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The Vitali covering theorem in constructive mathematics
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Abstract: This paper investigates the Vitali Covering Theorem from various
constructive angles. A Vitali Cover of a metric space is a cover such that for every
point there exists an arbitrarily small element of the cover containing this point.
The Vitali Covering Theorem now states, that for any Vitali Cover one can find a
finite family of pairwise disjoint sets in the Vitali Cover that cover the entire space
up to a set of a given non-zero measure. We will show, by means of a recursive
counterexample, that there cannot be a fully constructive proof, but that adding a
very weak semi-constructive principle suffices to give such a proof. Lastly, we will
show that with an appropriate formalization in formal topology the non-constructive
problems can be avoided completely.
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1 Introduction

The Vitali Covering Theorem (VCT), from 1908 and due to Italian Giuseppe Vitali [18],
is a result in the measure theory of Euclidean spaces. In its simplest form1 it can be
stated as follows.

Theorem 1 Let V be a Vitali cover of a set X ⊆ R with finite outer measure. Then
there is a sequence (In)n≥1 of pairwise disjoint elements of V such that

µ

X \
⋃
i≥1

Ii

 = 0.

1More general versions of VCT consider subsets of Rn and the Hausdorff measure rather
than the Lebesgue one.
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Here a Vitali cover of a set X ⊆ R is a family of intervals V such that for every point
x ∈ X and ε > 0, the cover V contains some interval I with x ∈ I and length |I| < ε.

One well known application of VCT is Lebesgue’s Differentiation Theorem [12]: If f
is continuous and non-decreasing on [a, b] ⊆ R, then f ′(x) exists almost everywhere
on [a, b] (For a proof using VCT see [6, Ch. 4.4]).

Since VCT is about extracting a sub-family from a given cover with certain properties,
it is superficially similar to the Heine-Borel Theorem. The key difference is that in VCT
one is interested in extracting a disjoint family of sets. The usual classical proof (see
e.g. [6, Ch. 4] for a proof due to Banach) is unacceptable from a constructive point of
view. We will show that there cannot be a fully constructive proof by giving a recursive
counterexample, i.e. we show that in Russian constructive mathematics (RUSS) one can
construct a Vitali cover for which even a weakening of the above Theorem 1 fails.

In Simpson’s program of (Classical) Reverse Mathematics [16] VCT has been shown to
be equivalent to a very weak form of Kőnig’s Lemma called Weak Weak Kőnig’s Lemma
(WWKL) [5]. We show that also constructively WWKL is equivalent to VCT. This
way we not only classify the latter in the program of Constructive Reverse Mathematics,
we also obtain a proof in Brouwer’s intuitionism, since WWKL is easily seen to follow
from the Fan Theorem.

However, seen from a different angle VCT is fully constructive. Using the theory of
formal spaces [15] we are able to give a constructive proof of a formal version of the
theorem. In formal topology a version of the Heine-Borel Theorem holds [7], and as
one might expect this makes a proof of the VCT possible. We will also relate the formal
versions of these two covering theorems to their point-wise counterparts via the notion
of spatiality of formal topologies.

2 Preliminaries

2.1 Constructive mathematics

By constructive mathematics we mean Bishop-style constructive mathematics (BISH)
[3]; that is mathematics with intuitionistic logic together with some appropriate set-
theoretic foundation, such as Aczel’s constructive set theory CZF [1].

We will also talk about two other schools of constructive mathematics. Namely,
the above-mentioned schools of Russian constructive mathematics and Brouwer’s
intuitionism (INT). In relation to BISH, these disciplines can be seen as extensions
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The Vitali covering theorem in constructive mathematics 3

obtained by adding, in the first case a Church-Turing type principle, and in the second
case a continuity principle and the principle of bar induction. For further details on
BISH, RUSS and INT we refer to [4].

Following Bishop we make free use of the axiom of countable choice, especially in
Section 4.

2.2 Intervals and measure

For simplicity and clarity’s sake we will consider the following simpler restatement of
Theorem 1, which avoids any reference to a measure. It seems feasible to extend the
proofs in Sections 4 and 5 to a more general setting, but we believe that even though
this could be done easily, it would not contribute to a better understanding of the Vitali
covering theorem.

Theorem 2 Let V be a countable Vitali cover of [a, b] ⊆ R. Then there exists a
sequence (In)n≥1 of pairwise disjoint intervals of V such that for each ε > 0 there is
N ∈ N such that

N∑
i=1

|Ii| > b− a− ε .

For an interval I ⊆ R we denote by I and I its left and right endpoints respectively.
Moreover we denote by |I| the length of I , that is |I| = I − I . Furthermore, by setting
|∅| = 0, one ensures that the real number

µ (I1 ∪ · · · ∪ In) =
n∑

k=1

|Ik| −
n∑

k<j

|Ik ∩ Ij| ,

exists for any finite collection of intervals I1, . . . , In ⊆ R. Thus it will be clear what we
mean by µ(J \

⋃n
i=1 Ii), for intervals J, I1, . . . , In . Unless otherwise stated all intervals

we consider will be non-trivial, that is intervals with I < I .

