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Abstract I develop a notion of nonlinear stochastic integrals for hyperfinite Lévy
processes and use it to find exact formulas for expressions which are intuitively of
the form

∑t
s=0 φ(ω, dls, s) and

∏t
s=0 ψ(ω, dls, s), where l is a Lévy process. These

formulas are then applied to geometric Lévy processes, infinitesimal transformations
of hyperfinite Lévy processes, and to minimal martingale measures. Some of the cen-
tral concepts and results are closely related to those found in S. Cohen’s work on
stochastic calculus for processes with jumps on manifolds, and the paper may be
regarded as a reworking of his ideas in a different setting and with totally different
techniques.
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Consider a stochastic integral
∫

X d M , where M is, say, an n-dimensional martingale
and X is a process taking values in the m ×n-matrices. The intuitive idea is that at each
time t , the matrix X (ω, t) is multiplied by the increments d M(ω, t) of the martingale,
and the results are then summed up to give the integral. Put a little more abstractly: at
each time t a linear function (represented by the matrix X ) acts on the increments of
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92 T. Lindstrøm

M and produces the increments of the integral process. In this paper I want to study
what happens when the integrand X acts on the increments in a more general (i.e.,
nonlinear) way.

The main tool of the paper is nonstandard analysis and especially the theory of
hyperfinite Lévy processes developed in [15]. In nonstandard theory, the increments
�Lt of a process L exist as concrete objects, and hence (nonlinear) operations on incre-
ments are trivial to define. The challenge is to show that they lead to finite processes
which can be interpreted in a standard framework.

The idea of nonlinear stochastic integrals is not new. In fact, the entire theory of
integration with respect to random measures initiated by Skorokhod [23] and devel-
oped by Jacod [12] and others may be viewed as an attempt to integrate functions
of increments of a random process or a random field (see [8] for a recent review of
this theory from the perspective of stochastic calculus of Lévy processes). Even closer
to the approach of this paper is the work of Cohen [6,7] on stochastic calculus for
processes with jumps on manifolds. I was not aware of Cohen’s work when I started
working on this paper, but in hindsight it should probably be regarded as a reworking
of Cohen’s ideas in a different setting and with totally different techniques. In partic-
ular, a version of one of the main results of this paper (the sum formula, Theorem 3.5)
appears explicitly in Cohen’s paper, and the other main result (the product formula,
Theorem 4.1) appears implicitly (see Sect. 3 for a more detailed discussion of the
relationship between this paper and Cohen’s work). I would like to point out, how-
ever, that the nonstandard approach seems to have its advantages as far as concrete
calculations are concerned, and that Lévy processes often need special treatment due
to the delicate balance between their diffusion and jump parts.

Not being aware of Cohen’s work, my motivation for studying nonlinear stochastic
integrals came from the stochastic analysis of Lévy processes as presented, e.g., in the
recent books by Applebaum [4] and Øksendal and Sulem [19]. In this theory, the Lévy
processes are decomposed into a continuous part and a pure jump part. Stochastic
integrals of the continuous part are treated in the traditional “linear” way, while the
integrals of the pure jump part need not be linear. My hope was that a fully nonlinear
theory which put the continuous part and the jump part on an equal footing may be a
more natural tool for applications in, e.g., mathematical finance, optimal stopping, and
control theory – after all, we cannot expect nature and society to deliver their processes
in decomposed form! Another motivation was that nonlinear stochastic integrals turn
out to be an excellent tool for producing interesting formulas. This is actually where
the work on this paper started – I was simply looking for ways to understand and
extend some of the fundamental formulas in [19], and the nonlinear stochastic integral
turned out to be the unifying concept I needed in order to avoid doing (essentially)
the same computations over and over again. Although I hope to turn to applications
in the future, the emphasis of this paper is mainly on the second motivation, i.e., on
mathematical formulas.

As already mentioned, the main tool of the paper is nonstandard analysis and espe-
cially the theory of hyperfinite Lévy processes developed in [15]. I assume that the
reader has a good general background in nonstandard probability theory, but begin the
paper with brief reviews of the most relevant parts of the theory of hyperfinite Lévy
processes (Sect. 1) and the theory of stochastic integration with respect to nonstandard
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Nonlinear stochastic integrals for hyperfinite Lévy processes 93

martingales (Sect. 2). Section 2 also includes some new results on (linear) stochastic
integration with respect to hyperfinite Lévy processes.

The main part of the paper begins in Sect. 3, where nonlinear stochastic integrals
are defined and the main representation Theorem 3.5 is proved. This theorem may be
thought of as a sum formula for expressions of the form

∑t
s=0 φ(ω,�L(ω, t), t), and

in Sect. 4 exponentiation is used to transform it into a product formula for expressions
of the form

∏t
s=0 ψ(ω,�L(ω, s), s) (see Theorem 4.1). To get a feeling for the main

ideas of the paper, it may be wise to look quickly and informally through Sects. 3
and 4 before reading the more technical parts of the first two sections. As already
mentioned, Cohen [6, Corollary 1] has an explicit version of the sum theorem in his
manifold setting, and the product formula is also implicit in his work.

The last four sections contain applications of the two basic formulas to a variety
of settings. In Sect. 5, the product formula is used to find an expression for geometric
Lévy processes which generalizes the one in [19]. In Sects. 6 and 7, I look at how we
can produce new hyperfinite Lévy processes from old by transforming increments and
transition probabilities, respectively. In the first case, the sum formula is used to find an
expression for the resulting process, and in the second case the product formula is used
to find an expression for the density of the new measure with respect to the original. In
the last section, I study minimal martingale measures for nonlinear stochastic integrals,
and again the product formula is used to find an expression for the density.

1 Review of hyperfinite Lévy processes

In this section, I briefly review the theory of hyperfinite Lévy processes. Almost every-
thing can be found in [15], but I have tried to arrange the material in a way that is
optimal for the purposes of this paper. Other nonstandard approaches to Lévy processes
can be found in the papers by Albeverio and Herzberg [2,3] and Ng [18].

Let�t be a positive infinitesimal, and choose K ∈ ∗N so large that K�t is infinite.
We shall use T = {k�t | k = 0, 1, 2, . . . , K } as our timeline, and we shall work
with internal processes X : �× T → ∗Rd . For convenience we shall always assume
that the underlying probability space (�,F , P) is hyperfinite, but this is not really
essential. The Loeb measure of P is denoted by PL , and all “almost everywhere” (a.e.)
statements are with respect to PL unless otherwise stated.

If X : �× T → ∗Rd is an internal process, we shall write �X (ω, s) := X (ω, s +
�t) − X (ω, s) for the forward increment of X at time s ∈ T . When we sum over
elements of the timeline, we shall use the convention that

t∑

s=r

X (s) := X (r)+ X (r +�t)+ X (r + 2�t)+ · · · + X (t −�t);

hence X (r) is included in the sum, but X (t) is not. The same convention applies to
products:

t∏

s=r

X (s) := X (r) · X (r +�t) · X (r + 2�t) · · · X (t −�t).
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94 T. Lindstrøm

To describe a hyperfinite random walk, we specify a hyperfinite set A of elements
in ∗Rd and an internal set of positive numbers {pa}a∈A in ∗R such that

∑
a∈A pa = 1.

We call A the set of increments and {pa}a∈A the transition probabilities.

Definition 1.1 A hyperfinite random walk with increments A and transition proba-
bilities {pa}a∈A is an internal process L : �× T → ∗Rd such that

(i) L(0) = 0;
(ii) the increments �L(0),�L(�t), . . . ,�L(t), . . . are *-independent;

(iii) All increments �L(t) have the distribution specified by A and {pa}a∈A, i.e.,
P[�L(ω, t) = a] = pa for all t ∈ T and all a ∈ A.

Given a hyperfinite random walk L , we shall let {Ft }t∈T be the internal filtration
generated by L .

We define the drift vector µL ∈ ∗Rd by

µL := 1

�t
E[�L(0)] = 1

�t

∑

a∈A

apa

and note that

E[L(t)] = E

[
t∑

s=0

�L(s)

]

= t

�t
E[�L(0)] = µL t.

This means that the process ML(t) := L(t)− µL t is a martingale with respect to the
filtration {Ft }t∈T generated by L , and we thus have a natural decomposition

L(t) = µL t + ML(t)

in a drift term and a martingale term. We also introduce a nonnegative number σL ∈
∗Rd by

σ 2
L := 1

�t
E[|�L(0)|2] = 1

�t

∑

a∈A

|a|2 pa

and note the following simple, but useful identity [15, Lemma 1.2] (the proof is just
a simple calculation):

Lemma 1.2 For all t ∈ T , E[|L(t)|2] = σ 2
L t + |µL |2t (t −�t).

We shall be particularly interested in hyperfinite Lévy processes, i.e., hyperfinite
random walks which are finite in the following sense:

Definition 1.3 Let L be a hyperfinite random walk. We call L a hyperfinite Lévy
process if the set

{ω | L(ω, t) is finite for all finite t ∈ T }

has Loeb measure 1.

123



Nonlinear stochastic integrals for hyperfinite Lévy processes 95

This definition is a little impractical as there is no obvious way to check that it
is satisfied. However, the following, more useful characterization was proved in [15,
Theorem 4.3]. We use the notation:

qk := 1

�t

∑

|a|>k

pa .

Theorem 1.4 (characterization of hyperfinite Lévy processes) A hyperfinite random
walk L is a hyperfinite Lévy process if and only if the following three conditions are
satisfied:

(i) 1
�t

∑
|a|≤k apa is finite for all finite and noninfinitesimal k ∈ ∗R.

(ii) 1
�t

∑
|a|≤k |a|2 pa is finite for all finite k ∈ ∗R.

(iii) limk→∞ ◦qk = 0 in the sense that for every ε ∈ R+, there is an N ∈ N such
that qk < ε when k ≥ N.

Hyperfinite Lévy processes may have bad integrability properties, and it is often
convenient to approximate them with processes which behave better under integration.
A hyperfinite random walk has finite increments if all a ∈ A are finite (note that since
A is internal, this means that there is an N ∈ N such that |a| ≤ N for all a ∈ A). For
hyperfinite random walks with finite increments, the characterization above reduces
to:

Corollary 1.5 [15, Corollary 2.4] A hyperfinite random walk L with finite incre-
ments is a hyperfinite Lévy process if and only if both µL = 1

�t

∑
a∈A apa and

σ 2
L = 1

�t

∑
a∈A |a|2 pa are finite.

The next result gives us the integrability properties we need:

Theorem 1.6 [15, Theorem 2.3] Let L be a hyperfinite Lévy process with finite incre-
ments. Then |Lt |p is S-integrable for all finite p ∈ ∗R+ and all finite t ∈ T .

