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Abstract We prove that the zero-set of a C∞ function belonging to a noetherian
differential ring M can be written as a finite union of C∞ manifolds which are definable
by functions from the same ring. These manifolds can be taken to be connected under
the additional assumption that every zero-dimensional regular zero-set of functions
in M consists of finitely many points. These results hold not only for C∞ functions
over the reals, but more generally for definable C∞ functions in a definably complete
expansion of an ordered field. The class of definably complete expansions of ordered
fields, whose basic properties are discussed in this paper, expands the class of real
closed fields and includes o-minimal expansions of ordered fields. Finally, we provide
examples of noetherian differential rings of C∞ functions over the reals, containing
non-analytic functions.
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1 Introduction

Definable completeness is a weak (first order expressible) version of Dedekind com-
pleteness.

Definition 1 Fix a language L = {+,−, ·,<, 0, . . . } which is an expansion of the
language of ordered rings. A definably complete structure K (in the language L) is an
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188 T. Servi

L-expansion of an ordered field, such that every definable subset of the domain of K

which is bounded from above, has a least upper bound.

Let L be a language as in Definition 1. An L-expansion of an ordered field is
o-minimal if every definable subset of the domain is a finite union of open intervals
and points. Hence, every o-minimal L-expansion of an ordered field is definably com-
plete. On the other hand, every definably complete structure expands a real closed
field (see Theorem 2).

Definably complete structures have been studied mainly by C. Miller, some results
can be found in [9].

Every L-expansion of the real ordered field R is clearly definably complete, by
Dedekind completeness. In particular, not every definably complete structure is
o-minimal.

The notion of definable completeness is thus weaker than that of o-minimality
(which has been extensively studied, see for example [1]). However, it has the
advantage of being first order expressible. Unlike the o-minimal case, the class of
all definably complete structures in a given language L is recursively axiomatizable.
In particular, if R is elementary equivalent to an expansion of the real ordered field,
then R is definably complete.

The aim of this paper is to lay the common groundwork for an axiomatic analysis
of expansions of the real ordered field with some C∞ functions, such as power func-
tions, the exponential function, the sine function, quasi-analytic functions. The goal
is to understand the geometric behaviour of sets definable in models of recursively
axiomatized fragments of the theories of these structures, and hence to contribute to
the solution of decidability questions related to these structures.

The main result of this paper is Theorem 33, which states that, in a definably
complete structure K, the zero-set of a C∞ definable function belonging to a noethe-
rian differential ring, can be written as a finite union of C∞

K-manifolds, which are
definable by functions from the same ring.

Notice that we do not assume geometric finiteness (o-minimality, Pfaffianity,. . .),
hence this decomposition theorem holds for a wide class of functions over definably
complete structures. Over the real numbers, we find analytic but non-tame examples
like sin(x), and in Sect. 7 we exhibit some C∞ but non-analytic examples.

Results of a similar flavour have been obtained by Gabrielov [4] in the context of
real analytic functions restricted to a compact ball.

This result is a first step in the analysis of quantifier-free definable sets in an expan-
sion of the real field with noetherian functions.

We apply our decomposition theorem to prove a Khovanskii-type finiteness result
(see Theorem 45): given a noetherian differential ring M of functions, if every zero-
dimensional regular zero-set of functions in M consists of finitely many points, then
the zero-set of any function in M has finitely many connected components.

Finally, we refine the candidate for a complete recursive axiomatization of the real
exponential field Rexp proposed by Macintyre and Wilkie in [8]. We note that the axiom
schemes A3, A4, TN A, TH in [8] follow from results 8, 14, 7 and 5, respectively.

The methods used throughout this paper are mainly due to Wilkie; here we
generalize some results appearing in [8,13].
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Noetherian varieties in definably complete structures 189

2 Basic results

We fix, for the rest of this paper, a language L , which expands the language of ordered
rings, and a definably complete L-structure K. We equip K with the interval topology,
and any power K

n with the product topology.
We give the usual ε, δ-definition of continuous function (where ε and δ are elements

of K). Limits are well defined, since the topology is Hausdorff.
The following classical results hold true in definably complete structures (the miss-

ing proofs are easy and can be found in [12]).

Theorem 2 (Intermediate value) Let a, b ∈ K and f : [a, b] → K be a continuous
definable function such that f (a) < 0 and f (b) > 0. Then there exists c ∈ (a, b)

such that f (c) = 0.

In particular, every definably complete structure is a real closed field.

Corollary 3 (Intermediate value property) Let a, b ∈ K and f : [a, b] → K be a
continuous definable function. Then f takes all values in K between inf f and sup f
(which exist, possibly ±∞, by definable completeness).

Theorem 4 (Weierstrass property) Let a, b ∈ K and f : [a, b] → K be a continuous
definable function. Then f is achieves maximum and minimum on [a, b].

A definable function f : K → K is differentiable at x ∈ K if the limit
limy→x

f (y)− f (x)
|y−x | exists. Note that the derivative of a definable function (if it exists)

is again a definable function. Analogously, if f : K
n → K, we define the partial deriv-

atives. As usual, we say that a definable function f is C1 if it is differentiable, with
continuous first derivatives. Cn and C∞ are similarly defined. It is easy to see that
derivatives satisfy the usual elementary properties, in particular the Chain Rule.

