max
{θ|(s,θ)∈W}

|ûs(θ)− [us ◦ ψ∗](θ)| ≤� max
{θ|(s+δs,θ)∈W}

|ûs+δs(θ)− [us+δs ◦ ψ∗](θ)|+ δs� .
(116)

Since by (109) and (106)

ûS(.) = [f ◦ ψ∗](.) = [uS ◦ ψ∗](.)
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we conclude from (116) using backward induction and limitedness of S that (110)
holds.

A.5 Theorem Let Θ be an abelian group and let (Ws : Ω → Θ)s∈[ 0...S ] be a finite
Markov chain. Let W := {(s, θ) | P(Ws = θ) > 0} and for (s, θ) ∈W let

δWs,θ := (Ws+δs − θ)|Ws=θ.

Suppose that we are given a function f̂ : Θ→ R and that the function ûf̂ : W→ R is
recursively defined by

(117) ûf̂ (S, θ) = f̂ (θ) and ûf̂ (s, θ) = E[ûf̂ (s + δs, θ + δWs,θ)]

Then for (s, θ) ∈W we have that

(118) E[f̂ ◦WS | Ws = θ] = ûf̂
s(θ).

Suppose that ψ∗ : Θ → R denotes a group homomorphism such that δWs,θ fulfills
(108) and suppose that W0 = 0. Then ψ∗ ◦WS is approximately N(0, S) distributed and

(119) E[(ψ∗)2 ◦WS] =� (1 +�)S.

A.6 Remark Note that an approximately N(0, 1) distributed random variable does not
necessarily posses a second moment. Thus it is necessary to prove (119) separately.

Proof of Theorem A.5 Equation (118) is proved by backward induction on [ 0 . . . S ].
The induction hypothesis is correct for t = S since by the definition of conditional
expectation and by (117)

E[f̂ ◦WS | WS = θ] = f̂ (θ) = ûf̂
S(θ).

Suppose next that the induction hypothesis holds for t = s+δs, i.e., that for (s+δs, ϑ) ∈
W

E[f̂ ◦WS | Ws+δs = ϑ] = ûf̂
s+δs(ϑ).

Then for (s, θ) ∈W

E[f̂ ◦WS | Ws = θ] =
∑

{ϑ|(s+δs,ϑ)∈W}

P(Ws+δs = ϑ|Ws = θ) · E[f̂ ◦WS | Ws+δs = ϑ]

=
∑

{ϑ|(s+δs,ϑ)∈W}

P(θ + δWs,θ = ϑ) · ûf̂
s+δs(ϑ) = E[ûf̂

s+δs(θ + δWs,θ)]
(117)
= ûf̂

s(θ)

i.e., (118) holds for t = s. Thus (118) has been proved by backward induction.
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We prove next that ψ∗ ◦WS is approximately N(0, S) distributed. To do this let f ∈ C∞b
be an arbitrary standard function and let f̂ = f ◦ ψ∗ . Then the hypotheses of Lemma
A.4 hold and thus also its conclusion (110) is fulfilled. Consequently we calculate

E[f ◦ ψ∗ ◦WS]
(a)
= E[f̂ ◦WS | W0 = 0]

(b)
= ûf̂

0(0) = ûf◦ψ∗
0 (0)

(c)
≈ u0(0)

(d)
=

∫
f (y)

1√
2πS

exp
(
− y2

2S

)
dy

(120)

where (a) follows from the hypothesis W0 = 0, (b) is a consequence of (118), (c) a
consequence of (110), and (d) follows from (107). From (120) and Proposition A.1 we
obtain that ψ∗ ◦WS is approximately N(0, S) distributed.

Finally to show (119) we calculate (using that ψ∗ is a group homomorphism)

E[(ψ∗)2 ◦Ws+δs] =
∑

{θ|(s,θ)∈W}

E[(ψ∗(δWs,θ + θ))2|Ws = θ] · P(Ws = θ)

=
∑

{θ|(s,θ)∈W}

E[(ψ∗(δWs,θ))2 + 2ψ∗(δWs,θ) · ψ∗(θ) + (ψ∗(θ))2] · P(Ws = θ)

(a)
=� (1 +�) δs + E[(ψ∗)2 ◦Ws]

(121)

with (a) a consequence of (108) and the linearity of E[.]. From (121) we obtain by
induction along the near interval [ 0 . . . S ) and since W0 = 0 that (119) holds.

