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Nonstandard Hulls of Locally Exponential Lie Algebras

ISAAC GOLDBRING1

Abstract: We show how to construct the nonstandard hull of certain infinite-
dimensional Lie algebras in order to generalize a theorem of Pestov on the en-
largeability of Banach-Lie algebras, yielding a partial answer to a question of
Neeb from [11]. In the process, we consider a nonstandard smoothness condition
on functions between locally convex spaces to ensure that the induced function
between the nonstandard hulls is smooth. We also discuss some conditions on
a function between locally convex spaces which guarantee that its nonstandard
extension maps finite points to finite points.

2000 Mathematics Subject Classification 22E65 (primary); 26E35, 26E20 (sec-
ondary)

Keywords: locally exponential Lie group, locally exponential Lie algebra, non-
standard hulls

1 Introduction

If E is a Banach space and M is a Hausdorff space, then an E-chart on M is a
homeomorphism between an open subset of M and an open subset of E . The definitions
of smooth compatibility of E-charts, smooth E-atlases on M , and smooth E-structures
on M can be defined exactly as in the finite-dimensional setting, where smoothness for
functions between Banach spaces is taken in the sense of Fréchet. A Banach manifold
is a Hausdorff space equipped with a smooth E-structure for some Banach space E .
Products of Banach manifolds and smooth functions between Banach manifolds are
defined as usual. A Banach-Lie group is a Banach manifold G which is also a group
and for which the multiplication map G × G → G and inversion map G → G are
smooth. As in the finite-dimensional setting, for a Banach-Lie group G, one defines
Lie(G) to be the set of left-invariant smooth vector fields on G; this is a Banach-space
isomorphic to the Banach space that G is modeled on. Moreover, equipped with the
Lie bracket of vector fields, Lie(G) is a Banach-Lie algebra, that is a Banach space
equipped with a continuous Lie bracket.
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2 Isaac Goldbring

A Banach-Lie algebra is enlargeable if it is isomorphic to the Lie algebra of a Banach-
Lie group. While all finite-dimensional Lie algebras are enlargeable (this is Lie’s third
theorem), there are Banach-Lie algebras which are not enlargeable; see, for example,
Lazard and Tits [9]. In the early 1990s, Pestov [13] gave a nonstandard hull construction
for Banach-Lie algebras and groups and used it to prove the following theorem on the
enlargeability of Banach-Lie algebras.

Theorem 1.1 Let g be a Banach-Lie algebra. Suppose that there exists a family H
of closed Lie subalgebras of g and a neighborhood V of 0 in g such that:

• For each h1, h2 ∈ H , there is an h3 ∈ H such that h1 ∪ h2 ⊆ h3 ;

•
⋃
H is dense in g;

• Every h ∈ H is enlargeable and if H is a corresponding connected, simply
connected Lie group, then the restriction expH |V ∩ h is injective.

Then g is enlargeable.

Nowadays, it is recognized that the setting of Banach-Lie groups and algebras is too
restrictive when studying infinite-dimensional Lie groups and algebras and the proper
model spaces for such groups and algebras are arbitrary locally convex spaces. Recall
that a locally convex space is a Hausdorff topological vector space E for which there is
a basis of neighborhoods of 0 consisting of convex sets. (In this paper, all topological
vector spaces are assumed to be real.) Equivalently, a locally convex space is a vector
space E equipped with a separating family of seminorms; these seminorms yield a
topology on E for which a subbase of open sets around 0 are sets of the form

V(p, ε) := {x ∈ E | p(x) < ε},

as p varies over the family of seminorms and ε ranges over R>0 . After defining
smoothness for functions between locally convex spaces, one defines locally convex
Lie groups as in the Banach setting above. Locally convex Lie algebras are defined to
be locally convex spaces equipped with a continuous Lie bracket. For an introduction
to infinite-dimensional Lie theory as it is now studied, see the wonderful survey [11]
by Karl-Hermann Neeb. From now on in this paper, when we speak of Lie groups and
algebras, we always mean Lie groups and algebras modeled on locally convex spaces.

Since arbitrary Lie groups and algebras lack much of the structure theory of their finite-
dimensional counterparts, one usually adds extra assumptions on the groups/algebras
to be able to develop an adequate Lie theory. A Banach-Lie group is an example of a
locally exponential Lie group, which is a Lie group possessing a smooth exponential
function which provides a diffeomorphism between an open neighborhood of 0 in its
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Nonstandard Hulls of Locally Exponential Lie Algebras 3

Lie algebra and an open neighborhood of the identity in the Lie group. There is a
corresponding notion of a locally exponential Lie algebra, which is a Lie algebra that
is a natural candidate to be the Lie algebra of a locally exponential Lie group (see
Section 5 for precise definitions of these notions). It is one of the open problems in the
Neeb survey [11, Problem VI.6] to generalize Pestov’s theorem to the class of locally
exponential Lie algebras.

Just as in the Banach setting, we can construct the nonstandard hull of an arbitrary
internal Lie algebra and prove that it is also a Lie algebra (modeled on the nonstandard
hull of the original model space). Whereas the saturation assumption on the nonstan-
dard extension yields quite easily that the nonstandard hull of an internal Banach-Lie
algebra is once again a Banach-Lie algebra, it is not at all immediate that the hull of
a locally exponential Lie algebra is also a locally exponential Lie algebra. This is
due to the fact that locally exponential Lie algebras are defined in terms of smooth
functions on the underlying locally convex space, and internally smooth functions do
not necessarily induce smooth functions on the nonstandard hull. This is why we have
to strengthen the notion of smoothness in our locally exponential Lie algebras to ensure
that the nonstandard hull is once again a locally exponential Lie algebra.

In the Banach setting, if an internal Lie algebra is enlargeable, the theory of the Baker-
Campbell-Hausdorff (BCH) series allows one to construct the nonstandard hull of the
corresponding Banach-Lie group in a straightforward manner. We are not as fortunate
in our setting, and so our theorem requires an extra (necessary) hypothesis relating
the local group operations of the various subalgebras in H in order to construct the
nonstandard hull of an internal Lie group whose Lie algebra is an element of H∗ .

We do not assume that the reader is familiar with infinite-dimensional Lie theory and
so all relevant notions will be defined.

We assume that the reader is familiar with elementary nonstandard analysis; other-
wise, consult Davis [3] or Henson [6] for a friendly introduction. Let us say that all
nonstandard arguments take place in a sufficiently saturated nonstandard extension.

Here are a few conventions that we use throughout the paper. We always suppose m
and n range over N := {0, 1, 2, . . .}. For any set A, A×n denotes the cartesian product
A× · · · × A︸ ︷︷ ︸

n times

. If G is a group and A ⊆ G, then An denotes the set of n-fold products

from A, that is
An := {a1 · · · an | ai ∈ A for all i = 1, . . . , n}.

For any topological space X and any a ∈ X , we let

µX(a) :=
⋂
{O∗ | O is an open neighborhood of a in X}.
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4 Isaac Goldbring

If the space X is clear from context, we write µ(a) instead of µX(a). We also set
Xns :=

⋃
a∈X µ(a).