Even though measure theory can be satisfactorily treated constructively [3, Chapter 6]
we can, with the chosen formalizations, completely avoid it.

The following combinatorial result is commonly referred to as the “Baby Vitali Lemma”
and is a key intermediate step in the proof of VCT common to all approaches.

Lemma 3 Given finitely many intervals I1, . . . , In ⊆ R, we can find a pairwise disjoint
subsequence Ik1 , . . . , Ikm such that

µ
(
Ik1 ∪ . . . ∪ Ikm

)
≥ 1

4
µ (I1 ∪ . . . ∪ In) .
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Proof Choose intervals J1, . . . , Jn with rational endpoints such that Ij ⊆ Jj and

|Jj| ≤
4
3
|Ij|

for all 1 ≤ j ≤ n. Choose k1 such that |Jk1 | ≥ |Jj| for every 1 ≤ j ≤ n. Suppose
k1, . . . , kl have been chosen, then choose kl+1 such that |Jkl+1 | ≥ |Jj| for each 1 ≤ j ≤ n
with Jj disjoint from Jk1 , . . . , Jkl . This process eventually stops and we get a subsequence
Jk1 , . . . , Jkm of pairwise disjoint intervals. Moreover, for any 1 ≤ j ≤ n there is
1 ≤ l ≤ m such that Jj ∩ Jkl is inhabited and |Jj| ≤ |Jkl |.

Now we widen the chosen intervals by letting

J′kj
=
(

2Jkj − Jkj , 2Jkj − Jkj

)
so that |J′kj

| = 3|Jkj | and J′kj
and Jkj have the same midpoint for each 1 ≤ j ≤ m. Then,

for any 1 ≤ j ≤ n there is 1 ≤ l ≤ m such that Jj ⊆ J′kl
and hence

µ (J1 ∪ · · · ∪ Jn) ≤ µ
(
J′k1
∪ · · · ∪ J′km

)
= 3µ

(
Jk1 ∪ · · · ∪ Jkm

)
.

The sequence Ik1 , . . . , Ikm then satisfies

µ
(
Ik1 ∪ · · · ∪ Ikm

)
≥ 3

4
µ
(
Jk1 ∪ · · · ∪ Jkm

)
≥ 1

4
µ (J1 ∪ · · · ∪ Jn)

≥ 1
4
µ (I1 ∪ · · · ∪ In) .

Remark 4 In case the intervals I1, . . . , In all have rational endpoints the constant in
the Baby Vitali Lemma can be sharpened to 1

3 , which is the constant appearing in the
classical statement of the Lemma.

The proofs of VCT in Sections 4 and 5 both reduce to proving the following property
for a Vitali cover V and some c ∈ (0, 1).

(Vc ) For any interval [a, b] for which V is a Vitali cover, there exist
finitely many pairwise disjoint intervals I1, . . . , In in V such that Ii ⊆ (a, b)
for each i = 1, . . . , n and

(1) µ

(
[a, b] \

n⋃
i=1

Ii

)
< c(b− a) .
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We may assume that every interval Ik in Vc is non-trivial: for any of them we can decide
whether |Ik| > 0 or

|Ik| < c(b− a)− µ

(
[a, b] \

n⋃
i=1

Ii

)
;

in the second case we can simply drop it without changing equation (1). If V has this
property Vc then the proof of Theorem 2 is straightforward.

Proof of Theorem 2 Suppose the covering V has the property (Vc ). Choose µ > 0
such that c + µ < 1. By (Vc ) we get a finite subset J0 = {I1, . . . , In} ⊆ V of pairwise
disjoint intervals such that

∑n
i=1 |Ii| > (1−c)(b−a) and Ii ⊆ (a, b) for each 1 6 i 6 n.

Following the remark above we can assume that the intervals are non-trivial, so we can
decide for i 6= j whether Ii > Ij or Ii < Ij . In the second case, by the disjointness of the
intervals, Ii 6 Ij . Thus without loss of generality we may assume that Ii 6 Ii+1 for all
1 6 i < n.

Now set J0 = [a, I1], Jk = [Ik, Ik+1] for k = 1, . . . , n− 1, and Jn = [In, b]. Construct
a decidable T ⊆ {0, . . . , n} such that k ∈ T implies that

|Ik| < δ = µc(b− a)/(n + 1) ,

and k /∈ T implies that Ik is non-trivial.

As V is a Vitali cover of any subinterval of [a, b], we can apply the property (Vc ) again
to every Ji where i /∈ T and get a finite subset Ii ⊆ V of pairwise disjoint intervals
such that

µ
(

Ji \
⋃
Ii

)
< c|Ji| .