A.7 Theorem Let [ 0 . . .T ] be a near interval and let t0 ∈ [ 0 . . .T ]. Let Θ be an
abelian group and let ψ∗ : Θ→ R be a group homomorphism. Let (Γt)t∈[ 0...T ] be a
Markov process with values in Θ such that Γ0 = 0. Let G := {(t, θ) | P(Γt = θ) > 0}
and for (t, θ) ∈ G let

δΓt,θ := (Γt+δt − θ)|Γt=θ.

Suppose that ψ∗ ◦ δΓt,θ ≈ 0, E[ψ∗ ◦ δΓt,θ] = 0, E[(ψ∗)2 ◦ δΓt,θ] =� (1 +�)σ2
t with

σ2
t infinitesimal and such that

∑
t∈[ 0...T ) σ

2
t is limited. Then

(122) E[(ψ∗)2 ◦ Γt0] =�
∑

t∈[ 0...t0 )

σ2
t (1 +�), ψ∗ ◦ Γt0 ∼� N

0,
∑

t∈[ 0...t0 )

σ2
t


E[(ψ∗)2 ◦ (ΓT − Γt0)] =�

∑
t∈[ t0...T )

σ2
t (1 +�) and

ψ∗ ◦ (ΓT − Γt0) ∼� N

0,
∑

t∈[ t0...T )

σ2
t

 .

(123)
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Proof To prove (122) we define a function

(124) ι : [ 0 . . . t0 ]→ [0,∞) by ι(t) :=
∑

u∈[ 0...t )

σ2
u

let [ 0 . . . S ] := {ι(t)|t ∈ [ 0 . . . t0 ]} and note that S = ι(t0) =
∑

t∈[ 0...t0 ) σ
2
t . Let

(Ws)s∈[ 0...S ] be the Markov process defined by Wι(t) = Γt . Then (Ws)s∈[ 0...S ] fulfills
the hypotheses of Theorem A.5. Thus application of Theorem A.5 shows that

ψ∗ ◦ Γt0 = ψ∗ ◦WS ∼� N(0, S) = N

0,
∑

t∈[ 0...t0 )

σ2
t


E[(ψ∗)2 ◦ Γt0] = E[(ψ∗)2 ◦WS] =� (1 +�)S =�

∑
t∈[ 0...t0 )

σ2
t (1 +�)and

i.e., (122) has been proved. To prove (123) it suffices by10

(125) ψ∗ ◦ (ΓT − Γt0) =
◦∑
{γ|(t0,γ)∈G}

ψ∗ ◦ (ΓT − γ)|Γt0 =γ

to prove that

P(Γt0 = γ) > 0 ⇒ ψ∗ ◦ (ΓT − γ)|Γt0 =γ ∼� N

0,
∑

t∈[ t0...T )

σ2
t


and E[(ψ∗)2 ◦ (ΓT − γ)|Γt0 =γ] =�

∑
t∈[ t0...T )

σ2
t (1 +�).

(126)

The proof of (126) is analogous to the proof of (122).

B Connection to standard mathematics

B.1 Remark In this appendix we make use of general measure theoretic probability
theory. Probabilities, expectations etc. are defined and used in the sense of standard
measure theoretic probability theory (see for example Dudley [9]) that coincides in the
case of finite probability spaces with our definitions. For a nonstandard characterization
of weak convergence relating the subject to Loeb measure theory see Anderson and
Rashid [2].

10The symbol
◦∑

in (125) denotes the formation of a disjoint union; note that we identify
functions with their graphs.
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B.2 Definition Given a topological space X . We say that a sequence (Xn)n∈N of
random variables Xn : Ωn → X converges in distribution to X∞ , if there exists a
random variable X∞ : Ω∞ → X such that

(127) (∀f ∈ Cb(X )) lim
n→∞

E[f ◦ Xn] = E[f ◦ X∞]

B.3 Proposition Suppose that we are given a standard sequence (Xn)n∈N of random
variables Xn : Ωn → X and a standard random variable X∞ : Ω∞ → X . The sequence
(Xn)n∈N converges in distribution to X∞ if and only if

(128) (∀stf ∈ Cb(X )) (∀n ∈ N) E[f ◦ Xn] ≈ E[f ◦ X∞].

Proof By transfer and standardness of (Xn)n∈N and X∞ we obtain that (127) is
equivalent with

(129) (∀stf ∈ Cb(X )) lim
n→∞

E[f ◦ Xn] = E[f ◦ X∞]

For standard f ∈ Cb(X ) the sequence (E[f ◦Xn])n∈N is also standard. Thus by application
of Definition 4.2 and Remark 4.3 we obtain that (129) and (128) are equivalent. All
together we have proved the equivalence of (127) and (128) and conclude the assertion
of the proposition from Definition (B.2).

