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Lipschitz functions on topometric spaces

ITAÏ BEN YAACOV

Abstract: We study functions on topometric spaces which are both (metrically)
Lipschitz and (topologically) continuous, using them in contexts where, in classical
topology, ordinary continuous functions are used. We study the relations of such
functions with topometric versions of classical separation axioms, namely, nor-
mality and complete regularity, as well as with completions of topometric spaces.
We also recover a compact topometric space X from the lattice of continuous
1-Lipschitz functions on X , in analogy with the recovery of a compact topological
space X from the structure of (real or complex) functions on X .
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Introduction

Compact topometric spaces were first defined in [5] as a formalism for various global
and local type spaces arising in the context of continuous first order logic, allowing for
some kind of (topometric) Cantor-Bendixson analysis in spaces which, from a purely
topological point of view, are possibly even perfect. General topometric spaces (i.e.,
non compact) were defined and studied further from an abstract point of view in [2],
where the formalism is shown to be useful for the analysis of perturbation structures
on type spaces. The same idea was also shown to be useful in the context of (very non
compact) Polish groups, which may admit “topometric ample generics” even when no
purely topological ample generics need exist, see [4].

In a nutshell, topometric spaces are spaces equipped both with a metric and a topology,
which need not agree.

Definition 0.1 A topometric space is a triplet (X,T , d), where T is a topology and
d a metric on X , satisfying:

(i) The distance function d : X2 → [0,∞] is lower semi-continuous in the topology.

(ii) The metric refines the topology.

We follow the convention that unless explicitly qualified, the vocabulary of general
topology (compact, continuous, etc.) refers to the topological structure, while the
vocabulary of metric spaces (Lipschitz function, etc.) refers to the metric structure.
Excluded from this convention are separation axioms: we assimilate the lower semi-
continuity of the distance function to the Hausdorff separation axiom, and stronger
axioms, such as normality and complete regularity, will be defined for topometric spaces
below.

We shall refer to two classes of examples, arising from the embedding of the categories
of (Hausdorff) topological spaces and of metric spaces in the category of topometric
spaces. By a maximal topometric space we mean one equipped with the discrete 0/α
distance for some 0 < α ≤ ∞. Such a space can be identified, for most intents and
purposes, with its underlying pure topological structure. In particular, every bounded
function is Lipschitz, and if α =∞ then every function is k-Lipschitz for any k (by k-
Lipschitz we mean Lipschitz with constant at most k). Similarly, a minimal topometric
space is one in which the metric and topology agree, which may be identified with
its underlying metric structure. These mostly serve as first sanity checks (e.g., when
we define a normal topometric space we must check that a maximal one is normal if

Journal of Logic & Analysis 5:8 (2013)



Lipschitz functions on topometric spaces 3

and only if it is normal as a pure topological space, and that minimal ones are always
normal).

In the same way that much information can be gained on a topological space from
spaces of continuous functions on such a space, we seek here to gain information
on a topometric space from the (topologically) continuous and (metrically) Lipschitz
functions thereon. These are naturally linked with separation axioms. In Section 1 we
discuss topometric normality, which we related to existence results such as Urysohn’s
Lemma and Tietze’s Extension Theorem. As a consequence, we obtain a Lipschitz
Morleyisation result, the unique model-theoretic result of this paper. In Section 2
we construct the topometric Stone-Cech compactification and relate it to topometric
complete regularity. In Section 3 we study possible topological structures on the metric
completion of a topometric space, relating these (to an extent) with completely regular
spaces. In Section 4 we characterise the spaces of continuous 1-Lipschitz functions on
compact topometric space, and show that the original topometric space can be recovered
uniquely from its function space.

The reader is advised that Lipschitz functions on an ordinary metric spaces, and algebras
thereof, are extensively studied by Weaver [10]. There is some natural resemblance
between our object of study here and that of Weaver, with the increased complexity due
to the additional topological structure. The reader may wish to compare, for example,
our version of Tietze’s Extension Theorem (Theorem 1.9) with [10, Theorem 1.5.6] (as
well as with the classical version of Tietze’s Theorem, see Munkres [8]).

Acknowledgements

Research supported by the Institut Universitaire de France and ANR contract
GruPoLoCo (ANR-11-JS01-008).

1 Normal topometric spaces and Urysohn and Tietze style
results

For two topometric spaces X and Y we define CL(1)(X, Y) to be the set of all continuous
1-Lipschitz functions from X to Y . An important special case is CL(1)(X) = CL(1)(X,C),
where C is equipped with the standard metric and topology (i.e., with the standard
minimal topometric structure), which codes information both about the topology and
about the metric structure of X . In the present paper we seek conditions under which
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4 Itaï Ben Yaacov

CL(1)(X) codes the entire topometric structure, as well as analogues of classical results
related to separation axioms, in which C(X) would be replaced with CL(1)(X). As
discussed in [2], we consider the lower semi-continuity of the distance function to be
a topometric version of the Hausdorff separation axiom, so it is expected that other
classical separation axioms take a different form in the topometric setting. We start
with normality.

Definition 1.1 Let X be a topometric space. We say that a closed set F ⊆ X has closed
metric neighbourhoods if for every r > 0 the set B(F, r) = {x ∈ X : d(x,F) ≤ r} is
closed in X .

We say that X admits closed metric neighbourhoods if all closed subsets of X do.

It was shown in [2, Lemma 1.8] that compact sets always have closed metric neigh-
bourhoods, so a compact topometric space (which, by our convention, means that the
topology is compact) admits closed metric neighbourhoods. Indeed, the first definition
of a compact topometric space in [5, Defnition 4.11] was given in terms of closed
metric neighbourhoods. While this property seems too strong to be part of the definition
of a non compact topometric space, it will play a crucial role in this section.

