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Abstract We construct an algebra of generalized functions endowed with a canoni-
cal embedding of the space of Schwartz distributions. We offer a solution to the problem
of multiplication of Schwartz distributions similar to but different from Colombeau’s
solution. We show that the set of scalars of our algebra is an algebraically closed field
unlike its counterpart in Colombeau theory, which is a ring with zero divisors. We
prove a Hahn–Banach extension principle which does not hold in Colombeau theory.
We establish a connection between our theory with non-standard analysis and thus
answer, although indirectly, a question raised by Colombeau. This article provides a
bridge between Colombeau theory of generalized functions and non-standard analysis.
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206 T. D. Todorov, H. Vernaeve

1 Introduction

In the early 1970s, Robinson introduced a real closed, non-archimedean field ρ
R

[33] as a factor ring of non-standard numbers in ∗
R [32]. The field ρ

R is known as
Robinson field of asymptotic numbers (or Robinson valuation field), because it is a
natural framework of the classical asymptotic analysis [20]. Later Luxemburg [23]
established a connection between ρ

R and p-adic analysis (see also the beginning of
Sect. 8 in this article). Li Bang-He [19] studied the connection between ρ

R and the
analytic representation of Schwartz distributions, and Pestov [30] involved the field
ρ
R and similar constructions in the theory of Banach spaces. More recently, it was

shown that the field ρ
R is isomorphic to a particular Hahn field of generalized power

series [38]. The algebras ρE(�) of ρ-asymptotic functions were introduced in [28]
and studied in Todorov [37]. It is a differential algebra over Robinson’s field ρ

C

containing a copy of the Schwartz distributions D′(�) [41]. Applications of ρE(�) to
partial differential equations were presented in Oberguggenberger [27]. We sometimes
refer to the mathematics associated directly or indirectly with the fields ρR as non-
standard asymptotic analysis.

On the other hand, in the early 1980s, Colombeau developed his theory of new
generalized functions without any connection, at least initially, with non-standard
analysis [6–10]. This theory is known as Colombeau theory or non-linear theory of
generalized functions because it solves the problem of the multiplication of Schwartz
distributions. Here is a summary of Colombeau theory presented in axiomatic like
fashion: Let T d denote the usual topology on R

d and let G be an open set of R
d . A

set G(G) is called a special algebra of generalized functions on G (of Colombeau
type) if there exists a family G =: {G(�)}�∈T d (we use =: for “equal by definition”)
such that:

1. Each G(�) is a commutative differential ring, that is, G(�) is a commutative ring
supplied with partial derivatives ∂α, α ∈ N

d
0 (linear operators obeying the chain

rule). Here N0 = {0, 1, 2, . . . }. Let C denote the ring of generalized scalars of
the family G defined as the set of the functions in G(Rd) with zero gradient. Each
G(�) becomes a differential algebra over the ring C (hence, the terminology
Colombeau algebras, for short).

2. The ring of generalized scalars C is of the form C = R⊕ iR, where R is a partially
ordered real ring, which is a proper extension of R. (Real ring means a ring with
the property that a2

1 + a2
1 + · · · + a2

n = 0 implies a1 = a2 = · · · = an = 0). The

formula |x + iy| = √
x2 + y2 defines an absolute value on C. Consequently, C

is a proper extension of C and both R and C contain non-zero infinitesimals. In
Colombeau theory the infinitesimal relation ≈ in C is called association.

3. C is spherically complete under some ultra-metric dv on C which agrees with
the partial order in R in the sense that |z1| < |z2| implies dv(0, z1) ≤ dv(0, z2).

4. For every f ∈ G(�) and every test function τ ∈ D(�) a pairing ( f | τ) ∈ C is
defined (with the usual linear properties). Here D(�) stands for the class of C∞-
functions from � to C with compact supports. Let f, g ∈ G(�). The functions f
and g are called weakly equal (or equal in the sense of generalized distributions),
in symbol f ∼= g, if ( f | τ) = (g | τ) for all τ ∈ D(�). Similarly, f and g
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Full algebra of generalized functions and non-standard asymptotic analysis 207

are weakly associated (or simply, associated, for short), in symbol f ≈ g, if
( f | τ) ≈ (g | τ) for all τ ∈ D(�), where ≈ in the latter formula stands for the
infinitesimal relation in C.

5. The family G is a sheaf. That means that G is supplied with a restriction � to
an open set (with the usual sheaf properties, cf. [16]) such that T d 	 O ⊆ �

and f ∈ G(�) implies f � O ∈ G(O). Consequently, each generalized function
f ∈ G(�) has a support supp( f ) which is a closed subset of �.

6. Let �,�′ ∈ T d and Diff(�′,�) denote the set of all C∞-diffeomorphisms from
�′ to � (C∞-bijections with C∞-inverse). A composition (change of variables)
f ◦ ψ ∈ G(�′) is defined for all f ∈ G(�) and all ψ ∈ Diff(�′,�).

7. For every � ∈ T d there exists an embedding E� : D′(�) → G(�) of the space
of Schwartz distributions D′(�) into G(�) such that:
(a) E� preserves the vector operations and partial differentiation in D′(�);
(b) E� is sheaf-preserving, that is, E� preserves the restriction to open sets.

Consequently, E� preserves the support of the Schwartz distributions.
(c) E� preserves the ring operations and partial differentiation in the class E(�).

Here E(�) =: C∞(�) stands for the class of C∞-functions from � to C

(where E(�) is treated as a subspace of D′(�)).
(d) E� preserves the pairing between D′(�) and the class of test functions D(�).

Consequently, E� preserves weakly the Schwartz multiplication in D′(�)
(multiplication by duality).

(e) E� preserves the usual multiplication in the class of continuous functions
C(�) up to functions in G(�) that are weakly associated to zero.

(f) E� preserves weakly the composition with diffeomorphisms (change of vari-
ables) in the sense that for every �,�′ ∈ T d , every T ∈ D′(�) and every
ψ ∈ Diff(�′,�) we have (E�(T ) ◦ ψ | τ) = (E�′(T ◦ ψ) | τ) for all test
functions τ ∈ D(�′). Here T ◦ψ stands for the composition in the sense of
the distribution theory [41].

8. A special algebra is called a full algebra of generalized functions (of Colombeau
type) if the embedding E� is canonical in the sense that E� can be uniquely
determined by properties expressible only in terms which are already involved in
the definition of the family G =: {G(�)}�∈T d .

9. A family G = {G(�)}�∈T d of algebras of generalized functions (special or full)
is called diffeomorphism-invariant if E� preserves the composition with dif-
feomorphisms in the sense that E�(T ) ◦ψ = E�′(T ◦ψ) for all�,�′ ∈ T d , all
T ∈ D′(�) and all ψ ∈ Diff(�′,�).

We should mention that embeddings E� (canonical or not) of the type described
above are, in a sense, optimal in view of the restriction imposed by the Schwartz
impossibility results [35]. For a discussion on the topic we refer to [10, p. 8]. Every
family of algebras G(�) (special or full) of the type described above offers a solution to
the problem of the multiplication of Schwartz distributions because the Schwartz
distributions can be multiplied within an associative and commutative differential
algebra.

Full algebras of generalized functions were constructed first by Colombeau [6]. Sev-
eral years later, in an attempt to simplify Colombeau’s original construction Colombeau
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and Le Roux [8] (and other authors [2]) defined the so called simple algebras of gener-
alized functions. Later Oberguggenberger [26, Chap.III, Sect. 9] proved that the simple
algebras are, actually, special algebras in the sense explained above. Diffeomorphism
invariant full algebras were developed in Grosser et al. [13] and also Grosser et al.
[14]. The sets of generalized scalars of all these algebras are rings with zero divisors
[6, pp. 136]. The algebras of ρ-asymptotic functions ρE(�) [28], mentioned earlier,
are special algebras of Colombeau type with set of generalized scalars which is an
algebraically closed field. The counterpart of the embedding E� in [28] is denoted by
�D,�. It is certainly not canonical because the existence of �D,� is proved in [28]
by the saturation principle (in a non-standard analysis framework) and then “fixed by
hand” (see Remark 7.9). Among other things the purpose of this article is to construct
a canonical embedding E� in ρE(�). We achieve this by means of the choice of a par-
ticular ultra-power non-standard model (Sect. 6) and a particular choice of the positive
infinitesimal ρ within this model (Definition 6.1, #12).

