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Convergence results for function spaces over o-minimal
structures

MARGARET E M THOMAS

Abstract: We begin the development of a theory of Banach spaces in the definable
setting of o-minimal structures. We outline several results which develop the theory
of compact embeddings for explicitly given function spaces. One aim is to explain
the substantive underpinnings of an important observation used in the proof of the
Reparameterization Theorem of Pila and Wilkie in [2]. We place this observation
in the broader context of our theory and demonstrate how it may be refined further.
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1 Introduction

The goal of this note is to introduce some Banach space theory in the definable context
of o-minimal expansions of real closed fields. The development of this theory was
originally motivated by the search for the proof of the Reparameterization Theorem of
Pila and Wilkie (Theorems 2.3 and 2.5 of [2]). An important observation made during
the course of their proof is that reparameterizations converge to reparameterizations
having a sufficient degree of differentiability. This property is a consequence of the
theory developed in this paper, in particular Corollary 3.7, a fact explained by Remark
4.1 of [2]. It is our aim in this note to provide an introductory exposition of this theory,
outlining results which go beyond Remark 4.1. This will not only furnish the substance
of Remark 4.1 (and hence flesh out the details of this essential step in the proof of
the Reparameterization Theorem), but also provide some details of a theory which we
believe to be interesting in its own right, laying the groundwork for what we hope will
be a fruitful area of future analysis.

We have not yet developed a completely general form of this Banach space theory,
but rather focus here on certain explicitly given spaces of definable functions. We
present definable notions of convergence and completeness for such spaces and outline
a theory of compact embeddings in this context. All definitions are outlined in Section 2,
with our results following in Section 3. We conclude in Section 4 with some remarks
concerning possible directions in which this theory could be developed further.
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2 M E M Thomas

2 Definable Banach Spaces

2.1 Definitions

Let us first fix some notation and present some relevant theory from functional analysis,
amended appropriately for our setting. Throughout, M = 〈M;+, ·,−; 0, 1;<; . . .〉 will
denote an o-minimal expansion of a real closed field and X will denote a vector space
overM. For an exposition of the fundamental properties of o-minimal structures, some
of which will be used extensively in Section 3, please see, for example, van den Dries
[1].

We define an M–norm on X to be a function ||·||X : X → M which satisfies the usual
norm axioms, i.e. positivity, positive definiteness, the triangle inequality and positive
homogeneity. The presence of an M–norm acting on a space X induces a M–norm
topology on that space. As expected, this is given by basic open sets of the form
BεX(x) := {y ∈ X | ||x− y||X < ε}. We denote the closed unit ball of an M–normed
space (X, ||·||X) by BX := {x ∈ X | ||x||X ≤ 1}.

Now that we have established these definitions, since M will be fixed throughout this
paper, we shall also simplify our terminology throughout to refer to norms, rather than
M–norms, without any loss of clarity.

2.2 Function Spaces

We shall be especially concerned here with those spaces X which are function spaces
over M. These are topological vector spaces whose elements are themselves functions
defined on a fixed, bounded domain Y (i.e. on some open, definable Y ⊆

∏n
i=1[−Si, Si],

for some S1, . . . , Sn ∈ M ). We present a few important examples of such spaces,
together with their norms.

Examples 2.1 Suppose that Y is a bounded domain in Mn , for some n ≥ 1.

B(Y), the space of all definable, bounded maps f : Y → M , is a normed space when
equipped with the supremum norm, defined thus:

||f ||∞ := sup
y∈Y
{|f (y)|}.

C(Y), the space of all definable, continuous, bounded, M–valued functions on Y, is a
subspace of B(Y), and hence is a normed space when equipped with the supremum
norm.
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Cr(Y), the space of all definable, r–times continuously differentiable, bounded, M–
valued functions on Y , which have their first r derivatives bounded, is a normed space
when equipped with the norm

||f ||r := max
0≤t≤r

{∣∣∣∣f (t)∣∣∣∣
∞
}
.