If we combine this result with the decomposition L(t) = µL t + ML(t) above, we
get (see [15, Corollary 2.5]):

Corollary 1.7 A hyperfinite Lévy process L with finite increments can be decomposed
as L(t) = µL t + ML(t), where µL ∈ ∗Rd is finite and ML is a martingale such that
|ML(t)|p is S-integrable for all finite t and all finite p ∈ ∗R+. In particular, ML is
an SL2-martingale (in the terminology of [1], an SL2-martingale is just an internal
martingale such that |ML(t)|2 is S-integrable for all finite t).

As there is a well-developed theory for stochastic integration with respect to SL2-
martingales, this corollary will in the next section be our key to stochastic integration
with respect to hyperfinite Lévy processes. To extend integration from processes with
finite increments to the general case, we need to know how general hyperfinite Lévy
processes can be approximated by hyperfinite Lévy processes with finite increments.
Introducing the truncated processes L≤k for k ∈ ∗R+ by

L≤k(ω, t) :=
∑

{�L(ω, s) | s < t and |�L(ω, s)| ≤ k}
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we have the following result which is a combination of Corollary 4.2 and (the proof
of) Proposition 3.4 in [15].

Proposition 1.8 Assume that L is a hyperfinite Lévy process. Then the truncated pro-
cess L≤k is a hyperfinite Lévy process for all noninfinitesimal k > 0. Moreover, for
each finite t ∈ T and each ε ∈ R+, there is a k ∈ R+ such that

P[ω | L(ω, s) = L≤k(ω, s) for all s ≤ t] > 1 − ε.

Note that L≤k need not be a hyperfinite Lévy process when k is infinitesimal.
Here is a very simple, but useful consequence of Proposition 1.8.

Corollary 1.9 Assume that L is a hyperfinite Lévy process and that t ∈ T is finite.
Then

∑t
s=0 |�L(s)|2 is finite PL -a.e.

Proof Assume first that L has finite increments. Then

E

(
t∑

s=0

|�L(s)|2
)

= t

�t

∑

a∈A

|a|2 pa = tσ 2
L

is finite according to Corollary 1.5, and hence
∑t

s=0 |�L(s)|2 must be finite PL -a.e.
The result for general hyperfinite Lévy processes now follows from Proposition 1.8.

�	
I end this section with a few words on the notion of a splitting infinitesimal for a

hyperfinite Lévy process L . This notion played a central part in [15] and will play an
equally important part here. The starting point is simply that for many purposes it is
convenient to split our hyperfinite Lévy process L in a continuous part and a jump
part. The continuous part would ideally consist of all the infinitesimal increments of L ,
while the jump part would ideally consist of all the noninfinitesimal increments. Since
it in general is impossible to split infinitesimals and noninfinitesimals in an internal
way, we must compromise somewhat. The idea is that if we split the increments at
a sufficiently large infinitesimal, then the infinitesimal contributions to the jump part
will be insignificant. Here is the precise definition of what “sufficiently large” means
in this context [15, Definition 5.1]:

Definition 1.10 An infinitesimal η is called a splitting infinitesimal for the hyperfinite
Lévy process L if

S- lim
b↓0

⎛

⎝ 1

�t

∑

η≤a≤b

|a|2 pa

⎞

⎠ = 0, (1)

where the limit means that for any standard ε ∈ R+, there is a standard δ ∈ R+ such
that 1

�t

∑
η≤|a|≤b |a|2 pa < ε whenever 0 � b < δ.

It is easy to see that splitting infinitesimals always exist. Note also that (1) is equivalent
to

1

�t

∑

η≤|a|≤ε
|a|2 pa ≈ 0 for all infinitesimal ε > η. (2)
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Nonlinear stochastic integrals for hyperfinite Lévy processes 97

In [15, Theorem 5.3], splitting infinitesimals were used to prove a nonstandard ver-
sion of the Lévy–Itô decomposition of a Lévy process into a continuous part and a pure
jump part. In this paper, I shall use them in a similar (but simpler) way to decompose
nonlinear stochastic integrals into a well-behaved “jump part” and an “integral part”
which (although it does contain jumps) is easy to control.

2 Stochastic integration with respect to hyperfinite Lévy processes

In this section, I shall briefly review the basic theory of nonstandard stochastic inte-
gration with respect to martingales and show how it can be adapted to hyperfinite
Lévy processes. For the martingale theory, I shall mainly follow the presentations in
the book [1] and the survey paper [14] – the original papers are [13] and [10].

From a purely nonstandard point of view, stochastic integrals are easy to define.
If X,M : � × T → ∗R are two internal processes, we simply define the stochastic
integral

∫
X d M to be the process

t∫

0

X d M :=
t∑

s=0

X (s)�M(s).

The problem is that in this generality, the stochastic integral is likely to be infinite even
when the processes X and M are finite. To control the integral, it is usual to restrict
to the case where M is a (sufficiently integrable) martingale and X is a (sufficiently
integrable) nonanticipating process. Let us briefly review the basic theory.

An internal filtration {Ft }t∈T on our hyperfinite probability space � is simply an
increasing, internal sequence of algebras of subsets of �. For each t ∈ T , Ft defines
an equivalence relation ∼t on � by

ω ∼t ω
′ ⇐⇒ ∀A ∈ Ft (ω ∈ A ⇐⇒ ω′ ∈ A).

An internal process X : �× T → ∗R is nonanticipating with respect to the filtration
Ft if for all t ∈ T

ω ∼t ω
′ ⇒ X (ω, t) = X (ω′, t).

Since we are working with hyperfinite probability spaces, this is equivalent to saying
that X (·.t) is Ft -measurable, but the formulation above is often easier to use. Intui-
tively, nonanticipation means that X cannot see into the future; its values at time t are
based on what has happened up to that time.

Let M : � × T → ∗R be an internal process, and assume that M is a martingale
with respect to an internal filtration (�, {Ft }, P) (this just means that M is nonantic-
ipating and that E(�Mt |Ft ) = 0 for all t). We call M an SL2-martingale if M2

t is
S-integrable for all finite t ∈ T . The SL2-martingales will be our basic class of
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98 T. Lindstrøm

integrator processes. To define the basic class of integrands, let νM be the internal
measure on �× T defined by

νM (A × {t}) =
∫

A

�M(ω, t)2 d P(ω)

for all measurable A ⊆ �. We want our integrands to be S-square integrable with
respect to this Doléans measure νM . More precisely, we define:

Definition 2.1 Assume that M is an SL2-martingale. The set SL2(M) consists of all
internal processes X : �× T → ∗R such that

(i) X is nonanticipating (with respect to the filtration of M),
(ii) X is S-square integrable with respect to νM .

The following result shows that SL2(M) is a natural class of integrands:

Theorem 2.2 [1, Proposition 4.4.4, Theorem 4.2.15] Assume that M is an SL2-martin-
gale and that X ∈ SL2(M). Then

∫
X d M is an SL2-martingale. If M is S-continuous,

so is
∫

X d M.

By using localizing sequences of stopping times, it is possible to extend stochastic
integration to an even larger class of integrands SL(M) (see [1]), but we shall not use
this larger class here.

When we turn to hyperfinite Lévy processes, we shall have to integrate with respect
to multidimensional martingales. If M : �×T → ∗Rd is a martingale (i.e., each com-
ponent is a martingale), and X : �× T → ∗Rm×d is a matrix-valued, nonanticipating
process, we define

∫
X d M in the natural way:

t∫

0

X d M =
t∑

s=0

X (s) ·�M(s),

where the centered period denotes matrix multiplication. We say that M is an SL2-
martingale if each component is a (one-dimensional) SL2-martingale, and we say that
X ∈ SL2(M) if each component of X is in SL2 of the component of M it is integrated
against [i.e., Xi, j ∈ SL2(M j )]. Theorem 2.2 now extends to the multidimensional
case in the obvious way.

Let us now return to our hyperfinite Lévy processes. If L is a hyperfinite Lévy
process with finite increments, we know from Corollary 1.7 that L can be written
L(t) = µL t + ML(t), where µL ∈ ∗Rd is finite, and ML is an SL2-martingale.
To control a stochastic integral

∫
X d L , we have to control

∑
X �t in addition to∫

X d ML . Let λ be the nonstandard version of the Lebesgue integral, i.e., λ is defined
on all internal subsets A of the timeline T by λ(A) = |A|�t . We say that an internal
function F : T → ∗Rd is S-integrable with respect to λ on finite intervals if F · χ[0,t]
is S-integrable with respect to λ for all finite t ∈ T . We are now ready to define the
set I (L) of natural integrands with respect to a hyperfinite Lévy process L .
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Nonlinear stochastic integrals for hyperfinite Lévy processes 99

Definition 2.3 Let L be a hyperfinite Lévy process with finite increments. The internal
process X belongs to the set I (L) if the following two conditions are satisfied:

(i) X ∈ SL2(ML),
(ii) the function t → X (ω, t) is S-integrable with respect to λ on finite intervals

for PL-almost all ω.

If L is a general hyperfinite Lévy process, we say that X ∈ I (L) if X ∈ I (L≤k) for all
finite and noninfinitesimal k ∈ ∗R+.

The next result just shows that these definitions do what they are intended to do.

Proposition 2.4 If L is a hyperfinite Lévy process and X ∈ I (L), then there is a set
�′ ⊆ � of Loeb measure one such that

∫ t
0 X d L is finite for all ω ∈ �′ and all finite

t ∈ T .

Proof For all finite and noninfinitesimal k ∈ ∗R+, decompose L≤k in a drift part and
a martingale part: L≤k(t) = µk t + Mk(t). Observe that

t∫

0

X d L≤k = µk

t∫

0

X dλ+
t∫

0

X d Mk .

By Definition 2.3, both terms on the right are finite for all t on a set of Loeb measure
one. The general result now follows from Proposition 1.8. �	

I end this section with a technical lemma that will be needed in the next section.

Lemma 2.5 Assume that η is a positive infinitesimal and let L be a hyperfinite
Lévy process. Assume that G : � × T → ∗R is a nonanticipating process such that
G(ω, t)|�L≤η(ω, t)| ≈ 0 for all ω and all finite t ∈ T . Let

Cη
i, j = 1

�t

∑

|a|≤η
ai a j pa = 1

�t
E(�L≤η

i (t)�L≤η
j (t)|Ft ).

Then there is a set �′ ⊆ � of Loeb measure one such that

t∑

s=0

G(ω, s)�L≤η
i (ω, s)�L≤η

j (ω, s) ≈
t∑

s=0

Cη
i, j G(ω, s)�t

for all finite t ∈ T and all ω ∈ �′.