Definition 1.2 A normal topometric space is a topometric space X satisfying:

(i) Every two closed subsets F,G ⊆ X with positive distance d(F,G) > 0 can be
separated by disjoint open sets.

(ii) The space X admits closed metric neighbourhoods.

One checks that a maximal topometric space X (i.e., equipped with the discrete 0/α
distance) is normal if and only if it is so as a topological space. Similarly, a minimal
topometric space (i.e., equipped with the metric topology) is always normal. Also, every
compact topometric space is normal (since it admits closed metric neighbourhoods and
the underlying topological space is normal).

We contend that our definition of a normal topometric space is the correct topometric
analogue of the classical notion of a normal topological space. This will be supported by
analogues of Urysohn’s Lemma and of Tietze’s Extension Theorem. The technical core
of the proofs (and indeed, the only place where the definition of a normal topometric
space is used) lies in the following Definition and Lemma.

Definition 1.3 Let X be a topometric space.

Journal of Logic & Analysis 5:8 (2013)



Lipschitz functions on topometric spaces 5

(i) By an (S-)system we mean a sequence Ξ = (Fα,Gα)α∈S = (FΞ
α ,G

Ξ
α)α∈SΞ where

S ⊆ R and Fα,Gα ⊆ X are closed, and if α < β then Fα ∩ Gβ = ∅. We say
that it is c-Lipschitz for some c > 0 if d(Fα,Gβ) ≥ (β − α)/c for α < β in S .
It is total if Fα ∪ Gα = X for all α ∈ S .

(ii) We say that Ξ ⊆ Ξ′ if SΞ ⊆ SΞ′ and FΞ
α ⊆ FΞ′

α , GΞ
α ⊆ GΞ′

α for all α ∈ SΞ .

(iii) To each continuous function f : X → R we associate a total system Ξf =

(Ff
α,G

f
α)α∈R where Ff

α = {x : f (x) ≤ α}, Gf
α = {x : f (x) ≥ α}.

(iv) We say that Ξ = (Fα,Gα)α∈S is compatible with f : X → R if f �Fα
≤ α and

f �Gα
≥ α for α ∈ S , i.e., if Ξ ⊆ Ξf .

Notice that a continuous function f : X → R is c-Lipschitz if and only if Ξf is a
c-Lipschitz system.

Lemma 1.4 Let Ξ be a finite c-Lipschitz S-system in a normal topometric space.
Then for every c′ > c and countable S′ ⊇ S there exists a total c′ -Lipschitz S′ -system
Ξ′ ⊇ Ξ.

Proof Assume first that S′ is finite, and by adding Fα = Gα = ∅ for α ∈ S′ r S we
may assume that S′ = S . It is then enough to find F′β ⊇ Fβ and G′β ⊇ Gβ for one
β ∈ S , such that F′β ∪G′β = X , keeping the other Fα , Gα unchanged. Since the partial
approximation is finite it is also c′ -Lipschitz for some c′ < c. Define:

K =
⋃

α∈S,α<β

B(Fα, (β − α)/c′), L =
⋃

α∈S,α>β

B(Gα, (α− β)/c′).

By construction d(K,L) > 0 and both are closed as finite unions of closed sets. Since
X is normal we can find disjoint open sets U ⊇ K and V ⊇ L .

We claim that F′β = Fβ∪Vc and G′β = Gβ∪Uc will do. Indeed, X = F′β∪G′β . Assume
now that α < β , α ∈ S . We already know by hypothesis that d(Fα,Gβ) > β−α

c′ . We
also know by construction that U ⊇ B(Fα, (β − α)/c′), whereby d(Fα,G′β) ≥ β−α

c′ .
Similarly, if β < α then d(F′β,Gα) ≥ α−β

c′ , and we are done.

The case where S′ is infinite countable follows by induction, adding a single new
element at a time. �1.4

Lemma 1.5 In a normal topometric space X , for every finite c-Lipschitz system Ξ

and c′ > c there exists a continuous c′ -Lipschitz f : X → R compatible with Ξ.
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6 Itaï Ben Yaacov

Proof Let Ξ = (Fα,Gα)α∈S . Since S is finite its convex hull is a compact interval
I ⊆ R. Let T ⊆ I be a countable dense subset containing S . By Lemma 1.4, there
exists a total c′ -Lipschitz T -system Ξ′ = (F′α,G

′
α)σ∈T ⊇ Ξ. Letting f (x) = sup{α ∈

I : x ∈ G′α} = inf{α ∈ I : x ∈ F′α} (here inf ∅ = sup I and sup∅ = inf I ) one
obtains a continuous, c′ -Lipschitz function f : X → I compatible with Ξ. �1.5

Theorem 1.6 (Urysohn’s Lemma for topometric spaces) Let X be a normal topomet-
ric space, F,G ⊆ X closed sets, 0 < r < d(F,G). Then there exists a 1-Lipschitz
continuous function f : X → [0, r] equal to 0 on F and to r on G.

Proof Apply Lemma 1.5 to S = {0, r}, F0 = F , Gr = G, G0 = Fr = X . �1.6

Corollary 1.7 Let X be a compact topometric space. Then the family of continuous
Lipschitz functions on X is dense in C(X).

Proof It will be enough to show that the family CL(X,R) of real-valued continuous
Lipschitz functions on X is uniformly dense in C(X,R). Since X is compact, it is
normal. The family CL(X,R) forms a lattice, and in addition, for every two distinct
points x, y ∈ Sn(L) and values r, s ∈ R, there exists by Urysohn’s Lemma f ∈ CL(X,R)
such that f (x) = s and f (y) = r . By the lattice version of the Stone-Weierstraß theorem,
CL(X,R) is uniformly dense in C(X,R). �1.7

We turn to prove a topometric version of Tietze’s Extension Theorem, which, as for
ordinary topological spaces, can be viewed as a strengthening of Urysohn’s Lemma.