Define a map Lip(·), from CLip(Y), the space of all definable, bounded, Lipschitz
continuous, M–valued functions on Y , into M , by

Lip(f ) := sup
x 6=y

x,y∈Y

{
|f (x)− f (y)|
|x− y|

}
.

Then Lip(f ) is, for a Lipschitz continuous function f , the least constant which can
witness the Lipschitz continuity of f . Let us define ||f ||Lip := Lip(f ). This is not a norm
on the space CLip(Y), as it does not satisfy the axiom of positive definiteness. However,
Cr,Lip(Y), the space of all definable, r–times continuously differentiable, bounded, M–
valued functions on Y , which have bounded first r derivatives and Lipschitz continuous
r th derivative, is a normed space when equipped with the norm

||f ||r,Lip := max{‖f‖r, ‖f (r)‖Lip}.

2.3 Definable Convergence

Here we outline definable notions of convergence and completeness within these
function spaces. We express these notions in terms of definable curves.

Definitions 2.2 Let Y be a bounded domain in Mn , for some n ≥ 1, and let X be a
subspace of B(Y) equipped with the norm ||·||X . A definable curve in X is a family
F := {Fu : Y → M | u ∈ (0, 1)} of functions in B(Y) such that

(i) Fu ∈ X , for all u ∈ (0, 1);

(ii) the map from (0, 1)× Y to M given by 〈u, y〉 7→ Fu(y) is definable;

(iii) the function u 7→ Fu is continuous with respect to the usual (|·|–)topology on
(0, 1) and the ||·||X –topology on X .

Such a curve converges as u → 0+ if and only if there exists F0 ∈ X such that
||Fu − F0||X → 0 as u→ 0+ .
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4 M E M Thomas

Remark One generalization of the usual definition of sequential convergence is that
of nets, which are limits over directed sets. Applying the definition of o-minimality,
definable curves could be viewed in this context as “definable nets” for which the
directed set is (0, 1). This gives us that the above is an appropriate definition of
convergence in spaces of definable functions from the point of view of functional
analysis as well as that of algebraic geometry.

What should be clear is that many familiar definitions of convergence will naturally trans-
late to definable statements expressed in terms of convergence along definable curves.
However, as definable curves are definable maps, and so the notion of convergence
along them is a definable one, generalizations that can be made about convergence in
an M–normed space will, by necessity, be restricted to definable notions. For example,
let us make the following two definitions.

Definition 2.3 Let Y be a bounded domain in Mn , for some n ≥ 1, and let X
be a vector subspace of B(Y) equipped with the norm ||·||X . A definable curve
F := {Fu : Y → M | u ∈ (0, 1)} is said to be Cauchy as u → 0+ if and only if
||Fu1 − Fu2 ||X → 0 as u1, u2 → 0+ .

Remark Note that any curve F which is Cauchy is also bounded: by the continuity
of the function u 7→ Fu on (0, 1), we need only see that this function does not become
unbounded as u→ 0+ . For this we may use a simple inequality argument, as follows.
Since F is Cauchy, we have that, for all ε > 0, there exists δ > 0 such that, for all
u ∈ (0, δ], we have ||Fu − Fδ||X < ε. Hence, for all u ∈ (0, δ], it also follows that
||Fu||X ≤ ||Fδ||X + ε. Thus F is bounded as u→ 0+ .

Definition 2.4 An M–normed function space X is said to be M–definably complete
if every definable curve in X which is Cauchy also converges.

So, for our definable notion of completeness, we do not have that every definable curve
in X converges, but specifically require that definable Cauchy curves in X do.

When X is a complete, normed space, in the conventional sense, X is said to be a
Banach space. However, given our restriction only to convergence along definable
curves in spaces of bounded, definable functions on bounded domains, we shall call
these M–definably complete, M–normed spaces of definable functions M–Banach
spaces.

Examples 2.5 The following are all examples of M–Banach spaces.
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The domain M of our o-minimal expansion M of a real closed field is itself an
M–Banach space when equipped with the usual norm |·|, if all elements of M are
considered as constant functions on Y , for some bounded domain Y in Mn , with n ≥ 1.