Colombeau theory has numerous applications to ordinary and partial differential
equations, the theory of elasticity, fluid mechanics, theory of shock waves [6–10,26],
to differential geometry and relativity theory [14] and, more recently, to quantum field
theory [11].

Despite the remarkable achievement and promising applications the theory of
Colombeau has some features which can be certainly improved. Here are some of
them:

(a) The ring of generalized scalars C and the algebras of generalized functions G(�)
in Colombeau theory are constructed as factor rings within the ultrapowers C

I

and E(�)I , respectively, for a particular index set I . The rings of nets such as C
I

and E(�)I however (as well their subrings) lack general theoretical principles
similar to the axioms of R and C, for example. Neither C

I , nor E(�)I are endowed
with principles such as the transfer principle or internal definition principle in
non-standard analysis. For that reason Colombeau theory has not been able so
far to get rid of the index set I even after the factorization which transforms C

I

and E(�)I into C and G(�), respectively. As a result Colombeau theory remains
overly constructive: there are too many technical parameters (with origin in the
index set I ) and too many quantifiers in the definitions and theorems.

(b) In a recent article Oberguggenberger and Vernaeve [29] defined the concept of
internal sets of C and G(�) and showed that theoretical principles similar to
order completeness, underflow and overflow principles and saturation principle
for internal sets of C and G(�) hold in Colombeau theory as well although in
more restrictive sense compared with non-standard analysis. However the sets
of generalized scalars for R and C are still rings with zero divisors and R is
only a partially ordered (not totally ordered) ring. These facts lead to technical
complications. For example Hahn–Banach extension principles do not hold in
Colombeau theory [40].

In this article:

(i) We construct a family of algebras of generalized functions ̂E(�)D0 called

asymptotic functions (Sect. 4). We show that ̂E(�)D0 are full algebras of
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Colombeau type (Sect. 5) in the sense explained above. Thus we offer a solu-
tion to the problem of the multiplication of Schwartz distributions similar to
but different from Colombeau’s solution [6]. Since the full algebras are com-
monly considered to be more naturally connected to the theory of Schwartz

distributions than the special algebras, we look upon ̂E(�)D0 as an improved
alternative to the algebra of ρ-asymptotic functions ρE(�) defined in [28].

(ii) We believe that our theory is a modified and improved alternative to the orig-

inal Colombeau theory for the following reasons: (a) The set of scalars ̂
CD0 of

the algebra ̂E(�)D0 , called here asymptotic numbers, is an algebraically closed
field (Theorem 4.2). Recall for comparison that its counterpart in Colombeau
theory C is a ring with zero divisors [6, pp. 136]. (b) As a consequence we
show that a Hahn–Banach extension principle holds for linear functionals with

values in ̂
CD0 (Sect. 8). This result does not have a counterpart in Colombeau

theory [40]. (c) At this stage the construction of ̂E(�)D0 is already simpler than
its counterpart in Colombeau [6]; our theory has one (regularization) parameter
less.

(iii) Our next goal is to simplify our theory even more by establishing a connection
with non-standard analysis (Sect. 7). For this purpose we construct a particular
ultrapower non-standard model called in this article the distributional non-
standard model (Sect. 6). Then we replace the rings of nets C

I and E(�)I in
Colombeau theory by the non-standard ∗

C and ∗E(�), respectively and the reg-
ularization parameter ε in Colombeau theory by a particular (canonical) infini-

tesimal ρ in ∗
R. We show that the field of asymptotic numbers ̂

CD0 (defined in
Sect. 4) is isomorphic to a particular Robinson field ρC [33]. We also prove that

the algebra of asymptotic functions ̂E(�)D0 (defined in Sect. 4) is isomorphic
to a particular algebra of ρ-asymptotic functions ρE(�) introduced in [28] in
the framework of non-standard analysis.

(iv) Among other things this article provides a bridge between Colombeau theory of
generalized functions and non-standard analysis and we hope that it will be ben-
eficial for both. After all Robinson’s non-standard analysis [32] is historically
at least several decades older than Colombeau theory. A lot of work had been
already done in the non-standard setting on topics similar to those which appear
in Colombeau theory. By establishing a connection with non-standard analysis
we answer, although indirectly, a question raised by Colombeau himself in one
of his “research projects” [10, pp. 5].

Since the article establishes a connection between two different fields of mathemat-
ics, it is written mostly with two types of readers in mind.The readers with background
in non-standard analysis might find in Sects. 2–5 and 8 (along with the axiomatic
summary of Colombeau theory presented above) a short introduction to the non-linear
theory of generalized functions. Notice however that in these sections we do not
present the original Colombeau theory but rather a modified (and improved) version
of this theory. The reader without background in non-standard analysis will find in
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Sect. 6 a short introduction to the subject. The reading of Sects. 2–5 does not require
background in non-standard analysis.

2 Ultrafilter on test functions

In this section we define a particular ultrafilter on the class of test functions D(Rd)

closely related to Colombeau theory of generalized functions [6]. We shall often use
the shorter notation D0 instead of D(Rd).

In what follows we denote by Rϕ the radius of support of ϕ ∈ D(Rd) defined by

Rϕ =
{

sup{||x || : x ∈ R
d , ϕ(x) 
= 0}, ϕ 
= 0,

1, ϕ = 0.
(1)

Definition 2.1 (Directing sets). We define the directing sequence of sets D0,D1,

D2 . . . by letting D0 = D(Rd) and

Dn =
{

ϕ ∈ D(Rd) :
ϕ is real-valued,

(∀x ∈ R
d)(ϕ(−x) = ϕ(x)),

Rϕ ≤ 1/n,
∫

Rd

ϕ(x) dx = 1,

(∀α ∈ N
d
0)

⎛

⎜
⎝1 ≤ |α| ≤ n ⇒

∫

Rd

xαϕ(x) dx = 0

⎞

⎟
⎠ ,

∫

Rd

|ϕ(x)| dx ≤ 1 + 1

n
,

(∀α ∈ N
d
0)

(

|α| ≤ n ⇒ sup
x∈Rd

|∂αϕ(x)| ≤ (Rϕ)
−2(|α|+d)

) }

, n = 1, 2, . . . .

Theorem 2.2 (Base for a filter). The directing sequence (Dn) is a base for a free filter
on D0 in the sense that

(i) D(Rd) = D0 ⊇ D1 ⊇ D2 ⊇ D3 ⊇ · · · .
(ii) Dn 
= ∅ for all n ∈ N.

(iii)
⋂∞

n=0 Dn = ∅.

Proof (i) Clear.
(ii) Let ϕ0 ∈ D(R) be the test function

ϕ0(x) =
{

1
c exp(− 1

1−x2 ), −1 ≤ x ≤ 1,

0, otherwise,
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where c = ∫ 1
−1 exp(− 1

1−x2 ) dx . We let Ck =: supx∈R

∣
∣
∣ dk

dxk ϕ0(x)
∣
∣
∣ for each k ∈ N0 and

also Cα = Cα1 · · · Cαd for each multi-index α ∈ N
d
0 . For each n,m ∈ N we let

Bn,m,d =
{

ϕ ∈ D(Rd) :
ϕ is real-valued,

ϕ(−x) = ϕ(x) for all x ∈ R
d ,

Rϕ = √
d,

∫

Rd

ϕ(x) dx = 1,

∫

Rd

xαϕ(x) dx = 0 for all α ∈ N
d with 1 ≤ |α| ≤ n,

∫

Rd

|ϕ(x)| dx ≤ exp

(
3d

m − 1

)
,

sup
x∈Rd

∣
∣∂αϕ(x)

∣
∣ ≤ Cα(2

dm|α|+d)n for all α ∈ N
d
0

}

.