Proof Define the process N by

N (t) =
t∑

s=0

(
G(s)�L≤η

i (s)�L≤η
j (s)− Ci, j G(s)�t

)
.
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100 T. Lindstrøm

Observe that N is a martingale since

E(�N (s)|Fs) = E(G(s)�L≤η
i (s)�L≤η

j (s)− Cη
i, j G(s)�t |Fs)

= G(s)E(�L≤η
i (s)�L≤η

j (s)|Fs)− Cη
i, j G(s)�t

= Cη
i, j G(s)�t − Cη

i, j G(s)�t = 0

We compute the expectation of the quadratic variation of N :

E([N ](t)) = E

(
t∑

s=0

�N (s)2
)

= E

(
t∑

s=0

(G(s)�L≤η
i (s)�L≤η

j (s)−Cη
i, j G(s)�t)2

)

= E

(
t∑

s=0

(G(s)�L≤η
i (s)�L≤η

j (s))
2

)

− E

(
t∑

s=0

(Cη
i, j G(s)�t)2

)

≤ E

(
t∑

s=0

(G(s)�L≤η
i (s)�L≤η

j (s))
2

)

≤ E

(
t∑

s=0

(G(s)|�L≤η(s)|)2|�L≤η(s)|2
)

≈ 0,

where we in the last step have used the hypothesis G(ω, t)|�L≤η(ω, t)| ≈ 0 plus
the fact that E(

∑t
s=0 |�L≤η(s)|2) = tσ 2

L≤η is finite to show that the expression is
infinitesimal. Since a simple martingale identity tells us that E(N (t))2) = E([N ](t)),
we have from Doob’s inequality:

E

(

sup
s≤t

N (s)2
)

≤ 4E(N (t)2) = 4E([N ](t)) ≈ 0

and the lemma follows. �	
Remark In [15] the matrix Cη = {Cη

i, j } is called an infinitesimal covariance matrix
of L , and it is shown (Lemma 7.4) that Cη is symmetric and nonnegative definite, and
that

〈Cηx, x〉 = 1

�t

∑

a∈A

〈a, x〉2 pa ≤ σ 2
L |x |2,

where 〈·, ·〉 is the inner product in Rd .

3 Nonlinear stochastic integrals

We are now ready to turn to our main topic: nonlinear stochastic integrals. As indicated
in the introduction, these are integrals where the integrand acts on the increments of
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the integrator process in a nonlinear way. Since the increments of a hyperfinite pro-
cess are concrete and well-defined objects, nonlinear actions are trivial to define. The
challenge is to prove that the resulting integrals are finite and well-behaved, or – put
a little differently – to find conditions which guarantee that the integrals are finite
and well-behaved. The main result of this section (the sum formula 3.5) shows that
we have managed to find such conditions, and it also shows that the integral can be
computed in a way that makes sense also from a standard perspective.

We start with a hyperfinite Lévy process L , let {Ft }t∈T be the filtration generated
by L , and let {∼t }t∈T be the equivalence relations generated by {Ft }t∈T . An internal
function

φ : �× ∗Rd × T → ∗R

is called nonanticipating if φ(ω, x, t) = φ(ω̃, x, t) whenever ω ∼t ω̃. The nonlinear
stochastic integral (NSI) of φ with respect to L is the process I = ∫

φ(ω, d Ls, s)
defined by

I (ω, t) :=
t∑

s=0

φ(ω,�L(s, ω), s).

We shall usually write

I (ω, t) =
t∫

0

φ(ω, d Ls, s).

Note that if x �→ φ(ω, x, t) is linear (for all t and ω), then I is a stochastic integral in
the usual sense – hence the name nonlinear stochastic integral.

For the NSI I to make standard sense, we have to impose conditions on the integrand
φ; e.g., it is clear that we need φ(ω,�L(s), s) to be infinitesimal for most times s.
We shall assume that φ(ω, 0, s) = 0 and in addition that φ is twice continuously
differentiable in a (nonstandard) sense that we now describe.

Abusing notation slightly, we shall write ∂/∂xi , ∇, ∂2/∂xi∂x j , etc., for the non-
standard extensions of the differential operators ∂/∂xi , ∇, ∂2/∂xi∂x j . When we dif-
ferentiate integrand functions φ(ω, x, t), the derivatives are always with respect to the
space variables x = (x1, x2, . . . , xd) unless otherwise specified. We shall call an inter-
nal function F : ∗Rd → ∗Rm S-continuous if whenever x, y are finite and infinitely
close, then F(x), F(y) are also finite and infinitely close (note the finiteness condition
on F(x), F(y) which is not always included in the definition of S-continuity).

Definition 3.1 For r ∈ N, the space SCr (∗Rd , ∗Rm) of r-times S-continuously differ-
entiable functions from ∗Rd to ∗Rm consists of all internal functions F : ∗Rd → ∗Rm

such that F and all its partial derivatives of order r or less exist and are S-continuous.

With this preparation, we can introduce our space of integrands.
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Definition 3.2 Let L be a hyperfinite Lévy process. The set N I (L) of nonlinear in-
tegrands of L consists of all nonanticipating, internal maps φ : �× ∗Rd × T → ∗R
such that

(i) φ(ω, 0, t) = 0 for all ω and t,
(ii) there is a set �′ ⊆ � of PL-measure one such that φ(ω, ·, t) ∈ SC2(∗Rd , ∗R)

for all ω ∈ �′ and all finite t ,
(iii) ∇φ(ω, 0, t) ∈ I (L) (recall Definition 2.3).

In Sect. 1, I introduced the upper truncations L≤k of our process L by

L≤k(ω, t) :=
∑

{�L(ω, s) | s < t and |�L(ω, s)| ≤ k}.

We shall also need the lower truncations L>k defined by

L>k(ω, t) :=
∑

{�L(ω, s) | s < t and |�L(ω, s)| > k}.

Obviously, Lt = L>k
t + L≤k

t .
We are now ready for the fundamental calculation of this paper. We assume that

φ ∈ N I (L) and that η is a splitting infinitesimal (recall Definition 1.10). The idea is
to use η to split the nonlinear integral in two parts – a jump part and an integral part
– which can be controlled separately.

t∫

0

φ(ω, d L(s), s) =
t∑

s=0

φ(ω,�L>η(s), s)+
t∑

s=0

φ(ω,�L≤η(s), s)

=
t∑

s=0

{
φ(ω,�L>η(s), s)− ∇φ(ω, 0, s) ·�L>η(s)

}

+
t∑

s=0

φ(ω,�L≤η(s), s)+
t∑

s=0

∇φ(ω, 0, s) ·�L>η(s),

where we have subtracted and added the same term. This may look rather mysteri-
ous, but the point is that the subtracted term ∇φ(ω, 0, s) ·�L>η(s) will stabilize the
original jump term φ(ω,�L>η(s), s) in a way that will be made clear in Lemma 3.3.
By Taylor’s formula [remember that φ(ω, 0, s) = 0]

φ(ω,�L≤η(s), s) = ∇φ(ω, 0, s) ·�L≤η(s)

+ 1

2

∑

i, j

∂2φ

∂xi∂x j
(ω,�(s), s)�L≤η

i (s)�L≤η
j (s),

123



Nonlinear stochastic integrals for hyperfinite Lévy processes 103

where �(s) is on the line segment form 0 to �L≤η(s). If we substitute this into the
expression above, we get

t∫

0

φ(ω, d L(s), s) =
t∑

s=0

{
φ(ω,�L>η(s), s)− ∇φ(ω, 0, s) ·�L>η(s)

}

+
t∑

s=0

∇φ(ω, 0, s) ·�L(s)

+1

2

t∑

s=0

∂2φ

∂xi∂x j
(ω,�(s), s)�L≤η

i (s)�L≤η
j (s).

In this expression, the second term on the right is finite since ∇(ω, 0, s) is integrable
with respect to L . The last term is close to the expression in Lemma 2.5 and should
be reasonably easy to control. We therefore turn our attention to the first expression
which is the key to the whole argument:

Lemma 3.3 Assume that L is a hyperfinite Lévy process and that φ ∈ N I (L). Fix a
finite t ∈ T and for each r ∈ ∗R+, define

Sr (t) :=
t∑

s=0

{
φ(ω,�L>r (s), s)− ∇φ(ω, 0, s) ·�L>r (s)

}
.

Then

(i) Sr (t) is finite PL -a.e. for all finite r;
(ii) if η is a splitting infinitesimal, then for PL-a.a. ω

S- lim
r↓η Sr (t) = Sη(t),

where the limit means that for each ε ∈ R+, there is a δ ∈ R+ such that
|Sη(t)− Sr (t)| < ε whenever η ≤ r < δ.

Proof (i) By Proposition 1.8 it clearly suffices to prove this when L has finite incre-
ments. By Taylor’s formula

Sr (t) =
∑

{s<t |r<|�L(s)|}
{φ(ω,�L(s), s)− ∇φ(ω, 0, s) ·�L(s)}

= 1

2

∑

{s<t |r<|�L(s)|}

∂2φ

∂xi∂x j
(ω,�(s), s)�Li (s)�L j (s)

for some �(s) on the line segment from 0 to �L(s). Since L has finite increments
and φ ∈ N I (L),

Kω := max
0≤s≤t

{
1

2

∣
∣
∣
∣
∂2φ

∂xi∂x j
(ω,�(s), s)

∣
∣
∣
∣

}
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is finite for PL -a.a. ω. Hence

|Sr (t)| ≤ Kω
∑

{s<t :r<|�L(s)|}
|�L(s)|2 (3)

is finite a.e. by Corollary 1.9.
(ii) Just as above, we have

|Sη(t)− Sr (t)| ≤
∑

{s<t |η<|�L(s)|≤r}
|φ(ω,�L(s), s)− ∇φ(ω, 0, s) ·�L(s)|

= 1

2

∑

{s<t |η<|�L(s)|≤r}

∣
∣
∣
∣
∂2φ

∂xi
(ω,�(s), s)�Li (s)�L j (s)

∣
∣
∣
∣

≤ Kω
∑

{s<t |η<|�L(s)|≤r}
|�L(s)|2

(4)

Let �N = {ω | Kω ≤ N } for N ∈ N. Since φ ∈ N I (L), Kω is finite a.e., and hence
PL(�N ) → 1 as N → ∞. Observe that

E

⎛

⎝1�N Kω
∑

{s<t |η<|�L(s)|≤r}
|�L(s)|2

⎞

⎠

≤ N E

⎛

⎝
∑

{s<t |η<|�L(s)|≤r}
|�L(s)|2

⎞

⎠ = N
t

�t

∑

η<|a|≤r

|a|2 pa .