The space of bounded, definable functions B(Y) is complete for ||·||∞ and thus is an
M–Banach space, by the following argument.

Let F := {Fu : Y → M | u ∈ (0, 1)} be a definable Cauchy curve in B(Y). On Y we
may define the pointwise limit function F0(y) := limu→0+ Fu(y), since this limit exists,
for all y ∈ Y , by o-minimality; the function F0 takes values in M ∪ {±∞}.

Since F is Cauchy, ||Fu||∞ is bounded, by C , say. So

||F0||∞ = sup
y∈Y

∣∣∣∣ lim
u→0+

Fu(y)
∣∣∣∣ ≤ sup

u∈(0,1)
||Fu||∞ ≤ C.

Thus F0 is bounded, and hence F0 ∈ B(Y).

Finally, let ε > 0 and observe that, since F is Cauchy, there exists δ > 0 such
that, if u1, u2 ∈ (0, δ), then ||Fu1 − Fu2 ||∞ < ε. Therefore, for all y ∈ Y , if
u1, u2 ∈ (0, δ), then |Fu1(y)− Fu2(y)| < ε. Hence, if u1 ∈ (0, δ), |Fu1(y)− F0(y)| =
limu2→0+ |Fu1(y)− Fu2(y)| ≤ ε. Since this bound is independent of y, we have that, if
u1 ∈ (0, δ), then ||Fu1 − F0||∞ ≤ ε, and hence F converges to F0 in the supremum
norm as u→ 0+ .

Any closed, linear subspace of an M–Banach space is M–definably complete for the
same norm and thus is itself an M–Banach space.

A final definition which will be of use to us is the following.

Definition 2.6 Let (W, ||·||W) and (X, ||·||X) be normed spaces, with W a vector
subspace of X . The closed unit ball BW is said to be definably compactly contained
in the closed unit ball BX if every definable curve contained in BW has a limit, with
respect to the ||·||X –norm, lying in BX .

3 Convergence Results

3.1 Main Theorem

The results in this section concern definable curves in various subspaces of B((0, 1)) and
so throughout F is tacitly assumed to be a definable curve {Fu : (0, 1)→ M | u ∈ (0, 1)}
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in B((0, 1)). However, this is merely a restriction for convenience. These results are
all straightforwardly translated to the following two settings. First, they will apply
with any bounded domain Y in place of (0, 1), by o-minimality. Our results also
apply to definable curves of maps Fu : (0, 1) → MN , for N > 1, after first making
analogous definitions of the function spaces described in Examples 2.1; the only ad-
justment is to take throughout the modulus of a function f = (f1, . . . , fN) at y ∈ (0, 1)
to be max1≤i≤N{|fi(y)|}. It is these maps which appear in the proof of the Pila–Wilkie
Reparameterization Theorem (see [2] , Section 4), for which the analogous version of
Corollary 3.7 below is required.

The main result is the following.

Theorem 3.1 (Main Theorem) For all r ∈ N, if F ⊆ BCr,Lip((0,1)) , then there exists
F0 ∈ BCr,Lip((0,1)) such that ||Fu − F0||r → 0 as u → 0+ ; in particular, BCr,Lip((0,1)) is
definably compactly contained in BCr((0,1)) .

In order to prove Main Theorem 3.1, we shall first need to prove the following straight-
forward lemmas.

Lemma 3.2 Let F be a subset of BB((0,1)) . Then there exists a definable function
F0 : (0, 1) → M in BB((0,1)) such that Fu → F0 pointwise (i.e. Fu(v) → F0(v) as
u→ 0+ , for every v ∈ (0, 1)).

Proof For each v ∈ (0, 1), the map u 7→ Fu(v) is definable, so limu→0+ Fu(v) exists,
by o-minimality, and lies in M ∪ {±∞}.