Theorem 5 (Taylor’s theorem)

– Let F : K
n → K be a definable C N map and let x0, x ∈ K

n. Then there exists ξ ,
lying on the line segment joining x0 and x, such that

F(x) = F(x0) + F ′(x0)[x − x0] + F ′′(x0)

2
[x − x0, x − x0]

+ · · · + F (N )(ξ)

N ! [x − x0, . . . , x − x0]

– Let F : Kn → K
n be a definable C N+1 map and let x0, x ∈ K

n such that |x −x0| <

r . Then
∣
∣
∣
∣
∣
F(x) − F(x0) − F ′(x0)[x − x0] − · · · − F (N )(x0)

N ! [x − x0, . . . , x − x0]
∣
∣
∣
∣
∣

≤ sup
y∈B(x0,r)

∣
∣
∣
∣
∣

F (N+1)(y)

(N + 1)! [x − x0, . . . , x − x0]
∣
∣
∣
∣
∣
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Corollary 6 (Increasing functions and the sign of the derivative) Let a, b ∈ K and
f : (a, b) → K be a C1 definable function. If for all x ∈ (a, b) we have f ′(x) > 0,
then f is strictly increasing on (a, b).

Let F : K
n → K

n be a C2 definable map. Suppose we are given some point
x0 ∈ K

n such that |F(x0)| is small, |F ′(x0)| is bounded away from zero, and |F ′(x)|
and |F ′′(x)| are not too large on a suitable neighbourhood of x0. Then F has a zero,
moreover a nonsingular one, lying near to x0. More precisely,

Theorem 7 (Newton’s method) Let a0, a1, a2 ≥ 1. Then there exist m, r ∈ K
+

(which can be written as rational functions of n, a0, a1, a2) such that, ∀x0 ∈ K
n,

If |F(x0)| < m and
∀y ∈ B(x0, r) |F ′(y)−1| < a0 and |F ′(y)| < a1 and |F ′′(y)| < a2,

Then ∃x F(x) = 0 and x ∈ B(x0, r).

The proof is based on a repeated use of Taylor’s theorem.

Proof Let r = (2n3a2
0a1a2)

−1 and m = (4n3a3
0a1a2)

−1.
Let x ∈ B(x0, r) be such that |F(x)| = min{|F(u)| : u ∈ B(x0, r)} (the existence

of such a point x follows from the fact that the function u 	→ |F(u)| is continuous
definable). We claim F(x) = 0. Let

y = x − F ′(x)−1 · F(x). (1)

Equivalently, F(x) = F ′(x)[x − y]. It is sufficient to show that:

(i) y ∈ B(x0, r);
(ii) |F(y)| ≤ 1

2 |F(x)|.
Proof of (i): By Taylor’s formula,

|F(x0) − F(x) − F ′(x)[x0 − x]| ≤ sup

∣
∣
∣
∣

F ′′(z)
2

[x0 − x, x0 − x]
∣
∣
∣
∣
, (2)

where y ∈ B(x0, r). Hence,

|F(x0) − F(x) − F ′(x)[x0 − x]| ≤ a2

2
n2|x0 − x |2. (3)

Now, using (1),

|F(x0) − F ′(x)[x0 − y]| ≤ a2

2
n2|x0 − x |2. (4)

Hence |x0 − y| ≤ |F ′(x)−1|(|F(x0)| + a2
2 n2|x0 − x |2) ≤ a0(m + a2

2 n2r2) ≤ r (the
last inequality can be easily checked by substituting the values of r, m). Therefore
y ∈ B(x0, r).

Proof of (ii): By Taylor’s formula and using (1), we get

|F(y)| ≤ |F(x) + F ′(x)[y − x]| + a2

2
n2|y − x |2 = 0 + a2

2
n2|y − x |2 (5)

123



Noetherian varieties in definably complete structures 191

Another use of Taylor’s theorem yields

|F(x)| ≤ |F(x0)| + a1n|x − x0|. (6)

Hence, by (1),

|y − x |2 ≤ |F ′(x)−1|2|F(x)|2 ≤ a2
0(m + a1nr)|F(x)|. (7)

Putting all together, |F(y)| ≤ a2
2 n2a2

0(m + a1nr)|F(x)| ≤ 1
2 |F(x)|. 
�

Theorem 8 (Uniqueness theorem for systems of linear differential equations) Let
a, b ∈ K ∪ {±∞} and F = ( f1, . . . , fn) : (a, b) → K

n a C∞ definable map. Let
A(t) = (ai j (t)) be an n×n matrix of C∞ definable functions from (a, b) to K; suppose
that

∀t ∈ (a, b) F ′(t) = A(t)F(t).

Then, either F is identically zero or else it never vanishes on (a, b).

3 Varieties of C∞ definable functions

In this section we develop some differential topology for the class of subsets of K
n

defined as zero-sets of definable smooth functions.

Definition 9 If n, m ∈ N and U is a definable open subset of K
n , let C∞(U, K

m) be
the ring of C∞ definable maps from U to K

m .
If G ∈ C∞(U, K

m), let the variety of G be the set V (G) = {a ∈ U : G(a) =
0}. If G = (g1, . . . , gm), then V (G) = V (g1) ∩ · · · ∩ V (gm); we will often write
V (g1, . . . , gm) instead of V (G).

Remark 10 The variety of G is clearly a closed subset of U , for it is the preimage of
a point under a continuous map.

Notation 11 If n ≥ m ∈ N, G = (g1, . . . , gm): K
n → K

m is a C∞ definable map
and a ∈ K

n , we denote by DG(a) the m × n matrix corresponding to the linear
map G ′(a), with respect to the standard basis. The rows of DG(a) are the vectors
∇g1(a), . . . ,∇gm(a). If y ⊂ x is a sub-tuple of coordinates, then we denote by
DyG(a) the matrix of the partial derivatives ∂gi

∂y j
(a) with respect to the variables in

the tuple y.

We will use many times in this work, some version of the Implicit Function The-
orem. The statement is standard, but technical and we will find it useful to fix here a
notation and to refer to this subsection whenever we use the theorem.