Fact 1.8 There exists a function F lim: RN → R which is continuous in the product
topology and 1-Lipschitz in uniform convergence (i.e., supremum norm), such that if
|tn − s| ≤ 2−n for all n then F lim(tn) = s.

Proof See [5, Lemma 3.7]. That it is 1-Lipschitz is not stated explicitly there, but
follows from the construction. �1.8

Theorem 1.9 (Tietze’s Extension Theorem for topometric spaces) Let X be a normal
topometric space. Then for every c < c′ every continuous c-Lipschitz function
f : Y → [0, 1] on a closed subset Y ⊆ X extends to a continuous c′ -Lipschitz function
g : X → [0, 1].

Moreover, for an arbitrary topometric space the following are equivalent:

Journal of Logic & Analysis 5:8 (2013)



Lipschitz functions on topometric spaces 7

(i) X is a normal topometric space.

(ii) Tietze’s Extension Theorem for topometric spaces (i.e., the statement above)
holds in X .

(iii) Urysohn’s Lemma (the conclusion of Theorem 1.6) holds in X .

Proof Let Y ⊆ X be closed, f : Y → [0, 1] be continuous and c-Lipschitz.

For n ∈ N let Sn = {k2−n : 0 ≤ k ≤ 2n}, and Ξn = (Ff
α,G

f
α)α∈Sn . Then Ξn is a

c-Lipschitz system. By Lemma 1.5 there is a c′ -Lipschitz function gn : X → [0, 1]
compatible with Ξn . In particular, if y ∈ Y and k2−n ≤ f (y) ≤ (k + 1)2−n then
y ∈ Ff

(k+1)2−n ∩ Gf
k2−n ⊆ Fgn

n,(k+1)2−n ∩ Ggn
n,k2−n , whereby k2−n ≤ gn(y) ≤ (k + 1)2−n

as well.

Let g = F lim gn . Then g is continuous and c′ -Lipschitz, and |gn�Y − f | ≤ 2−n for all
n implies g�Y = f .

For the moreover part:

(i) =⇒ (ii). This is the main assertion.

(ii) =⇒ (iii). Immediate.

(iii) =⇒ (i). Assume Urysohn’s Lemma holds in X . Then closed sets of positive
distance can be separated by a 1-Lipschitz continuous function, and therefore by open
sets. Also, if F ⊆ X is closed and d(x,F) > r then we may separate F and x by a
1-Lipschitz continuous function such that f �F = 0 and f (x) > r . Then {y : f (y) ≤ r}
is a closed set containing B(F, r) but not x . If follows that B(F, r) is closed. �1.9

This proof of Tiezte’s theorem is fairly different from proofs we found in the literature,
and which do not seem to be capable of preserving the Lipschitz condition.

For the last result of this section we shall assume some familiarity with continuous
logic. A language for continuous logic was defined in [5, Definition 2.3] to consist
of a collection of symbols equipped with uniform continuity moduli, which their
interpretations are required to respect. Arbitrary continuity moduli are allowed since,
first, this extra generality creates no additional difficulties, and second, even if we had
required all symbols to be, say, 1-Lipschitz, arbitrary definable predicates would still
merely be uniformly continuous, creating an inconvenient discrepancy. That said, we
can now show that in many situations one may assume that the language is indeed
1-Lipschitz.

Theorem 1.10 (Lipschitz Morleyisation) Let L be any continuous language.

Journal of Logic & Analysis 5:8 (2013)



8 Itaï Ben Yaacov

(i) The family of Lipschitz L-definable predicates is uniformly dense in the family
of all definable predicates and witness distances between types.

(ii) There exists a 1-Lipschitz relational language L′ of cardinality |L|+ ℵ0 and an
L′ -theory T0 , such that the class of L-structures stands in a bidefinable bijection
with the class of models of T0 , and moreover, for any two p, q ∈ Sn(T0) we
have d(p, q) = supP |Pp− Pq| as P varies over all n-ary predicate symbols in L′
(so in particular, T0 eliminates quantifiers). This bijection necessarily respects
elementary embeddings, ultra-products, elementary sub-classes, and so on.

Proof For the first assertion, for each n the space Sn(L) of complete n-types in L
is compact, so we may apply Corollary 1.7, observing that the n-ary L-definable
predicates are in a natural bijection with the continuous function on Sn(L), and that
this bijection respects uniform distance and uniform continuity moduli. The second
assertion follows. �1.10

2 Completely regular topometric spaces and Stone-Cech
compactification

Let {Xi : i ∈ I} be a family of topometric spaces. We equip the set
∏

i∈I Xi with the
product topology and the supremum metric d(x̄, ȳ) = sup{d(xi, yi) : i ∈ I}. One verifies
easily the result is indeed a topometric space which we call the product topometric
structure.

In particular we obtain large compact topometric spaces of the form [0,∞]I , and we
claim that these are in some sense universal, meaning that every compact topometric
space embeds in one of those. Similarly, every bounded compact topometric (i.e., of
finite diameter) can be embedded in [0,M]I , and up to re-scaling in [0, 1]I . In fact
we shall show that every completely regular topometric space embeds in such a space,
obtaining a Stone-Cech compactification.

Definition 2.1 By an embedding of topometric spaces we mean a map X ↪→ Y
between topometric spaces which is both a topological (homeomorphic) embedding
and an isometric one.

By a compactification of a topometric space X we mean a topometric embedding in a
compact topometric space with dense image.

Journal of Logic & Analysis 5:8 (2013)



Lipschitz functions on topometric spaces 9

Say that a family of functions F ⊆ CX separates points from closed sets if for every
closed set F ⊆ X and x ∈ X r F , there is a function f ∈ F which is constant on F and
takes some different value at x .

Fact 2.2 Let X be a Hausdorff topological space, F ⊆ C(X) a family separating points
from closed sets. Then the map θ : X → CF defined by x 7→ (f 7→ f (x)) is a topological
embedding.