Moreover, for all v ∈ (0, 1),

| lim
u→0+

Fu(v)| ≤ sup
u∈(0,1)

|Fu(v)| ≤ sup
u∈(0,1)

||Fu||∞ ≤ 1.

Let F0 : (0, 1) → M be given by F0(v) := limu→0+ Fu(v). This is definable and we
have that |F0(v)| ≤ 1, for all v ∈ (0, 1). Hence ||F0||∞ ≤ 1 and, by definition, Fu

tends to F0 pointwise as u→ 0+ , as required.

Lemma 3.3 Suppose now that F is a subset of BC0,Lip((0,1)) . In that case, F0 , the
pointwise limit defined as in Lemma 3.2, is also in BC0,Lip((0,1)) . Moreover, we have that
||Fu − F0||∞ → 0 as u→ 0+ .

Proof First note that F0 , being definable, is continuous at all but finitely many v ∈
(0, 1), by the Monotonicity Theorem.
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Let v1 , v2 ∈ (0, 1) and let ε > 0. Then note that

|F0(v1)− F0(v2)| ≤ |F0(v1)− Fu(v1)|+ |Fu(v1)− Fu(v2)|+ |Fu(v2)− F0(v2)|.

Choose δ > 0 sufficiently small that, whenever u ∈ (0, δ), the inequality

|Fu(vi)− F0(vi)| <
ε

2
|v1 − v2|

holds for both i = 1 and 2.

Since |Fu(v1)− Fu(v2)| ≤ |v1 − v2|, as Fu ∈ BC0,Lip((0,1)) , we obtain

|F0(v1)− F0(v2)| ≤ (ε+ 1)|v1 − v2|.

This is true for all ε > 0, and therefore

|F0(v1)− F0(v2)| ≤ |v1 − v2|.

Thus F0 is Lipschitz continuous, with Lipschitz constant ||F0||Lip ≤ 1. By Lemma 3.2,
||F0||∞ ≤ 1, so F0 lies in BC0,Lip((0,1)) , which proves the first statement.

Suppose now that ||Fu − F0||∞ 9 0 as u → 0+ , which is to say that
supv∈(0,1) |Fu(v)− F0(v)|9 0 as u→ 0+ .

In this case, there would exist an η > 0 for which the set

{u ∈ (0, 1) | ∃ v ∈ (0, 1) such that |Fu(v)− F0(v)| ≥ η}

contains arbitrarily small values in (0, 1). This set is definable and so, by o-minimality,
would contain an interval (0, uη). Moreover, by the property of definable Skolem
functions together with the Monotonicity Theorem, there would exist a definable,
continuous map v∗ : (0, u∗) −→ (0, 1) on some subinterval (0, u∗) ⊆ (0, uη) such that,
for all u ∈ (0, u∗),

(3.3.1) |Fu(v∗(u))− F0(v∗(u))| ≥ η.

Suppose that such a function v∗ exists and fix ε ∈ (0, η). The continuity of v∗ implies
that there exists some u1 ∈ (0, u∗) such that, for all u ∈ (0, u1),

(3.3.2) |v∗(u)− v∗(u1)| < η − ε
2

.

Since Fu → F0 pointwise, there is some u2 ∈ (0, u1) such that, if u ∈ (0, u2), then

(3.3.3) |Fu(v∗(u1))− F0(v∗(u1))| < ε.
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Hence, if u ∈ (0, u2) ⊆ (0, u1) ⊆ (0, u∗), then, combining (3.3.1), (3.3.3) and (3.3.2),
we see that

η − ε < |Fu(v∗(u))− F0(v∗(u))| − |Fu(v∗(u1))− F0(v∗(u1))|
≤ |Fu(v∗(u))− Fu(v∗(u1))|+ |F0(v∗(u))− F0(v∗(u1))|
≤ 2 |v∗(u)− v∗(u1)| , as F ∪ {F0} ⊆ BC0,Lip((0,1)),

< η − ε,

which is clearly a contradiction.

Thus ||Fu − F0||∞ → 0 as u→ 0+ , as required.