By the definition of splitting infinitesimals, the standard part of the right-hand side of
this inequality goes to 0 as the standard part of r goes to 0, and hence the standard part
of the left-hand side decreases to zero almost everywhere. Letting N go to infinity, we
see that the standard part of the right-hand side of (4) goes to zero PL -a.e., and hence
S- limr↓η Sr (t) = Sη(t) PL -a.e. �	

We need to apply a little bookkeeping to the second-order term in our expression
for the nonlinear stochastic integral

∫
φ(ω, d L(s), s):

Lemma 3.4 Assume that L is a hyperfinite Lévy process, and that φ ∈ N I (L). Let η
be an infinitesimal, and let Cη = {Cη

i, j } be the infinitesimal covariance matrix given

by Cη
i, j = 1

�t

∑
|a|≤η ai a j pa. Assume further that for all s and ω, �(ω, s) is on the

line segment from 0 to �L(ω, s). Then on a set of Loeb measure one

t∑

s=0

∂2φ

∂xi∂x j
(ω,�(s), s)�L≤η

i (s)�L≤η
j (s) ≈ Cη

i, j

t∑

s=0

∂2φ

∂xi∂x j
(ω, 0, s)�t

for all finite t , and the two expressions are finite.
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Proof By definition of N I (L),
∑t

s=0(∂
2φ/∂xi∂x j )(ω, 0, s)�t is finite a.e. By

Lemma 2.5 (truncating ∂2φ/∂xi∂x j at an infinite number if necessary) we know that

t∑

s=0

∂2φ

∂xi∂x j
(ω, 0, s)�L≤η

i (ω, s)�L≤η
j (ω, s) ≈

t∑

s=0

Ci, j
∂2φ

∂xi∂x j
(ω, 0, s)�t

and hence all that remains to prove is that

t∑

s=0

∂2φ

∂xi∂x j
(ω,�(s), s)�L≤η

i (s)�L≤η
j (s)

≈
t∑

s=0

∂2φ

∂xi∂x j
(ω, 0, s)�L≤η

i (ω, s)�L≤η
j (ω, s).

Since �(s) is infinitesimal whenever �L≤η
i (ω, s)�L≤η

j (ω, s) is different from zero,

the S-continuity of ∂2φ/∂xi∂x j implies that for PL -a.a. ω, there is an infinitesimal
ε(ω) such that

t∑

s=0

∣
∣
∣
∣
∂2φ

∂xi∂x j
(ω,�(s), s)− ∂2φ

∂xi∂x j
(ω, 0, s)

∣
∣
∣
∣

∣
∣
∣�L≤η

i (ω, s)
∣
∣
∣
∣
∣
∣�L≤η

j (ω, s)
∣
∣
∣

≤
t∑

s=0

ε(ω)

∣
∣
∣�L≤η

i (ω, s)
∣
∣
∣
∣
∣
∣�L≤η

j (ω, s)
∣
∣
∣ ≤ ε(ω)

t∑

s=0

|�L(ω, s)|2 ≈ 0

where we have used Corollary 1.9 in the last step. The lemma follows. �	

We may now sum up our results in a theorem (writing
∫ t

0
∂2φ
∂xi ∂x j

(ω, 0, s) ds for the

hyperfinite sum
∑t

s=0
∂2φ
∂xi ∂x j

(ω, 0, s)�t):

Theorem 3.5 (sum formula) Assume that L is a hyperfinite Lévy process, and that
φ ∈ N I (L). Then for PL-a.a. ω, the nonlinear stochastic integral

∫ t
0 φ(ω, d L(s), s)

is finite for all finite t ∈ T and

t∫

0

φ(ω, d L(s), s) ≈
t∑

s=0

{
φ(ω,�L>η(s), s)− ∇φ(ω, 0, s) ·�L>η(s)

}

+
t∫

0

∇φ(ω, 0, s) · d L(s)+ 1

2

∑

1≤i. j≤d

Cη
i, j

t∫

0

∂2φ

∂xi∂x j
(ω, 0, s) ds.
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Here η is any splitting infinitesimal, and Cη = {Cη
i, j } is the infinitesimal covariance

matrix Cη
i, j = 1

�t

∑
|a|≤η ai a j pa. Moreover,

Sr (t) =
t∑

s=0

{
φ(ω,�L>r (s), s)− ∇φ(ω, 0, s) ·�L>r (s)

}

is finite for all finite r and t, and if η is a splitting infinitesimal, then Sη(t) =
S- limr↓η Sr (t).

Proof According to our basic calculation above

t∫

0

φ(ω, d L(s), s) =
t∑

s=0

{
φ(ω,�L>η(s), s)− ∇φ(ω, 0, s) ·�L>η(s)

}

+
t∑

s=0

∇φ(ω, 0, s) ·�L(s)

+1

2

t∑

s=0

∂2φ

∂xi∂x j
(ω,�(s), s)�L≤η

i (s)�L≤η
j (s).

In the expression on the right, the first term is finite a.e. by Lemma 3.3, the sec-
ond is finite by the definition of N I (L), and the third is finite and infinitely close

to 1
2

∑
1≤i. j≤d Cη

i, j

∫ t
0

∂2φ
∂xi ∂x j

(ω, 0, s) ds according to Lemma 3.4. This proves the
formula. The statements about Sr (t) and Sη(t) are just Lemma 3.3. �	

Remark Note that (a nonstandard version of ) Itô’s formula follows immediately from
the sum formula: To compute F(LT ), just write

F(LT ) = F(0)+
t∑

t=0

(F(Lt +�Lt )− F(Lt ))

and use the sum formula with φ(ω, a, t) = F(L(ω, t)+ a)− F(L(ω, t)).

Remark As mentioned in the introduction, Cohen [6, Corollary 1] has a standard
version of the sum formula for semimartingales on manifolds. For the benefit of the
reader, I shall briefly review Cohen’s result (leaving the technical details and condi-
tions aside). Using integration with respect to a random measure, Cohen introduces

(nonlinear) stochastic integrals
∫
θ(
�

d X), where X is a semimartingale on a differen-
tiable manifold V and θ is a previsible, locally bounded process taking values in the
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space
�

τ ∗V =⋃x∈V

�

τ ∗
x V of forms of order precisely 2. Using the Einstein summation

convention, Cohen’s version of the sum formula can be written

∫

θ(
�

d X) =
∫
∂θ̃s

∂hi
(h(Xs−))dhi (X)s + 1

2

∫
∂2θ̃s

∂hi∂h j
(h(Xs))d〈hi (X)c, h j (X)c〉s

+ S

(

θ(X)− ∂θ̃

∂hi
(h(X_))�hi (X)

)

.

In this formula, S sums up the jumps of the process inside it, h is an embedding of V
into Rd , and θ̃ is a lifting of θ to Rd . For an Rd -valued processes X , the embedding
h is trivial, and as we can think of θ(ω, t) as (the 2-jet of) a function on Rd , the for-
mula above reduces to a formula very similar to the sum formula. Strictly speaking,
the formulas are, of course, different as the stochastic integrals are defined differ-
ently and the ingredients of the formulas are different (the X in the sum formula is
a hyperfinite Lévy process, while the X in Cohen’s formula is a semimartingale on
a manifold), but it is clear that the basic content is the same and that Cohen’s for-
mula has a wider scope (see also the remark below on “standardization” of the sum
formula).

As an example, let us take a look at the simplest of all (truly) nonlinear stochastic
integrals – the quadratic variation:

Example For simplicity we assume that L is one-dimensional. The quadratic varia-
tion [L](t) := ∑t

s=0�L(s)2 is clearly a nonlinear stochastic integral corresponding
to φ(x) = x2. Since φ′(0) = 0 and φ′′(0) = 2, the sum formula in this case reduces
to

[L](t) ≈
t∑

s=0

�L>η(s)2 + Ct

for a (diffusion) constant C . Hence the quadratic variation equals (up to an infinites-
imal) the sum of the square of all noninfinitesimal increments plus a diffusion term
which is just a constant multiplum of time. �	

This paper is about nonstandard processes, and we shall not spend much time trans-
lating our results into standard language. At this point, however, it may be appropriate
just to sketch the main connections. It was proved in [15] that any hyperfinite Lévy
process induces a standard Lévy process l as its (right) standard part, l = ◦L . It was
also proved that all standard Lévy processes l can be obtained in this way (at least as
long as we identify all Lévy processes with the same law). It is not difficult to prove
that if φ satisfies natural conditions (we need, e.g., to require some regularity in t),
then the right-hand side of the sum formula above is infinitely close to the standard
expression
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t∑

s=0

{◦φ(ω,�l(s), s)− ∇ ◦φ(ω, 0, s) ·�l(s)
}

+
t∫

0

∇ ◦φ(ω, 0, s) · dl(s)+ 1

2

∑

1≤i, j≤d

◦Cη
i, j

t∫

0

∂2 ◦φ
∂xi∂x j

(ω, 0, s) ds, (5)

where

t∑

s=0

{◦φ(ω,�l(s), s)− ∇ ◦φ(ω, 0, s) ·�l(s)
}

:= lim
ε↓0

∑

{s<t :�ls>ε}

{◦φ(ω,�l(s), s)− ∇ ◦φ(ω, 0, s) ·�l(s)
}

and where�ls denotes the (standard) jumps of the process l. Note that all the terms in
(5) make standard sense, and hence this formula can be used as a starting point for a
standard investigation of nonlinear stochastic integrals. In such an approach, it may be
useful to think of a (standard) nonlinear stochastic integral

∫ T
0 φ(ω, dlt , t) as a sum∑

(φ(ω, lt+�t , t +�t)−φ(ω, lt , t)), where 0,�t, 2�t, . . . , T is a partition of [0, T ]
into small (standard) intervals, and then use Itô’s formula on each little interval. The
task is then to handle the convergence problems as �t → 0.

It would be interesting to compare the construction outlined above to the more
functional analytic one in Cohen’s papers [6,7].

4 The product formula

The results in Sect. 3 give us a way to calculate sums of the form
∑t

s=0 φ(ω,�L(s), s),
whereφ(ω, 0, t) = 0. In this section we shall take a look at the corresponding products∏t

s=0 ψ(ω,�L(s), s) where ψ(ω, 0, t) = 1. It is, of course, easy to turn products
into sums by exponentiating:

t∏

s=0

ψ(ω,�L(s), s) =
t∏

s=0

sgn(ψ(ω,�L(s), s)) exp

(
t∑

s=0

ln |ψ(ω,�L(s), s)|
)

(for the time being we just ignore the problems that occur whenψ(ω,�L(s), s) ≈ 0).
If we let N (ω, t) := |{s < t | ψ(ω,�L(s), s) < 0}| be the number of times
ψ(ω,�L(s), s) is negative before time t , and assume thatφ(ω, x, s) := ln |ψ(ω, x .s)|
is in N I (L), then by the sum formula 3.5:
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t∏

s=0

ψ(ω,�L(s), s)

≈ (−1)N (ω,t) exp

⎛

⎝
t∑

s=0

{
φ(ω,�L>η(s), s)− ∇φ(ω, 0, s) ·�L>η(s)

}

+
t∫

0

∇φ(ω, 0, s) · d L(s)+ 1

2

∑

1≤i, j≤d

Cη
i, j

t∫

0

∂2φ

∂xi∂x j
(ω, 0, s) ds

⎞

⎠

=
(

t∏

s=0

ψ(ω,�L>η(s), s) exp(−∇φ(ω, 0, s) ·�L>η(s))

)

× exp

⎛

⎝

t∫

0

∇φ(ω, 0, s) · d L(s)+ 1

2

∑

1≤i. j≤d

Cη
i, j

t∫

0

∂2φ

∂xi∂x j
(ω, 0, s) ds

⎞

⎠ ,

where

t∏

s=0

ψ(ω,�L>η(s), s) exp(−∇φ(ω, 0, s) ·�L>η(s))

= S- lim
r↓0

t∏

s=0

ψ(ω,�L>r (s), s) exp(−∇φ(ω, 0, s) ·�L>r (s))

for r ∈ R+ (the exponential term is needed for convergence). To express this relation-
ship in terms of the original functionψ , we note that sinceφ(ω, x, t) = ln |ψ(ω, x, t)|,
we have

∂φ

∂xi
= ∂ψ/∂xi

ψ

and

∂2φ

∂xi∂x j
= (∂2ψ/∂xi∂x j )ψ − (∂ψ/∂xi )(∂ψ/∂x j )

ψ2

Since ψ(ω, 0, t) = 1, we get

∂φ

∂xi
(ω, 0, t) = ∂ψ

∂xi
(ω, 0, t)

and

∂2φ

∂xi∂x j
(ω, 0, t) =

[
∂2ψ

∂xi∂x j
− ∂ψ

∂xi

∂ψ

∂x j

]

(ω, 0, t).