Proof Standard. �2.2

Definition 2.3 Let X be a topometric space. Say that a family of functions F ⊆
CL(1)(X) is sufficient if

(i) It separates points and closed sets.

(ii) For x, y ∈ X we have

d(x, y) = sup{|f (x)− f (y)| : f ∈ F}.

(Clearly, ≥ always holds.)

A topometric space X is completely regular if CL(1)(X) is sufficient.

In view of Fact 2.2 we may say that a topometric space X is completely regular if
CL(1)(X) captures both the topological structure and the metric structure of X .

Lemma 2.4 Let X be a topometric space space, and let F ⊆ CL(1)(X) be sufficient.
Then the map θ : X → CF defined by x 7→ (f 7→ f (x)) is a topometric embedding.

Proof Immediate. �2.4

Theorem 2.5 (i) Let X be a completely regular topometric space, and let M =

diam X ∈ [0,∞]. Then X embeds in a power of [0,M].

(ii) Every compact or normal topometric space is completely regular.

(iii) Every subspace of a completely regular space is completely regular.

(iv) Let X be a maximal topometric space. Then it is topologically completely regular
if and only if it is topometrically completely regular.

Journal of Logic & Analysis 5:8 (2013)



10 Itaï Ben Yaacov

Proof For the first item, let F0 ⊆ CL(1)(X,R+) consist of those f such that inf f = 0.
Then F0 is sufficient as well, and consists of functions f : X → [0,M], so Lemma 2.4
yields the desired embedding.

The second item follows from Theorem 1.6, keeping in mind that a compact topometric
space is normal, and that since the metric of a topometric space X refines its topology,
if F ⊆ X is closed and x /∈ F then d(x,F) > 0.

For the third item, assume that X is completely regular and Y ⊆ X . If F ⊆ Y is closed
then F = Y ∩ F , where F is the closure in X . Thus if x ∈ Y r F then x ∈ X r F ,
so there is a 1-Lipschitz continuous function separating F from x, and its restriction
to Y is continuous and 1-Lipschitz as well. A similar restriction argument works for
witnessing distances.

The last item follows from the fact that if X is equipped with the 0/α distance then
every function to [0, α] is 1-Lipschitz. �2.5

Corollary 2.6 A topometric space admits a compactification if and only if it is com-
pletely regular.

Theorem 2.7 Let X be completely regular. Then it admits a compactification βX
satisfying the following universal property:

Every 1-Lipschitz continuous function f : X → [0,∞] can be extended to
such a function on βX (and the extension is unique).

Moreover, βX is unique up to a unique isomorphism (i.e., isometric homeomorphism)
and satisfies the same universal property with any compact topometric space Y instead
of [0,∞].

Proof Let F = CL(1)(X,R+) and let θ : X → (R+)F ⊆ [0,∞]F be as in Lemma 2.4.
Identify X with θ(X) and let βX be its closure in [0,∞]F .

For f ∈ F , let πf : [0,∞]F → [0,∞] be the projection on the f th coordinate. Then
πf ◦ θ = f , so πf : βX → [0,∞] is as required. Given f ∈ CL(1)(X, [0,∞]) and n ∈ N,
the truncation f ∧ n : X → [0, n] belongs to F and the sequence πf∧n is increasing,
converging point-wise to some g : βX → [0,∞]. The collection of open subsets of
[0,∞] which are either bounded or contain ∞ forms a basis. For such an open set
U there is n such that either [n,∞] ⊆ U or U ∩ [n,∞] = ∅, and in either case
g−1(U) = (f ∧ n)−1(U) is open. Thus g is continuous. (Of course we could have also
let F = CL(1)(X, [0,∞]) to begin with.)

Journal of Logic & Analysis 5:8 (2013)
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Now let Y be any compact topometric space. Then Y embeds in [0,∞]J for some
J . If f ∈ CL(1)(X,Y) then πj ◦ f ∈ CL(1)(X, [0,∞]) for j ∈ J and thus extends to
gj ∈ CL(1)(βX, [0,∞]). Let g = (gj) : βX → [0,∞]J , so g�X = f . Then g(X) ⊆ Y , X
is dense in βX and Y is closed in [0,∞]J , so g(βX) ⊆ Y as well.

The uniqueness of an object satisfying this universal property is now standard. �2.7

In other words, for every compact Y the restriction CL(1)(βX,Y) → CL(1)(X,Y) is
bijective.

Definition 2.8 The compactification βX , if it exists (i.e., if X is completely regular) is
called the Stone-Cech compactification of X .

If E is a normed space, say over R, and E∗ denotes its topological dual, then the
natural map E → R{λ∈E∗:‖λ‖=1} ⊆ [0,∞]{λ∈E∗:‖λ‖=1} witnesses that E , together with
the weak topology and the norm distance, is a completely regular topometric space.
Similarly for E∗ with the weak∗ topology, via E∗ → R{v∈E:‖v‖=1} . Automorphism
groups of metric structures form another natural class of examples of non (locally)
compact topometric spaces.

Proposition 2.9 Let M be a metric structure and let G = Aut(M), equipped with
the topology T of point-wise convergence and with the distance du of uniform conver-
gence. Then (G,T , du) is a completely regular topometric space.

Similarly, if (G,T ) is any metrisable topological group, with left-invariant compatible
distance dL , and du(f , g) = suph dL(fh, gh), then (G,T , du) is a completely regular
topometric space.

Proof Since du(f , g) = supa∈M d(fa, ga), and for each a the function (f , g) 7→ d(fa, ga)
is continuous, du is lower semi-continuous. Assume that du(f , g) > r . Then there
exists a ∈ M such that d(fa, ga) > r , and we may define θ(x) = d(fa, xa). Then θ
is continuous and 1-Lipschitz, θ(f ) = 0 and θ(g) > r . Thus continuous 1-Lipschitz
functions witness distances. Now let U be a topological neighbourhood of f . Then
there is a finite tuple ā ∈ Mn and ε > 0 such that U contains the set

Uā,f ā,ε = {h : d(hā, f ā) < ε}.