We may now build on these lemmas with the following central proposition.

Proposition 3.4 Let F be a subset of BC1,Lip((0,1)) . There exists H0 ∈ BC0,Lip((0,1))
such that ||F′u − H0||∞ → 0 as u → 0+ . Moreover, F0 , the pointwise limit of F , is
differentiable on (0, 1) and F′0 = H0 , so we may conclude that F0 lies in BC1,Lip((0,1))
and ||Fu − F0||1 → 0 as u→ 0+ .

Proof Consider the parameterized family F ′ := {F′u | Fu ∈ F}. Since F ′ is
contained in BC0,Lip((0,1)) , we may apply Lemmas 3.2 and 3.3 to F ′ to see that H0 ,
the pointwise limit of F ′ , lies in BC0,Lip((0,1)) and, moreover, ||F′u − H0||∞ → 0 as
u→ 0+ .

Since BC1,Lip((0,1)) is contained in BC0,Lip((0,1)) , we have, again by Lemma 3.3, that
F0 ∈ BC0,Lip((0,1)) and ||Fu − F0||∞ → 0 as u→ 0+ . Hence it is enough to prove that
F0 is differentiable and that F′0 = H0 .

The fact that ||F′u − H0||∞ → 0 as u → 0+ tells us that, for all ε > 0, there is some
δ ∈ (0, 1) such that, for any u1, u2 ∈ (0, δ) and any v ∈ (0, 1),∣∣F′u1

(v)− F′u2
(v)
∣∣ < ε

4
.

Now we may use the Mean Value Theorem to obtain the following estimate, for any
u1, u2 ∈ (0, δ), any v ∈ (0, 1) and any h ∈ (−v, 1− v):
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∣∣∣∣Fu1(v + h)− Fu1(v)− hF′u1
(v)

h
−

Fu2(v + h)− Fu2(v)− hF′u2
(v)

h

∣∣∣∣
≤
∣∣∣∣ (Fu1 − Fu2)(v + h)− (Fu1 − Fu2)(v)

h

∣∣∣∣+ ∣∣(F′u1
− F′u2

)(v)
∣∣

≤ sup
θ∈(0,1)

∣∣(F′u1
− F′u2

)(v + θh)
∣∣ +

∣∣(F′u1
− F′u2

)(v)
∣∣

≤ ε

4
+
ε

4
=

ε

2
.

So, if we let u1 → 0+ , then we have that, for fixed u2, h and v,

(3.4.4)
∣∣∣∣F0(v + h)− F0(v)− hH0(v)

h
−

Fu2(v + h)− Fu2(v)− hF′u2
(v)

h

∣∣∣∣ ≤ ε

2
.

By the differentiability of Fu2 , we also have some δ′ > 0 with δ′ < v, 1− v such that,
if 0 < |h| < δ′ , then

(3.4.5)
∣∣∣∣Fu2(v + h)− Fu2(v)− hF′u2

(v)
h

∣∣∣∣ < ε

2
.

Therefore let h be such that 0 < |h| < δ′ (with u2 and v as above). Then, by (3.4.4)
and (3.4.5),

∣∣∣∣F0(v + h)− F0(v)− hH0(v)
h

∣∣∣∣
≤
∣∣∣∣F0(v + h)− F0(v)− hH0(v)

h
−

Fu2(v + h)− Fu2(v)− hF′u2
(v)

h

∣∣∣∣
+

∣∣∣∣Fu2(v + h)− Fu2(v)− hF′u2
(v)

h

∣∣∣∣
≤ ε

2
+
ε

2
= ε.

Consequently, we may conclude that∣∣∣∣F0(v + h)− F0(v)− hH0(v)
h

∣∣∣∣→ 0 as h→ 0;

or, in other words, that F0 is differentiable on (0, 1), with F′0 equal to H0 , as required.