In case that i ∈ T , that is when Ji is very small, we set Ii = ∅. For every k the elements
of Ik are contained in the interior of Jk . Hence, if we let J1 = J0 ∪

⋃n
i=0 Ii , it is

straightforward that the elements of J1 are pairwise disjoint and that

µ
(

[a, b] \
⋃
J1

)
<

n∑
i=0

µ
(

Ii \
⋃
J1

)
<
∑
i/∈T

µ
(

Ii \
⋃
J1

)
+
∑
i∈T

µ (Ii)

< c2(b− a) + (n + 1)δ

= (c + µ)c(b− a).
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Repeating this process m times we end up with a finite subset Jm ⊆ V of pairwise
disjoint intervals such that

µ
(

[a, b] \
⋃
Jm

)
< (c + µ)m−1c(b− a) ,

and Jm−1 ⊆ Jm . Enumerating
⋃

n∈N Jn yields a sequence (In)n>1 with the desired
property: Let ε > 0 and choose N ∈ N such that (c+µ)N−1c(b− a) < ε. Furthermore
let M be large enough, such that JN ⊆ {I1, I2, . . . , IM}. Then

µ

(
[a, b] \

M⋃
i=1

Ii

)
< (c + µ)N−1c(b− a) < ε ;

or equivalently, since the intervals are pairwise disjoint,
M∑

i=1

|Ii| > b− a− ε .

2.3 Formal Spaces

Formal topology is a constructive version of the point-free approach to topology
developed under the name of locale theory [11]. We will recall some basic notions
necessary for later sections. For further details see [15].

Let (X,6) be a pre-ordered set, i.e. 6 is reflexive and transitive. For any subsets
U,V ⊆ X we let ↓U def

= {x ∈ X : (∃u ∈ U) x 6 u} and U ∧ V def
= ↓U ∩ ↓V . We will

moreover use the notation U G V def⇐⇒ (∃u ∈ X) u ∈ U ∩ V .

Definition 5 A Formal Topology X = (X,6,C) consists of a pre-ordered set (X,6)
together with a relation C between elements of X and subsets of X satisfying the
following conditions

(Ref) a ∈ U =⇒ a C U ,

(Tra) a C U & U C V =⇒ a C V ,

(Ext) a 6 b =⇒ a C {b},

(Loc) a C U & a C V =⇒ a C U ∧ V .

Here U CV def⇐⇒ (∀a ∈ U)aCV . We often write aCb instead of aC{b} for a, b ∈ X .
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A formal point of X = (X,6,C) is a subset α ⊆ X satisfying

(P1) (∃x ∈ X)x ∈ α ,

(P2) a, b ∈ α ⇐⇒ {a} ∧ {b} G α .

(P3) a ∈ α & a C U =⇒ α G U .

We denote by Pt(X ) the class of points of X and call it the formal space of X . For
U ⊆ X we let ext[U] def

= {α ∈ Pt(X ) : α G U}—the class of points containing some
element of U . The spatial topology on Pt(X ) is the topology τX generated by the base
ext[a], a ∈ X .

We recall a well known construction of the real numbers as a formal space (see
for example [11] and [13]). The formal topology of formal reals is the structure
R = (R,6,C), with R ⊆ Q×Q the set of all pairs (p, q) where p < q. The pre-order
is given by inclusion, i.e. (p, q) 6 (r, s) if and only if r ≤ p and q ≤ s. We also have
the obvious strict version <. The cover is defined by

(2) (p, q) C U def⇐⇒
[
∀(p′, q′) < (p, q)

]
(p′, q′) Cf U,

where Cf is inductively defined by the rules

(R1) (p, q) ∈ U =⇒ (p, q) Cf U ,

(R2) (p, s) Cf U , (r, q) Cf U , p ≤ r < s ≤ q =⇒ (p, q) Cf U ,

(R3) (r, s) Cf U , (p, q) 6 (r, s) =⇒ (p, q) Cf U .

When two pairs (p, q), (r, s) are consistent, i.e. r < q and p < s, their meet exists in R
and is given by

(p, q) ∧ (r, s) = (max(p, r),min(q, s)) .

We will say that two pairs (p, q) and (r, s) in R are disjoint when s ≤ p or q ≤ r . For
U ⊆ R we denote by Fin(U) the set of finitely enumerable subsets2 of U .

Lemma 6 The following properties hold of the covers Cf and C:

(1) If (p, q) Cf U then (p, q) C U ,

(2) If (p, q) Cf U , then there is U0 ∈ Fin(U) such that (p, q) Cf U0 ,

2In fact, as the elements of R are pairs of rational numbers, Fin(U) is the same as the set of
all finite subsets of U .

Journal of Logic & Analysis 4:7 (2012)



8 H Diener and A Hedin

(3) If U is finite then (p, q) Cf U if and only if ext[(p, q)] ⊆ ext[U],

(4) If (p, q) C U and U is finite, then (p, q) Cf U .

Proof For (1) suppose (r, s) < (p, q)Cf U , then (r, s) 6 (p, q) and (r, s)Cf U follows
since Cf is a cover.

Item (2) is proved by a straightforward induction on the finitary cover (p, q) Cf U .

For (3) the left to right direction is immediate. Conversely, suppose ext[(p, q)] ⊆ ext[U]
for U finite. Since U is finite and covers (p, q) (as intervals) we may choose (pi, qi) ∈ U ,
i = 0, . . . , n, such that p0 ≤ p < q0 , pn < q ≤ qn and pi+1 < qi for i = 0, . . . , n− 1.
It is then clear that (p0, qn) Cf U (by repeated use of (R2)) from which (p, q) Cf U
follows by (Ext).