Definition 12 Let n, m ∈ N, U ⊆ K
n open and definable and G = (g1, . . . , gm) ∈

C∞(U, K
m). Let a ∈ V (G) be a point such that the linear map G ′(a) is surjective.
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192 T. Servi

Then we say that a is a regular point of G. The set of regular zeroes of G (the regular
set of G, for short) is denoted by V reg(G). So,

V reg(G) := {a ∈ U : a ∈ V (G) and G ′(a) is onto}.

In other words, V reg(G) is the set of those a ∈ V (g1, . . . , gm) such that the vectors
∇g1(a), . . . ,∇gm(a) are K-linearly independent (We denote by lin. span〈∇g1(a),

. . . ,∇gm(a)〉 the K-vector space generated by these vectors).
Notice that the definition of regular set depends crucially on the choice of G: as a

set, V (g1) = V (g2
1); but V reg(g1) �= V reg(g2

1). In fact V reg(g2
1) is always empty.

We give now the notation which we will use for the Implicit Function Theorem and
its corollaries.

Notation 13 Let n ≥ m ∈ N. We write n = k + m and we fix the following set of
coordinates:

K
n = K

k × K
m

x = (u, v)

Let G = (g1, . . . , gm) ∈ C∞(Kk+m, K
m) and x0 = (u0, v0) ∈ V (G) such that

DvG(x0) is non-singular.

Theorem 14 (Implicit function theorem) There exist

1. open definable subsets O ⊆ K
k and W ⊆ K

m such that x0 ∈ O × W , and
2. a definable C∞ map

Y : O → W

such that Y (u0) = v0 and

∀u ∈ O ∀v ∈ W G(u, v) = 0 ⇔ v = Y (u).

Moreover, DuY (u) is everywhere non-singular and, if JvG(x) = det DvG(x),

∀x ∈ U DuY (u) = −JvG−1(u, Y (u)) · DuG(u, Y (u)).

Definition 15 The map

φ : K
k → V (G) ∩ O × W

u 	→ (u, Y (u))

is called a local rectangular parametrization of V (G) around x0, and is a definable
diffeomorphism, whose inverse is the restriction to V (G)∩ (O × W ) of the projection
π : K

n → K
k onto the first k coordinates.
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Noetherian varieties in definably complete structures 193

The proof of the Implicit Function Theorem works as in the o-minimal case (see
for example [1]). The only nontrivial fact in this setting, which is used in the proof, is
the following.

Theorem 16 [9] Let A ⊆ K
n be closed, bounded and definable, and let f : A → K

m

be a continuous definable map. Then f (A) is closed, bounded and definable.

We give now a list of the usual consequences of the Implicit Function Theorem.

Corollary 17 There is a ring homomorphism (the restriction homomorphism)

:̂ C∞(O × W, K) → C∞(O, K)

h 	→ ĥ(u) = h(u, Y (u))

The kernel of ̂ is the set {h ∈ C∞(O × W, K) : h � V (G) ∩ (O × W )≡ 0}, hence

Ĉ∞(O × W, K) ∼= C∞(V (G) ∩ (O × W ), K).

Corollary 18 (Lagrange’s multipliers rule) Let h ∈ C∞(O × W, K). A point x =
(u, Y (u)) ∈ V (G) ∩ (O × W ) is a local extremum (maximum or minimum) of h on
V (G) if and only if ∇ĥ(u) = 0. Moreover,

∇ĥ(u) = 0 ⇔ ∇h(u, Y (u)) ∈ lin. span〈∇g1(u, Y (u)), . . . ,∇gm(u, Y (u))〉.

Corollary 19 Suppose M ⊂ C∞(U × W, K) is a noetherian ring closed under dif-

ferentiation. Then so is M̂[ ĴvG−1].
Proof Notice that M̂[ ĴvG−1] is a finite extension of a homomorphic image of a
noetherian ring, hence it is noetherian; moreover, an easy calculation and Corollary 17

show that M̂[ ĴvG−1] is also closed under differentiation. 
�
Definition 20 A definable subset W of K

n is called a K-manifold if there exists k ≤ n
such that W is locally definably diffeomorphic to K

k . More precisely, for every a ∈ W
there exists an open definable neighbourhood Ua ⊆ K

n of a and a definable diffeo-
morphism �: Ua → K

n such that �(Ua ∩ W ) = K
k × {0} ⊂ K

n . Notice that, for
a ∈ W , if k′, U ′

a,�′ are such that �′ maps U ′
a ∩ W diffeomorphically onto K

k′ × {0},
then necessarily k = k′, because otherwise we would violate the chain rule (see the
discussion below [3, Definition 3.1]). Hence, k is uniquely determined and will be
called the K-dimension of W (for short, dimK W ).

Remark 21 It follows from the Implicit Function Theorem that, for U ⊆ K
n open and

definable and G ∈ C∞(U, K
m), the set V reg(G) is either empty or it is a K-manifold

of K-dimension n − m.

4 Noetherian differential rings

Definition 22 Let n ∈ N and U ⊆ K
n be a definably connected definable open set.

A ring M with the following properties
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194 T. Servi

– M ⊆ C∞(U, K);
– M is noetherian;
– M is closed under partial differentiation;
– M ⊇ Z[x1, . . . , xn].
is called a noetherian differential ring.

Example 23 Let 〈K,+,−, ·,<, g1, .., gl , 0, 1, . . .〉 be a definably complete structure
such that g1, . . . , gl ∈ C∞(Kn, K) satisfy a system of differential equations, with
polynomial coefficients:

∂gi

∂x j
(x) = qi j (x, g1, . . . , gl) (i = 1, . . . , l; j = 1, . . . , n),

with qi j ∈ K[x, y1, . . . , yl ].
Examples of such structures over the real numbers are: R := 〈R,+,−, ·,<,

0, 1, . . .〉, 〈R, exp〉, 〈R, tan〉, 〈R, sin, cos〉 (notice that this last is a non o-minimal
example).