We may now easily outline the proof of the Main Theorem 3.1.
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Proof of Main Theorem 3.1 The aim is to prove the following statement by induction
on r :

For all r ∈ N, if F is contained in BCr,Lip((0,1)) , then the pointwise limit F0 also lives in
BCr,Lip((0,1)) , with F(t)

0 (v) = limu→0+ F(t)
u (v), for all v ∈ (0, 1) and for all t ∈ {0, . . . , r},

and, moreover, ||Fu − F0||r → 0 as u→ 0+ .

We already have all of the steps in place. Lemma 3.3 is the base case (r = 0). The
inductive step is then given by an analogous argument to the proof of Proposition 3.4.

3.2 Further Results

There are many similar results of this nature which we may now obtain using Main
Theorem 3.1. An example of these is given here, followed by a discussion of some
others.

Proposition 3.5 If F ⊆ BCr,Lip((0,1)) is Cauchy in the ||·||r,Lip –norm, i.e.
||Fu1 − Fu2 ||r,Lip → 0 as u1, u2 → 0+ , then, for the pointwise limit F0 ,
||Fu − F0||r,Lip → 0, as u→ 0+ .

Proof Let us first note that the following two requirements are necessary, as u tends
to 0+ , for ||Fu − F0||r,Lip to tend to 0:

(i)
∣∣∣∣∣∣F(t)

u − F(t)
0

∣∣∣∣∣∣
∞
→ 0, for every t = 0, . . . , r ;

(ii)
∣∣∣∣∣∣F(r)

u − F(r)
0

∣∣∣∣∣∣
Lip
→ 0.

Since Main Theorem 3.1 tells us that (i) holds regardless of whether or not F is
Cauchy in the ||·||r,Lip –norm, it will be sufficient to show that

∣∣∣∣∣∣F(r)
u − F(r)

0

∣∣∣∣∣∣
Lip
→ 0 as

u→ 0+ .

By considering the functions (Fu − F0)(r) , for each u ∈ (0, 1), we may simplify the
argument slightly by supposing that F is a definable curve which consists of Lipschitz
continuous functions Fu , each of which has ||Fu||Lip ≤ 1, is such that Fu → 0
pointwise as u→ 0+ and is Cauchy with respect to the ||·||0,Lip –norm. We shall then
show that ||Fu||Lip → 0 as u→ 0+ .
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Suppose that ||Fu||Lip 9 0 as u→ 0+ . This is the same as the statement that

Lip(Fu) := sup
x 6=y

x,y∈(0,1)

{ ∣∣∣∣Fu(x)− Fu(y)
x− y

∣∣∣∣ }9 0 as u→ 0+.

So there must exist ζ > 0 such that, for every u ∈ (0, 1), there is a û ∈ (0, u) such that
x̂ 6= ŷ ∈ (0, 1) exist with ∣∣∣∣Fû(x̂)− Fû(ŷ)

x̂− ŷ

∣∣∣∣ ≥ ζ.
Moreover, by the Monotonicity Theorem and the property of definable Skolem functions,
there is some u′ ∈ (0, 1) and a definable, continuous function λ : (0, u′) −→ (0, 1)2

such that, if λ(u) is denoted by the ordered pair (xu, yu), then, for all u ∈ (0, u′),∣∣∣∣Fu(xu)− Fu(yu)
xu − yu

∣∣∣∣ ≥ ζ.
Let ε ∈ (0, ζ). By our reduction, F is Cauchy in the ||·||0,Lip –norm, so there is some
ũ ∈ (0, u′) such that, for all u1, u2 ∈ (0, ũ), ||Fu1 − Fu2 ||Lip < ε.