The proof of item (4) is much more involved, and we refer to [7] for the details.

The points of R, which we call formal reals, can be characterized as follows.

Lemma 7 A subset α of R is a formal real if it satisfies

(P1) α is inhabited,

(P2) (p, q), (r, s) ∈ α if and only if (p, q) ∧ (r, s) ∈ α ,

(P3) (p, q) ∈ α and p ≤ r < s ≤ q implies (p, s) ∈ α or (r, q) ∈ α ,

(P4) (p, q) ∈ α implies there is (r, s) ∈ α with (r, s) < (p, q).

The collection of formal reals, denoted Pt(R), is precisely the set of Dedekind reals
and with countable choice we can show that Pt(R) is homeomorphic to the Cauchy
reals à la Bishop [13]. The rational numbers are embedded via

r 7→ {(p, q) ∈ R : p < r < q},

and we will without further mention use letters p, q, r, s, . . . for denoting rationals both
as basic numbers and formal reals. The arithmetic order on Pt(R) is given by

α < β
def⇐⇒ (∃(p, q) ∈ α)(∃(r, s) ∈ β)q < r,

and we define α ≤ β
def⇐⇒ ¬ (β < α). Thus, when we write r < α we really mean

{(p, q) ∈ R : p < r < q} < α which by definition means that there is (p, q) ∈ r and
(u, v) ∈ α with q < u. The next property of formal reals will be useful in the following
sections.

Journal of Logic & Analysis 4:7 (2012)



The Vitali covering theorem in constructive mathematics 9

Lemma 8 If α is a formal real, then for any k > 0 there exists (p, q) ∈ α with
q− p < k .

Proof Let α ∈ Pt(R) and k > 0. Let (r, s) ∈ α , then (r, r+2s
3 ) ∈ α or ( 2r+s

3 , s) ∈ α .
Then let n be large enough that ( 2

3 )n(s− r) < k and we see that repeating the above
trisection n times will give us an element (p, q) ∈ α with q− p < k .

3 A recursive counterexample

Theorem 9 In RUSS there exists a Vitali cover for which Theorem 2 fails to hold.

Before we construct this counterexample, we remind the reader of the following recursive
obscurity. A sequence of non-degenerate intervals (In)n≥1 is called an α-singular
covering of [0, 1] if

(1) For all m 6= n either In ∩ Im = ∅, In = Im or Im = In .

(2) For all x ∈ [0, 1] there exists m, n with In = Im and Im < x < In .

(3) For all n ∈ N
n∑

i=1

|Ii| < α .

It is a theorem in RUSS that for any 0 < α there exists an α-singular covering of [0, 1],
see for example [2]. We are now in the position to give a proof of Theorem 9.

Proof Let (Jn)n≥1 be a 1
6 -singular covering. We need to extend these intervals slightly,

so that their union covers the unit interval. To this end set In = (2Jn − Jn, 2Jn − Jn).
Then

• [0, 1] ⊆
⋃∞

i=1 Ii and

•
∑n

i=1 |Ii| = 3
∑n

i=1 |Ji| ≤ 1
2 , for all n ∈ N.

For each n ∈ N let (Ik
n)k≥1 be an enumeration of all intervals with rational endpoints

contained in In . Then the family of intervals (Ik
n)k,n is easily seen to be a Vitali cover.

Now assume Theorem 1 holds; that is assume that there exist pairwise disjoint Ik1
n1 , . . . , I

km
nm

such that

(3) µ

(
[0, 1] \

m⋃
i=1

Iki
ni

)
<

1
2
.
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10 H Diener and A Hedin

Now

1
2
> µ

(
[0, 1] \

m⋃
i=1

Iki
ni

)
= 1− µ

(
m⋃

i=1

Iki
ni

)

≥ 1− µ

(
m⋃

i=1

Ini

)

≥ 1−
m∑

i=1

µ
(
Ini

)
≥ 1

2
;

a contradiction.

We would like to mention that it can be shown that the Vitali cover constructed above
is even totally bounded under the Hausdorff metric, thus limiting the possibility of a
purely constructive version of VCT even under additional assumptions.

4 An intuitionistic proof

The recursive counterexample above relies on the existence of singular covers. In
Brouwer’s intuitionism the existence of such objects is ruled out by the Fan theorem—to
be precise the Fan theorem for detachable bars suffices to ensure that any countable
covering of [0, 1] by open intervals has a finite subcover [8]. As it turns out an even
weaker principle suffices to prove Vitali’s covering theorem. Researchers working on S.
Simpson’s program of classical reverse mathematics have proven that in their system
Vitali’s covering theorem is equivalent to a “weak weak” version of Kőnig’s Lemma
[5]. Without a change it is readily accessible as a principle in constructive reverse
mathematics:

WWKL. If B ⊆ 2∗ is a decidable bar that is closed under extensions, then

lim
n→∞

| {u /∈ B : |u| = n} |
2n = 0.