123



110 T. Lindstrøm

If we substitute this into the formula above, we get

t∏

s=0

ψ(ω,�L(s), s)

≈
(

t∏

s=0

ψ(ω,�L>η(s), s) exp(−∇ψ(ω, 0, s) ·�L>η(s))

)

× exp

⎛

⎝

t∫

0

∇ψ(ω, 0, s) · d L(s)+ 1

2

d∑

i, j=1

Cη
i, j

×
t∫

0

[
∂2ψ

∂xi∂x j
− ∂ψ

∂xi

∂ψ

∂x j

]

(ω, 0, s) ds

⎞

⎠ .

So far our calculations are quite formal, and we have neglected the problems which
occur whenψ(ω,�Ls, s) is close to zero. The next theorem takes care of the necessary
bookkeeping.

Theorem 4.1 (product formula) Assume that L is a hyperfinite Lévy process, and that
the internal function ψ : �× ∗Rd × T → ∗R satisfies the following conditions:

(i) ψ(ω, 0, t) = 1 for all ω and t.
(ii) There is a set�′ ⊆ � of PL-measure one such that ψ(ω, ·, t) ∈ SC2(∗Rd , ∗R)

for all ω ∈ �′ and all finite t .
(iii) ∇ψ(ω, 0, t) ∈ I (L).

Then for PL-a.a. ω, the product
∏t

0 ψ(ω, d L(s), s) is finite for all finite t ∈ T and

t∏

s=0

ψ(ω,�L(s), s)

≈
(

t∏

s=0

ψ(ω,�L>η(s), s) exp(−∇ψ(ω, 0, s) ·�L>η(s))

)

× exp

⎛

⎝

t∫

0

∇ψ(ω, 0, s) · d L(s)

+ 1

2

d∑

i, j=1

Cη
i, j

t∫

0

[
∂2ψ

∂xi∂x j
− ∂ψ

∂xi

∂ψ

∂x j

]

(ω, 0, s) ds

⎞

⎠ .

Here η is any splitting infinitesimal, and Cη = {Cη
i, j } is the infinitesimal covariance

matrix Cη
i, j = 1

�t

∑
|a|≤η ai a j pa. Moreover, the product on the right-hand side is

finite and given by
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t∏

s=0

ψ(ω,�L>η(s), s) exp(−∇φ(ω, 0, s) ·�L>η(s))

= S- lim
r↓η

(
t∏

s=0

ψ(ω,�L>r (s), s) exp(−∇φ(ω, 0, s) ·�L>r (s))

)

for r ∈ R+.

Proof For each natural number n > 1, we let logn : R → R be a lower bounded
approximation to log. More precisely, we let logn be an even function, bounded from
below, with bounded and continuous first and second derivatives, and assume that logn
agrees with log(| · |) on the set {x : |x | ≥ 1/n}. Assume also logn x ≥ log |x | for all x
and that the sequence {logn} is decreasing. Abusing notation slightly, we shall write
logN , where N ∈ ∗N, for the elements in the nonstandard extension of the sequence
{logn}n∈N.

Let �(ω, t) =∏t
s=0 ψ(ω,�Ls, s) and define

�n(ω, t) = (−1)N (ω,t) exp

(
t∑

s=0

φn(ω,�Ls, s)

)

[recall that N (ω, t) counts the number of times ψ(ω,�Ls, s) is negative before time
t]. Note that since logn x ≥ log |x |, we have |�(ω, t)| ≤ |�n(ω, t)|. Since the func-
tion φn = logn

◦ψ is in N I (L) for all n ∈ N, the sum formula 3.5 tells us that�n(ω, t)
is finite almost everywhere and hence �(ω, t) is finite almost everywhere. The sum
formula also tells us that

t∫

0

φn(ω, d L(s), s) ≈
t∑

s=0

{
φn(ω,�L>η(s), s)− ∇φn(ω, 0, s) ·�L>η(s)

}

+
t∫

0

∇φn(ω, 0, s) · d L(s)+ 1

2

d∑

i, j=1

Cη
i, j

t∫

0

∂2φn

∂xi∂x j
(ω, 0, s) ds

=
t∑

s=0

{
φn(ω,�L>η(s), s)− ∇ψ(ω, 0, s) ·�L>η(s)

}

+
t∫

0

∇ψ(ω, 0, s) · d L(s)

+ 1

2

d∑

i, j=1

Cη
i, j

t∫

0

[
∂2ψ

∂xi∂x j
− ∂ψ

∂xi

∂ψ

∂x j

]

(ω, 0, s) ds,
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where we in the last step have done the same calculations as above (recall that logn
locally looks like log(| · |)). Exponentiating, we get

�n(ω, t) = (−1)N (ω,t)
t∏

s=0

exp(φn(ω, d L(s), s))

≈ (−1)N (ω,t)

(
t∏

s=0

exp(φn(ω,�L>η(s), s)− ∇ψ(ω, 0, s) ·�L>η(s))

)

× exp

⎛

⎝

t∫

0

∇ψ(ω, 0, s) · d L(s)

+1

2

d∑

i, j=1

Cη
i, j

t∫

0

[
∂2ψ

∂xi∂x j
− ∂ψ

∂xi

∂ψ

∂x j

]

(ω, 0, s) ds

⎞

⎠ .

Hence for all n ∈ N, the following statement holds

P [ω ∈ � | ∀t ≤ n (|�n(ω, t)− Rn(ω, t)| < 1/n)] > 1 − 1

n
,

where Rn(ω, t) is the right-hand side of the formula above. By overflow, the statement
must also hold for some infinite N ∈ ∗N \ N, and hence

�N (ω, t) = (−1)N (ω,t)
t∏

s=0

exp(φN (ω, d L(s), s))

≈ (−1)N (ω,t)

(
t∏

s=0

exp(φN (ω,�L>η(s), s)− ∇ψ(ω, 0, s) ·�L>η(s))

)

× exp

⎛

⎝

t∫

0

∇ψ(ω, 0, s) · d L(s)

+ 1

2

d∑

i, j=1

Cη
i, j

t∫

0

[
∂2ψ

∂xi∂x j
− ∂ψ

∂xi

∂ψ

∂x j

]

(ω, 0, s) ds

⎞

⎠

on a set of PL -measure one.
Comparing the left- and the right-hand side of this formula to the left- and the

right-hand side of the first formula in the theorem, respectively, we see that the terms
agree except possibly when there is an s < t such that |ψ(ω,�L(s), s)| < 1/N .
But in that case both sides of the formula we want to prove are infinitesimal a.s., and
hence the formula still holds. [To see this, note that if the product

∏t
s=0 ψ(ω,�Ls, s)

contains an infinitesimal factor, but is not itself infinitesimal, then for a finite choice
of n,�n(ω, t) has to be infinite, and we know that this happens with probability zero.]
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It remains to prove the second formula in the theorem. Note first that since

t∏

s=0

|ψ(ω,�L>η(s), s) exp(−∇φ(ω, 0, s) ·�L>η(s))|

≤
t∏

s=0

exp(φn(ω,�L>η(s), s)− ∇ψ(ω, 0, s) ·�L>η(s))

for n ∈ N, the first product must be finite since the second one is. Observe also that
for finite n > 1

∏t
s=0 ψ(ω,�L>η(s), s) exp(−∇φ(ω, 0, s) ·�L>η(s))

∏t
s=0 ψ(ω,�L>r (s), s) exp(−∇φ(ω, 0, s) ·�L>r (s))

equals

∏t
s=0 exp(φn(ω,�L>η(s), s)− ∇ψ(ω, 0, s) ·�L>η(s))

∏t
s=0 exp(φn(ω,�L>r (s), s)− ∇ψ(ω, 0, s) ·�L>r (s))

for all infinitesimal r > η (the terms that do not cancel belong to jumps in the interval
(η, r ], and log and logn cannot distinguish between these). The sum theorem tells us
that the second fraction is infinitely close to one, and hence

t∏

s=0

ψ(ω,�L>η(s), s) exp(−∇φ(ω, 0, s) ·�L>η(s))

≈
t∏

s=0

ψ(ω,�L>r (s), s) exp(−∇φ(ω, 0, s) ·�L>r (s)).

This is just a nonstandard version of the limit statement in the theorem. �	

Remark Note that we may “standardize” the product formula the same way we “stan-
dardized” the sum formula at the end of Sect. 3. What we then get, looks like a
generalization of the expression for the stochastic exponential (see, e.g., [20, Theorem
37]). In fact, we get (a nonstandard) version of the stochastic exponential by applying
the (one-dimensional) product formula to the function ψ(ω, x, s) = (1 + x) (see
Sect. 5 for more information on a closely related topic). There is obviously a close
relationship to the multiplicative stochastic integrals first introduced by McKean [16]
and later generalized in a Lie group setting by, e.g., Ibéro [11] and Cohen [7].

In the remainder of this paper, I shall look at various applications of nonlinear sto-
chastic integrals and the product formula. I begin with an application of the product
formula.
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5 Geometric Lévy processes

In [19] a geometric Lévy process is defined as the solution of a stochastic differential
equation of the form

dxt = xt (αdt + βdbt + γ (ω, dlt , t)), (6)

where l is a pure jump Lévy process, b is a (standard) Brownian motion independent
of l, the coefficients α, β are constants, and γ is an adapted process satisfying the
appropriate growth conditions. Since l is a pure jump process, the (nonlinear) inte-
gral

∫
γ (ω, dlt , t) can be defined, e.g., as an integral over all jumps. For notational

convenience we shall assume that l is one-dimensional, although the arguments work
equally well in higher dimensions.