Then the function ρ(x) = d(f ā, xā) separates f from G r U .

A similar reasoning applies to the case of an abstract group (acting on itself on the
left). In fact, when G is completely metrisable then this case can be shown to be a
special case of the first, and every metrisable group can be embedded in a completely
metrisable one. �2.9

Journal of Logic & Analysis 5:8 (2013)



12 Itaï Ben Yaacov

Question 2.10 Are automorphism groups of metric structures topometrically normal?
In other words, do continuous 1-Lipschitz functions witness distance between closed
sets?

Similarly, the closed unit ball of a dual Banach space is a compact topometric space
and therefore topometrically normal, what about the entire dual space?

3 Completions

Most topometric spaces one would encounter, such as compact ones (e.g., type spaces)
or automorphism groups, are (metrically) complete. If X is a complete topometric
space and X0 ⊆ X is metrically dense then one can recover the underlying metric space
of X from X0 , but what about the topology? Let us first observe that one cannot always
expect to be able to recover the topology.

Example 3.1 Let X be the disjoint union of [0, 1] with N, where [0, 1] is equipped
with the usual topology and distance, N is equipped with the discrete topology and 0/1
distance, the distance between any point of [0, 1] and of N is one, and 0 (hereafter
always referring to 0 ∈ [0, 1] and not to 0 ∈ N) is the limit of N. Thus X is a compact
topometric space, which can be naturally viewed as a subspace of [0, 1]N by sending
t ∈ [0, 1] to (t, 0, 0, . . .), and sending n ∈ N to the sequence (0, 0, . . . , 0, 1, 1, . . .)
consisting of n initial zeroes. Then X0 = (0, 1) ∪ N is metrically dense in X , but one
cannot recover from it the fact that 0 is an accumulation point of N.

Worse still, sometimes X̂ does not even admit a topometric structure extending that of
X .

Example 3.2 Let X = [0, 1]2 , equipped with the usual topology. We put the usual
distance on (0, 1] × {0}, and make any two points not both there have distance one.
It is clear that d refines the topology, and a case-by-case consideration yields that if
d(x, y) > r then there are neighbourhoods x ∈ U , y ∈ V such that d(U,V) > r , so d is
lower semi-continuous and X is a topometric space.

Now, X̂ r X consists of a single new point ∗, the metric limit of (t, 0) as t → 0. If
T̂ is any topology on X̂ coarser then dX̂ and agreeing with the given topology on X ,
then ∗ and (0, 0) cannot be separated by open sets, so X̂ cannot even be topologically
Hausdorff, let alone a topometric space.

Journal of Logic & Analysis 5:8 (2013)



Lipschitz functions on topometric spaces 13

Thus two questions arise: which topometric spaces admit topometric completions, and
under which conditions we can recover the topology on a complete topometric space X
from the restriction to a metrically dense X0 ⊆ X .

Proposition 3.3 Let X be a topometric space. Then the following are equivalent:

(i) For every x, y ∈ X̂ and r < d(x, y) there exist ε > 0 and open sets U,V ⊆ X
such that B(x, ε) ∩ X ⊆ U , B(y, ε) ∩ X ⊆ V and d(U,V) > r .

(ii) The metric completion X̂ admits a strongest topology T̂ rendering it a topomet-
ric extension of X . A set U ⊆ X̂ belongs to T̂ if and only if it is metrically
open in X̂ and U ∩ X is open in X .
Moreover, for V ⊆ X open let V ′ ⊆ X̂ consist of all x such that B(x, ε) ∩ X ⊆ V
for some ε > 0. Then V ′ ∈ T̂ is maximal such that V ′ ∩ X = V .

(iii) There exists an embedding of X into a complete topometric space.

Proof (i) =⇒ (ii). Clearly, T̂ is a topology, coarser than dX̂ . One easily checks
the moreover part, so (X,T ) ⊆ (X̂, T̂ ) is a topological embedding.
Now let x, y ∈ X̂ , d(x, y) > r , and let U , V and ε be as given by our hypothesis. Then
x ∈ U′ and y ∈ V ′ . Moreover, d(U′,V ′) = d(U,V) > r , showing that dX̂ is lower
T̂ -semi-continuous, and (X̂, T̂ , dX̂) is a topometric space.
Finally, let T̂ ′ be any topology on X̂ rendering it a topometric extension of X . In
particular, dX̂ refines T̂ ′ so T̂ ′ ⊆ T̂ .

(ii) =⇒ (iii). Immediate.

(iii) =⇒ (i). Let Y ⊇ X be a complete extension of X , and let x, y ∈ X̂ ⊆ Y . Since
the distance is lower semi-continuous, there are open sets U,V ⊆ Y such that x ∈ U ,
y ∈ V and d(U,V) > r . Since the distance refines the topology, there exists ε > 0
such that BY (x, ε) ⊆ U and BY (y, ε) ⊆ V . Intersecting with X , we are done. �3.3

This answers one question, and allows us to restate the other as, under which conditions
is a complete topometric space X the strongest completion of a metrically dense
X0 ⊆ X .

Definition 3.4 Call a topometric space completable if it satisfies the equivalent condi-
tions of Proposition 3.3.

Proposition 3.5 Every completely regular topometric space X is completable. More-
over, the Stone-Cech compactification βX contains a (unique) metric copy of X̂
equipped with strongest completion topology, so the strongest completion is com-
pletely regular as well.
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Proof Since βX is compact, it is complete, so it contains a copy of X̂ .