We remind the reader that a bar B is a subset of the set of all finite binary sequences 2∗ ,
such that for any infinite binary sequence α ∈ 2N there is a natural number N such that
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The Vitali covering theorem in constructive mathematics 11

its initial segment αN of the first N terms is in B. Also, B is closed under extensions,
if for all u,w ∈ 2∗ we have that

u ∈ B =⇒ u ∗ w ∈ B,

where u∗w is the concatenation of u followed by w. The principle WWKL has already
been investigated in constructive reverse mathematics [14]. Here we are going to prove
the following equivalence, which also holds in Simpson’s program.

Proposition 10 The following statements are equivalent in BISH

(a) WWKL

(b) If In is a cover of [0, 1] with open intervals, then for all ε > 0 there exists N
such that

µ

(
N⋃

n=1

In

)
> 1− ε .

Proof Let us assume that WWKL holds, let (In)n≥1 be an open cover of [0, 1], and
let ε > 0 be arbitrary. Write each In as the union of countably many open intervals
with rational endpoints In,m . Notice that these intervals still cover [0, 1].

For every u ∈ 2∗ we will define an interval Ju iteratively the following way: let J0 be
the interval [0, 1

2 ] and J1 = [ 1
2 , 1], and let Ju∗0 be the left half and Ju∗1 be the right

half of Ju . Since we are dealing with intervals with rational endpoints the predicate
P(u), defined by

P(u) ⇐⇒ Ju ⊂
⋃

n,m≤|u|

In,m ,

is decidable. We claim that
B = {u ∈ 2∗ : P(u)}

is a decidable bar. For let α ∈ 2N be arbitrary and consider its image x = F(α) under
the canonical embedding F of Cantor space into the unit interval. Since (In,m)n,m≥1

is a cover there exist n0,m0 ∈ N with x ∈ In0,m0 . Since In0,m0 is open there exists
M ≥ n0,m0 such that (x− 2−M+1, x + 2−M+1) ⊆ In0,m0 ; but then also

JαM ⊆ [x− 2−M, x + 2−M] ⊆ In0,m0 ,

and hence P(αM), which means that αM ∈ B. This shows that B is a decidable bar.
The set B is also closed under extensions, since for any u,w ∈ 2∗ with u ∈ B we have

Ju∗w ⊂ Ju ⊂
⋃

n,m≤|u|

In,m ⊂
⋃

n,m≤|u∗w|

In,m .

Journal of Logic & Analysis 4:7 (2012)



12 H Diener and A Hedin

Hence, by WWKL, there exists N with

| {u /∈ B : |u| = N} |
2N < ε ,

which implies that

µ

 ⋃
u:|u|=N

u/∈B

Ju

 < ε .

So

1− µ

(
N⋃

n=1

In

)
≤ µ

 ⋃
u:|u|=N

Ju

− µ( N⋃
n=1

In

)

≤ µ

 ⋃
u:|u|=N

Ju

− µ
 N⋃

n,m=1

In,m


≤ µ

 ⋃
u:|u|=N

Ju \
N⋃

n,m=1

In,m



= µ

 ⋃
u:|u|=N

u/∈B

Ju \
N⋃

n,m=1

In,m



+ µ

 ⋃
u:|u|=N

u∈B

Ju \
N⋃

n,m=1

In,m



≤ µ

 ⋃
u:|u|=N

u/∈B

Ju

+ µ

 ⋃
u:|u|=N

u∈B

Ju \
N⋃

n,m=1

In,m



≤ µ

 ⋃
u:|u|=N

u/∈B

Ju

+ 0

< ε .

This proves that (a) =⇒ (b).
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The Vitali covering theorem in constructive mathematics 13

In order to prove the reverse implication, assume that (b) holds and let B be a decidable
bar which is closed under extensions. Moreover, let ε > 0 be arbitrary. Now, iteratively,
define intervals (Iu)u∈2∗ the following way: let Ju be defined as above and Iu be the
open interval

Iu =
(

Ju −
ε

22|u|+2 , Ju +
ε

22|u|+2

)
.

Since B is decidable, we can enumerate a subset (un)n≥1 of B such that {un : n ≥ 1} is
a bar and, for every n ∈ N, either

• {u1, . . . , un} is already a bar, or

• {u1, . . . , un} are pairwise incomparable, i.e. no ui is a prefix of another.

Moreover, we may assume that |uk| ≤ |uk+1|. Since (un)n≥1 is a bar, the sequence
(In)n≥1 , where In = Iun for each n ≥ 1, is a cover of [0, 1]. Thus, applying (b) we get
N ∈ N such that

µ

(
N⋃

n=1

In

)
> 1− ε .