Step 1. We show that, if m > 2, then Bn,m,d 
= ∅. Let first d = 1. Thenϕ0 ∈ B0,m,1.
By induction on n, let ϕn−1 ∈ Bn−1,m,1. Define ϕn(x) = aϕn−1(x)+ bϕn−1(mx), for
some constants a, b ∈ R to be determined. Then

∫

R

ϕn(x) dx = a + b

m
and

∫

R

xnϕn(x) dx =
(

a + b

mn+1

)∫

R

xnϕn−1(x) dx .

To ensure that ϕn ∈ Bn,m,1, we choose a + b
m = 1 and a + b

mn+1 = 0. Solving for

a, b, we find that a = − 1
mn−1 < 0 and b = mn+1

mn−1 > 0. Since a 
= 0, also Rϕn = 1.

Further, since 1+x
1−x ≤ 1 + 3x ≤ exp(3x) if 0 ≤ x ≤ 1

3 , we have

∫

R

|ϕn(x)| dx ≤
(

|a| + |b|
m

)∫

R

|ϕn−1(x)| dx

= mn + 1

mn − 1

∫

R

|ϕn−1(x)| dx ≤ exp

(
3

mn

)∫

R

|ϕn−1(x)| dx,

so inductively,

∫

R

|ϕn(x)| dx ≤
n∏

j=1

exp

(
3

m j

)∫

R

|ϕ0(x)| dx ≤ exp

⎛

⎝
∞∑

j=1

3

m j

⎞

⎠ = exp

(
3

m − 1

)
.
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Further, |a| + |b|mk = mn+k+1+1
mn−1 ≤ 2mk+1 for k ≥ 0, m > 2 and n ≥ 1. Thus we

have

sup
x∈R

∣
∣
∣
∣

dk

dxk
ϕn(x)

∣
∣
∣
∣ ≤ (|a| + |b|mk) sup

x∈R

∣
∣
∣
∣

dk

dxk
ϕn−1(x)

∣
∣
∣
∣

≤ 2mk+1Ck(2mk+1)n−1 = Ck(2mk+1)n .

Hence ϕn ∈ Bn,m,1. Now let d ∈ N and ϕ ∈ Bn,m,1 arbitrary. We have ψ(x) =:
ϕ(x1) · · ·ϕ(xd) ∈ Bn,m,d .

Step 2. Fix d ∈ N. Let n ≥ 1, let M = max{1,max|α|≤n Cα}, let ψ ∈ Bn,9dn,d , let
ε = 1

d M(18dn)dn and let ϕ(x) = 1
εd ψ(x/ε). We show that ϕ ∈ Dn . If ||x || ≥ 1/n ≥

ε
√

d, then ϕ(x) = 0. Further, since exp(x) ≤ 1
1−x if 0 ≤ x < 1, we have

∫

Rd

|ϕ(x)| dx =
∫

Rd

|ψ(x)| dx ≤ exp

(
3d

9dn − 1

)
≤ 1 + 3d

9dn − 1 − 3d
≤ 1 + 1

n
.

Finally, notice that Rϕ = εRψ = ε
√

d. Thus for |α| ≤ n we have

sup
x∈Rd

∣
∣∂αϕ(x)

∣
∣ ≤ ε−|α|−d sup

x∈Rd

∣
∣∂αψ(x)

∣
∣ ≤ ε−|α|−dCα(2

d(9dn)|α|+d)n

≤ ε−|α|−dCα(18dn)dn(|α|+d) = ε−|α|−dCα(εd M)−|α|−d

≤ CαM−1(Rϕ)
−2(|α|+d).

Hence ϕ ∈ Dn as required.
(iii) Suppose (on the contrary) that there exists ϕ ∈ ⋂∞

n=1 Dn . That means (among
other things) that

∫
Rd ϕ(x)xαdx = 0 for all α 
= 0. Thus we have ∂αϕ̂(0) = 0 for all

α 
= 0, where ϕ̂ denotes the Fourier transform of ϕ. It follows that ϕ̂ = C for some
constant C ∈ C since ϕ̂ is an entire function on C

d by the Paley–Wiener Theorem [3,
Theorem 8.28, pp. 97]. Hence by Fourier inversion, ϕ = (2π)dCδ ∈ D(Rd), where δ
stands for the Dirac delta function. The latter implies C = 0, thus ϕ = 0, contradicting
the property

∫
Rd ϕ(x)dx = 1 in the definition of Dn .

In what follows c =: card(R) and c+ stands for the successor of c.

Theorem 2.3 (Existence of ultrafilter). There exists a c+-good ultrafilter (maximal
filter) U on D0 =: D(Rd) such that Dn ∈ U for all n ∈ N0 (Definition 2.1).

Proof We observe that card(D0) = c. The existence of a (free) ultrafilter containing
all Dn follows easily by Zorn’s lemma since the set F = {A ∈ P(D0) : Dn ⊆
A for some n ∈ N0} is clearly a free filter on D0. Here P(D0) stands for the power
set of D0. For the existence of a c+-good ultrafilter containing F we refer the reader
to [5] (for a presentation we also mention the Appendix in Lindstrøm [21]). ��

Let U be a c+-good ultrafilter on D0 =: D(Rd) containing all Dn . We shall keep
U fixed to the end of this article.
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Full algebra of generalized functions and non-standard asymptotic analysis 213

For those readers who are unfamiliar with the used terminology we present a list
of the most important properties of U . The properties (1)–(3) below express the fact
that U is a filter, the property (1)–(4) express the fact that U is a free filter, the
property (1)–(5) means that U is a free ultrafilter (maximal filter) and (6) expresses
the property of U to be c+-good.

Lemma 2.4 (List of Properties of U). The ultrafilter U is a set of subsets of D0 =
D(Rd) such that Dn ∈ U for all n ∈ N0 and such that:

1. If A ∈ U and B ⊆ D0, then A ⊆ B implies B ∈ U .
2. U is closed under finite intersections.
3. ∅ /∈ U . Consequently, U has the finite intersection property.
4. U is a free filter in the sense that ∩A∈U A = ∅.
5. Let Ak ∈ P(D0), k = 1, 2, . . . , n, for some n ∈ N. Then ∪n

k=1 Ak ∈ U implies
Ak ∈ U for at least one k. Moreover, if the sets Ak are mutually disjoint, then
∪n

k=1 Ak ∈ U implies Ak ∈ U for exactly one k. In particular, for every set
A ∈ P(D0) exactly one of A ∈ U or D0 \ A ∈ U is true.

6. U is c+-good in the sense that for every set � ⊆ D0, with card(�) ≤ c, and every
reversal R : Pω(�) → U there exists a strict reversal S : Pω(�) → U such that
S(X) ⊆ R(X) for all X ∈ Pω(�). Here Pω(�) denotes the set of all finite subsets
of �.

Recall that a function R : Pω(�) → U is called a reversal if X ⊆ Y implies
R(X) ⊇ R(Y ) for every X,Y ∈ Pω(�). A strict reversal is a function S : Pω(�) →
U such that S(X ∪ Y ) = S(X) ∩ S(Y ) for every X,Y ∈ Pω(�). It is clear that every
strict reversal is a reversal (which justifies the terminology).

Definition 2.5 (Almost everywhere). Let P(x) be a predicate in one variable defined
on D0 (expressing some property of the test functions). We say that P(ϕ) holds almost
everywhere in D0 or, simply, P(ϕ) a.e. (where a.e. stands for “almost everywhere”),
if {ϕ ∈ D0 : P(ϕ)} ∈ U .