Now suppose X is a locally convex space and Γ is a set of seminorms defining the
topology on X . Then for Y an internal subset of X∗ , we define the set

Yf := {x ∈ Y | p(x) ∈ Rns for all p ∈ Γ}.
If Y = X∗ , we will just write Xf for this set instead of X∗f . We also set

µY (0) := {x ∈ Y | p(x) ∈ µR(0) for all p ∈ Γ}
and we sometimes write µ(Y) or µY for this set. As before, if Y = X∗ , we just write
µ(X) or µX , and note that this is equal to µX(0) as defined in the previous paragraph.
Finally, for a, b ∈ X∗ , we write a ∼ b if a− b ∈ µ(X).

I would like to thank Lou van den Dries, Ward Henson, and Karl-Hermann Neeb for
very helpful discussions.

2 Nonstandard Hulls of Internal Lie Algebras

In this section, we work with the following setting. We let g be a locally convex Lie
algebra, that is g is a locally convex space equipped with a continuous Lie bracket
[·, ·] : g × g → g. We let Γg denote the set of all continuous seminorms on g. We
further suppose that h is an internal subalgebra of g∗ , that is h is an internal R∗ -linear
subspace of g such that [h, h] ⊆ h. Our goal in this section is to form the nonstandard
hull of h.

Lemma 2.1 hf is a real Lie algebra and µh is a Lie ideal of hf .

Proof It is well-known and easy to see that hf is a real vector space and µh is a
real subspace of hf . We first show that [hf , hf ] ⊆ hf . Since [·, ·] is continuous at
(0, 0), given p ∈ Γg , there exist q ∈ Γg and r ∈ R>0 such that for all a, b ∈ g,
if q(a), q(b) < r , then p([a, b]) < 1. Since x, y ∈ hf , we can choose α ∈ R>0 so
that q(αx), q(αy) < r . Then p([αx, αy]) < 1, whence p([x, y]) < 1

α2 . It follows that
[x, y] ∈ hf and hence hf is a real Lie algebra.

It remains to show that [hf , µh] ⊆ µh . Suppose x ∈ hf and y ∈ µh . Let p ∈ Γg and
let ε ∈ R>0 . By continuity of [·, ·] at (0, 0), there exists q ∈ Γg and r ∈ R>0 such
that for all a, b ∈ g, if q(a), q(b) < r , then p([a, b]) < ε. Since x ∈ hf , we can choose
α ∈ R>0 so that q(αx) < r . Since y ∈ µh , we have that q( 1

αy) < r , whence we can
conclude that p([x, y]) = p([αx, 1

αy]) < ε. But [αx, 1
αy] = [x, y], whence we see that

p([x, y]) < ε. Since p and ε were arbitrary, we see that [x, y] ∈ µh .

Journal of Logic & Analysis 1:5 (2009)



Nonstandard Hulls of Locally Exponential Lie Algebras 5

Define the nonstandard hull of h to be ĥ := hf /µh , which is a real Lie algebra. (The
Lie bracket is given by [x + µh, y + µh] := [x, y] + µh .) Let πh : hf → ĥ denote the
canonical quotient map. For p ∈ Γg , define p̂ : ĥ → R by p̂(x + µh) := st(p(x)); we
can make this definition because for all x, y ∈ g, |p(x)− p(y)| ≤ p(x− y).)

Let Γ
ĥ

:= {p̂ | p ∈ Γg}. We claim that Γ
ĥ

is a separating family of seminorms on ĥ.
It is trivial to verify that each p̂ is a seminorm. To see that Γ

ĥ
is separating, note that

if x ∈ hf \ µh , then for some p ∈ Γg and some ε ∈ R>0 , p(x) ≥ ε. Consequently,
p̂(x + µh) ≥ ε.

We now see that ĥ equipped with the family of seminorms Γ
ĥ

is a locally convex

space. It remains to show that the Lie bracket of ĥ is continuous with respect to the
locally convex topology just given to ĥ.

Lemma 2.2 [·, ·] : ĥ× ĥ→ ĥ is continuous and thus ĥ is a locally convex Lie algebra.

Proof We first show the continuity of [·, ·] at (0 + µh, 0 + µh). Let p̂ ∈ Γ
ĥ

and let
ε ∈ R>0 . Fix ε′ ∈ R>0 with ε′ < ε. Choose q ∈ Γg and r ∈ R>0 so that if a, b ∈ g

and q(a), q(b) < r , then p([a, b]) < ε′ . Then if q̂(x + µh), q̂(y + µh) < r , one has
p̂([x, y] + µh) ≤ ε′ < ε.

We next show that for any c + µh ∈ ĥ, the map

x + µh 7→ [c, x] + µh : ĥ→ ĥ

is continuous at 0 + µh (and hence continuous on all of ĥ since the aforementioned
map is linear). Fix p̂ ∈ Γ

ĥ
and ε ∈ R>0 . Fix ε′ ∈ R>0 with ε′ < ε. As in the above

paragraph, choose q ∈ Γg and r ∈ R>0 so that if a, b ∈ g satisfy q(a), q(b) < r , then
p([a, b]) < ε′ . Choose α ∈ R>0 so that q(αc) < r . Now suppose q̂(x + µh) < αr .
Then q( 1

αx) < r , whence p([αc, 1
αx]) < ε′ . Thus, p̂([c, x] + µh) < ε.

An analogous argument shows that for any c + µh ∈ ĥ, the map

x + µh 7→ [x, c] + µh : ĥ→ ĥ

is also continuous. We can thus conclude that [·, ·] : ĥ→ ĥ is continuous from the fact
that for a topological vector space X , a bilinear map T : X × X → X is continuous if
it is continuous at (0X, 0X) and if for each a ∈ X , the functions x 7→ T(a, x) : X → X
and x 7→ T(x, a) : X → X are continuous. (This is probably well known, but here is a
nonstandard proof of this. Suppose (a, b) ∈ X × X and (c, d) ∈ µ(a, b). Then

T(a, b)− T(c, d) = T(a− c, b) + T(c− a, b− d) + T(a, b− d),

which is in µ(X) by our assumptions.)
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6 Isaac Goldbring

Remark 2.3 It is obvious that the linear map ι : g → ĝ∗ given by ι(x) = x + µ is
such that for every p ∈ Γg and every x ∈ g, one has p(x) = p̂(ι(x)). In particular, ι is
an injective morphism of locally convex Lie algebras, that is a continuous Lie algebra
homomorphism.

Remark 2.4 An easy saturation argument shows that ĥ is a closed subspace of ĝ∗ .
Since ĝ∗ is complete (see Luxemberg [10, Theorem 3.15.1]), it follows that ĥ is
complete as well.

3 Nonstandard Differentiability Conditions in Locally Con-
vex Spaces

In this section, we define a nonstandard notion of smoothness for functions between
locally convex spaces which is stronger than the standard notion of smoothness and
show how such functions induce (standardly) smooth functions on the nonstandard
hulls. We then introduce a standard strengthening of smoothness which implies our
nonstandard notion. Finally, we show that for certain locally convex spaces, our
nonstandard notion is equivalent to ordinary smoothness.