Let K = |uN |. Now, either {u1, . . . , uN} is already a bar, or consists of pairwise
incomparable sequences. If the former holds we have

| {u /∈ B : |u| = m} |
2m = 0,

for any m ≥ K . If the latter holds we have, with Jn = Jun , that

µ

(
N⋃

n=1

In

)
≤

N∑
n=1

|In| =
N∑

n=1

(
|Jn|+

ε

22|un|+1

)
≤

N∑
n=1

|Jn|+ ε,

and hence
∑N

n=1 |Jn| ≥ 1− 2ε. Since {u1, . . . , uN} are pairwise incomparable we then
have

1− 2ε <
N∑

n=1

|Jn| ≤
∑

u:|u|=K
u∈B

|Ju|

from which it follows that

| {u /∈ B : |u| = K} |
2K < 2ε.
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14 H Diener and A Hedin

Even though the proof above is very similar to the one given in [5] and [20], there are
differences. Working with classical logic the law of excluded middle is available and
used in Simpson’s system. On the other hand the proof above uses countable choice,
which is avoided in Simpson’s framework. This is also a good time to point out that
in [5] it is implicitly shown that—working in classical reverse mathematics—Vitali’s
covering theorem is equivalent to WWKL. Even though this indicates, that Vitali’s
covering theorem is not provable in RUSS, the construction above gives an explicit
counterexample to that theorem.

Corollary 11 Assume WWKL holds. If [a, b] is an interval and V a countable Vitali
cover of [a, b], then there exist finitely many, pairwise disjoint intervals I1, . . . , In in V
such that

n∑
k=1

|Ik| >
1
5
|a− b| ,

and Ik ⊆ (a, b) for all 1 ≤ k ≤ n.

Proof Follows from Lemma 3 and Proposition 10.

Thus, under the assumption that WWKL holds, we see that any countable Vitali cover
of an interval [a, b] has the property (V 4

5
), and thus the main theorem follows easily as

noted in the preliminaries.

Theorem 12 (Intuitionistic Vitali Covering Theorem) Assume that WWKL holds.
Let ε > 0 be arbitrary. If V is a countable Vitali cover of [a, b], then there exists a
finite set {I1, . . . , Im} of pairwise disjoint intervals of V such that

µ

(
[a, b] \

m⋃
i=1

Ii

)
< ε .

It is worth pointing out that it is easy to see that VCT implies Part (b) of Proposition 10.
Hence VCT is actually equivalent to WWKL.

5 A point-free version

The proof of the VCT for the formal reals relies on the Heine-Borel theorem. We
therefore start by recalling some details of its proof [7] and discuss the relation to its
failure in the point-wise case.
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5.1 The Heine-Borel covering Theorem for R

By the Heine-Borel covering property for real numbers we mean the following.

HB. If (Ij)j∈J is a collection of open intervals covering [0, 1], then there is
a finite subset F ⊆ J such that [0, 1] ⊆

⋃
j∈F Ij .

It is well known that HB fails in BISH because of the existence of recursive counterex-
amples in RUSS3. On the other hand it has been shown that a version of HB holds
for the formal reals [7]. This is no contradiction since on the formal side we restrict
attention to covers (Ij)j∈J of open intervals (with rational endpoints) satisfying the
relation [0, 1] C {Ij : j ∈ J}. We recall some of the details to make the last statement a
bit more precise.

Given formal reals α ≤ β , we denote by [α, β] = (R,6,C[α,β]) the closed sub-formal
topology R \ C[α, β], where

C[α, β] = {(p, q) ∈ R : q < α ∨ β < p}.

By this we mean that the cover relation is given by

(p, q) C[α,β] U def⇐⇒ (p, q) C U ∪ C[α, β].

It is clear that C ⊆ C[α,β] . The formal space Pt([α, β]) is precisely the set of
formal reals γ satisfying α ≤ γ ≤ β . Using the shorthand [α, β] C[α,β] U for
(∀(p, q) ∈ R)(p, q) C[α,β] U , the formal Heine-Borel Theorem then states.

Theorem 13 If [α, β] C[α,β] U , then there exists a finite subset U0 ⊆ U such that
[α, β] C[α,β] U0 .

The following Lemma is crucial in the proof of the Theorem.

Lemma 14 [α, β]C[α,β]U if and only if there exists (r, s) ∈ R such that r < α ≤ β < s
and (r, s) Cf U ∪ C[α, β].

From the assumption [α, β] C[α,β] U we get a pair (r, s) ∈ R satisfying the conditions
of the Lemma. Using Lemma 6 we then have (r, s) Cf U0 ∪ C[α, β] for some finite
subset U0 ⊆ U . But then, again using the lemma above, [α, β] C[α,β] U0 .

3See for example [4, Ch. 3.4], or the cover (In)n∈N defined in the proof of Theorem 9.
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16 H Diener and A Hedin

5.2 Heine-Borel and Spatiality

The relation between the point-free and point-wise Heine-Borel properties has to do
with the notion of formal versus point-wise cover. Any formal cover a CX U is a
point-wise cover in the sense that α ∈ ext[a] implies α ∈ ext[U] for any formal point
α in X . The converse implication in general requires non-constructive principles. It is
well known that for the localic reals this is the case if and only if its formal space is
locally compact, i.e. the unit interval [0, 1] is compact [9]. For the sake of completeness
we give a proof in the framework of formal topology.