Example 2.6 (Radius of support). Let Rϕ be the support of ϕ (cf. (1)) and let n ∈ N.
Then (Rϕ ∈ R+ & Rϕ < 1/n) a.e. because Dn ⊆ {ϕ ∈ D0 : Rϕ ∈ R+ & Rϕ < 1/n}
implies {ϕ ∈ D0 : Rϕ ∈ R+ & Rϕ < 1/n} ∈ U by #1 of Lemma 2.4.

The justification of the terminology “almost everywhere” is based on the observa-
tion that the mapping MU : P(D0) → {0, 1}, defined by MU (A) = 1 if A ∈ U and
MU (A) = 0 if A /∈ U is finitely additive probability measure on D0.

3 D0-Nets and Schwartz distributions

Definition 3.1 (Index set and nets). Let D0,D1,D2, . . . be the directing sequence
defined in (Definition 2.1), where D0 = D(Rd). Let S be a set. The functions of the
form A : D0 → S are called D0-nets in S or, simply nets in S for short [17, p. 65]. We
denote by SD0 the set of all D0-nets in S. The space of test functions D0 is the index
set of the nets. If A ∈ SD0 is a net in S, we shall often write Aϕ and (Aϕ) instead of
A(ϕ) and A, respectively.
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214 T. D. Todorov, H. Vernaeve

In this section we present several technical lemmas about D0-nets which are closely
related to the theory of Schwartz distributions and the directing sequence (Dn) (Sect. 2).
Our terminology and notation in distribution theory is close to those in Vladimirov [41].
We start with several examples of D0-nets.

Example 3.2 (Nets and distributions).

1. We denote by C
D0 the set of all nets of the form A : D0 → C. We shall often

write (Aϕ) instead of A for the nets in C
D0 . It is clear that C

D0 is a ring with zero
divisors under the usual pointwise operations. Notice that the nets in C

D0 can be
viewed as complex valued functionals (not necessarily linear) on the space of
test functions D(Rd).

2. Let � be an open subset of R
d and E(�) =: C∞(�). We denote by E(�)D0 the

set of all nets of the form f : D0 → E(�). We shall often write ( fϕ) or ( fϕ(x))
instead of f for the nets in E(�)D0 .

3. Let S be a set and P(S) stand for the power set of S. We denote by P(S)D0 the
set of all nets of the form A : D0 → P(S). We shall often write (Aϕ) instead of
A for the nets in P(S)D0 .

4. Let T d denote the usual topology on R
d . For every open set � ∈ T d we let

�ϕ = {
x ∈ � | d(x, ∂�) > Rϕ

}
,

�̃ϕ = {
x ∈ � | d(x, ∂�) > 2Rϕ & ||x || < 1/Rϕ

}
,

where d(x, ∂�) stands for the Euclidean distance between x and the boundary ∂�
of � and Rϕ is defined by (1). Let χ�,ϕ : R

d → R be the characteristic function
of the set �̃ϕ . The cut-off net (C�,ϕ) ∈ E(Rd)D0 associated with� is defined by
the formula C�,ϕ =: χ�,ϕ � ϕ, where � stands for the usual convolution, that is,

C�,ϕ(x) =
∫

�̃ϕ

ϕ(x − t) dt,

for all x ∈ R
d and all ϕ ∈ D0. Notice that supp(C�,ϕ) ⊆ �ϕ [41, Chap. I, Sects.

4, 6.T].
5. Let T ∈ D′(�) be a Schwartz distribution on �. The ϕ-regularization of T is

the net (Tϕ) ∈ E(�)D0 defined by the formula Tϕ =: T � ϕ, where T � ϕ is a
short notation for (C�,ϕT )�ϕ and � stands (as before) for the usual convolution.
In other words, we have

Tϕ(x) = (
T (t) | C�,ϕ(t)ϕ(x − t)

)
,

for all x ∈ � and all ϕ ∈ D0. Here ( · | · ) stands for the pairing between D′(�)
and D(�) [41].

6. We denote by L� : Lloc(�) → D′(�) the Schwartz embedding of Lloc(�) into
D′(�) defined by L�( f ) = T f . Here T f ∈ D′(�) stands for the (regular) distri-
bution with kernel f , that is, (T f |τ) = ∫

�
f (x)τ (x) dx for all τ ∈ D′(�) [41].
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Full algebra of generalized functions and non-standard asymptotic analysis 215

Also, Lloc(�) denotes the space of the locally integrable (Lebesgue) functions
from� to C. Recall that L� preserves the addition and multiplication by complex
numbers. The restriction of L� on E(�) preserves also the partial differentiation
(but not the multiplication). We shall write f �ϕ and f �ϕ instead of T f �ϕ and
T f � ϕ, respectively. Thus for every f ∈ Lloc(�), every ϕ ∈ D0 and every x ∈ �
we have

( f � ϕ)(x) =
∫

||x−t ||<Rϕ

f (t)C�,ϕ(t)ϕ(x − t) dt. (2)

In what follows we shall often write K � � to indicate that K is a compact subset
of �.

Lemma 3.3 (Localization). Let � be (as before) an open set of R
d and T ∈ D′(�)

be a Schwartz distribution. Then for every compact set K ⊂ � there exists n ∈ N0
such that for every x ∈ K and every ϕ ∈ Dn we have:

(a) C�,ϕ(x) = 1.
(b) (T � ϕ)(x) = (T � ϕ)(x).
(c) Consequently, (∀K � �)(∀α ∈ N

d
0)(∃n ∈ N0)(∀x ∈ K )(∀ϕ ∈ Dn) we have

∂α(T � ϕ)(x) = (∂αT � ϕ)(x) = (T � ∂αϕ)(x).

Proof (a) Let d(K , ∂�) denote the Euclidean distance between K and ∂�. It suffices
to choose n ∈ N such that 3/n < d(K , ∂�) and n > supx∈K ||x || + 1. It follows that
3Rϕ < d(K , ∂�) for all ϕ ∈ Dn because Rϕ ≤ 1/n holds by the definition of Dn .
Now (a) follows from the property of the convolution [41, Chap. I, Sects. 4, 6.T].

(b) If K � �, then there exists m ∈ N such that L =: {t ∈ � : d(t, K ) ≤ 1/m} �
�. Hence, by part (a), there exists n ∈ N (with n ≥ m) such that C�,ϕ(x)ϕ(x − t) =
ϕ(x − t) for all x ∈ K , all t ∈ � and all ϕ ∈ Dn .

(c) follows directly from (b) bearing in mind that we have ∂α(T � ϕ)(x) = (∂αT �
ϕ)(x) = (T � ∂αϕ)(x). ��

Lemma 3.4 (Schwartz distributions). Let � be an open set of R
d and T ∈ D′(�) be

a Schwartz distribution. Then for every compact set K ⊂ � and every multi-index α ∈
N

d
0 there exist m, n ∈ N0 such that for everyϕ ∈ Dn we have supx∈K |∂α(T � ϕ)(x)| ≤

(Rϕ)−m.

Proof Let K and α be chosen arbitrarily. By Lemma 3.3, there exists q ∈ N such
that ∂α(T � ϕ)(x) = (∂αT � ϕ)(x) for all x ∈ K and all ϕ ∈ Dq . Let O be an
open relatively compact subset of � containing K and let k ∈ N be greater than
1/d(K , ∂O). We observe that ϕx ∈ D(O) for all x ∈ K and all ϕ ∈ Dk , where
ϕx (t) =: ϕ(x − t). On the other hand, there exist M ∈ R+ and b ∈ N0 such that
|(∂αT | τ)| ≤ M

∑
|β|≤b supt∈O

∣
∣∂βτ(t)

∣
∣ for all τ ∈ D(O) by the continuity of ∂αT .