Using the Itô calculus it is shown in [18] that provided γ (t, z) ≥ −1, we have

x(t) = x(0) exp

⎧
⎨

⎩

(

α − 1

2
β2
)

t + βb(t)

+
t∫

0

∫

|z|<R

{ln(1 + γ (s, z))− γ (s, z)}ν(dz)ds

+
t∫

0

∫

R

ln(1 + γ (s, z))Ñ (ds, dz)

⎫
⎬

⎭
,

where ν is the Lévy measure and Ñ is the compensated jump measure on the set
{z | |z| < R}.

We shall see how the product formula can be used to prove a generalized ver-
sion of this expression with respect to a full (as opposed to a pure jump) Lévy pro-
cess. To look at geometric Lévy processes from a nonstandard perspective, let L be a
(one-dimensional) hyperfinite Lévy process and let B be an Anderson random walk
(this is just a Bernoulli random walk on T with stepsize ±√

�t , see, e.g., [1, p. 78])
independent of L , and consider a stochastic difference equations of the form

�Xt = Xt (α�t + β�Bt + �(ω,�Lt , t)),

where �(ω, 0, t) = 0. By induction, the solution to this equation is

Xt = X0

t∏

s=0

(1 + α�t + β�Bs + �(ω,�Ls, s)).

We shall apply the product formula to the augmented process

L̃(ω, t) := (t, Bt , L(t))
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and the function ψ : �× ∗R3 × T → ∗R defined by

ψ(ω, x, y, z, t) = 1 + αx + βy + �(ω, z, t).

Before we begin, observe that the covariance matrix Cη of L̃ takes the form

Cη ≈
⎛

⎝
0 0 0
0 1 0
0 0 c2

⎞

⎠

for a constant c (c is the diffusion coefficient of L). We also observe that (assuming
that η > �t , as we clearly may)

t∏

s=0

ψ(ω,�L̃>η(s), s) exp(−∇ψ(ω, 0, s) ·�L̃>η(s))

≈
t∏

s=0

(1 + �(ω,�L>η(s), s)) exp(−�z(ω, 0, s)�L>ηs )

where �z(ω, 0, s) = (∂�/∂z)(ω, 0, s). The product formula now gives

Xt = X0

t∏

s=0

(1 + α�t + β�Bs + �(ω,�Ls, s)) = X0

t∏

s=0

ψ(ω,�L̃s, s)

≈ X0

[
t∏

s=0

(1 + �(ω,�L>η(s), s)) exp(−�z(ω, 0, s)�L>ηs )

]

× exp

⎛

⎝
(

α − β2

2

)

t + βBt +
t∫

0

�z(ω, 0, s) d Ls

+ c2

2

t∫

0

(�zz − �2
z )(ω, 0, s) ds

⎞

⎠ .

To compare this formula to the one from [19] above, it is convenient to rewrite the
product term

t∏

s=0

(1 + �(ω,�L>η(s), s)) exp(−�z(ω, 0, s)�L>ηs )

as

exp

(
t∑

s=0

{ln(1 + �(ω,�L>η(s), s))− �z(ω, 0, s)�L>ηs }
)
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assuming that � > −1 for the time being. Except for some notational differences, the
formulas have a lot in common, but we have an extra term c2/2

∫ t
0 (�zz−�2

z )(ω, 0, s) ds
coming from the diffusion part of our Lévy process L , and there is also a slight differ-
ence in the way the two formulas treat the divergence problems of the Lévy measure –
we are “normalizing” with the linearized term −�z(ω, 0, s)�Ls while [19] makes use
of the nonlinearized term −γ (ω,�ls, s). Observe also that as we are using products
for the “jump part” of the expression, we do not need the requirement γ ≥ −1 of [19].

Remark Cohen’s papers [6,7] provide a much more extensive treatment of stochastic
differential equations associated with nonlinear stochastic integrals.

6 Transforming increments

Since a hyperfinite Lévy process is given in terms of a hyperfinite set A of incre-
ments and an internal set {pa}a∈A of transition probabilities, there are two natural
ways to transform it into another hyperfinite Lévy process – we can either change the
increments or change the transition probabilities. In this section we shall study what
happens when we change the increments, and in the next we shall take a look at what
happens when we change the transition probabilities.

Assume thatφ : ∗Rd → ∗Rm is an internal function and consider a hyperfinite Lévy
process L with increments a ∈ A and transition probabilities {pa}a∈A. We define a
new hyperfinite random walk φL in ∗Rm by

φL(ω, t) =
t∑

s=0

φ(�L(ω, s)).

This is obviously a hyperfinite random walk with increments φ A := {φ(a) : a ∈ A}
and transition probabilities {pa}a∈A (to be perfectly consistent in our notation, we
should rename this set {pb}b∈φ A, but that would just be confusing). The function φ
should map infinitesimals to infinitesimals, and there is no great loss of generality
to assume that φ(0) = 0 (if not, we just adjust φ by an infinitesimal). We want to
know when φL is a hyperfinite Lévy process (and not just a hyperfinite random walk),
and the following simple lemma gives us a useful criterion. Recall the definition of
SC2(∗Rd , ∗Rm) from the beginning of Sect. 3.

Lemma 6.1 If L is a hyperfinite Lévy process andφ ∈ SC2(∗Rd , ∗Rm)withφ(0) = 0,
then φL is a hyperfinite Lévy process.

Proof Assume first that L has finite increments. Then φL has finite increments, and
according to Corollary 1.5 we only have to prove that

(i) 1
�t

∑
a∈A φ(a)pa is finite,

(ii) 1
�t

∑
a∈A |φ(a)|2 pa is finite.

To prove (i), observe that by Taylor’s formula

φ(a) = ∇φ(0) · a + 1

2

∑

i, j

∂2φ

∂xi∂x j
(θa)ai a j
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for some θa on the line segment from 0 to a. Since the increments a are bounded by
a real number and φ ∈ SC2(∗Rd , ∗Rm), we have

1

2

∑

i, j

∂2φ

∂xi∂x j
(θa)ai a j ≤ K |a|2

for some real number K . Hence

1

�t

∣
∣
∣
∣
∣

∑

a∈A

φ(a)pa

∣
∣
∣
∣
∣
≤ |∇φ(0)|

�t
·
∣
∣
∣
∣
∣

∑

a∈A

apa

∣
∣
∣
∣
∣
+ K

�t

∑

a∈A

|a|2 pa

which is finite since L is a hyperfinite Lévy process with finite increments.
The proof of (ii) is similar, but easier. This time we just need the first-order Taylor

approximation φ(a) = ∇φ(θa) · a for a θa on the line segment from 0 to a. Since
{∇φ(θa)}a∈A is bounded by a real constant K , we have

1

�t

∑

a∈A

|φ(a)|2 pa ≤ K 2

�t

∑

a∈A

|a|2 pa,

which is finite since L is a hyperfinite Lévy process with finite increments.
To extend the result to hyperfinite Lévy processes with infinite increments, just

observe that we already proved that φ(L≤k) is a hyperfinite Lévy process for all non-
infinitesimal, finite k. The result follows from Proposition 1.9. �	

We may now use the sum formula 3.5 to find an approximate expression for φL:

Proposition 6.2 Let L be a hyperfinite Lévy process and assume that φ ∈ SC2(∗Rd ,
∗Rm) with φ(0) = 0. Then for PL-a.a. ω and all finite t ∈ T :

φL(ω, t) ≈ ∇φ(0) · L(ω, t)+ t

2

∑

i, j

Cη
i, j

∂2φ

∂xi∂x j
(0)

+
t∑

s=0

{φ(�L>η(ω, s))− ∇φ(0) ·�L>η(ω, s)}

where η is any splitting infinitesimal for L, and Cη = {Cη
i, j } is the corresponding

infinitesimal covariance matrix.

Proof This is just a special case of the sum formula 3.5. �	
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7 Transforming probabilities

In this section, we keep the increments a ∈ A of our hyperfinite Lévy process L , but
change the transition probabilities from {pa}a∈A to {qa}a∈A where qa = ψ(a)pa for
some function ψ : ∗Rd → ∗[0,∞). We obviously need

∑

a∈A

ψ(a)pa = 1

to get a probability measure. We shall write Q for the new, induced probability measure
on �.

If we restrict overselves to a bounded timeline Tt = {s ∈ T | s < t} (where t
is finite), the density D of the new measure Q with respect to the old measure P is
clearly given by

D(ω, t) =
t∏

s=0

ψ(�L(ω, s)).

We shall use the product formula 4.1 to find an expression for D. However, such
an expression is of little value unless we know that Q is absolutely continuous with
respect to P (or, more correctly, that the Loeb measure QL of Q is absolutely continu-
ous with respect to the Loeb measure PL of P – at least as long as we restrict ourselves
to bounded time intervals). Therefore, most of our efforts in this section will go into
showing that under quite general conditions, QL is absolutely continuous with respect
to PL . Note that when this is the case, our process L is a hyperfinite Lévy process also
with respect to the new measure Q (this follows immediately from Definition 1.3).

We shall be working with two different classes D1(L) and D2(L) of functions ψ
according to how much differentiability we need (recall the definition of SCr (∗Rd , ∗Rd)

from the beginning of Sect. 3):

Definition 7.1 Let L be a hyperfinite Lévy process with transition probabilities
{pa}a∈A. We define Dr (L) (where r ∈ N) to be the set of all internal functions
ψ : ∗Rd → ∗[0,∞) such that

(i) ψ ∈ SCr (∗Rd , ∗[0,∞)),

(ii)
∑

a∈A ψ(a)pa = 1,

(iii) limk→∞ ◦
(

1
�t

∑
|a|>k ψ(a)pa

)
= 0.

We begin with a simple lemma which will allow us to reduce many arguments to
processes with finite increments.

Lemma 7.2 Let L be a hyperfinite Lévy process and assume that ψ ∈ Dr (L) for
some r ∈ N. Then there exist finite numbers k, c such that the modified function
ψ̃(a) = ψ(a)/(1 − c�t) is in Dr (L<k).

Proof By part (iii) in the definition above, there is a finite (and noninfinitesimal) k
such that 1

�t

∑
|a|≥k ψ(a)pa is finite, i.e.,

∑
|a|≥k ψ(a)pa = m�t for some finite m.
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By part (ii) of the definition, it follows that
∑

|a|<k ψ(a)pa = 1 − m�t . From the
general theory of hyperfinite Lévy processes, we know that

∑
{a∈A:a≥k} pa = n�t

for some finite n. If A<k is the set of increments of the truncated process L<k , then
clearly, A<k = {0} ∪ {a ∈ A: |a| < k}. Hence

∑

a∈A<k

ψ(a)pa =
∑

|a|<k

ψ(a)pa +
∑

|a|≥k

ψ(0)pa

= (1 − m�t)+ ψ(0)n�t = 1 − c�t,

where c = m −ψ(0)n. This means that ψ̃(a) = ψ(a)/(1 − c�t) satisfies part (ii) in
the definition of Dr (L<k), and the other two conditions are trivially satisfied. �	

The next two lemmas show that the classes Dr have more structure than may be
obvious at first glance.