For a formal topology X = (X,6,CX ) we define the spatial cover:

a CPt(X ) U def⇐⇒ (∀α ∈ Pt(X ))(a ∈ α =⇒ α G U).

As noted above we always have CX ⊆ CPt(X ) , but not necessarily the converse.

Definition 15 A formal topology A = (A,6,C) is said to be spatial if for all a ∈ A,
U ⊆ A

a CPt(A) U =⇒ a CA U.

This notion of spatiality coincides with the usual one of locale theory. See [10] for a
detailed account of spatiality in formal topology. The covering relation for the formal
reals has the following connection to its spatial covering relation, which follows from
items 1-3 of Lemma 6.

Lemma 16 For all (p, q) ∈ R and U ⊆ R we have

(p, q) C U ⇐⇒ (∀(r, s) < (p, q))(∃U0 ∈ Fin(U))((r, s) CPt(R) U0)

Proposition 17 Spatiality of R is equivalent to HB for Pt(R).

Proof Suppose HB holds for Pt(R) and suppose (p, q) CPt(R) U , so that ext[(p, q)] ⊆
ext[U]. If (r, s) < (p, q), then [r, s] ⊆ ext[U] so there is a finite subset U0 ⊆ U such
that [r, s] ⊆ ext[U0] and hence ext[(r, s)] ⊆ [r, s] ⊆ ext[U0], i.e. (r, s) CPt(R) U . But
then (p, q) C U by Lemma 16.

Conversely, if R is spatial, and [0, 1] ⊆ ext[U], then there is (p, q) ∈ R with
[0, 1] ⊆ ext[(p, q)] ⊆ ext[U], i.e. (0, 1) < (p, q) (ext[U] being open). So (p, q)CPt(R)U
which implies (p, q) C U . If we let (r, s) < (p, q) with (0, 1) < (r, s) we then
have by Lemma 16 that (r, s) CPt(R) U0 for some finite subset U0 ⊆ U . That is
[0, 1] ⊆ ext[(r, s)] ⊆ ext[U0].
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Remark 18 By HB for Pt(R) we here mean the Heine-Borel principle restricted
to covers (Ij)j∈J consisting of intervals with rational endpoints. Such a covering is
precisely ext[U] for some U ⊆ R.

5.3 Vitali’s Covering Theorem

Recall that a (point-wise) Vitali cover of an interval J ⊆ R is a family of intervals
V such that for any x ∈ J and k > 0, there exists I ∈ V with x ∈ I and |I| < k .
The analogue property for covers in the formal reals R = (R,6,C) is given by the
following definition.

Definition 19 Let V ⊆ R and (p, q) ∈ R. If for every (r, s) 6 (p, q) we have

(4) (r, s) C V ∩ ↓{(r, s)}

we say that V is a formal Vitali cover of (p, q). We say that V is a Vitali cover of
U ⊆ R if V is a Vitali cover of every (p, q) ∈ U .

Any formal Vitali cover V of (p, q) is clearly also a formal cover (p, q) C V . Moreover,
every formal Vitali cover is always a point-wise Vitali cover.

Lemma 20 If (p, q) C V is a formal Vitali cover then (p, q) CPt(R) V is a Vitali cover.

Proof Suppose (p, q) C V is a formal Vitali cover and let α ∈ ext[(p, q)] and k > 0.
Then (p, q) ∈ α , and by Lemma 8 we can find (r, s) ∈ α ∩ ↓{(p, q)} with s− r < k .
By (4) we have (r, s) C V ∩ ↓{(r, s)} and since (r, s) ∈ α there is (u, v) ∈ V ∩ ↓{(r, s)}
such that (u, v) ∈ α (using (P3)), moreover v− u ≤ s− r < k .

Assuming spatiality of R the converse also holds.

Lemma 21 Suppose R is spatial and that (p, q) CPt(R) V is a Vitali cover. Then
(p, q) C V is a formal Vitali cover.

Proof Let V ⊆ R be a point-wise Vitali cover of (p, q) ∈ R, i.e. ext[(p, q)] is Vitali
covered by the collection of intervals ext[(u, v)] where (u, v) ∈ V . If (r, s) 6 (p, q) and
α ∈ ext[(r, s)] then with k ≤ min(α− r, s−α) there is (u, v) ∈ V with α ∈ ext[(u, v)]
and v − u < k . Then (u, v) 6 (r, s), and hence (u, v) ∈ V ∩ ↓{(r, s)} which implies
(r, s) CPt(R) V ∩ ↓{(r, s)}. But then (r, s) C V ∩ ↓{(r, s)} by spatiality.
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18 H Diener and A Hedin

We also note that assuming spatiality only for Vitali covers in fact implies spatiality for
all covers.

Lemma 22 If for all (p, q) ∈ R and V ⊆ R

(5) (p, q) CPt(R) V Vitali cover =⇒ (p, q) C V,

then R is spatial.