Now let U ∈ T̂ , and let x ∈ U ⊆ X̂ . Then there is some ε > 0 such that B(x, 2ε) ⊆ U
and U ∩ X is open in X . Let y ∈ B(x, ε) ∩ X . Then by complete regularity there
exists f ∈ CL(1)(X, [0, ε]) = CL(1)(βX, [0, ε]) such that f (y) = ε and f �XrU = 0. Then
x ∈ {z ∈ X̂ : f (z) > 0} ⊆ U , so U is open in the topology induced from βX . Since T̂

is strongest possible topology on the completion, it is the induced topology. �3.5

This, however, does not solve the problem raised in Example 3.1, since there all spaces
were completely regular. We content ourselves here with providing sufficient conditions
for a topometric space to be the unique strongest completion of any metrically dense
subset. Given the rest of this paper, we allow ourselves to assume that X is completely
regular, and show that the extra conditions are relatively well behaved under various
constructions.

(∗) For every open set U ⊆ X and r > 0, the open metric neighbourhood B(U, r) is
(topologically) open.

(∗∗) For every open set U ⊆ X , x ∈ Û ⊆ X̂ and r > 0, there exists ε > 0 such
that B(x, ε) ∩ X ⊆ B(U, r)◦ . Equivalently, there is V ⊆ B(U, r) open such that
Û ⊆ V ′ , with V ′ as in Proposition 3.3. When X is complete, this is the same as
saying that Û ⊆ B(U, r)◦ .

Clearly (∗) implies (∗∗).

Proposition 3.6 Let X be a complete, completely regular topometric space and X0 ⊆
X metrically dense. Then X satisfies (∗) (respectively, (∗∗)) if and only if X0 does and
X carries the strongest possible topology as a completion of X0 .

Proof Let U be open in X0 , and let V ⊆ X be open such that U = V ∩ X0 . Since
the metric refines the topology, U is d-dense in V , so BX(U, r) = BX(V, r). When
X satisfies (∗), this latter set is open, and therefore so is BX0(U, r) = BX(V, r) ∩ X0 ,
whence (∗) for X0 . Assuming that X satisfies (∗∗), there is W ⊆ X open such that
V̂ ⊆ W ⊆ BX(V, r), in which case W ∩ X0 ⊆ BX0(U, r) and Û = V̂ ⊆ W ⊆ (W ∩ X0)′ ,
and we have (∗∗) for X0 .

Conversely, let us assume that X carries the strongest completion topology, and let
V ⊆ X be open, U = V ∩ X0 . If X0 satisfies (∗) then BX(V, r) ∩ X0 = BX0(U, r) is
open in X0 , and then B(V, r) is open in X . If X0 only satisfies (∗∗), there exists W ⊆ X
open such that W ∩ X0 ⊆ BX0(U, r) = BX(V, r) ∩ X0 and V̂ = Û ⊆ (W ∩ X0)′ . But
then (W ∩ X0)′ ⊆ BX(V, r) as well, so X has (∗∗).
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Assume now that X satisfies (∗∗) and let us show that it is the strongest completion of
X0 . Indeed, all we need to show is that if f ∈ CL(1)(X0) then f̂ , the unique 1-Lipschitz
extension of f to X , is continuous at every x ∈ X . Assuming, as we may, that f̂ (x) = 0,
let U = {y ∈ X0 : |f (y)| < ε} for some ε > 0. Then U ⊆ X0 is open, so of the form
V ∩ X for some open V ⊆ X , and x ∈ Û = V̂ ⊆ BX(V, ε)◦ ⊆ {y ∈ X : |f̂ (y)| < 2ε}.
Since ε was arbitrary, f̂ is continuous at x . �3.6

Lemma 3.7 Condition (∗) holds in every topometric space of the form
∏

[si, ri]. More
generally, it holds in every minimal or maximal topometric space, and if it holds in each
Xi then it holds in

∏
Xi . Similarly, if condition (∗∗) holds in each Xi then it also holds

in
∏

Xi .

Proof Easy. �3.7

Lemma 3.8 Condition (∗) holds in every topometric group. In fact, while we usually
require that the distance in a topometric group be biïnvariant, here it is enough that it be
invariant on one side.

Proof Assume that the distance is left-invariant. Then one checks that B(U, r) =⋃
d(h,1)<r Uh. �3.8

In addition, type spaces in continuous logic, equipped with the usual distance are
compact, so completely regular, and satisfy (∗), and the same holds for local type
spaces (i.e., spaces of ϕ-types for some formula ϕ). On the other hands, there exist
compact topometric spaces where the properties discussed in this section fail, e.g., the
one given in Example 3.1 above, as well as of type spaces with “exotic” distances:

Example 3.9 In [1, Example 3.11 & Theorem 3.15] an example was given somewhat
indirectly of a compact topometric space in which condition (∗) fails (in the terminology
used there, the perturbation distance is not open or even weakly so).

4 An abstract characterisation of continuous 1-Lipschitz
functions

A compact Hausdorff topological space X can be recovered, up to a unique homeo-
morphism, either from C(X) viewed as a C∗ -algebra, or from C(X,R) viewed as a
Banach lattice (see Definition 4.4 and Fact 4.7 below). Accordingly, we wish to recover
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16 Itaï Ben Yaacov

a compact topometric space from its space of continuous 1-Lipschitz functions. While
CL(1)(X) is not an algebra, CL(1)(X,R) is a lattice, so it is the real version which we
prefer to use as a base. Of course, the lattice C(X,R) can be recovered from the C∗ -
algebra C(X) as the space of self-adjoint elements together with continuous functional
calculus applied to min and max, so there is no real difference to which case we start
with.

Lemma 4.1 (Lattice Stone-Weierstraß for Lipschitz functions) Let X be a compact
topometric space, S ⊆ R, and let A ⊆ CL(1)(X, S) be a sub-lattice, such that for every
x, y ∈ X (possibly equal), s, t ∈ S and ε > 0 such that |s− t| ≤ d(x, y) there is some
f ∈ A with |f (x) − s| + |f (y) − t| < ε. Then A is dense in CL(1)(X, S) in uniform
convergence.