Lemma 7.3 Let L be a hyperfinite Lévy process.

(i) If ψ ∈ D2(L), then ψ(0) = 1 + λ�t for some finite λ.
(ii) If ψ ∈ D1(L), then ψ(0) = 1 + γ

√
�t for some finite γ .

Proof By the previous lemma we may assume that L has finite increments.
(i) By Taylor’s formula:

1 =
∑

a∈A

ψ(a)pa =
∑

a∈A

ψ(0)pa +
∑

a∈A

(ψ(a)− ψ(0))pa

= ψ(0)+
∑

a∈A

∇ψ(0) · apa + 1

2

∑

a∈A

∑

i, j

∂2ψ

∂xi∂x j
(θa)ai a j pa

= ψ(0)+ ∇ψ(0) · µL�t + 1

2

∑

a∈A

∑

i, j

∂2ψ

∂xi∂x j
(θa)ai a j pa

for some θa between 0 and a. Since L has finite increments, 1
2 (∂

2ψ/∂xi∂x j )(θa) is
bounded by a finite number C , and hence

1

2

∑

a∈A

∑

i, j

∂2ψ

∂xi∂x j
(θa)ai a j pa ≤

∑

a∈A

∑

i, j

C |a|2 pa ≤ Cσ 2
L�t

and the result follows.
(ii) We use essentially the same argument but have one less derivative to play with:

1 =
∑

a∈A

ψ(a)pa =
∑

a∈A

ψ(0)pa +
∑

a∈A

(ψ(a)− ψ(0))pa

= ψ(0)+
∑

a∈A

∇ψ(θa) · apa .
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Since L has finite increments, |∇ψ(θa)| is bounded by a constant K , and hence by
Hölder’s inequality:

∑

a∈A

∇ψ(θa) · apa ≤ K
∑

a∈A

|a|pa ≤ K

(
∑

a∈A

|a|2 pa

)1/2 (
∑

a∈A

|1|2 pa

)1/2

=
(
∑

a∈A

|a|2 pa

)1/2

= √
�t σL .

The result follows. �	
Lemma 7.4 Let L be a hyperfinite Lévy process and assume that ψ ∈ D1(L). Then
there is a finite number ξ such that

∑
a∈A ψ(a)

2 pa = 1 + ξ�t

Proof By Lemma 7.2 we need only consider processes with finite increments. Observe
first that since

ξ := 1

�t

∑

a∈A

(ψ(a)− 1)2 pa = 1

�t

∑

a∈A

(ψ(a)2 − 2ψ(a)+ 1)pa

= 1

�t

(
∑

a∈A

ψ(a)2 pa − 1

)

,

it suffices to show that 1
�t

∑
a∈A(ψ(a)− 1)2 pa is finite. We have

1

�t

∑

a∈A

(ψ(a)− 1)2 pa = 1

�t

∑

a∈A

(ψ(a)− ψ(0)+ ψ(0)− 1)2 pa

≤ 2

�t

∑

a∈A

(ψ(a)− ψ(0))2 pa + 2

�t

∑

a∈A

(ψ(0)− 1)2 pa .

The last term is finite by Lemma 7.2, and the first is finite by yet another exercise in
Taylor’s formula:

2

�t

∑

a∈A

(ψ(a)− ψ(0))2 pa ≤ 2

�t

∑

a∈A

|∇ψ(θa)|2|a|2 pa ≤ Mσ 2
L ,

where M is a finite number bounding 2|∇ψ(θa)|2. �	
We are now ready to show that the density process Dt (ω) = ∏t

s=0 ψ(�L(ω, s)) is
S-integrable. This implies that the new Loeb measure QL is absolutely continuous
with respect to the old PL on bounded intervals.

Proposition 7.5 Let L be a hyperfinite Lévy process and assume that ψ ∈ D1(L).
Then Dt (ω) =∏t

s=0 ψ(�L(ω, s)) is S-integrable for all finite t ∈ T .
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Proof It suffices to show that E(D(t)2) is finite. By Lemma 7.4

E(D(t)2) = E

(
t∏

s=0

ψ(�L(s))2
)

=
t∏

s=0

E(ψ(�L(s))2)

=
t∏

s=0

∑

a∈A

ψ(a)2 pa =
t∏

s=0

(1 + ξ �t) = (1 + ξ �t)t/�t ≈ eξ t ,

which is finite. �	
Finally, we use the product formula 4.1 to find an expression for the density process

D:

Theorem 7.6 Let L be a hyperfinite Lévy process and assume that ψ ∈ D2(L). Then
for all finite t ∈ T , the product Dt (ω) =∏t

s=0 ψ(�L(ω, s)) is S-integrable and

Dt (ω) ≈
(

t∏

s=0

ψ(�L>η(ω, s)) exp(−∇ψ(0) ·�L>η(ω, s))

)

×exp

⎛

⎝λt+∇ψ(0) · L(ω, t)+ t

2

∑

i, j

Cη
i, j

[
∂2ψ

∂xi∂x j
(0)− ∂ψ

∂xi
(0)

∂ψ

∂x j
(0)

]
⎞

⎠ ,

where η is a splitting infinitesimal, Cη the corresponding infinitesimal covariance
matrix, and λ := (ψ(0)− 1)/�t is finite.

Proof According to Lemma 7.3, ψ(0) = 1 + λ�t for a finite constant λ. Applying
the product formula 4.1 to the function ψ̃(x) = ψ(x)/(1 + λ�t) and observing that
(1 + λ�t)t/�t ≈ eλt , we get the formula. The S-integrability is already established in
the proposition above. �	

8 Minimal martingale measures

Let L be a d-dimensional hyperfinite Lévy process and assume that φi ∈ N I (L) for
i = 1, . . . , d. Consider the d-dimensional, nonlinear stochastic integral

X (ω, t) =
t∫

0

φ(ω, d Ls(ω), s)

defined componentwise by

Xi (ω, t) =
t∫

0

φi (ω, d Ls(ω), s).
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We want to change the probability measure P into a new measure Q such that X is a
martingale with respect to Q and such that the Loeb measure QL of Q is absolutely
continuous with respect to the Loeb measure PL of P – at least as long as we restrict
our processes to bounded time intervals.

The increments of X at time t are φ(ω, a, t), where a ∈ A. If X is to be a martin-
gale, we must give the increments a distribution a �→ q(ω, a, t) (which now depends
on time and history) such that

∑

a∈A

φ(ω, a, t)q(ω, a, t) = 0.

It is not always possible to find a new measure q which turns X into a martingale,
e.g., no change of measure can make a martingale out of a strictly increasing process.
In fact, the formula above tells us that it is possible to turn X into a martingale by a
change of measure if and only if for all ω and t , the origin is in the convex hull of the
set {φ(ω, a, t) | a ∈ A} of increments (and in that case there are often many possibil-
ities corresponding to different convex combinations). This is one of the fundamental
observations of discrete time mathematical finance, but it is of little use in the present
setting as it may produce measures Q which are hopelessly singular with respect to P .

For a more realistic approach, we assume that q is given by a density ψ , i.e.,
q(ω, a, t) = ψ(ω, a, t)pa . The formula above then becomes

∑

a∈A

φ(ω, a, t)ψ(ω, a, t)pa = 0 (7)

and in addition we have ∑

a∈A

ψ(ω, a, t)pa = 1 (8)

since q is a probability measure. We also need, of course, that ψ(ω, a, t) ≥ 0.
If we can can find such a functionψ , our process X will be a martingale with respect

to the new measure Q on � defined by

Q(ω) =
∏

s∈T

ψ(ω,�L(ω, s), s)p�L(ω,s).

The density of Q with respect to the original measure P is given by the process

Dt (ω) =
t∏

s=0

ψ(ω,�L(ω, s), s),

and we hope to use the product formula to find an approximate expression for this
process. However, for such a formula to be of much use, we need the new measure Q
to be absolutely continuous with respect to the old. Even with this condition satisfied,
there are often several candidates for Q to choose among (known by confusingly sim-
ilar names such as the minimal martingale measure, the minimal variation martingale

123



Nonlinear stochastic integrals for hyperfinite Lévy processes 123

measure, and – several versions of – the minimal entropy martingale measure). We
shall concentrate here on the notion of a minimal martingale measure introduced by
Föllmer and Schweizer [9] (see [5,21,22] for more information, and consult also [17]
for an efficient way to find martingale measures) as it is the algebraically simplest, but
it should be possible to do similar calculations for the other candidates.

The idea behind the minimal martingale measure is that we want a measure which
turns

∫
φ(ω, d Lt , t) into a martingale, but which preserves as many other martin-

gales as possible. Let, as usual, {Ft } be the internal filtration generated by L . An
{Ft }-martingale M : �× T → ∗R is orthogonal to L if

E[�M(t)�Li (t)|Ft ] = 0 for all t ∈ T and all i = 1, . . . , d.

Here is our adaption of Föllmer and Schweizer’s concept of a minimal martingale
measure:

Definition 8.1 Let ψ : �× ∗Rd × T → ∗[0,∞) be a nonanticipating function such
that

∑
a∈A ψ(ω, a, t)pa = 1 for all ω and t, and let

Q(ω) =
∏

t∈T

ψ(ω,�L(ω, t), t)p�L(ω,t)

be the internal probability measure on � induced by ψ . Consider the following con-
ditions:

(i) Any internal martingale (w.r.t. P) which is orthogonal to L is also a martingale
with respect to Q.

(ii)
∫
φ(ω, d Lt , t) is a martingale with respect to Q.

(iii) The density Dt (ω) =∏t
s=0 ψ(ω,�L(ω, s), s) is S-integrable for all finite t .

If condition (i) is satisfied, we call Q a minimal measure with respect to L. If in addi-
tion (ii) is satisfied, we call Q a minimal martingale measure for

∫
φ(ω, d Lt , t) with

respect to L. If all three conditions are satisfied, we call Q an absolutely continuous
minimal martingale measure for

∫
φ(ω, d Lt , t) with respect to L.

In our hyperfinite setting, it is just an exercise in linear algebra to show that a min-
imal martingale measure is unique if it exists. To find candidates for Q, we look at
density functions ψ which are affine in a in the sense that

ψ(ω, a, t) = α(ω, t)+
d∑

j=1

β j (ω, t)a j ,

where α, β1, . . . , βd are nonanticipating processes taking values in ∗R and a =
(a1, . . . , ad) ∈ ∗Rd . An easy computation shows that such affine processes gener-
ate minimal measures (if they generate measures at all!):

Lemma 8.2 Assume thatα, β1, . . . , βd are nonanticipating processes taking values in
∗R and letψ(ω, a, t) = α(ω, t)+∑d

j=1 β j (ω, t)a j . Assume further thatψ(ω, a, t) ≥
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0 for all ω, a, t and that
∑

a∈A ψ(ω, a, t)pa = 1 for all ω, t . Then the measure Q on
� generated by ψ is a minimal measure for L.