Then,

F[x1, . . . , xn, g1, . . . , gl ],

where F is a subfield of K, is a noetherian differential subring of C∞(Kn, K).

Remark 24 In the given examples, if K is a structure based on R, then the functions
g1, . . . , gl are not only C∞, but even analytic (by Cauchy–Kowalesky theorem, see
for example [5]). On the other hand, if M is a noetherian differential ring which is not
a finitely generated algebra, then it does not necessarily follow that M consists of real
analytic functions. An non-analytic example will be exhibited in Section 7.

We now fix a definably connected definable open set U ⊆ K
n and a noetherian

differential ring M ⊆ C∞(U, K), and we study the properties of the zero-sets of
functions in M . The methods are those used in [13]. The following result shows that
the functions in M have a “quasi-analytic” behaviour.

Lemma 25 (Lack of flat functions) Let I ⊆ M be an ideal closed under differentia-
tion; then either V (I ) = ∅ or V (I ) = U.

Proof Since M is noetherian, I is finitely generated, say I = 〈g1, . . . , gs〉, and hence
V (I ) = V (g1, . . . , gs) is a closed definable subset. If V (I ) �= ∅, since U is definably
connected, all we need to show is that V (I ) is open.

Suppose for a contradiction that this is not the case. Then there exists x ∈ V (I )
which is not an interior point, that is given an arbitrary open box neighbourhood B
of x0, there exists a point y0 ∈ B which is not in V (I ). Without loss of general-
ity, we may assume that x0, y0 differ in exactly one coordinate, say, the first one:
x0 = (s, p2, . . . , pn), y0 = (t, p2, . . . , pn) and s �= t .

Recall that {g1, . . . , gs} is a set of generators for I . Since I is closed under differ-
entiation, it follows in particular that the derivatives with respect to the first coordinate
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Noetherian varieties in definably complete structures 195

∂g1/∂x1(x), . . . , ∂gs/∂x1(x) all belong to I , hence there exist functions ai j (x) ∈ M
such that

∀x, ∀i = 1, . . . , s
∂gi

∂x1
(x) =

s
∑

j=1

ai j (x)g j (x).

Now, consider the restrictions fi (x1) = gi (x1, p2, . . . , pn) of the functions g1, . . . , gs

to the line L = {x ∈ U : x2 = p2 ∧ · · · ∧ xn = pn}, and define F(x1) =
( f1(x1), . . . , fs(x1)). We have

F ′(x1) = A(x1)F(x1),

where A(x1) is the s × s matrix whose entries are the functions ai j (x1, p2, . . . , pn).
It follows from the uniqueness theorem for linear differential equations 8 that either

F ≡ 0 or else has no zeros. But this leads to a contradiction, since F(t) �= 0 and
F(s) = 0. 
�
Corollary 26 Let G = (g1, . . . , gm) ∈ Mm and x0 ∈ V reg(G). Then either there
exists h ∈ M such that x0 ∈ V reg(G, h) or for all h ∈ M, if h(x0) = 0, then h
vanishes on a definable neighbourhood of x0 in V reg(G).

Proof We refer to the notation of the Implicit Function Theorem 14, so x0 = (u0, v0) ∈
K

k × K
m . Up to some rearrangement of the variables, we may assume that DvG(x0)

is non-singular and apply the Implicit Function Theorem in a suitable neighbourhood
O ×W of x0. Suppose that there is no h ∈ M such that x0 ∈ V reg(G, h) and let h ∈ M
be such that h(x0) = 0. Then ∇h(x0) belongs to lin. span〈∇g1(x0), . . . ,∇gm(x0)〉.
This implies, by Lagrange’s multiplier rule 18, that ∇ĥ(u0) = 0.

Consider the ideal Î = {ĝ ∈ M̂[ ĴvG−1] : ĝ(u) = 0}; what we have shown is that
if ĥ ∈ Î , then its first derivatives ∂ ĥ/∂ui belong to Î ; thus Î is closed under differen-
tiation. Since V ( Î ) �= ∅, it follows from Lemma 25 and the subsequent remark, that
V ( Î ) = O . This means that h vanishes on V reg(G) ∩ (O × W ). 
�

5 Decomposition of noetherian varieties

We fix, for the rest of the section, a noetherian differential ring M ⊂ C∞(Kn, K).
The zero-sets of functions belonging to M are called M-varieties. We prove the main
result of this paper, namely that every M-variety can be decomposed into finitely many
K-manifolds of a certain form.

Definition 27 Let A be a definable set; we say that S is a definable clopen of A if
S ⊆ A is a definable subset which is both open and closed in A. Clearly, the collection
of all definable clopen of A is a boolean algebra B(A) of sets.

Definition 28 If G ∈ Mm and S is a clopen definable subset of V reg(G), then S is
called a regular component. Notice that S is a K-manifold of the same K-dimension
as V reg(G), that is n − m.
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196 T. Servi

Lemma 29 Let 0 �= f ∈ M and V ( f ) ⊂ K
n be a nonempty M-variety; then for all

x ∈ V ( f ) there exists g ∈ M such that x ∈ V reg(g), that is g(x) = 0 ∧ ∇g(x) �= 0.