Throughout this section, we assume E and F are locally convex spaces, U ⊆ E is open,
and f : U → F is a function. Before we enter our discussion of differentiability, we first
provide the following easy lemma, which may be well-known but is included here for
the sake of completeness. Using the terminology of Stroyan [14], we let Link(E∗,F∗)
denote the space of internal k-linear maps from E∗ to F∗ and we introduce the space

FLink(E∗,F∗) = {T ∈ Link(E∗,F∗) | T((Ef )×k) ⊆ Ff }.

We let FLin(E∗,F∗) denote FLin1(E∗,F∗).

Lemma 3.1 Suppose T ∈ Link(E∗,F∗). Then T ∈ FLink(E∗,F∗) if and only if
whenever x1, . . . , xk ∈ Ef are such that xi ∈ µE for some i ∈ {1, . . . , k}, we have
T(x1, . . . , xk) ∈ µF .

Proof First suppose that T ∈ FLink(E∗,F∗). Let x1, . . . , xk ∈ Ef and assume, without
loss of generality, that x1 ∈ µE . Choose N ∈ N∗ \ N such that Nx1 ∈ Ef ; such N
exists by an easy saturation argument (see Henson and Moore [7, Theorem 1.6]). But
now

T(x1, . . . , xk) =
1
N

T(Nx1, x2, . . . , xk) ∈ 1
N

Ff ⊆ µF.
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Nonstandard Hulls of Locally Exponential Lie Algebras 7

We now prove the reverse implication. Suppose that there are x1, . . . , xk ∈ Ef for
which T(x1, . . . , xk) /∈ Ff . We can then find a continuous seminorm p on F such that
N := p(T(x1, . . . , xk)) ∈ N∗ \ N. But then

p(T(
1
N

x1, x2, . . . , xk)) = 1,

whence we conclude that T( 1
N x1, x2, . . . , xk) /∈ µF .

We now recall the (standard) notion of smoothness that appears in the Neeb survey
[11] and the stronger (nonstandard) notion defined by Stroyan in [14].

Definition 3.2 Let a ∈ U . Then f is differentiable at a if for all h ∈ E , the limit

lim
t→0

1
t

(f (a + th)− f (a))

exists. We denote this limit by df (a)(h) or Dhf (a). We say that f is differentiable if
f is differentiable at a for all a ∈ U . We say that f is C1 if f is differentiable and the
map df : U × E → F is continuous. f is said to be Ck if it is continuous, the iterated
directional derivatives

djf (a)(h1, . . . , hj) := (Dhj · · ·Dh1 f )(a)

exist for all j ∈ {1, . . . , k}, a ∈ U , and h1, . . . , hj ∈ E and all maps djf : U×Ej → F
are continuous. Finally, we say that f is smooth if f is Ck for all k .

Notation: If U is an open subset of E , we let

in(U∗) = {a ∈ U∗ | for all b ∈ E∗, if b ∼ a, then b ∈ U∗}.

Definition 3.3 (Stroyan [14]) f is uniformly differentiable if there is a map

df : U → Lin(E,F)

such that for every a ∈ in(U∗) ∩ Ens , one has df (a) ∈ FLin(E∗,F∗), and for every
h ∈ Ef and for every positive δ ∈ µ(R), we have

1
δ

(f (a + δh)− f (a)) ∼ df (a)(h).

The notion f is uniformly Ck is defined recursively as follows. f is uniformly
C1 means f is uniformly differentiable. Suppose f is uniformly Ck . Then we say
f is uniformly Ck+1 if there is a map dk+1f : U → Link+1(E,F) so that whenever
a ∈ in(U∗)∩Ens , then dk+1f (a) ∈ FLink+1(E∗,F∗), and whenever x ∈ Ef , h ∈ (Ef )×k ,
and δ ∈ µ(R) is positive, we have

1
δ

(dkf (a + δx)(h)− dkf (a)(h)) ∼ dk+1f (a)(h, x).

We say that f is uniformly smooth if f is uniformly Ck for every k .

Journal of Logic & Analysis 1:5 (2009)



8 Isaac Goldbring

The notion of being uniformly Ck is really a strengthening of the notion of being Ck .

Lemma 3.4 Suppose f is uniformly Ck . Then f is Ck .

Proof For simplicity, we only prove this for the case k = 1, the higher order cases
being similar. The assumption of uniformly differentiable clearly implies that f is
differentiable. What is left to show is the map df : U × E → F is continuous.
Suppose a ∈ U , a′ ∈ µ(a), h ∈ E , h′ ∈ µ(h). We must show df (a)(h) ∼ df (a′)(h′).
By Lemma 3.1, we know df (a)(h) ∼ df (a)(h′). By Stroyan [14, Proposition 2.4],
df (a)(h′) ∼ df (a′)(h′). This completes the proof.

For our purposes, we will need the following strengthening of Stroyan’s definition.

Definition 3.5 f is uniformly differentiable at finite points if there is a map

df : U → Lin(E,F)

such that, for every a ∈ in(U∗) ∩ Ef , one has df (a) ∈ FLin(E∗,F∗), and for every
h ∈ Ef and for every positive δ ∈ µ(R), we have

1
δ

(f (a + δh)− f (a)) ∼ df (a)(h).

Example 3.6 (Stroyan [14]) Let E = F = RN be given its usual structure as a
locally convex space, that is the topology is generated by the seminorms pj (j ∈ N),
where, for a = (ai) ∈ E , pj(a) := max{|a1|, . . . , |aj|}. Let f : E → F be the map
f (a) = (sin(iai)). Let a, x ∈ Ef (that is ai, xi ∈ Rf for i ∈ N). Then

(
1
δ

((f (a + δx)− f (a)))i = sin(iai)
cos(ixi)− 1

δ
+ cos(iai)

sin(iδxi)
δ

= ixi cos(iai) + δ · zi

where zi ∈ Rf . By defining df : E → Lin(E,F) by df (a)(x)(i) := i cos(iai)xi , we see
that f is uniformly differentiable at finite points.

Lemma 3.7 Suppose f is uniformly differentiable at finite points. Then f is S-
continuous at finite points, that is if w ∈ in(U∗) ∩ Ef and z ∼ w, then f (w) ∼ f (z).
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Nonstandard Hulls of Locally Exponential Lie Algebras 9

Proof Fix w and z as in the statement of the lemma. Again, by Henson and Moore [7,
Theorem 1.6], there exists N ∈ N∗ \ N such that x := N(w− z) ∈ µ(E). Let δ := 1

N .
By uniform differentiability at z, there is η ∈ µ(F) such that

1
δ

[f (z + δx)− f (z)] = df (z)(x) + η,

that is
1
δ

[f (w)− f (z)] = df (z)(N(w− z)) + η.

Hence f (w)− f (z) = df (z)(w− z) + δ · η ∈ µ(F) by Lemma 3.1.

Lemma 3.8 If f is uniformly differentiable at finite points, then df is S-continuous
at finite points, that is if a, a′ ∈ in(U∗) ∩ Ef are such that a ∼ a′ , and x, x′ ∈ Ef are
such that x ∼ x′ , then df (a)(x) ∼ df (a′)(x′).

Proof One shows that df (a)(x) ∼ df (a′)(x) exactly as the proof of Stroyan [14,
Proposition 2.4]. Then, since df (a′) ∈ FLin(E∗,F∗), one has df (a′)(x) ∼ df (a′)(x′) by
Lemma 3.1.