B.4 Proposition Let J be a finite set. A sequence (Xn)n∈N of random variables
Xn : Ω→ RJ converges in distribution to an N(0, id) distributed random variable X∞
if and only if:
(130)

(∀f ∈ Cb(R)) (∀ψ∗ ∈ S∗(RJ ))
(

lim
n→∞

E[f ◦ ψ∗(Xn)] =

∫
y∈R

f (y)
exp(−y2/2)√

2π
dy
)

Proof The proposition is a consequence of the Cramér-Wold device (see Pollard [20,
Chapter 8, Sections 6 and 7] or Van der Vaart [27, Section 2, before Example 2.18]).

B.5 Remark Definition 4.22 is justified by the following implication of Proposition
B.4.

B.6 Proposition Let J be a standard finite set and let (Xn)n∈N be a standard sequence
of random variables Xn : Ω→ RJ such that

(131) (∀n ∈ N) Xn ∼� N(0, idJ ).

Then (Xn)n∈N converges in distribution to an N(0, id) distributed random variable X∞ .
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Proof Formula (131) implies by Remark 4.24 that:
(132)

(∀stf ∈ Cb(R)) (∀stψ∗ ∈ S∗(RJ ))
(
E[[f ◦ ψ∗](Xn)] ≈

∫
y∈R

f (y)
exp(−y2/2)√

2π
dy
)

For standard f and ψ∗ we obtain by standardness of (Xn)n∈N that the sequence
(E([f ◦ψ∗](Xn)))n∈N is standard. Thus by Definition 4.2 and Remark 4.3 we obtain that
(132) is equivalent with:

(∀stf ∈ Cb(R)) (∀stψ∗ ∈ S∗(RJ ))(
lim

n→∞
E[[f ◦ ψ∗](Xn)] =

∫
y∈R

f (y)
exp(−y2/2)√

2π
dy
)(133)

By standardness of (Xn)n∈N an application of transfer to (133) shows that (130) holds.
Application of Proposition B.4 completes the proof.

C Miscellaneous Results

C.1 Proposition Suppose that κ ∈ R, that t ∈ (0,∞) is limited and that δ ∈ (0,∞)
is infinitesimal. Suppose further that κ2δ ≈ 0. Then

(1 + κδ)2t/δ =� e2κt(1 +�).

Proof Since e2κt

(1+κδ)2t/δ =
(

eκδ
1+κδ

)2t/δ
the following calculation proves the result:

1
(a)
≤
(

eκδ

1 + κδ

)2t/δ

=

(
1 +

eκδ − (1 + κδ)
(1 + κδ)

)2t/δ

(b)
=� (1 + κ2δ2/(2 +�))2t/δ

(c)
≤�

(
eκ

2δ2/(2+�)
)2t/δ

=� e2tκ2δ/(2+�) (d)
=�

1
1 +�

Note that (a) and (c) follow since the exponential function is convex and thus its graph
lies strictly above its tangent at 0, (b) follows from Taylor series expansion of the
exponential function around 0 since κδ ≈ 0, and finally (d) follows from tκ2δ ≈ 0,
the S-continuity of the exponential function around 0 and that (1 +�) =�

1
1+� .

C.2 Proposition Let η̃ : [x, x+h]→ R be differentiable and denote by η̃′ its derivative.
Then (

η̃(x + h)− η̃(x)
h

)2

≤ 1
h

∫ x+h

x
(η̃′)2(y) dy
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Proof
η̃(x + h)− η̃(x)

h
=

∫ 1

0
η̃′(x + s · h) ds.

Thus by Jensen’s inequality(
η̃(x + h)− η̃(x)

h

)2

≤
∫ 1

0
(η̃′)2(x + s · h) ds =

1
h

∫ x+h

x
(η̃′)2(y) dy.

C.3 Proposition (Doob inequality) Let (Zt)t∈[ t0...T ] be a martingale with Zt0 = 0.
Then

(134) P
(

max
t∈[ t0...T ]

Z2
t ≥ ε > 0

)
≤ 1
ε
E[Z2

T ].

Proof The Doob inequality can bee found in many textbooks on probability theory.
See for example Nelson [19, Theorem 11.4].

Acknowledgement: I would like to thank the referees for their remarks, that helped to
improve the readability of the article.
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