Proof Take x ∈ V ( f ) and consider f together with all its partial derivatives, evaluated
in x . We claim that there exist a multi-index α = (α1, . . . , αn) and i0 ∈ {1, . . . , n}
such that, if we put ∂α f := ∂α1+···+αn f

∂x
α1
1 ·····xαn

n
, then ∂α f (x) = 0 and ∂∂α f

∂xi0
(x) �= 0, so that

we can define g := ∂α f . Suppose, on the contrary, that f as well as all its derivatives
∂α f vanishes in x and let I be the ideal of M generated by f and all its derivatives.
Notice that V (I ) �= ∅, since x ∈ V (I ); M is noetherian, so I is finitely generated.
Moreover, I is closed under differentiation, since each member of I can be written
as a linear combination (with coefficients in M) of a finite number of derivatives of
f . Then, Lemma 25 implies that V (I ), and hence V ( f ), coincides with K

n , which
contradicts the fact that 0 �= f . 
�

Remark 30 The above argument shows also that, if 0 �= f ∈ M , then V ( f ) has empty
interior. In fact, if V ( f ) has interior around a point x , then x is necessarily not a regular
zero of f (otherwise, by the Implicit Function Theorem 14, V ( f ) would be locally
diffeomorphic to K

n−1 around x). For the same reason, x is not a regular zero of any
of the derivatives of f , hence all the derivatives of any order of f vanish in x . But
then, as in the proof above, V ( f ) must be K

n .

Definition 31 For every x ∈ K
n , we define the M-degree of x , degM (x), as the

minimal dimension of a regular component containing x . Equivalently,

degM (x) = min{k| ∃G ∈ Mn−k such that x ∈ V reg(G)}.

Lemma 29 shows that every point belonging to a proper M-variety has M-degree
at most n − 1.

Theorem 32 Let f ∈ M and V ( f ) be a proper M-variety. Then, for every point x in
V ( f ), there exist k < n and G ∈ Mn−k and a regular component S of V reg(G) such
that x ∈ S ⊆ V ( f ). Moreover, S is definable with the same parameters used to define
G and f .

Proof Let k = degM (x) and G ∈ Mn−k such that x ∈ V reg(G). We define

S := the interior of the setV reg(G) ∩ V ( f )inV reg(G).

We claim that x ∈ S. In fact, by the choice of V reg(G) as a regular set of minimal
K-dimension, by Corollary 26 it follows that every function h ∈ M which vanishes in
x , also vanishes on an open definable neighbourhood B of x in V reg(G). In particular,
f vanishes on some B (depending on f ). Hence x has an open neighbourhood B
contained in V ( f ) ∩ V reg(G), that is x is an interior point.

We now claim that S is a regular component. S is definable, nonempty and open
in V reg(G), by definition. We must show that S is also closed in V reg(G). Take a
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boundary point x0 of S in V reg(G) and consider (after permuting the variables, if
necessary) the local parametrization given by the Implicit Function Theorem 14

φ : K
k → V (G) ∩ (O × W )

u 	→ (u, Y (u)).

Setting, as usual, f̂ = f ◦ φ, we observe that φ−1(S) is open in O and f̂ (φ−1(S)) = 0.
Hence, all derivatives of any order of f̂ vanish on φ−1(S). Since u0 = φ−1(x0) belongs
to the closure of φ−1(S), it is also true, by continuity, that f̂ , and all its derivatives of
any order, vanish in u0. By Lemma 25 and the usual argument, V ( f̂ ) = K

k . Hence,
the open neighbourhood O × W of x0 is contained in V ( f ) ∩ V reg(G), that implies
x0 ∈ S. 
�
Theorem 33 (Decomposition of M-varieties) Let f ∈ M and V ( f ) be a proper
M-variety. Then V ( f ) can be written as a finite union of regular components:

∃k ∈ N, ∃G1, . . . , Gk ∈
n

⋃

l=1

Ml , ∃Si ∈ B(V reg(Gi )) so that V ( f ) = S1 ∪ · · · ∪ Sk .

Proof By compactness. More precisely, let F be a |K|+-saturated elementary super-
structure of K (see [11] for the existence of such an F), so that F realizes all types
over K. Let M̃ be the set of those definable functions g̃ such that g ∈ M and g̃ is the
interpretation of g in F (note that g̃ is still a C∞ function). Then M̃ is still a noetherian
differential ring, hence Theorem 32 holds for M̃-varieties. Consider the function f̃
and the following set of formulas:

� =
{

φG̃ := x ∈ V ( f̃ ) ∧ S̃ = intV reg(G̃)
(V reg(G̃ ∩ V ( f̃ )) ∧ (x ∈ S̃

→ S̃ �⊂ V ( f̃ ))| G̃ ∈
n

⋃

i=1

M̃i

}

.

If � were a consistent type, then it would be realized F. This means that there would
exists an x ∈ F such that for all G̃ ∈ ⋃n

i=1 M̃i , x ∈ V ( f̃ ) ∧ S̃ = intV reg(G̃)
(V reg(G̃ ∩

V ( f̃ )) ∧ (x ∈ S̃ → S̃ �⊂ V ( f̃ )), which would contradict Theorem 32. Hence there
exist k ∈ N, G̃1, . . . , G̃k ∈ ⋃n

i=1 M̃i , such that the conjunction φG̃1
∧ · · · ∧ φG̃k

is
not satisfiable in F; in other words the following holds in F:

∀x (x ∈ S̃1 ∪ · · · ∪ S̃k ∧ S̃1 ∪ · · · ∪ S̃k ⊆ V ( f̃ )).

Therefore V ( f̃ ) = S̃1 ∪ · · · ∪ S̃k .
Now, in K the following holds: V ( f ) = S1 ∪ · · · ∪ Sk , where Si := S̃i ∩ K

n

(i = 1, . . . , k) are clearly regular components in K, hence the theorem is proved. 
�
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Remark 34 The decomposition which appears in Theorem 33 is clearly not unique,
nor are unique the K-dimensions of the regular components appearing in two different
decompositions of the same variety. For example, the algebraic variety V (x2 − y2) ⊂
R

2 can be decomposed as V reg(x2−y2)∪V reg(x, y) or as V reg(x −y)∪V reg(x +y). In
the first decomposition the first regular component has K-dimension 1 and the second
has K-dimension 0, while in the second decomposition both regular components have
K-dimension 1. Moreover, in the first case the union is disjoint, and in the second case
it is not.