Notation: In the rest of this paper, for any locally convex space E , any internal R∗ -
linear subspace Y of E∗ , and any x ∈ Yf , we may denote the element x + µ(Y) of Ŷ
by JxK.

For the rest of this subsection, let us assume that f (U∗ ∩ Ef ) ⊆ Ff . (We will take up
the issue of when this happens in the next section.) Since U is open, we can write

U =
⋃
i∈I

ni⋂
j=1

{x ∈ E | pij(x− xij) < εij},

for some continuous seminorms pij on E , some elements xij ∈ E and some εij ∈ R>0 .
Let us then define

Û :=
⋃
i∈I

ni⋂
j=1

{JxK ∈ Ê | p̂ij(JxK− JxijK) < εij}.

It is clear that Û is an open subset of Ê and that if JxK ∈ Û , then x ∈ in(U∗) ∩ Ef . If
we further assume that f is S-continuous at finite points (in particular if f is uniformly
differentiable at finite points), then we get a continuous map f̂ : Û → F̂ given by
f̂ (JaK) = Jf (a)K.

Proposition 3.9 Suppose f is uniformly differentiable at finite points. Then f̂ is C1 .

Journal of Logic & Analysis 1:5 (2009)



10 Isaac Goldbring

Proof By Lemma 3.8, we can define the map

d̂f : Û × Ê → F̂, d̂f (JaK, JhK) = Jdf (a)(h)K.

We now show, for JaK ∈ Û , that d̂f (JaK) is the derivative of f̂ at JaK. In order to do
this, let JhK ∈ Ê , p̂ a continuous seminorm on Ê and ε ∈ R>0 . We need a δ ∈ R>0

so that if |t| < δ , then

p̂(Jdf (a)(h)K− 1
t

(̂f (JaK + tJhK)− f̂ (JaK))) < ε,

that is we need a δ ∈ R>0 so that if |t| < δ , then

st(p(df (a)(h)− 1
t

(f (a + th)− f (a)))) < ε.

Since the above expression is 0 if t is infinitesimal (by uniform differentiability at
finite points), we can find the desired δ by saturation.

It remains to show d̂f : Û × Ê → F̂ is continuous. Fix [a] ∈ Û and [h] ∈ Ê . Let
p̂ be a continuous seminorm on F̂ and ε ∈ R>0 . We need r ∈ R>0 and continuous
seminorms p̂1, . . . , p̂n on Ê so that if p̂i([a]− [a′]), p̂i([h]− [h′]) ≤ r for i = 1, . . . , n,
then p̂(d̂f ([a])([h]) − d̂f ([a′])([h′])) < ε. If not, then one can use saturation to get
a′ ∈ U∗ with a′ ∼ a and h′ ∈ Ef with h′ ∼ h such that p(df (a)(h)− df (a′)(h′)) ≥ ε,
which contradicts the S-continuity of df at finite points.

Definition 3.10 The notion f is uniformly Ck at finite points is defined recursively as
follows. f is uniformly C1 at finite points means f is uniformly differentiable at finite
points. Suppose f is uniformly Ck at finite points. Then f is uniformly Ck+1 at finite
points if there is a map dk+1f : U → Link+1(E,F) so that whenever a ∈ in(U∗) ∩ Ef ,
we have dk+1f (a) ∈ FLink+1(E∗,F∗) and whenever x ∈ Ef , h ∈ (Ef )×k , and δ ∈ µ(R)
is positive, we have

1
δ

(dkf (a + δx)(h)− dkf (a)(h)) ∼ dk+1f (a)(h, x).

We will say that f is uniformly smooth at finite points if f is uniformly Ck at finite
points for every k ≥ 1.

Proposition 3.11 If f is uniformly Ck at finite points, then f̂ is Ck and

dk f̂ (JaK)(Jh1K, . . . , JhkK) = Jdkf (a)(h1, . . . , hk)K.

In particular, if f is uniformly smooth at finite points, then f̂ is smooth.
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Nonstandard Hulls of Locally Exponential Lie Algebras 11

Proof By induction on k . The case k = 1 is exactly Proposition 3.9 (and its
proof). We now suppose that f is uniformly Ck+1 at finite points. Fix JaK ∈ Û
and Jh1K, . . . , Jhk+1K ∈ Ê . We must show that

dk+1 f̂ (JaK)(Jh1K, . . . , JhkK) = Jdk+1f (a)(h1, . . . , hk+1)K.

We first must show that the above expression is well-defined. Suppose a′ ∼ a and
h′i ∼ hi for i = 1, . . . , k + 1. By the analog of Stroyan [14, Proposition 3.2], we know
that dk+1f (a)(h1, . . . , hk+1) ∼ dk+1(a′)(h1, . . . , hk+1). However, using the fact that
df (a′) ∈ FLink+1(E∗,F∗), Lemma 3.1 shows that

df (a′)(h1, . . . , hk+1) ∼ df (a′)(h′1, . . . , h
′
k+1).

For ease of notation, let h = (h1, . . . , hk) and dk
h f̂ (·) := dk f̂ (·)(h1, . . . , hk). We now

must show that

lim
t→0

1
t

(dk
h f̂ (JaK + tJhk+1]K− dk

h f̂ (JaK)) = Jdk+1f (a)(h1, . . . , hk+1)K.

By induction, this amounts to showing that

lim
t→0

1
t
Jdkf (a + thk+1)(h)− dkf (a)(h)K = Jdk+1f (a)(h1, . . . , hk+1)K.

Let p̂ be a continuous seminorm on F̂ and let ε ∈ R>0 . We need a δ ∈ R>0 so that if
|t| < δ , then

st(p(
1
t

(dkf (a + thk+1)− dkf (a)(h))− dk+1f (a)(h1, . . . , hk+1))) < ε.

Since the above quantity is 0 for infinitesimal t , the desired δ can be obtained by
saturation.

Our final obligation is to show that dk+1 f̂ : Û × Êk+1 → F̂ is continuous. The proof
is identical to the corresponding part of the proof of Proposition 3.9.

Strong Smoothness

We now introduce a standard condition on f which implies that it is uniformly dif-
ferentiable at finite points. We first mention some facts from the calculus of locally
convex spaces. Suppose f is C1 . Let

U[1] := {(x, y, t) ∈ U × E × R | x + ty ∈ U},

an open subset of E × E × R. Let f [1] : U[1] → F be defined by

f [1](x, y, t) =

{
1
t (f (x + ty)− f (x)) if t 6= 0

df (x)(y) if t = 0
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It follows from the Mean Value Theorem (see Neeb [11, Proposition I.2.3]) that f [1] is
continuous. In fact, it is shown in Bertram et al [1] that if f is continuous and there
exists a continuous function f [1] : U[1] → F such that f [1](x, y, t) = 1

t (f (x + ty)− f (x))
for t 6= 0, then f is C1 and df (x)(y) = f [1](x, y, 0).

Definition 3.12 Suppose f is C1 . Then f is strongly C1 if f [1] is uniformly contin-
uous.

Lemma 3.13 Suppose f is strongly C1 . Then f is uniformly differentiable at finite
points.