Thus |(∂αT � ϕ)(x)| = |(∂αT |ϕx (t))| ≤ M
∑

|β|≤b supt∈Rd

∣
∣∂βϕ(t)

∣
∣ for all x ∈ K

and allϕ ∈ Dk . With this in mind we choose m = 2(b+d)+1 and n ≥ max{q, k,C, b},
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216 T. D. Todorov, H. Vernaeve

where C = M
∑

|β|≤b 1. Now, for every x ∈ K and every ϕ ∈ Dn we have

∣
∣∂α(T � ϕ)(x)

∣
∣ ≤ M

∑

|β|≤b

(Rϕ)
−2(|β|+d) ≤ C(Rϕ)

−2(b+d) ≤ (Rϕ)
−m,

as required, where the last inequality holds because Rϕ ≤ 1/n by the definition of Dn

(Definition 2.1) and 1/n ≤ 1/C by the choice of n. ��

Lemma 3.5 (C∞-Functions). Let � be an open set of R
d and f ∈ E(�) be a C∞-

function. Then for every compact set K ⊂ �, every multi-index α ∈ N
d
0 and every

p ∈ N there exists n ∈ N0 such that for every ϕ ∈ Dn we have

sup
x∈K

∣
∣∂α( f � ϕ)(x)− ∂α f (x)

∣
∣ ≤ (Rϕ)

p.

Proof Suppose that p ∈ N, K � � and α ∈ N
d
0 . By Lemma 3.3, there exists

q ∈ N0 such that ∂α( f � ϕ)(x) = (∂α f � ϕ)(x) for all x ∈ K and all ϕ ∈ Dq .
As before, let O be an open relatively compact subset of � containing K and let

k ∈ N be greater than 1/d(K , ∂O). Let n ≥ max
{

p, q, k, 2C
(p+1)!

}
, where C =:

∑
|β|=p+1 supξ∈O

∣
∣(∂α+β f )(ξ)

∣
∣. Let x ∈ K and ϕ ∈ Dn . By involving the definition

of the sets Dn , we calculate:

∣
∣∂α( f � ϕ)(x)− ∂α f (x)

∣
∣ = (Lemma 3.3 and n ≥ q) = ∣

∣(∂α f � ϕ)(x)− ∂α f (x)
∣
∣

= (since n ≥ 1) =

∣
∣
∣
∣
∣
∣
∣

∫

||y||≤Rϕ

[
∂α f (x − y)− ∂α f (x)

]
ϕ(y) dy

∣
∣
∣
∣
∣
∣
∣

=
(

Taylor expansion
for some t ∈ [0, 1]

)

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

p∑

|β|=1

(−1)|β|∂α+β f (x)

|β|!
∫

||y||≤Rϕ

yβϕ(y) dy

︸ ︷︷ ︸
=0 since n≥p

+ (−1)p+1

(p + 1)!

×
∑

|β|=p+1

∫

||y||≤Rϕ

yβϕ(y)∂α+β f (x − yt) dy

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
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Full algebra of generalized functions and non-standard asymptotic analysis 217

= R p+1
ϕ

(p + 1)!

⎛

⎜
⎝C

∫

||y||≤Rϕ

|ϕ(y)| dy

⎞

⎟
⎠ ≤ R p+1

ϕ

(p + 1)! C (1 + 1/n) <
R p+1
ϕ

(p + 1)! 2C ≤ R p
ϕ ,

as required, where the last inequality follows from Rϕ ≤ 1/n ≤ (p + 1)!/2C . ��

Lemma 3.6 (Pairing). Let� be an open set of R
d , T ∈ D′(�) be a Schwartz distrib-

ution and τ ∈ D(�) be a test function. Then for every p ∈ N there exists n ∈ N0 such
that for every ϕ ∈ Dn we have

|(T � ϕ | τ)− (T | τ)| ≤ (Rϕ)
p. (3)

Proof Let p ∈ N and let O be an open relatively compact subset of � contain-
ing supp(τ ). There exist M ∈ R+ and a ∈ N0 such that | (T |ψ) | ≤ M

∑
|α|≤a

supx∈O |∂αψ(x)| for all ψ ∈ D(O) by the continuity of T . Also, there exists q ∈ N0
such that |∂α(τ � ϕ)(x)− ∂ατ(x)| ≤ (Rϕ)p+1 for all x ∈ O, all |α| ≤ a and all ϕ ∈
Dq by Lemma 3.5. We observe as well that there exists m ∈ N0 such that τ �ϕ− τ ∈
D(O) whenever ϕ ∈ Dm . Let ϕ ∈ Dn , where n ≥ max{1, q,m,M

∑
|α|≤a 1}. Since

ϕ(−x) = ϕ(x) for all x ∈ R
d , we have |(T � ϕ | τ)− (T | τ)| = |(T | τ � ϕ − τ)| ≤

M
∑

|α|≤a(Rϕ)
p+1 = (Rϕ)p(Rϕ)M(

∑
|α|≤a 1) ≤ (Rϕ)p as required. ��

4 Asymptotic numbers and asymptotic functions

We define a field̂
CD0 of asymptotic numbers and the differential algebra of asymptotic

functions ̂E(�)D0 over the field ̂
CD0 . No background in non-standard analysis is

required of the reader: our framework is still the usual standard analysis. Both ̂
CD0

and ̂E(�)D0 , however, do have alternative non-standard representations, but we shall
postpone the discussion of the connection with non-standard analysis to Sect. 7.

The readers who are unfamiliar with the non-linear theory of generalized functions
[6–10] might treat this and the next sections as an introduction to a (modified and
improved version) of Colombeau theory. The readers who are familiar with Colombeau

theory will observe the strong similarity between the construction of ̂
CD0 and the

definition of the ring C of Colombeau generalized numbers [6, pp. 136]. The definition

of ̂E(�)D0 also resembles the definition of the special algebra G(�) of Colombeau
generalized functions [7]. We believe, however, that our asymptotic numbers and
asymptotic functions offer an important improvement of Colombeau theory because
̂
CD0 is an algebraically closed field (Theorem 4.2) in contrast to C, which is a ring
with zero divisors.

Definition 4.1 (Asymptotic numbers). Let Rϕ be the radius of support of ϕ (cf.(1)).

123



218 T. D. Todorov, H. Vernaeve

1. We define the sets of the moderate and negligible nets in C
D0 by

M(CD0) =
{
(Aϕ) ∈ C

D0 : (∃m ∈ N)
(|Aϕ | ≤ (Rϕ)

−m a.e.
)}
, (4)

N (CD0) =
{
(Aϕ) ∈ C

D0 : (∀p ∈ N)
(|Aϕ | < (Rϕ)

p a.e.
)}
, (5)

respectively, where “a.e” stands for “almost everywhere” (Definition 2.5). We

define the factor ring ̂
CD0 =: M(CD0)/N (CD0) and we denote by Âϕ ∈ ̂

CD0

the equivalence class of the net (Aϕ) ∈ M(CD0).
2. If S ⊆ C

D0 , we let Ŝ =: { Âϕ : (Aϕ) ∈ S ∩ M(CD0)
}
. We call the elements of

̂
CD0 complex asymptotic numbers and the elements of ̂

RD0 real asymptotic

numbers. We define an order relation on ̂
RD0 as follows: Let Âϕ ∈ ̂

RD0 and
Âϕ 
= 0. Then Âϕ > 0 if Aϕ > 0 a.e., that is {ϕ ∈ D0 : Aϕ > 0} ∈ U .

3. We define the embeddings C ⊂ ̂
CD0 and R ⊂ ̂

RD0 by the constant nets, that is,
by A → Â.

Theorem 4.2 (Algebraic properties). ̂
CD0 is an algebraically closed field, ̂

RD0 is a

real closed field and we have the usual connection ̂
CD0 = ̂

RD0(i).