Proof Assume that M is a martingale orthogonal to L . Then

EQ[�M(t)|Ft ] = EP

⎡

⎣�M(t)
∏

s∈T

⎧
⎨

⎩
α(s)+

d∑

j=1

β j (s)�L j (s)

⎫
⎬

⎭

∣
∣
∣
∣
∣
∣
Ft

⎤

⎦

=
t∏

s=0

⎧
⎨

⎩
α(s)+

d∑

j=1

β j (s)�L j (s)

⎫
⎬

⎭

×EP

⎡

⎣�M(t)

⎧
⎨

⎩
α(t)+

d∑

j=1

β j (t)�L j (t)

⎫
⎬

⎭

∣
∣
∣
∣
∣
∣
Ft

⎤

⎦ = 0,

where we use the orthogonality in the last step. �	

To get a minimal martingale measure, we must choose α, β1, . . . , βd such that∫
φ(ω,�L(t), t) is a martingale w.r.t. Q. If we write (7) componentwise, we get for

i = 1, . . . , d

0 =
∑

a∈A

φi (ω, a, t)ψ(ω, a, t)pa =
∑

a∈A

φi (ω, a, t){α(ω, t)+
d∑

j=1

β j (ω, t)a j }pa

= α(ω, t)
∑

a∈A

φi (ω, a, t)pa +
d∑

j=1

β j (ω, t)
∑

a∈A

φi (ω, a, t)a j pa .

We may think of this as d equations in the d + 1 unknowns α, β1, . . . , βd . To get the
last equation, we note that (8) can be written

1 =
∑

a∈A

ψ(ω, a, t)pa =
∑

a∈A

⎧
⎨

⎩
α(ω, t)+

d∑

j=1

β j (ω, t)a j

⎫
⎬

⎭
pa

= α(ω, t)+ β(ω, t) · µ�t,

where µ := µL = 1
�t

∑
a∈A apa and we think of β(ω, t) as a vector valued process

β(ω, t) = (β1(ω, t), . . . , βd(ω, t)).
To simplify notation, we introduce

ρi (ω, t) = 1

�t

∑

a∈A

φi (ω, a, t)pa
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and

Mi, j (ω, t) = 1

�t

∑

a∈A

φi (ω, a, t)a j pa .

Assuming that L has finite increments, the usual Taylor arguments show that ρi and
Mi, j are finite PL -a.e. With this notation, the equations above can be written in matrix
form in this way:

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 µ1�t . . . µd�t
ρ1�t M1,1�t . . . M1,d�t
ρ2�t M2,1�t . . . M2,d�t
...

...
...

...

ρd�t Md,1�t . . . Md,d�t

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎝

α

β1
β2
...

βd

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1
0
0
...

0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (9)

where we have suppressed the dependence on ω and t to increase readability. We shall
assume that the matrix M = {Mi, j } is uniformly nonsingular in the sense that it has
finite entries and that for all finite t , there exists an εt ∈ R+ such that det(M)(ω, s) ≥ εt

for all ω and all s ≤ t . Let β̃ = (β̃1, . . . , β̃d) be the solution of

⎛

⎜
⎜
⎜
⎝

M1,1 . . . M1,d
M2,1 . . . M2,d
...

...
...

Md,1 . . . Md,d

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

β̃1

β̃2
...

β̃d

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

−ρ1
−ρ2
...

−ρd

⎞

⎟
⎟
⎟
⎠
. (10)

We now introduce new variables x, y1, . . . , yn by (α, β1, . . . , βd) = (x, y1, . . . , yd)+
(1, β̃1, . . . , β̃d). The system (9) then becomes

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 µ1�t . . . µd�t
ρ1�t M1,1�t . . . M1,d�t
ρ2�t M2,1�t . . . M2,d�t
...

...
...

...

ρd�t Md,1�t . . . Md,d�t

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎝

x
y1
y2
...

yd

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−(β̃ · µ)�t
0
0
...

0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (11)

Using Cramer’s rule, it is easy to check that this system has a unique solution
where all entries are of order of magnitude �t . By Cramer’s rule, we also see that
x ≈ −β̃ · µL�t with an error that is infinitesimal compared to �t .

There is one condition we have not taken into account yet – we need q to be positive,
i.e., we need

∑d
i=1 βi (ω, t)ai ≥ −α(ω, t) for all ω, a, t . For processes with jumps,

this condition is quite restrictive, but it is the price we have to pay for working with
affine functions ψ (i.e., with minimal martingale measures). Note that if we allow
signed measures Q (which technically works well), the problem disappears. Note also
that since α(ω, t) ≈ 1 and βi ≈ β̃i , the condition is satisfied if

∑d
i=1 β̃i (ω, t)ai � −1

for all a, ω, t .
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We now have a minimal martingale measure Q which we want to show is absolutely
continuous on bounded intervals.

Lemma 8.3 Let L be a hyperfinite Lévy process with finite increments, and assume
that γ, β1, . . . , βd are nonanticipating, S-bounded processes. Then the process

Dt (ω) =
t∏

s=0

(

1 + γ (ω, s)�t +
d∑

i=1

βi (ω, s)�Li (ω, s)

)

is S-integrable for all finite t .

Proof It suffices to prove that E(D(t)2) is finite for all finite t . Observe that

E
[

D(t +�t)2
]

= E

⎡

⎣D(t)2
(

1 + γ (t)�t +
d∑

i=1

βi (t)�Li (t)

)2⎤

⎦

= E
[

D(t)2(1 + γ (t)�t)2
]

+2E

[

D(t)2(1 + γ (t)�t)
d∑

i=1

βi (t)E[�Li (t)|Ft ]
]

+E

⎡

⎣D(t)2
d∑

i, j

βi (t)β j (t)E[�Li (t)�L j (t)|Ft ]
⎤

⎦ .

If K is a finite number which bounds |γ |, |β1|, . . . , |βd |, we see that the first
term on the right is bounded by E[D(t)2](1 + K�t)2 < E[D(t)2](1 + 3K�t).
Since E[�Li (t)|Ft ] = µi�t , the second term is bounded by 3E[D(t)2]d K |µL |�t ,
and since E[�Li (t)�L j (t)|Ft ] = C L

i, j�t ≤ σ 2
L�t , the third term is less than

E[D(t)2]d2 K 2σ 2
L�t (see the remark at the end of Sect. 2). Combining these esti-

mates, we see that there is a finite M independent of t such that

E[D(t +�t)2] ≤ E[D(t)2](1 + M�t).

By induction, we have E[D(t)2] ≤ (1 + M�t)t/�t ≈ eMt , which is finite. �	

We are now ready for the main theorem:

Theorem 8.4 Let L be a hyperfinite Lévy process with finite increments. Assume that
φi ∈ N I (L) for i = 1, . . . , d, and let

X (ω, t) =
t∫

0

φ(ω, d Ls(ω), s)
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be a multidimensional, nonlinear stochastic integral. Assume that the vector ρ(ω, t)
and the matrix M(ω, t) are S-bounded for allω and all finite t , and that M is uniformly
nonsingular. Assume further that the vector

β̃(ω, t) = −M(ω, t)−1ρ(ω, t)

satisfies
∑d

i=1 β̃i (ω, t)ai � −1 for all a ∈ A, ω ∈ � and all finite t ∈ T . Then
there exist nonanticipating, S-bounded processes α, β1, . . . , βd such that α− 1, β1 −
β̃1, . . . , βd − β̃d are of order of magnitude �t for all ω and all finite t , and such that
the measure Q generated byψ(ω, a, t) = α(ω, t)+∑d

i=1 βi (ω, t)ai is an absolutely
continuous minimal martingale measure for X with respect to L. The density of Q is
given by

Dt (ω) ≈
(

t∏

s=0

(1 + β ·�L>η(ω, s)) exp(−β ·�L>η(ω, s))

)

× exp

(

−tβ · µL + β · L(ω, t)− t

2
〈Cηβ, β〉

)

,

where η is a splitting infinitesimal and Cη the corresponding infinitesimal covariance
matrix.

Proof We have been through most of the argument, and all that remains is some book-
keeping. First note that since M and ρ are S-bounded and M is strictly nonsingular, the
vector β̃ is finite. Using (11) as above, we see that the solution (α, β1, . . . , βd) differs
from (1, β̃1, . . . , β̃d) by order of magnitude�t , and that α ≈ 1 − (β̃ ·µL)�t with an
error that is infinitesimal compared to �t . By the condition

∑d
i=1 β̃i (ω, t)ai � −1,

we get that ψ(ω, a, t) = α(ω, t) +∑d
i=1 βi (ω, t)ai is positive and hence generates

a new measure Q on �. By construction, X is a martingale with respect to Q, and
Lemma 8.2 then tells us that Q is a minimal martingale measure. By Lemma 8.3, the
density Dt is S-integrable with respect to P , and hence Q is an absolutely continuous
minimal martingale measure.

To prove the formula for Dt , we shall apply the product formula 4.1 to the expression
Dt (ω) =∏t

s=0 ψ(ω,�Ls(ω), s), but we need to take a little care as the product for-
mula assumes thatψ(0) = 1, while ourψ only satisfiesψ(0) = α = 1−(β̃ ·µL)�t +
o(�t). As in Sect.7, the trick is to apply the product formula to the function ψ̂ = ψ/α

and note that αt/�t ≈ exp(−tβ · µL). Using that ψ̂(ω, a, s) = 1+∑d
j=1 β̂ j (ω, s)a j ,

where β̂ j (ω, s) := β j (ω, s)/α(ω, s) ≈ β(ω, s), we get

D(ω, t) =
t∏

s=0

ψ(ω,�Ls(ω), s) = αt/�t
t∏

s=0

ψ̂(ω,�Ls(ω), s)

≈ exp(−tβ · µL)

(
t∏

s=0

(1 + β̂ ·�L>η(ω, s)) exp(−β̂ ·�L>η(ω, s))

)

× exp

(

β̂ · L(ω, t)− t

2
〈Cηβ̂, β̂〉

)
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≈
(

t∏

s=0

(1 + β ·�L>η(ω, s)) exp(−β ·�L>η(ω, s))

)

× exp

(

−tβ · µL + β · L(ω, t)− t

2
〈Cηβ, β〉

)

�	

Observe that if X = L , then ρ(ω, t) = µL and M(ω, t) = C L , where as usual
µL = 1

�t

∑
a∈A apa is the drift vector and C L

i, j = 1
�t

∑
a∈A ai a j pa the covariance

matrix. The formula above may then be compared to the formulas for diffusions in [9,
Theorem 3.5] and for Lévy processes in [5, Sect. 3]. It is difficult at this stage to say
how important the extension from the linear to the nonlinear case is; it depends to a
large extent on which properties of the market can be modelled by nonlinear stochastic
integrals. It does, e.g., not seem unnatural to model transaction costs in this way.
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