On the other hand, the following holds:

Lemma 35 Let f ∈ M. Then there exists a unique natural number m such that for
every decomposition of V ( f ) into regular components, as in Theorem 33, the maximal
K-dimension of the regular components appearing in the decomposition is m.

Proof Let V ( f ) = S1 ∪· · ·∪ Sk be a decomposition of V ( f ) into regular components
and suppose dimK Si ≤ dimK S1 = m, for all i = 2, . . . , k. Clearly V ( f ) does not
contain an open subset which is diffeomorphic to K

l , for l > m, because otherwise
such a subset would be obtained as a finite union of manifolds of K-dimension ≤ m,
which, as in the classical case, is not possible. On the other hand, V ( f ) does con-
tain an open subset which is diffeomorphic to K

m , because so does S1. Hence, every
decomposition of V ( f ) must contain a component of K-dimension m, and can not
contain components of bigger K-dimension. 
�
Definition 36 The dimension of an M-variety V ( f ) is defined as

dim V ( f ) := max{dimK Si | i = 1, . . . , k and V ( f ) = S1 ∪ · · · ∪ Sk},

where V ( f ) = S1 ∪ · · · ∪ Sk is any decomposition given by Theorem 33.

Remark 37 Notice that, for regular varieties, the notions of dimension and
K-dimension coincide.

Lemma 38 Let g1, . . . , gm ∈ M and x ∈ V reg(g1, . . . , gm) ⊂ K
n. If degM (x) <

n − m, then there exists f ∈ M such that x ∈ V reg(g1, . . . , gm, f ).

Proof Since degM (x) < n − m, there exist f1, . . . , fm+1 ∈ M so that x ∈ V reg( f1,

. . . , fm+1). We claim that there exists i ∈ {1, . . . , m+1} so that x ∈ V reg(g1, . . . , gm,

fi ), because otherwise the (linearly independent) vectors ∇ f1(x), . . . ,∇ fm+1(x)

would all lie in the m-dimensional vector space generated by ∇g1(x), . . . ,∇gm(x),
which is impossible. 
�
Proposition 39 Let V ( f ) ⊂ K

n be an M-variety. Let F be any |K|+-saturated ele-
mentary superstructure of K and let f̃ be the interpretation of f in F (as in the proof
of 33). Then,

dim V ( f ) = max{degM (x)| x ∈ V ( f̃ )}.
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Proof Let V ( f̃ ) = S̃1 ∪· · ·∪ S̃l be a decomposition of V ( f̃ ) into regular components,
and let Si = K

n ∩ S̃i . Then V ( f ) = S1 ∪ · · · ∪ Sl , hence dim V ( f̃ ) = dim V ( f ).
Let x ∈ V ( f̃ ). Then x ∈ S̃i for some i , hence degM (x) ≤ dim S̃i ≤ dim V ( f ). So
dim V ( f ) ≥ max{degM (x)| x ∈ V ( f̃ )}.

Now we prove that there exists x ∈ V ( f̃ ) with degM (x) = dim V ( f ). Let S̃1 ∈
B(V reg(g̃1, . . . , g̃k)) be a component of maximal dimension. Consider the set of for-
mulas

� = {x ∈ S̃1 ∧ x /∈ V reg(g̃1, . . . , g̃k, h̃)| h ∈ M}.

� is clearly finitely satisfiable in F, because no finite union of regular sets of dimen-
sion n − k − 1 can cover the whole of S̃1, which has dimension n − k. By satu-
ration, there exists x ∈ F

n which satisfies all formulas in �. By Lemma 38, then,
degM (x) = dim V ( f ). 
�

6 Khovanskii rings

In this section we give an application of the Decomposition Theorem 33. We consider
a class of noetherian differential rings, called Khovanskii rings, with the property that
0-dimensional regular sets are finite. An example of such a ring is M=R[x, f1, . . . , fk],
where the functions fi form a Pfaffian chain, as proved by Khovanskii in [6]. In
the same paper, it is proven that all M-varieties, where M is as above, have finitely
many connected components. Here we prove, with a method which differs from the
approach in [6], that if M is a Khovanskii ring in a definably complete structure, then all
M-varieties have finitely many definably connected components.

This result, which generalizes and is proved with the same methods used in [8,
Theorem 2.2], can be compared with [3, Theorem 1.7], which is formulated in the
setting of Rolle leaves.

Definition 40 (Khovanskii rings) Let n ∈ N. A ring M with the following properties

1. M ⊆ C∞(Kn, K);
2. M is a noetherian differential ring;
3. ∀g1, . . . , gn ∈ M |V reg(g1, . . . , gn)| < ∞.

is called a Khovanskii ring.
A collection of rings {Mn| n ∈ N} such that

1. Mn is a ring of definable C∞ functions from K
n to K;

2. Mn is a Khovanskii ring;
3. Mn ⊂ Mn+1 (in the obvious sense);
4. Mn is closed under permutation of the variables.

is called a collection of Khovanskii rings.
A similar definition appears in [2].

Examples 41 Examples of Khovanskii rings over the real numbers are:

– The ring generated by a Pfaffian chain of functions (see [6]);
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– Any noetherian differential ring of functions definable in an o-minimal expansion
of the real field;

– The ring generated by the real functions exp( 1
1+x2 ), sin( 1

1+x2 ) and cos( 1
1+x2 ) (see

[7]).