Proof The proof is very similar to the classical argument. Indeed, let h ∈ CL(1)(X,R)
and ε > 0. By assumption, for every x, y ∈ X there is fxy ∈ A such that |fxy(x)− h(x)|+
|fxy(y) − h(y)| < ε. In particular, fxy(x) < h(x) + ε and fxy(y) > h(x) − ε. Fixing x,
for each y there is a neighbourhood Vy on which fxy > h − ε, and by compactness
there is a finite family {yi}i<n such that

⋃
i Vyi = X . Letting gx =

∨
i fxyi ∈ A we

have gx(x) < h(x) + ε and gx > h − ε everywhere. By a similar argument, there is
a finite family {xj}j<m such that h′ =

∧
j gxi ∈ A satisfies h − ε < h′ < h + ε, as

desired. �4.1

Convention 4.2 When E is a Banach space and also a lattice, by a convex sub-lattice
A ⊆ E we mean a subset which is convex with respect to the linear structure, and closed
with respect to the lattice operations. In other words, we interpret the words “convex”
and “sub-lattice” separately from the rest of the structure, so we do not mean that A is
a Banach space, nor do we mean that if f , g ∈ A, h ∈ E and f ≤ h ≤ g in the lattice
order then h ∈ A. We say that A is symmetric if A = −A.

Theorem 4.3 Let X be a compact topological space, A ⊆ C(X,R). Then the following
are equivalent:

(i) There is a topometric structure (X, d) on X such that A = CL(1)(X,R).

(ii) The following hold:

• The set A is closed (in norm).
• The set A is a symmetric convex sub-lattice of C(X,R) containing R.
• The set A separates point of X .

(iii) As above, with the second point replaced with
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• The set A is a sub-lattice, closed under translation by α ∈ R and multipli-
cation by α ∈ [−1, 1].

In this case A is weakly closed, generates C(X,R) as a Banach space, and the metric d
is unique and can be recovered by

d(x, y) = sup
f∈A
|f (x)− f (y)|.(1)

Proof (i) =⇒ (ii). Easy.

(ii) =⇒ (iii). Since 0 ∈ A and A is convex, it is closed under multiplication by
α ∈ [0, 1], and since A is symmetric, it is closed under multiplication by α ∈ [−1, 1].
Now let α ∈ R and f ∈ A, and for t ∈ [0, 1) let ft = tf + (1 − t) α

1−t ∈ A. Then
ft → f + α so f + α ∈ A as well.

(iii) =⇒ (i). Let us define d by (1). Since A generates C(X), d is a distance, and it
is lower semi-continuous as the supremum of continuous functions. It follows that for
each x ∈ X , the closed balls B(x, r) are closed. Thus, if F is a closed set not containing
x , then by compactness there is some r > 0 such that F ∩ B(x, r) = ∅, so d refines the
topology. Thus (X, d) is a topometric space, and we view it henceforth as such.
It is immediate from the construction that A ⊆ CL(1)(X,R). Now assume that x, y ∈ X ,
0 ≤ s − t ≤ d(x, y) and ε > 0. By definition of d there is f ∈ A such that s − t <
|f (x)− f (y)|+ ε, and possibly multiplying f by some α ∈ [−1, 1] we may assume that
s− t < f (x)− f (y) + ε < s− t + ε. Up to translation, we may further have t = f (y), in
which case s < f (x) < s + ε. By Lemma 4.1, A = CL(1)(X,R).

The identity (1) follows from Urysohn’s Lemma for normal topometric spaces and the
fact that a compact topometric space is normal. The set

⋃
n nA = CL(X,R) is dense

in C(X,R) by Corollary 1.7, and it is clear that CL(1)(X,R) is closed in point-wise
convergence, which, in C(X), coincides with the weak topology. �4.3

The reader may wish to compare this with Rieffel [9, Theorem 8.1], where one charac-
terises the semi-norm sending a function to its Lipschitz constant (also with the aim of
recovering a metric).

If one desires a characterisation of CL(1)(X,R) which does not make any reference to an
ambient C(X,R) or C(X), one first requires an abstract characterisation of symmetric
convex sub-lattices of Banach lattices. Convex spaces, i.e., convex subsets of Banach
spaces, equipped with the induced metric and convex combination operations ct(x, y) =

tx + (1− t)y for t ∈ [0, 1], are characterised, for example, by Machado [6] (see also [3,
Section 2] for a characterisation with a slightly different set of axioms using the convex
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combination x+y
2 alone). Such a space is called symmetric when they are equipped

with a constant 0 and a unary operation −x such that c1/2(x,−x) = 0 for all x. It
then embeds isometrically as a convex symmetric subset of a Banach space, and the
generated Banach space is unique up to a unique isomorphism.

The next step is to characterise when a lattice structure on a symmetric convex space
comes from a Banach lattice structure on the generated Banach space.

Definition 4.4 We recall the following from Meyer-Nieberg [7, Chapter 1.1].

(i) An ordered vector space is a vector space (E,≤) over an ordered field (k,≤)
satisfying for all v, u,w ∈ E and 0 < α ∈ k : v ≤ u⇐⇒ v + w ≤ u + w⇐⇒
αv ≤ αu.

(ii) An ordered vector space is a vector lattice (or a Riesz space) if it is a lattice, i.e.,
if every two v, u ∈ E admit a least upper bound (or join) v ∨ u and a greatest
lower bound (or meet) v ∧ u. In this case we write |v| = v ∨ (−v), v+ = v ∨ 0,
v− = (−v) ∨ 0.

(iii) A vector lattice over R is a normed vector lattice it admits a norm satisfying:
|v| ≤ |u| =⇒ ‖v‖ ≤ ‖u‖.