Proof Suppose (p, q) CPt(R) V and let α ∈ ext[(p, q)]. Then there is (u, v) ∈ V such
that α ∈ ext[(u, v)]. Since there are arbitrarily small (r, s) ∈ α ∩ ↓{(u, v)} (using
Lemma 8) we see that ext[↓V] is a point-wise Vitali cover of ext[(p, q)]. By (5) we
then have (p, q) C ↓V from which (p, q) C V follows by (Tra), since ↓V C V .

By a formal Vitali cover V of an interval [α, β] (considered as a closed subspace of R)
we mean a subset V ⊆ R such that

R C[α,β] V

is a formal Vitali cover, i.e. for every (p, q) ∈ R we have (p, q) C[α,β] V ∩ ↓{(p, q)}.

Lemma 23 Suppose V is a Vitali cover of [α, β] and that

r < α < p < s < u < q < β < v,

for r, p, s, u, q, v ∈ Q. Then [α, β] C[α,β] {(r, s), (u, v)} ∪
(
V ∩ ↓{(p, q)}

)
.

Proof If (a, b) ∈ R, then (a, b)C[α,β] {(r, s), (p, q), (u, v)}, moreover (p, q)C[α,β] V ∩
↓{(p, q)} by the Vitali property, and by (Tra) we then have

(a, b) C[α,β] {(r, s), (u, v)} ∪
(
V ∩ ↓{(p, q)}

)
.

Lemma 24 Suppose V is a Vitali cover of [α, β], for some α < β in Pt(R), then there
exists a finite subset V0 = {(u1, v1), . . . , (un, vn)} ⊆ V of pairwise disjoint elements
such that

µ(ext[V0]) >
1
4

(β − α),

α < ui < vi < β for all 1 ≤ i ≤ n.
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Proof Let r < α < s < u < β < v such that both

s− α < 1
8

(β − α) and β − u <
1
8

(β − α)

Then, using Lemma 23,

[α, β] C[α,β] {(r, s), (u, v)} ∪
(
V ∩ ↓{(p, q)}

)
for any (p, q) with α < p < s and u < q < β . By Theorem 13 (Heine-Borel for R)
we then have a finite subset V ′0 ⊆ V ∩ ↓{(p, q)} such that

[α, β] C[α,β] {(r, s), (u, v)} ∪ V ′0.

Say we have V ′0 = {(u1, v1), . . . , (un, vn))}, then (ui, vi) 6 (p, q) for each 1 ≤ i ≤ n,
and (s, u)C[α,β] V ′0 (by (Loc) and (Tra)) which implies (s, u)CV ′0 since α < s < u < β .
By Lemma 6 we then have

µ(ext[V ′0]) > (β − α)− 1
4

(β − α) =
3
4

(β − α).

Now, using lemma 3 we find V0 ⊆ V ′0 consisting of pairwise disjoint elements such that

1
3
µ(ext[V ′0]) ≤ µ(ext[V0]).

As noted in Remark 4 we get the constant 1/3 instead of 1/4 since the intervals here
have rational endpoints. But then we have µ(ext[V0]) > 1

4 (β − α).

Note that the finite set V0 in the Lemma only contains intervals (u, v) with ext[(u, v)] ⊆
[α, β].

Thus we see that any formal Vitali cover has the property V 3
4

and then, as explained in
the preliminaries, the main theorem follows quite easily.

Theorem 25 (Formal Vitali Covering Theorem) Suppose V is a formal Vitali cover
of [α, β], for some α < β in Pt(R). Then there is a sequence {(ui, vi) : i ≥ 1} of
pairwise disjoint elements of V with α < ui < vi < β for all 1 ≤ i ≤ n and for each
ε > 0 there is N ∈ N such that

N∑
i=1

vi − ui > β − α− ε.
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6 Discussion

We would like to conclude the paper by briefly sketching the outlines of yet another
possible, constructive, view of VCT.

Recursive mathematics is roughly divided into two schools that are known as the Russian
one, mentioned above, and the Polish one, which also includes Weihrauch’s popular
Type Two Effectivity approach [19]. Both schools are mainly interested in computable
(recursive) objects. The difference lies in whether or not one assumes a classical
or a constructive meta-theory, and hence whether or not non-computable objects are
“ignored” or not. For a practitioner of RUSS all functions between natural numbers are
computable—a non-computable function between natural numbers simply cannot be
defined. Along the same lines in RUSS all real numbers are computable.4 This view
leads to the existence of strange objects, such as a bounded, increasing sequence of real
numbers that does not converge to any real number [17]. Of course, if one assumes the
Polish standpoint one would argue that this sequence converges to a non-computable
real number, which in RUSS does not exist. Similarly, the key to the counterexample
in Section 3 relies on the fact, that from the Polish point of view, the Vitali cover only
covers the computable real numbers and not all real numbers. It would be more in the
tradition of the Polish school to assume that a Vitali cover is a cover for all real numbers.
Since the classical proof of the theorem guarantees the existence of a finite, disjoint,
sufficiently large subcover of such a Vitali cover, and, furthermore one can effectively
enumerate all such subcovers, one can compute VCT by a simple unbounded search
that is guaranteed to terminate.
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