Remark 42 Fix n, m ∈ N, m ≤ n. Let M ⊆ C∞(Kn, K) be a noetherian differential
ring (not necessarily a Khovanskii ring) and let F ∈ Mm . Then the set of regular
zeroes of F can be expressed as the projection of a finite union of regular varieties
of dimension dim V reg(F). To see this, let E1(x), . . . , El(x) be the maximum rank
minors of the matrix DF(x). Now consider Vi := V (F(x), xn+1 det Ei (x)−1). Then
Vi is a regular sub-variety of K

n+1 and πn+1(
⋃l

i=1 Vi ) = V reg(F) (where πn+1 is the
projection onto the first n coordinates).

Notice that dim Vi = n + 1 − (m + 1) = n − m = dim V reg(F). Moreover, if
M = Mn belongs to a collection of Khovanskii rings, then the map (F(x), xn+1
det Ei (x) − 1) belongs to Mn−k+1

n+1 .

Proposition 43 Fix n, m ∈ N, m ≤ n − 1. Let M ⊆ C∞(Kn, K) be a Khovanskii
ring and f1, . . . , fm ∈ M be such that V ( f1, . . . , fm) = V reg( f1, . . . , fm). Then
there exists a definable set G such that:

– ∅ �= G ⊂ V ( f1, . . . , fm);
– For every clopen definable subset S of V ( f1, . . . , fm), the intersection S ∩ G is

not empty;
– ∀x ∈ G ∃h ∈ M (x ∈ V reg( f1, . . . , fm, h)).

Proof For all h ∈ M , consider the matrix of partial derivatives D( f1, . . . , fm, h). Let
x ∈ V ( f1, . . . , fm). Then, this matrix, if we evaluate all the entries in x , has rank at
least m, because the common zeroes of the functions f1, . . . , fm are all regular zeroes,
by hypothesis. Let Hi (x)

(

i = 1, . . . ,
( n

m+1

))

be the minors of rank m +1 of the matrix

D( f1, . . . , fm, h) evaluated in x and define h∗(x) = ∑l
i=1(det Hi )(x)2 ∈ M . Then

x is a critical point of h on V ( f1, . . . , fm) if and only if h∗(x) = 0. And (see 18),

h∗(x) = 0 ⇔ ∇h(x) ∈ lin. span(∇ f1(x), . . . ,∇ fm(x)).

We take n+1 points P0, . . . , Pn in Z
n such that the vectors P0P1, . . . , P0Pn are lin-

early independent over K. For example, let us take P0 = 0 and Pi to be the tuple with
the i-th coordinate equal to 1 and the other coordinates equal to 0 (for i = 1, . . . , n).
Now consider the following “distance” functions:

d0(x) =
n

∑

j=1

x2
j , di (x) = (xi − 1)2 +

n
∑

j=1, j �=i

x2
j i = 1, . . . , n.

Clearly these functions belong to M .
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For every S ∈ B(V ( f1, . . . , fm)), for every i = 0, . . . , n, consider the set VS(d∗
i ) =

S ∩ V (d∗
i ) of the critical points of the function di on S and let bdS VS(d∗

i ) = VS(d∗
i ) \

intS(VS(d∗
i )) be the set of boundary points of VS(d∗

i ) in S. Now define

G :=
⋃

S∈B(V ( f1,..., fm ))

⋃

i=0,...,n

bdS VS(d∗
i ).

Step 1. We first observe that G is definable and G ⊆ V ( f1, . . . , fm).
Step 2. Next, we note that for all S ∈ B(V ( f1, . . . , fm)), for every i = 0, . . . , n, the

set S contains a point whose distance from Pi is minimal, that is VS(d∗
i ) is nonempty.

This follows from the fact that di increases on balls centered in Pi and of increasing
radius, so Theorem 4 applies.

Step 3. Now we show that G meets every nonempty definable clopen of
V ( f1, . . . , fm) (in particular, G is not empty). Equivalently, we show that for all
S ∈ B(V ( f1, . . . , fm))\{∅}, there exists i ∈ {0, . . . , n} such that the set VS(d∗

i ) is not
open in S. Suppose for a contradiction that this is not the case. Then for all i = 0, . . . , n
the set VS(d∗

i ), which is clearly closed and definable, in also open in V ( f1, . . . , fm),
and hence it belongs to B(V ( f1, . . . , fm)). Now consider the boolean subalgebra A
of B(V ( f1, . . . , fm)) generated by VS(d∗

0 ), . . . , VS(d∗
n ). Since A is finite, there is an

atom, say, C ∈ A. Let Ci = C∩VS(d∗
i ); by Step 1, Ci is nonempty for all i = 0, . . . , n,

and hence Ci = C . But this implies that ∅ �= C ⊆ V (d∗
0 , . . . , d∗

n ). But this is not
possible, because the vectors ∇di (x) span K

n at all points x . If x ∈ V (d∗
0 , . . . , d∗

n ),
then ∀i = 0, . . . , n, ∇di (x) ∈ lin. span(∇ f1(x), . . . ,∇ fm(x)), which is absurd.

Step 4. We now show that ∀x ∈ G ∃h ∈ M x ∈ V reg( f1, . . . , fm, h). Suppose for
a contradiction that there exists x ∈ G such that it is not possible to cut transversally
V ( f1, . . . , fm) at x by any h ∈ M . Now arguing as in the last paragraph of the proof
of Theorem 32, we show that every h ∈ M must vanish on a suitable neighbourhood
of x in V ( f1, . . . , fm). But by definition of G, every point x of G is a boundary point
of some VS(d∗

i ), that is

∀x ∈ G ∃S ∈ B(V ( f1, . . . , fm)) ∃i ∈ {0, . . . , s}
d∗

i (x) = 0 ∧ ∀r > 0∃y ∈ S ∩ B(x, r) d∗
i (y) �= 0,

(8)

and this leads to a contradiction. 
�
Theorem 44 Fix n, m ∈ N, m ≤ n − 1. Let M ⊆ C∞(Kn, K) be a Khovanskii ring
and F ∈ Mm be such that V (F) = V reg(F). Then there exists a definable set G such
that:

– ∅ �= G ⊂ V (F);
– For every clopen definable subset S of V (F), the intersection S ∩ G is not empty;
– ∃l ∈ N, ∃h1, . . . , hl ∈ M G ⊂ V reg(F, h1) ∪ · · · ∪ V reg(F, hl).