Proof Suppose a ∈ in(U∗) ∩ Ef . We first show df (a) ∈ FLin(E∗,F∗). It suffices to
show that if x ∈ µ(E), then df (a)(x) ∈ µ(F). But

df (a)(x) = f [1](a, x, 0) ∼ f [1](a, 0, 0) = df (a)(0) = 0

since df (a) is an internal linear map.

Now suppose x ∈ Ef and δ is a positive element of µ(R). We must show that
f [1](a, x, δ) ∼ df (a)(x). But f [1](a, x, δ) ∼ f [1](a, x, 0) = df (a)(x), finishing the proof.

Remark 3.14 Notice that we never used the fact that a and x were finite in the above
proof, so being strongly C1 implies uniform differentiability at all points and where
we are allowed to take derivatives in the direction of any element of E∗ .

Lemma 3.15 If f is strongly C1 , then f is uniformly continuous.

Proof Suppose x, y ∈ U∗ are such that x ∼ y. Choose N ∈ N∗ \ N such that
z := N(x− y) ∈ µ(E). Let δ := 1

N . Then

f (x)− f (y) = f (y + δz)− f (y) ∼ δdf (y)(z) = df (y)(δz) ∈ µ(F).

We now describe the higher order analogs of this notion. One can recursively define
the sets U[k] for k ∈ N by U[k+1] := (U[k])[1] and the functions f [k] : U[k] → F by
f [k+1] := (f [k])[1] . It is shown in Bertram et al [1] that a Ck function f is Ck+1 if and
only if f [k] is C1 .

Definition 3.16 The notion f is strongly Ck is defined recursively as follows. The
notion f is strongly C1 has already been defined. Assume f is Ck+1 and strongly Ck .
Then f is strongly Ck+1 if f [k] is strongly C1 . We will say that f is strongly smooth
if f is strongly Ck for all k ≥ 1.
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Lemma 3.17 If f is strongly Ck , then f is uniformly Ck at finite points.

Proof By induction on k . The case k = 1 is precisely Lemma 3.13. We now assume
the result holds for k and we suppose f is strongly Ck+1 . The induction hypothesis
gives us that f is uniformly Ck at finite points. In order to prove the other two conditions
for f to be uniformly Ck+1 at finite points, we need to elaborate on the relationship
between the functions dnf and f [n] for arbitrary n.

Using the terminology from Bertram et al [1], each dnf is a partial map of f [n] in the
sense that each dnf is obtained from f [n] by fixing some coordinates of the domain of
f [n] . For example,

df (x)(h) = f [1](x, h, 0)

and
d2f (x)(h1, h2) = f [2](x, h1, 0, h2, 0, 0, 0).

Hence, if f [n] is uniformly continuous, then so is dnf .

Let us show that for any a ∈ in(U∗) ∩ Ef , we have df (a) ∈ FLink+1(E,F). Suppose
h1, . . . , hk+1 ∈ Ef and, without loss of generality, that h1 ∈ µ(E). Then by uniform
continuity of dk+1f , we have dk+1f (a)(h1, . . . , hk+1) ∼ dk+1f (a)(0, h2. . . . , hk+1) = 0.
Now suppose that h1, . . . , hk, x ∈ Ef and δ is a positive element of µ(R). We now
show that

1
δ

(dkf (a + δx)(h1, . . . , hk)− dkf (a)(h1, . . . , hk)) ∼ dk+1f (a)(h1, . . . , hk, x).

This follows from the uniform continuity of f [k+1] . Let us illustrate this in the case
when k = 2, as the formula relating dkf and f [k] is simple enough in this case. For
simplicity, let us denote the left hand side of the above equation by LHS.

LHS =
1
δ

(f [2](a + δx, h1, 0, h2, 0, 0, 0)− f [2](a, h1, 0, h2, 0, 0, 0))

= f [3]((a, h1, 0, h2, 0, 0, 0), (x, 0, 0, 0, 0, 0, 0), δ)

∼ f [3]((a, h1, 0, h2, 0, 0, 0), (x, 0, 0, 0, 0, 0, 0), 0)

= d3f (a)(h1, h2, x)

The Case of Complete HM-spaces

Recall that x ∈ E∗ is called pre-nearstandard if for every neighborhood V of 0 in E ,
there is y ∈ E such that x− y ∈ V∗ . Let Epns denote the set of pre-nearstandard points
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of E and note that we always have the inclusions Ens ⊆ Epns ⊆ Ef . The importance of
the pre-nearstandard points of E is that their image in Ê is the completion of E in Ê
(so E is complete if and only if Ens = Epns ). An HM-space is a locally convex space
E for which Epns = Ef .

Remarks 3.18

(1) In standard language, a locally convex space E is an HM-space if and only if
whenever F is an ultrafilter on E with the property that for every U from a fixed
neighborhood base of 0 in E there is n such that nU ∈ F , then F is a Cauchy
filter.

(2) For metrizable E , E is an HM-space if and only if every bounded set is totally
bounded.

(3) Examples of HM-spaces include the finite-dimensional spaces, FM-spaces, nu-
clear spaces, Silva spaces, and Schwarz spaces.

(4) E is a complete HM-space if and only if Ens = Ef . The space RN from 3.6 is a
complete HM-space.

The proofs of the above remarks can be found in Henson and Moore [7] and [8].

Lemma 3.19 Suppose that E is a complete HM-space and f is smooth. Then f is
uniformly smooth at finite points.

Proof We will only show that f is uniformly differentiable at finite points; the argu-
ment is the same for higher derivatives. Suppose a ∈ in(U∗) ∩ Ens and x ∈ Ens .
Then since df is continuous, we know that df (a)(x) ∼ df (st(a))(st(x)), whence
df (a)(x) ∈ Fns ⊆ Ff . Now suppose that δ is a positive element of µ(R). Then,
since f [1] and df are continuous, we have

f [1](a, x, δ) ∼ f [1](st(a), st(x), 0) = df (st(a), st(x)) ∼ df (a)(x).

4 Finite Functions

Throughout this section, E and F continue to denote locally convex spaces, but now
U denotes an open neighborhood of 0 in E . We still assume that f : U → F is any
function.

Definition 4.1 We say that f is a finite function if f (U∗ ∩ Ef ) ⊆ Ff .
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In order for f to induce a function on the nonstandard hulls, a necessary requirement
is that f be a finite function. Using Nelson’s algorithm [12], one can give a standard
translation of the notion that f is a finite function. However, this equivalent standard
condition is very complicated. Instead, we seek to prove that f is finite under some
natural assumptions.

Recall that a subset B of a topological vector space E is bounded if for any neighborhood
U of 0 in E , there exists n such that B ⊆ nU . It is a well-known fact (see Henson and
Moore [7, Theorem 2.1]) that B is bounded if and only if B∗ ⊆ Ef . We immediately
get the following result.

Lemma 4.2 If f (U) is a bounded subset of F , then f is a finite function.

Recall that a subset A of E is symmetric if A = −A.

Lemma 4.3 Suppose f : U → F is uniformly continuous. Let U1 be a symmetric
open neighborhood of 0 in E such that U1 + U1 ⊆ U . Then f (U∗1 ∩ Epns) ⊆ Ff . In
particular, if E is an HM-space, then f |U1 is a finite function.