Proof It is clear that ̂
CD0 is a ring and ̂

CD0 = ̂
RD0(i). To show that ̂

CD0 is a field,
suppose that (Aϕ) ∈ M(CD0) \ N (CD0). Thus there exist m, p ∈ N such that
� =: {ϕ ∈ D0 : (Rϕ)p ≤ |Aϕ | ≤ (Rϕ)−m} ∈ U . We define the net (Bϕ) ∈ C

D0

by Bϕ = 1/Aϕ if ϕ ∈ � and Bϕ = 1 if ϕ ∈ D0 \ �. It is clear that Aϕ Bϕ = 1

a.e. thus Âϕ B̂ϕ = 1 as required. To show that ̂
CD0 is an algebraically closed field,

let P(x) = x p + an−1x p−1 + · · · + a0 be a polynomial with coefficients in ̂
CD0 and

degree p ≥ 1. Sincê
CD0 is a field, we have assumed without loss of generality that the

leading coefficient is 1. We have ak = Âϕ,k , for some moderate nets (Aϕ,k). Denote
Pϕ(x) =: x p + Aϕ,p−1x p−1 + · · · + Aϕ,0 and observe that for every ϕ ∈ D0 there
exists a complex number Xϕ ∈ C such that Pϕ(Xϕ) = 0 since C is an algebraically
closed field. Thus there exists a net (Xϕ) ∈ C

D0 such that P(Xϕ) = 0 for all ϕ ∈ D0.
Also the estimation |Xϕ | ≤ 1 + |Aϕ,p−1| + · · · + |Aϕ,0| implies that the net (Xϕ)

is a moderate net. The asymptotic number X̂ϕ ∈ ̂
CD0 is the zero of the polynomial

P we are looking for because P(X̂ϕ) = X̂ϕ
p + ap−1 X̂ϕ

p−1 + · · · + a0 = X̂ϕ
p +

Âϕ,p−1 X̂ϕ
p−1 + · · · + Âϕ,0 = P̂ϕ(Xϕ) = 0̂ = 0 as required. The fact that ̂

RD0 is a

real closed field follows directly from the fact that ̂CD0 is an algebraically closed field

and the connection ̂
CD0 = ̂

RD0 + i ̂
RD0 [39, Chap. 11]. ��

Corollary 4.3 (Total order). ̂RD0 is a totally ordered field and we have the following

characterization of the order relation: if a ∈ ̂
RD0 then a ≥ 0 i f f a = b2 for some

b ∈ ̂
RD0 . Consequently, the mapping | · | : ̂

CD0 → ̂
RD0 , defined by the formula

|a + ib| = √
a2 + b2, is an absolute value on ̂

CD0 [31, pp. 3–6].
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Full algebra of generalized functions and non-standard asymptotic analysis 219

Proof The algebraic operations in any real closed field uniquely determine a total

order [39, Chap.11]. Thus the characterization of the order relation in ̂
RD0 follows

directly from the fact that ̂
RD0 is a real closed field. The existence of the root

√
x for

any non-negative x in ̂
RD0 also follows from the fact that ̂

RD0 is a real closed field.
��

Definition 4.4 (Infinitesimals, finite and infinitely large). An asymptotic number z ∈
̂
CD0 is called infinitesimal, in symbol z ≈ 0, if |z| < 1/n for all n ∈ N. Similarly,
z is called finite if |z| < n for some n ∈ N. And z is infinitely large if n < |z| for

all n ∈ N. We denote by I(̂CD0),F(̂CD0) and L(̂CD0) the sets of the infinitesimal,

finite and infinitely large numbers in ̂
CD0 , respectively. We define the infinitesimal

relation ≈ on ̂
CD0 by z ≈ z1 if z − z1 is infinitesimal. We define the standard part

mapping ŝt : F(̂CD0) → C by the formula ŝt(z) ≈ z.

The next result shows that both ̂
RD0 and ̂

CD0 are non-archimedean fields in the
sense that they contain non-zero infinitesimals.

Lemma 4.5 (Canonical Infinitesimal in ̂
RD0 ). Let Rϕ be the radius of support of ϕ

(cf.(1)). Then the asymptotic number ρ̂ =: R̂ϕ is a positive infinitesimal in ̂
RD0 . We

call ρ̂ the canonical infinitesimal in ̂
RD0 (the choice of the notation ρ̂ will be justified

in Sect. 7).

Proof We have 0 ≤ ρ̂ < 1/n for all n ∈ N because Rϕ ∈ R+ & Rϕ < 1/n a.e. (cf.
Example 2.6). Also, ρ̂ 
= 0 because (Rϕ) /∈ N (CD0). ��

Definition 4.6 (Topology, Valuation, Ultra-norm, Ultra-metric). We supply ̂
CD0 with

the order topology, that is, the product topology inherited from the order topology

on ̂
RD0 . We define a valuation v : ̂

CD0 → R ∪ {∞} on ̂
CD0 by v(z) = sup{q ∈ Q |

z/ρ̂ q ≈ 0} if z 
= 0 and v(0) = ∞. We define the ultra-norm | · |v : ̂
CD0 → R

by the formula |z|v = e−v(z) (under the convention that e−∞ = 0). The formula

d(a, b) = |a − b|v defines an ultra-metric on ̂
CD0 .

Theorem 4.7 (Ultra-properties). Let a, b, c ∈ ̂
CD0 . Then

(i) (a) v(a) = ∞ i f f a = 0; (b) v(ab) = v(a)+ v(b). (c) v(a + b) ≥ min{v(a),
v(b)}; (d) |a| < |b| implies v(a) ≥ v(b).

(ii) (a) |0|v = 0, | ± 1|v = 1, and |a|v > 0 whenever a 
= 0; (b) |ab|v =
|a|v |b|v; (c) |a + b|v ≤ max{|a|v, |b|v} (ultra-norm inequality); (d) |a| <
|b| implies |a|v ≤ |b|v .

(iii) d(a, b) ≤ max{d(a, c), d(c, b)} (ultra-metric inequality). Consequently,

(̂CD0 , d) and (̂RD0 , d) are ultra-metric spaces.

Proof The properties (i)–(iii) follow easily from the definition of v and we leave the
verification to the reader. ��
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220 T. D. Todorov, H. Vernaeve

Remark 4.8 (Colombeau theory). The counterpart v̄ of v in Colombeau theory is
only a pseudo-valuation, not a valuation, in the sense that v̄ satisfies the property
v̄(ab) ≥ v̄(a) + v̄(b), not v(ab) = v(a) + v(b). Consequently, the counterpart | · |v̄
of | · |v in Colombeau theory is pseudo-ultra-metric, not a ultra-metric, in the sense
that it satisfies the property |ab|v̄ ≤ |a|v̄ |b|v̄ , not |ab|v = |a|v |b|v . For the concept
of classical valuation we refer the reader to Ribenboim [31].

Definition 4.9 (Asymptotic functions). Let � be an open set of R
d and Rϕ be the

radius of support of ϕ (cf. (1)).

1. We define the sets of the moderate nets M(E(�)D0) and negligible nets
N (E(�)D0) of E(�)D0 by: ( fϕ) ∈ M(E(�)D0) if (by definition)

(∀K � �)(∀α ∈ N
d)(∃m ∈ N0)(sup

x∈K
|∂α fϕ(x)| ≤ (Rϕ)

−m a.e.),

and, similarly, ( fϕ) ∈ N (E(�)D0) if (by definition)

(∀K � �)(∀α ∈ N
d)(∀p ∈ N)(sup

x∈K
|∂α fϕ(x)| ≤ (Rϕ)

p a.e.),

respectively. Here ∂α fϕ(x) stands for theα-partial derivative of fϕ(x)with respect
to x and “a.e” stands (as before) for “almost everywhere” (Definition 2.5). We

define the factor ring ̂E(�)D0 =: M(E(�)D0)/N
(
E(�)D0

)
and we denote by

f̂ϕ ∈ ̂E(�)D0 the equivalence class of the net ( fϕ) ∈ M(E(�)D0). We call the

elements of ̂E(�)D0 asymptotic functions on�. More generally, if S ⊆ E(�)D0 ,
we let Ŝ =: { f̂ϕ : ( fϕ) ∈ S ∩ M(E(�)D0)

}
.