(iv) A Banach lattice is a complete normed vector lattice.

For our purposes, a list of identities will be better.

Lemma 4.5 Let E be a vector lattice. Then the following hold:

(i) (E,∨,∧) is a distributive lattice, i.e., the operations ∨ and ∧ are idempotent,
commutative, associative, associative over one another, and satisfy the absorption
axiom (v ∧ u) ∨ v = (v ∨ u) ∧ v = v.

(ii) (v + w) ∨ (u + w) = (v ∨ u) + w.

(iii) For scalar α > 0: (αv) ∨ (αu) = α(v ∨ u).

(iv) v + u = v ∨ u + v ∧ u.

If it is a normed vector lattice then it satisfies in addition:

(v) ‖v‖ = ‖|v|‖ ≤ ‖|v| ∨ u‖.

Conversely, assume E is a vector space equipped in addition with operations ∨,∧
verifying (i)-(iv) then E is a vector lattice where the order can be recovered as v ≤
u⇐⇒ v ∧ u = v⇐⇒ v ∨ u = u.

If it is a normed (Banach) space verifying (i)-(v) then it is a normed (Banach) lattice.
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Proof The first statements are [7, Theorem 1.1.1] and easy verifications.

For the first part of the converse we observe that v ≤ u⇐⇒ v ∧ u = v⇐⇒ v ∨ u = u
does indeed define a partial order with respect to which ∨ and ∧ are the join and meet,
respectively. From (ii),(iii) it follows that u ≤ v⇐⇒ 0 ≤ v− u⇐⇒ 0 ≤ α(v− u) for
α > 0, whereby E is a vector lattice.

For the second part of the converse, if |v| ≤ |u| then ‖v‖ = ‖|v|‖ ≤ ‖|v| ∨ |u|‖ =

‖|u|‖ = ‖u‖. �4.5

Lemma 4.6 A complete metric space A together with operations −, ct,∨,∧ (for
t ∈ [0, 1]) is a symmetric convex sub-lattice of a Banach lattice if and only if:

(i) (A, 0,−, ct)t∈[0,1] is a symmetric convex space.

(ii) (A, ,∨,∧) is a distributive lattice.

(iii) For all u, v,w ∈ A and t ∈ [0, 1]:

ct(v,w) ∨ ct(u,w) = ct(v ∨ u,w), c1/2(v ∨ u, v ∧ u) = c1/2(v, u),

‖v‖ = ‖|v|‖ ≤ ‖|v| ∨ u‖,

where |v| = v ∨ (−v) as before.

Moreover, in this case the Banach lattice can be taken to be the Banach space generated
by A, on which the lattice structure is uniquely determined.

Proof Let E0 be the normed linear space generated by A, whose elements are all of the
form αv for some α ≥ 1 and v ∈ A, and let E be its completion. Substituting w = 0
above we obtain (αv) ∨ (αu) = α(v ∨ u) for 0 ≤ α ≤ 1, so we may unambiguously
define v ∨ u =

(
(v/α) ∨ (u/α)

)
α for any v, u ∈ E0 and α > 0 big enough so that

v/α, u/α ∈ A.

As in the proof of Lemma 4.5, the lattice structure induces an order on A for which ∨
and ∧ are the join and meet. We also have v ≤ u if and only if c1/2(u,−v) ≥ 0 if and
only if −u ≤ −v, whereby v ∧ u = −

(
(−v) ∨ (−u)

)
on A. We may then extend ∧

from A to E0 by scaling as well. The hypotheses of Lemma 4.5 hold in E0 by scaling
to A, so E0 is a normed lattice, and E carries a unique Banach lattice structure. �4.6

Banach lattices of the form C(X,R) are characterised as follows.

Fact 4.7 (Kakutani, see Meyer-Nieberg [7, Theorem 2.1.3]) Let E be a Banach
lattice containing a greatest element of norm at most one, which we call 1, and let
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X = X(E) ⊆ E′ be the set of extreme positive linear functional of norm one, equipped
with the weak∗ topology. Then X is compact, and E ∼= C(X,R), with 1 being sent to
the constant function 1.

Conversely if X is a compact space, then E = C(X,R) is as above, and X(E) is
canonically homeomorphic to X .

And we conclude:

Theorem 4.8 Let X be a compact topometric space, A = (A, 0, 1,−, ct,∨,∧)t∈[0,1] =

CL(1)(X,R). Then (A, 0,−, ct,∨,∧)t∈[0,1] is a convex symmetric lattice, i.e., it satisfies
the hypotheses of Lemma 4.6, and for every v ∈ A we have

‖v‖ = sup {(1− t)/t : 0 < t ≤ 1, ct(|v|,−1) ≤ 0},

where ‖v‖ = d(v, 0) and u ≤ 0 means u ∨ 0 = 0.

Conversely, every (A, 0, 1,−, ct,∨,∧)t∈[0,1] satisfying these properties is isomorphic
to CL(1)(X,R) for some compact topometric space X , which is moreover unique up to
a unique isomorphism. Moreover, let C ⊆ RA be the set of all functions λ such that
λct(u, v) = tλu + (1− λ)v, λ(−v) = −λv, λ|v| ≥ 0 and λ1 = 1. Then C is convex
and compact, X can be identified with the set of extreme points of C , and for λ, µ ∈ X
we have

d(λ, µ) = sup
v∈A
|λv− µv|.

Proof The main assertion is clear. For the converse, we first embed A into the
generated Banach lattice E as per Lemma 4.6. Then (E, 1) satisfies the hypotheses
of Fact 4.7, allowing us to recover the compact topological space X . The topometric
structure on X is then recovered by Theorem 4.3. For the moreover part, construct the
dual E∗ directly as a space of functions on A, then unwind the other constructions (for
a positive functional λ we have ‖λ‖ = λ1, so continuity of λ comes for free). �4.8
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