Proof Let x ∈ U∗1 ∩ Epns . We wish to show that f (x) ∈ Ff . Let q be a contin-
uous seminorm on F . Since f is uniformly continuous, there is a symmetric open
neighborhood V of 0 such that whenever a, b ∈ U are such that a − b ∈ V , then
q(f (a)− f (b)) < 1. Since x ∈ Epns , we can find y ∈ E such that x−y ∈ U∗1 ∩V∗ . Then
y = x + (y− x) ∈ U∗ , whence q(f (x)− f (y)) < 1. Since y is standard, q(f (y)) ∈ Rf ,
whence q(f (x)) ∈ Rf . Since q was an arbitrary continuous seminorm on F , this shows
that f (x) ∈ Ff .

We can improve Lemma 4.3 if we further assume that U is convex, which is certainly
the case for our applications. Recall that f is said to be Lipschitz on large distances if
for any continuous seminorm r on E and for any continuous seminorm q on F , there is
a continuous seminorm p on E so that q(f (x1)− f (x2)) ≤ p(x1− x2) for all x1, x2 ∈ U
for which r(x1 − x2) ≥ 1. We will need the following fact.

Fact 4.4 (Corson and Klee [2]) A uniformly continuous mapping from a convex
subset of a locally convex space E into a locally convex space F is Lipschitz on large
distances.

Lemma 4.5 Suppose f : U → F is uniformly continuous and U is convex. Then f
is a finite function.
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16 Isaac Goldbring

Proof Let x ∈ U∗∩Ef and let q be a continuous seminorm on F . We wish to show that
q(f (x)) ∈ Rf . Clearly if x ∈ µ(E), then by continuity at 0, we have f (x) ∈ µ(F). We
thus may assume that x /∈ µ(E). Choose a continuous seminorm r on E and ε ∈ R>0

so that r(x) ≥ ε. By replacing r by 1
ε r , we may assume that r(x) ≥ 1. Let p be a

continuous seminorm on E such that q(f (x1)− f (x2)) ≤ p(x1 − x2) for all x1, x2 ∈ U
satisfying r(x1 − x2) ≥ 1. Then since r(x) ≥ 1, we have q(f (x)− f (0)) ≤ p(x) ∈ Rf ,
whence q(f (x)) ∈ Rf .

A stronger assumption to impose on f is that it is Lipschitz. Recall that f is said to be
Lipschitz if for every continuous seminorm q on F , there is a continuous seminorm p
on E so that q(f (x1)− f (x2)) ≤ p(x1 − x2) for every x1, x2 ∈ U .

Lemma 4.6 If f is Lipschitz, then f is a finite function.

Proof Let x ∈ U∗ ∩ Ef and let q be a continuous seminorm on F . Choose p as
in the definition of Lipschitz. Then q(f (x) − f (0)) ≤ p(x) ∈ Rf , which implies that
q(f (x)) ∈ Rf .

We end this section with a question. For x0 ∈ E and p a continuous seminorm on E ,
let Bp

1(x0) denote the set {x ∈ E | p(x− x0) < 1}. Say that f is locally Lipschitz if for
every x0 ∈ U and every continuous seminorm q on F , there is a continuous seminorm
p on E such that Bp

1(x0) ⊆ U and q(f (x)− f (y)) ≤ p(x− y) for all x, y ∈ Bp
1(x0). One

has the following result:

Fact 4.7 (Glockner [4, Lemma 1.9]) If f is C1 , then f is locally Lipschitz.

Question 4.8 It does not appear that assuming that f is locally Lipschitz implies that
f is a finite function. Does the assumption that f is uniformly C1 at finite points (or
even uniformly smooth at finite points) imply that f is a finite function?

5 Localizing Enlargeability

In this section, we present our main theorem on localizing enlargeability and some of
its corollaries. We first introduce some of the necessary definitions from locally convex
Lie theory.
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Nonstandard Hulls of Locally Exponential Lie Algebras 17

Definition 5.1 A local Lie group is a tuple (G,D,mG, 1) such that G is a smooth
manifold modeled on a locally convex space, D ⊆ G × G is open, mG : D → G (the
product map) is smooth, and such that the following conditions hold:

• Suppose xy and yz are defined, that is (x, y) ∈ D and (y, z) ∈ D. Then if one
of the products (xy)z or x(yz) are defined, then so is the other and both products
are equal;

• For each x ∈ G, we have (x, 1) ∈ D and (1, x) ∈ D and

mG(x, 1) = mG(1, x) = x;

• For each x ∈ G, there is a unique x−1 ∈ G such that (x, x−1), (x−1, x) ∈ D and

mG(x, x−1) = mG(x−1, x) = 1;

• The map x 7→ x−1 : G→ G is smooth;

• If (x, y) ∈ D, then (y−1, x−1) ∈ D.

Recall that a subset A of a locally convex space E is circular if λA ⊆ A for all λ ∈ R
with |λ| ≤ 1.

Definition 5.2 A Lie algebra g is called locally exponential if there exists a circular,
convex open 0-neighborhood U ⊆ g and an open subset D ⊆ U × U on which we
have a smooth map

mU : D→ U, (x, y) 7→ x ∗ y

such that (U,D,mU, 0) is a local Lie group satisfying:

(E1) For x ∈ U and |t|, |s|, |t + s| ≤ 1, we have (tx, sx) ∈ D and tx ∗ sx = (t + s)x;

(E2) The second order term in the Taylor expansion of mU at (0, 0) is [x, y].

The condition (E2) is only there to ensure that the Lie algebra of the local Lie group
(U,D,mU, 0) is isomorphic to g.

Definition 5.3 Let G be a Lie group with Lie algebra g.

(i) A smooth exponential map for G is a smooth function expG : g → G for
which the curves γx(t) := expG(tx) (x ∈ g) are 1-parameter subgroups of G
satisfying γ′x(0) = x . (Recall that a 1-parameter subgroup of G is a continuous
homomorphism R → G.) It is a fact that G can possess at most one smooth
exponential function; see the comments after Definition II.5.1 of the Neeb survey
[11].
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(ii) G is said to be locally exponential if there exists a smooth exponential map
expG for G, an open 0-neighborhood U ⊆ g, and an open e-neighborhood
V ⊆ G such that expG |U is a diffeomorphism of U onto V .

The above terminology is due to the fact that the Lie algebra of a locally exponential Lie
group is a locally exponential Lie algebra; this follows from considering exponential
coordinates. Thus a locally exponential Lie algebra is a natural candidate to be the Lie
algebra of a locally exponential Lie group.

Definition 5.4 A locally exponential Lie algebra g is said to be enlargeable if it is
the Lie algebra of a locally exponential Lie group.

Pestov proves Theorem 1.1 in the following manner. First, he finds an internal Lie
algebra h ∈ H∗ such that g embeds isometrically into ĥ as a closed subalgebra. By
assumption, there is an internal Banach-Lie group H for which h is its Lie algebra. As
mentioned in the Introduction, ĥ is a Banach-Lie algebra and Pestov shows that ĥ is
enlargeable by constructing the nonstandard hull of H , which has ĥ as its Lie algebra.
This finishes the proof of Theorem 1.1 as a closed Lie subalgebra of an enlargeable
Banach-Lie algebra is enlargeable (see [15, page 22, item (***)]).