Now fix u1 ∈ (0, ũ). We know that, for λ(u1) = (xu1 , yu1),

(3.5.6)
∣∣∣∣Fu1(xu1)− Fu1(yu1)

xu1 − yu1

∣∣∣∣ ≥ ζ.
Moreover, since u1 ∈ (0, ũ), we have that, for every u2 ∈ (0, u1),

(3.5.7)
∣∣∣∣ (Fu1(xu1)− Fu2(xu1))− (Fu1(yu1)− Fu2(yu1))

xu1 − yu1

∣∣∣∣ < ε,

since ||Fu1 − Fu2 ||Lip < ε and xu1 6= yu1 . Therefore, for every u2 ∈ (0, u1),∣∣∣∣Fu2(xu1)− Fu2(yu1)
xu1 − yu1

∣∣∣∣ ≥ ∣∣∣∣Fu1(xu1)− Fu1(yu1)
xu1 − yu1

∣∣∣∣
−
∣∣∣∣ (Fu1(xu1)− Fu2(xu1))− (Fu1(yu1)− Fu2(yu1))

xu1 − yu1

∣∣∣∣
> ζ − ε,

by (3.5.6) and (3.5.7). So we have, for all u2 ∈ (0, u1),

(3.5.8) |Fu2(xu1)− Fu2(yu1)| > (ζ − ε) |xu1 − yu1 | .

Recall now that Fu → 0 pointwise, so there is some u′′ ∈ (0, u1) such that if u ∈ (0, u′′),
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then both

|Fu(xu1)| <
(
ζ − ε

2

)
|xu1 − yu1 |(3.5.9)

and

|Fu(yu1)| <
(
ζ − ε

2

)
|xu1 − yu1 | .(3.5.10)

Then fix u2 ∈ (0, u′′) ⊆ (0, u1) ⊆ (0, ũ) ⊆ (0, u′) ⊆ (0, 1). We may now conclude that

(ζ − ε) |xu1 − yu1 | > |Fu2(xu1)|+ |Fu2(yu1)| , by (3.5.9) and (3.5.10)

≥ |Fu2(xu1)− Fu2(yu1)|
> (ζ − ε) |xu1 − yu1 | , by (3.5.8),

which is clearly a contradiction.

Thus we must have that ||Fu||Lip → 0 as u→ 0+ , and hence that the definable curve
F in the original statement of the theorem converges to F0 in the ||·||r,Lip –norm, as
required.

Corollary 3.6 The space Cr,Lip((0, 1)) is an M–Banach space.

Proof If F is Cauchy in the space Cr,Lip((0, 1)), then it is bounded in some closed
ball of identifiable radius q ≥ 0. Thus we may assume, without loss of generality, that
F is contained in BCr,Lip((0,1)) . The conclusion then follows from Proposition 3.5.

Finally, we come to the corollary indicated in Section 1, a form of which (for maps into
cartesian products of M , as outlined at the start of this section) is used in the proof of
the Reparameterization Theorem of [2].

Corollary 3.7 For all r ≥ 1, the space BCr((0,1)) is definably compactly contained in
BCr−1((0,1)) .

Proof By the Mean Value Theorem, BCr((0,1)) ⊆ BCr−1,Lip((0,1)) . Consequently, if F is
a definable curve contained in BCr((0,1)) , then, by Main Theorem 3.1, it has a limit F0

in BCr−1,Lip((0,1)) with ||Fu − F0||r−1 → 0 as u→ 0+ .
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4 Final remarks

In introducing a theory of definable Banach spaces, this paper addresses only the case
of explicitly given spaces of one variable functions. This is sufficient to provide the
details behind the key step in the proof of the Reparameterization Theorem of Pila
and Wilkie [2] indicated in the Introduction (i.e. that reparameterizations converge to
reparameterizations with sufficient differentiability). However, it should be relatively
straightforward to extend these ideas to spaces of functions in a higher number of
variables. Beyond that, the next natural step would be to consider how best to develop a
theory of definable Banach spaces in greater generality. In particular, it would be of
interest to develop the richest theory possible, and therefore to do so in a way which
incorporates, for example, definable notions of the bounded linear operator and the
dual space. Perhaps, rather than considering normed spaces, it would be most useful
to consider spaces equipped with seminorms and to develop a theory in that context.
It would certainly be interesting to see which results could be obtained definably over
o-minimal expansions of real closed fields; there is the potential for a very rich theory
to be uncovered here.
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