Proof By compactness, using an argument similar to the one used in the proof of 33.
More precisely, let F be a |K|+-saturated elementary superstructure of K (see [11] for
the existence of such an F), so that F realizes all types over K. Let M̃ be the set of
those definable functions g̃ such that g ∈ M and g̃ is the interpretation of g in F (note
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that g̃ is still a C∞ function). Then M̃ is still a Khovanskii ring, hence Proposition 43
holds for M̃-varieties. Consider the map F̃ = ( f̃1, . . . , f̃m) and the following set of
formulas:

� = {φh̃ := (x ∈ G ∧ x /∈ V reg(F̃, h̃))| h ∈ M}.

If � were a consistent type, then it would be realized in F. This means that there would
exist x ∈ G such that for all h ∈ M , x /∈ V reg(F̃, h̃), which is not possible by Propo-
sition 43. Hence there exist h1, . . . , hl ∈ M such that the conjunction φh̃1

∧ · · · ∧ φh̃l
is not satisfiable; in other words the following holds in F:

∀x x ∈ G → x ∈ V reg(F̃, h̃1) ∪ · · · ∪ V reg(F̃, h̃l).

Pulled back to K, this proves the theorem. 
�
Theorem 45 (Finiteness of B(V (F))) Let {Mn| n ∈ N} be a collection of Khovanskii
rings. Then, for all n, m ∈ N and F ∈ (Mn)m, the boolean algebra B(V (F)) is finite.

Proof By induction, using Propositions 44, 33 and Remark 42.
More precisely, we first prove by induction on k = n −m that ∀n ∈ N, B(V reg(F))

is finite.
The case k = 0 follows from the fact that Mn is a Khovanskii ring. Next, suppose

the statement true for n − m < k and consider F ∈ Mn−k
n . If V (F) = V reg(F), then

there exist a definable set G and functions h1, . . . , hl ∈ Mn as in Theorem 44.
By inductive hypothesis, B(V reg(F, hi )) is finite, and hence so is B(V reg(F)),

assuming V (F) = V reg(F).
If V (F) �= V reg(F), then, by remark 42, V reg(F) is the projection of a finite union

of regular varieties Vi still of dimension k, hence it follows from what we have just
proved that B(Vi ) is finite, and hence so is B(π(

⋃
Vi )) = B(V reg(F)).

Finally, if V (F) is any variety, not necessarily regular, then by Theorem 33 it fol-
lows that V (F) is a finite union of clopen subsets of regular sets, hence, by what we
have just proved, B(V (F)) is finite. 
�
Remark 46 (Definably connected components) Since the boolean algebra B(V (F))

is finite, then there is an atom. If A is an atom, then it is clearly a maximal definably
connected subset, that is a definably connected component. Hence we have proved
that V (F) has a finite number of definably connected components.

7 A non-analytic example

We give an example of noetherian differential ring over the real numbers, which con-
tains non-analytic functions. We need to give some definitions.

Let X is a closed and bounded interval [a, b] ⊂ R. Let C∞(X, R) be the ring of
all real functions which are C∞ on a neighbourhood of X .

Definition 47 A function f ∈ C∞(X, R) is flat at the point x0 ∈ X if all derivatives
of f vanish in x0, but there is no neighbourhood of x0 where f assumes only the value
zero. A function f ∈ C∞(X, R) is flat if it is flat at some point x0 ∈ X .
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Definition 48 A ring M ⊆ C∞(X, R) is quasi-analytic if for every x0 ∈ X the ring
homomorphism

η: M → R[[x]]
f 	→ the Taylor expansion of f at x0

is injective. Equivalently, M does not contain flat functions.

Remark 49 The arguments appearing in the proof of Lemma 25 show that if M ⊆
C∞(X, R) is noetherian and closed under differentiation, then M is quasi-analytic.

Definition 50 A ring N ⊆ C∞(X, R) is closed under taking C∞-quotients if the
following holds: for all f, g ∈ N , if h := f

g is C∞ on X , then h ∈ N .

Given a ring M ⊆ C∞(X, R), we denote by M the closure of M under
C∞-quotients, that is the smallest ring containing M and closed under taking
C∞-quotients.

The following result is well known folklore.

Theorem 51 Let M ⊆ C∞(X, R) be a quasi-analytic ring, which is closed under
differentiation and contains the coordinate functions. Then its closure under C∞-
quotients M is closed under differentiation, quasi-analytic and noetherian.

Remark 52 The theorem holds true, with the same proof, if X = R and all functions
in M have finitely many zeroes with finite multiplicities. In particular, if M consists
of functions which are definable in some o-minimal expansion of the real field, then
M is noetherian.

Definition 53 Let M ⊂ C∞([0, 1], R) be a quasi-analytic ring, closed under differ-
entiation and containing the coordinate function x . Let N := { f � (0, 1)| f ∈ M} and
M := N [x].

M ⊂ C∞(R, R) is clearly noetherian and closed under differentiation. Moreover,
if M contains a non-analytic function, then so does M.

Example 54 A concrete example of the above construction can be obtained by taking
as M a quasi-analytic Denjoy–Carleman class on [0, 1] (according to the definition in
[10]).

Acknowledgments I would like to thank A. Fornasiero and the referee for many useful observations.
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