We now explain the set-up that allows us to pursue the above method of proof for the
class of locally exponential Lie algebras. Suppose that g is a locally exponential Lie
algebra witnessed by (U,D,mU, 0). For x, y ∈ U , we sometimes write x ∗ y instead
of mU(x, y). Suppose H is a directed family of closed subalgebras of g and suppose
that there exists an open, symmetric neighborhood V ⊆ U of 0 in g with V × V ⊆ D
and such that

(1)
⋃
H is dense in g;

(2) for each h ∈ H , there is a locally exponential Lie group H such that Lie(H) ∼= h;

(3) for each h ∈ H , if H is a connected locally exponential Lie group such that
Lie(H) ∼= h, then expH |V ∩ h : V ∩ h→ H is injective.

The preceding conditions are the direct analogues of Pestov’s assumptions in the Banach
setting. In order to make some of Pestov’s arguments go through, we add two further
conditions. First, we introduce some notation. For each h ∈ H , let us fix a connected
Lie group H such that Lie(H) ∼= h and let Wh be an open symmetric neighborhood of
e in H contained in expH(V). Let Dh := {(x, y) ∈ h×h | expH(x) ·expH(y) ⊆ Wh}, an
open subset of h× h. Define ∗h : Dh → V ∩ h by x ∗h y = exp−1

H (expH(x) · expH(y)).
Our new assumptions are that Wh can be chosen so that there exists a continuous
seminorm p on g for which:
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(4) {x ∈ h| p(x) < 1}×2 ⊆ Dh ;

(5) {x ∈ g | p(x) < 1}×2 ⊆ D and mU|{x ∈ g | p(x) < 1}×2 is uniformly
continuous.

We will need the following consequence of assumption (4).

Fact 5.5 (Glöckner and Neeb [5, Proposition 3.7.17]) Assumption (4) implies that for
all h ∈ H and all x, y ∈ h with p(x), p(y) < 1, we have x ∗h y = mU(x, y). (The
statement of Proposition 3.7.17 in Glöckner and Neeb [5] is less precise than what we
claim and one needs only to read the proof of that proposition to see that it yields this
fact immediately.)

For the rest of this section, we fix h ∈ H∗ and suppose H is a corresponding internal
connected locally exponential Lie group whose Lie algebra is h. For simplicity, let
exp denote the exponential map for H . By the above fact, we can write x ∗ y instead
of x ∗h y when x, y ∈ h are such that p(x) < 1 and p(y) < 1.

The first step in constructing the nonstandard hull of H is to define Hf . In the Banach
setting of Pestov’s paper, Hf is defined in a certain technical fashion but is later shown to
equal

⋃
n exp(W)n , where W is any ball around 0 in h of finite, noninfinitesimal radius.

It follows that Hf =
⋃

n exp(hf )n . Indeed, one inclusion is clear, for W ⊆ hf . Now
suppose x ∈ hf . Choose m so that 1

m x ∈ W . Then exp(x) = exp( 1
m x)m ∈ exp(W)m ,

proving the other direction. I thus propose the following definition in the locally convex
setting.

Definition 5.6 Hf :=
⋃

n exp(hf )n .

Lemma 5.7 Hf is a group.

Proof Hf clearly contains e and is closed under products. It remains to show that
Hf is closed under inverses; this follows from the fact that hf is closed under additive
inverses and the fact that exp(−x) = exp(x)−1 .

In analogy with Pestov, we make the following definition.

Definition 5.8 µH := exp(µh).

The following lemma appears in Pestov’s paper, where he uses facts about the BCH
series in Banach-Lie algebras to reach this conclusion. We could not use such an
argument and this is where assumptions (4) and (5) make their first appearance.

Journal of Logic & Analysis 1:5 (2009)



20 Isaac Goldbring

Lemma 5.9 µH is a normal subgroup of Hf .

Proof First suppose that x, y ∈ µH . Choose x1, y1 ∈ µh such that exp(x1) = x and
exp(y1) = y. Using the continuity of mU and the fact that (x, y) ∈ Dh , we have
x1 ∗ y1 ∈ µh and thus exp(x1 ∗ y1) ∈ µH . But then

xy = exp(x1) exp(y1) = exp(x1 ∗ y1) ∈ µH.

Since −x1 ∈ µh , we have x−1 = exp(−x1) ∈ µH . Hence, µH is a subgroup of Hf .

Now suppose y ∈ Hf and x ∈ µH . We will show that yxy−1 ∈ µH . Write x = exp(x1),
where x1 ∈ µh . Let z1, . . . , zn ∈ hf be such that y = y1 · · · yn , where yi := exp(zi) for
each i ∈ {1, . . . , n}. Then

yxy−1 = exp(z1) · · · exp(zn) exp(x1) exp(−zn) · · · exp(−z1).

By induction, it suffices to prove that, for all z ∈ hf and w ∈ µh , we have

exp(z) exp(w) exp(−z) ∈ µH.

Choose a continuous seminorm q ≥ p on g so that for all x, y ∈ g, if q(x), q(y) < 1,
then p(x ∗ y) < 1. Choose m so that q( 1

m z) < 1. Let w′ ∈ µh be arbitrary. Then by
uniform continuity of mU , we know that 1

m z ∗w′ ∼ 1
m z. Since p( 1

m z ∗w′) < 1, another
application of uniform continuity implies that ( 1

m z ∗w′) ∗ (− 1
m z) ∼ ( 1

m z) ∗ (− 1
m z) = 0.

Hence exp( 1
m z) exp(w′) exp(− 1

m z) ∈ µH for any w′ ∈ µh . Since

exp(z) exp(w) exp(−z) = exp(
1
m

z)m exp(w) exp(− 1
m

z)m,

we are finished with the proof of the lemma.

Definition 5.10 We set Ĥ := Hf /µH and let πH : Hf → Ĥ be the quotient map.

Lemma 5.11 Suppose πh(x) = πh(y). Then πH(exp x) = πH(exp y).

Proof Choose m so that p( 1
m x), p( 1

m y) < 1. By uniform continuity of mU ,

1
m

x ∗ (− 1
m

y) ∼ 1
m

y ∗ (− 1
m

y) = 0.

Thus exp( 1
m x ∗ − 1

m y) ∈ µH , whence exp( 1
m x) exp(− 1

m y) ∈ µH . Hence

πH(exp(x) exp(y)−1) = πH((exp
1
m

x)m−1(exp
1
m

x)(exp(− 1
m

y))(exp(− 1
m

y)m−1)

= πH((exp
1
m

x)m−1(exp(− 1
m

y))m−1)

Continuing in this fashion, one gets the desired result.
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The above lemma allows us to define a function êxp : ĥ→ Ĥ by

êxp(x + µh) := (exp x)µH.

From now on, we will use the notation JxK for x+µh as introduced earlier in the paper.

Lemma 5.12 êxp is injective on Ŵ := {JxK | p̂(JxK) < 1}.