2. We supply ̂E(�)D0 with the ring operations and partial differentiation of any

order inherited from E(�). Also, for every asymptotic number Âϕ ∈ ̂
CD0 and

every asymptotic function f̂ϕ ∈ ̂E(�)D0 we define the product Âϕ f̂ϕ ∈ ̂E(�)D0

by Âϕ f̂ϕ = Âϕ fϕ .

3. We define the pairing between ̂E(�)D0 and D(�) by the formula ( f̂ϕ |τ) = (̂ fϕ |τ),
where ( fϕ |τ) =: ∫

�
fϕ(x)τ (x) dx .

4. We say that an asymptotic function f̂ϕ ∈ ̂E(�)D0 is weakly equal to zero in
̂E(�)D0 , in symbol f̂ϕ ∼= 0, if ( f̂ϕ |τ) = 0 for all τ ∈ D(�). We say that f̂ϕ, ĝϕ ∈
̂E(�)D0 are weakly equal, in symbol f̂ϕ ∼= ĝϕ , if ( f̂ϕ |τ) = (ĝϕ |τ) in ̂

CD0 for all
τ ∈ D(�).

5. We say that an asymptotic function f̂ϕ ∈ ̂E(�)D0 is weakly infinitesimal (or,
associated to zero), in symbol f̂ϕ ≈ 0, if ( f̂ϕ |τ) ≈ 0 for all τ ∈ D(�), where

the latter ≈ is the infinitesimal relation on ̂
CD0 (Definition 4.4). We say that

f̂ϕ, ĝϕ ∈ ̂E(�)D0 are weakly infinitely close (or, associated), in symbol f̂ϕ ≈ ĝϕ ,
if ( f̂ϕ |τ) ≈ (ĝϕ |τ) for all τ ∈ D(�), where in the latter formula ≈ stands for the

infinitesimal relation in ̂
CD0 .
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Full algebra of generalized functions and non-standard asymptotic analysis 221

6. Let f̂ϕ ∈ ̂E(�)D0 and let O be an open subset of �. We define the restriction

f̂ϕ � O ∈ ̂E(O)D0 of f̂ϕ to O by f̂ϕ � O = f̂ϕ � O, where fϕ � O is the usual
restriction of fϕ to O. The support supp( f̂ϕ) of f̂ϕ is the complement to� of the

largest open subset G of � such that f̂ϕ � G = 0 in ̂E(G)D0 .
7. Let �,�′ ∈ T d and ψ ∈ Diff(�′,�) be a diffeomorphism. For every f̂ϕ ∈

̂E(�)D0 we define the composition (or, change of variables) f̂ϕ ◦ ψ ∈ ̂E(�′)D0

by the formula f̂ϕ ◦ ψ = f̂ϕ ◦ ψ , where fϕ ◦ ψ stands for the usual composition
between fϕ and ψ .

It is clear that M(E(�)D0) is a differential ring and N (E(�)D0) is a differential

ideal in M(E(�)D0). Thus ̂E(�)D0 is a differential ring. We leave to the reader to
verify that the product Âϕ f̂ϕ is correctly defined. Thus we have the following result:

Theorem 4.10 (Differential algebra). ̂E(�)D0 is a differential algebra over the field
̂
CD0 .

5 A solution to the problem of multiplication of Schwartz distributions

In this section we construct a canonical embedding E� of the space D′(�) of Schwartz

distributions into the algebra of asymptotic functions ̂E(�)D0 . Thus ̂E(�)D0 becomes
a full algebra of generalized functions of Colombeau type (see 1).

The algebra of asymptotic functions ̂E(�)D0 supplied with the embedding E�
offers a solution to the problem of the multiplication of Schwartz distributions similar
to but different from Colombeau’s solution [6].

Definition 5.1 (Embeddings). Let � be an open set of R
d .

1. The standard embedding σ� : E(�) → ̂E(�)D0 is defined by the constant nets,
that is, by the formula σ�( f ) = f̂ .

2. The distributional embedding E� : D′(�) → ̂E(�)D0 is defined by the formula
E�(T ) = T̂ � ϕ, where T � ϕ is the ϕ-regularization of T ∈ D′(�) (# 5 in
Examples 3.2).

3. The classical function embedding E� ◦ L� : Lloc(�) → ̂E(�)D0 is defined
by the formula (E� ◦ L�)( f ) = f̂ � ϕ, where f � ϕ is the ϕ-regularization of
f ∈ Lloc(�) (# 6 in Examples 3.2).

Lemma 5.2 (Correctness). The constant nets are moderate in the sense that f ∈ E(�)
implies ( f ) ∈ M(E(�)D0) (Sect. 4). Similarly the ϕ-regularization of a Schwartz
distribution (# 5 in Examples 3.2) is also a moderate net, that is, T ∈ D′(�) implies
(T � ϕ) ∈ M(E(�)D0).

Proof It is clear that the constant nets are moderate. To show the moderateness of
(T � ϕ), suppose that K � � and α ∈ N0. By Lemma 3.4 there exist m, n ∈ N0
such that Dn ⊆ {ϕ ∈ D0 : (∀x ∈ K ) |∂α(T � ϕ)(x)| ≤ (Rϕ)−m} implying {ϕ ∈ D0 :
supx∈K |∂α(T � ϕ)(x)| ≤ (Rϕ)−m} ∈ U , as required. ��
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222 T. D. Todorov, H. Vernaeve

Notice that the embedding E� is canonical in the sense that it is uniquely defined

in terms already used in the definition of the family
{

̂E(�)D0

}

�∈T d
(Definition 4.9).

Theorem 5.3 (Properties of embedding). Let � be an open set of R
d . Then:

(i) We have (E� ◦ L�)( f ) = σ�( f ) for all f ∈ E(�). This can be summarized in
the following commutative diagram:

E(�) D′(�)

̂E(�)D0

�L�

�
σ�

�
�

���
E�

Consequently, E(�) and (E� ◦ L�)[E(�)] are isomorphic differential algebras
over C. Also, E� ◦ L� = σ� preserves the pairing between E(�) and D(�) in
the sense that

∫

�

f (x)τ (x) dx = (σ�( f ) | τ) = ((E� ◦ L�)( f ) | τ) ,

for all f ∈ E(�) and all τ ∈ D(�). Consequently, E� ◦ L� = σ� is injective.
(ii) E� is C-linear and it preserves the partial differentiation of any order in D′(�).

Also, E� preserves the pairing between D′(�) and D(�) in the sense that
(T | τ) = (E�(T ) | τ) for all T ∈ D′(�) and all τ ∈ D(�). Consequently, E�
is injective.

(iii) E� ◦ L� is C-linear. Also, E� ◦ L� preserves the pairing between Lloc(�) and
D(�) in the sense that

∫

�

f (x)τ (x) dx = ((E� ◦ L�)( f ) | τ) ,

for all f ∈ Lloc(�) and all τ ∈ D(�). Consequently, E� ◦ L� is injective.
(iv) Each of the above embeddings: σ�, E� and E� ◦ L�, is sheaf preserving in

the sense that it preserves the restriction to an open subset.

We summarize all of the above in E(�) ⊂ Lloc(�) ⊂ D′(�) ⊂ ̂E(�)D0 , where: (a)

E(�) is a differential subalgebra of ̂E(�)D0 over C; (b) Lloc(�) is a vector subspace

of ̂E(�)D0 over C and (c) D′(�) is a differential vector subspace of ̂E(�)D0 over
C. We shall often write simply T instead of the more precise E�(T ) for a Schwartz

distribution in the framework of ̂E(�)D0 .