Proof Suppose Jx1K, Jx2K ∈ Ŵ are such that êxp(Jx1K) = êxp(Jx2K). It follows that
(exp x1)(exp x2)−1 ∈ µH and hence exp(x1 ∗ (−x2)) ∈ µH . Let z ∈ µh be such that
exp(x1 ∗ (−x2)) = exp z. Since exp is injective on V , we have x1 ∗ (−x2) = z. But
then, by uniform continuity of mU , x2 ∼ (x1∗(−x2))∗x2 = x1 , that is Jx1K = Jx2K.

Remark 5.13 All that was used in the above construction of Ĥ was that mU was S-
continuous on pairs of points of U∗ with p-norm less than 1 which were finite, so the
assumption that mU is uniformly differentiable at finite points allows those arguments
to go through.

In addition to the conditions (1)-(5) we have imposed on the locally exponential Lie
algebra g and the family of closed subalgebras H , we further assume the condition

(6) mU is uniformly smooth at finite points.

Note that condition (6), when combined with Remark 5.13 and Lemma 4.5, allows us
to replace condition (5) with the following condition:

(5 ′ ) mU is a finite function.

Under these conditions, we get a smooth map m̂U : D̂→ ĝ∗ .

Lemma 5.14 ĥ is a locally exponential Lie algebra.

Proof Let Ŵ be as in Lemma 5.12. Consider the map

m
ĥ

: Ŵ × Ŵ → ĥ, m
ĥ
(JxK, JyK) := Jx ∗ yK.

Note that m
ĥ

= m̂U|(Ŵ × Ŵ). Since ĥ is a complete subalgebra of ĝ∗ , it follows that

m
ĥ

is smooth. Let D′ := m−1
ĥ

(Ŵ). We claim that (Ŵ,D′,m
ĥ
|D′, J0K) witnesses that ĥ

is a locally exponential Lie algebra.

It is clear that the above data yields a local group, and since multiplication and inversion
are smooth (inversion is in fact linear), we have that (Ŵ,D′,m

ĥ
|D′, J0K) is a local Lie
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group. We now must verify conditions (E1) and (E2) of Definition 5.2. Towards
proving (E1), suppose JxK ∈ Ŵ and |t|, |s|, |t + s| ≤ 1. We need (tJxK, sJxK) ∈ D′ and
m

ĥ
(tJxK, sJxK) = (t + s)JxK. Now since JxK ∈ Ŵ , we know that p(x) < 1, whence

(tx, sx) ∈ Dh and tx ∗ sx = (t + s)x . It follows that m
ĥ
(tJxK, sJxK) = (t + s)JxK ∈ Ŵ

and so (tJxK, sJxK) ∈ D′ .

Now suppose h = (h1, h2) ∈ g×g. Since d2mU(0, 0)(h, h) = [h1, h2], Proposition 3.11
implies that

d2m̂U(J0K, J0K)(JhK, JhK) = J[h1, h2]K = [Jh1K, Jh2K].

It follows that the Lie algebra of the local group (Ŵ,D′,m
ĥ
|D′, J0K) is ĥ. Hence (E2)

holds and the proof of the lemma is finished.

Lemma 5.15 ĥ is enlargeable.

Proof By Lemma 5.12, êxp|Ŵ is injective. It is also clear from the definitions that
êxp is a local group morphism when ĥ is endowed with the local group structure from
Lemma 5.14. Let Ĥ1 denote the subgroup of Ĥ generated by êxp(Ŵ). Then Neeb
[11, Corollary II.2.2] implies that Ĥ1 carries the unique structure of a Lie group so
that êxp|Ŵ is a diffeomorphism onto an open subset of Ĥ1 . Then Ĥ1 is a locally
exponential Lie group with Lie algebra ĥ, finishing the proof.

We are now ready to state our main theorem on localizing enlargeability.

Theorem 5.1 Suppose g is a locally exponential Lie algebra and H is a family of
closed subalgebras such that g and H satisfy conditions (1)-(6) (or (5’) instead of (5)).
Then g is enlargeable.

Proof As in Pestov [13], we get an internal h ∈ H∗ such that the map ι : g → ĝ∗

actually takes values in ĥ. For the sake of completeness, let us repeat how this
argument goes. Let X :=

⋃
H . Consider the following family of internal conditions

on A ∈ PF(X)∗ , the set of hyperfinite subsets of X∗ :

C(g, p, n) := {A ∈ PF(X)∗ | there exists g′ ∈ A such that p(g− g′) <
1
n
},

where g ranges over g and p ranges over the set of continuous seminorms on g.
Assumption (1) implies that for each g ∈ g we have µ(g)∩X∗ 6= ∅, whence the family
of internal sets C(g, p, n) has the finite intersection property. Hence, by saturation,
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there is an A ∈ PF(X)∗ belonging to each C(g, p, n). Fix g ∈ g. We claim that
µ(g) ∩ A 6= ∅. To see this, let

Bg(p, n) := {x ∈ A | p(g− x) <
1
n
}.

By the choice of A, each Bg(p, n) is nonempty. Moreover, the family of internal sets
Bg(p, n), where p ranges over the set of continuous seminorms on g, has the finite
intersection property. Thus, by saturation, there is x ∈ A which belongs to each
Bg(p, n), that is x ∈ µ(g) ∩ A. Since the family H is directed, there is h ∈ H∗ such
that A ⊆ h. This is the desired h.

Since ι : g → ĥ is an injective morphism of Lie algebras, we can infer that g is
enlargeable from the enlargeability of ĥ using Neeb [11, Corollary IV.4.10(2)].

We now mention a corollary of this theorem involving only standard notions. Say that
a locally exponential Lie algebra g is strong if there is a local group (U,D,mU, 0)
witnessing that g is a locally exponential Lie algebra for which mU is strongly smooth.

Corollary 5.16 If g is a strong locally exponential Lie algebra with a family H of
closed subalgebras satisfying conditions (1)-(4), then g is enlargeable.

Proof This follows from the previous theorem, using Lemma 3.15, Lemma 3.17, and
Lemma 4.5.

We can remove some of the assumptions on g in Theorem 5.1 if g is a complete
HM-space.

Corollary 5.17 If g is a locally exponential Lie algebra modeled on a complete HM-
space with a family H of closed subalgebras satisfying conditions (1)-(4), then g is
enlargeable.

Proof It is clear from the continuity of mU and the fact that the finite points are all
nearstandard that mU is a finite map. By Lemma 3.19, we know that mU is uniformly
smooth at finite points.

Question 5.18 Corollary 5.16 and Corollary 5.17 would be exact analogs of Pestov’s
Theorem for certain classes of locally exponential Lie algebras if condition (4) were
not needed. Can one eliminate assumption (4) in any of the above results?

Pestov draws the following corollary to his theorem.
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Corollary 5.19 (Pestov) If g is a Banach-Lie algebra which contains a dense subal-
gebra in which every finitely generated subalgebra is finite-dimensional (or such that
every finitely generated subalgebra is solvable), then g is enlargeable.

Question 5.20 Even if one were able to obtain perfect analogs of Pestov’s theorem
for arbitrary locally exponential Lie algebras, would one be able to draw similar
conclusions as in Corollary 5.19?
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