Proof (i) Suppose that K � �, α ∈ N
d
0 and p ∈ N (are chosen arbitrarily). By

Lemma 3.5 there exist n ∈ N0 such that

Dn ⊆
{
ϕ ∈ D0 : sup

x∈K

∣
∣∂α( f � ϕ)(x)− ∂α f (x)

∣
∣ ≤ (Rϕ)

p
}
.
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Full algebra of generalized functions and non-standard asymptotic analysis 223

Thus {ϕ ∈ D0 : supx∈K |∂α( f � ϕ)(x)− ∂α f (x)| ≤ (Rϕ)p} ∈ U . The latter means

that the net ( f �ϕ− f ) is negligible (Definition 4.9) thus (E� ◦ L�)( f ) = f̂ � ϕ =
f̂ = σ�( f ) as required. Consequently, we have (E� ◦ L�)[E(�)] = σ�[E(�)]. Thus
E(�) and (E� ◦ L�)[E(�)] are isomorphic differential algebras because E(�) and
σ�[E(�)] are (obviously) isomorphic differential algebras. Also, E� ◦ L� preserves
the pairing because σ� preserves (obviously) the pairing.

(ii) �� is C-linear because the mapping T → T � ϕ is C-linear. To show the
preservation of partial differentiation we have to show that for every multi-index
β ∈ N

d
0 the net

(
∂βT � ϕ − ∂β(T � ϕ)

)
is negligible (Definition 4.9). This follows

easily from Lemma 3.3 similarly to (i) above. To show that E� preserves the pairing,
we have to show that for any test function τ the net Aϕ =: (T � ϕ | τ) − (T | τ) is
negligible (Definition 4.1). The latter follows easily from Lemma 3.6.

(iii) (E� ◦ L�) is C-linear because the mapping f → f � ϕ is C-linear. The
preserving of pairing follows from (ii) in the particular case T = T f .

(iv) The preserving of the restriction on an open subset follows easily from the
definition and we leave the details to the reader. ��

We should mention that if f ∈ E(�) and T ∈ D′(�), then E�( f )E�(T ) =
E�( f T ) is false in general. That means that the multiplication in the algebra in ̂E(�)D0

does not reproduce the Schwartz multiplication in D′(�) (multiplication by duality).
Similarly, let C(�) denote the class of continuous functions from � to C. If g, h ∈
C(�), then E�(g)E�(h) = E�(gh) is also false in general. That means that the

multiplication in the algebra in ̂E(�)D0 does not reproduce the usual multiplication in
C(�). Of course, all these are inevitable in view of the Schwartz impossibility results
[35]. For a discussion we refer to [10, p. 8]. Instead, we have a somewhat weaker
result.

Theorem 5.4 (Weak preservation). Let T ∈ D′(�), f ∈ E(�) and g, h ∈ C(�).
Then:

(i) E�( f )E�(T ) ∼= E�( f T ) (Definition 4.9, #4), that is, (E�( f )E�(T ) | τ) =
(E�( f T ) | τ) for all τ ∈ D(�).

(ii) E�(g)E�(h) ≈ E�(gh) (Definition 4.9, #5), that is, (E�(g)E�(h) | τ)
≈ (E�(gh) | τ) for all τ ∈ D(�), where ≈ in the latter formula stands for

the infinitesimal relation in the field ̂
CD0 .

Proof (i) We denote fϕ,τ := ( f (T � ϕ) | τ) = (T � ϕ | f τ) and calculate

(E�( f )E�(T ) | τ) =
(

f̂ T̂ � ϕ | τ
)

=
(

̂f (T � ϕ) | τ
)

= f̂ϕ,τ =
(

T̂ � ϕ | f τ
)

=
(T | f τ) = ( f T | τ) = (E�( f T ) | τ) as required.

(ii) This follows from the fact that for each n ∈ N and K � �we have supx∈K |(g�
ϕ − g)(x)h(x)| < 1/n and supx∈K |(g � ϕ)(x)(h � ϕ − h)(x)| < 1/n a.e. in D0
(Definition 2.5) which can be seen by elementary observation. ��

Let �,�′ ∈ T d and ψ ∈ Diff(�′,�). Then E�(T ) ◦ ψ = E�′(T ◦ ψ) does not

generally hold in ̂E(�)D0 . That means that the family of algebras { ̂E(�)D0}�∈T d is
not diffeomorphism invariant (see Sect. 1). Here T ◦ ψ stands for the composition in
the sense of the distribution theory [41]. Instead, we have the following weaker result.
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224 T. D. Todorov, H. Vernaeve

Theorem 5.5 (Diffeomorphisms). E� weakly preserves the composition with diffeo-
morphisms in the sense that for every �,�′ ∈ T d , every T ∈ D′(�) and every
ψ ∈ Diff(�′,�) we have E�(T ) ◦ ψ ∼= E�′(T ◦ ψ), that is, (E�(T ) ◦ ψ | τ) =
(E�′(T ◦ ψ) | τ) for all test functions τ ∈ D(�′).
Proof The proof is analogous to the proof of part (i) of Theorem 5.4 and we leave the
details to the reader. ��
Example 5.6 1. Let δ ∈ D′(Rd) be the Dirac delta function (delta distribution) on

R
d . For its ϕ-regularization (#5 in Examples 3.2) we have δϕ = δ�ϕ = δ�ϕ = ϕ.

Thus ERd (δ) = ϕ̂. Similarly, ERd (∂αδ) = ∂̂αϕ.
2. We have

(
ERd (δ)

)n = (ϕ̂)n = ϕ̂n, n = 1, 2, . . . . We express this result simply
as δn = ϕ̂n . Recall that the powers δn are meaningless within D′(Rd) for n ≥ 2.

3. Let H(x) be the Heaviside step function on R. For its ϕ-regularization (#6 in
Examples 3.2) we have Hϕ = (H �ϕ). Let K � R. We observe that for every x ∈
K we have Hϕ(x) = (H � ϕ)(x) = ∫ x

−∞ ϕ(t) dt a.e. in D0 (Definition 2.5). Thus

ER(H) = ̂
∫ x
−∞ ϕ(t) dt . We express this result simply as H(x) = ̂

∫ x
−∞ ϕ(t) dt .

Since the embedding ER preserves the differentiation, we have H ′ = δ.

4. We have ER(H)ER(δ) = ϕ̂
(

̂
∫ x
−∞ ϕ(t) dt

)
= ϕ̂Hϕ . We express this result simply

as Hδ = ϕ̂Hϕ . Recall that the product Hδ is not meaningful within D′(R).
5. We have (ER(H))

n =
(

̂
∫ x
−∞ ϕ(t) dt

)n = (̂Hϕ)n which we write simply as Hn =
(̂Hϕ)n . Since ̂E(R)D0 is a differential algebra, we can apply the chain rule: (Hn)′ =
nHn−1δ which also is meaningless in D′(R) for n ≥ 2.

6. Notice that Hn 
= H, n = 2, 3, . . . in ̂E(R)D0 . Actually Hn = H, n = 2, 3, . . . ,
fail in any differential algebra. Indeed, H2 = H implies 2Hδ = δ while H3 = H
implies 3Hδ = δ thus 2 = 3, a contradiction. For a discussion we refer to [14,
Example (1.1.1)].

6 Distributional non-standard model

The distributional non-standard model presented in this section is especially designed
for the purpose of the non-linear theory of generalized functions (Colombeau theory).
It is a fully c+-saturated ultrapower non-standard model (Theorem 6.3) with the set
of individuals R based on the D0-nets (Definition 3.1). Here c = card(R) and c+
stands for the successor of c. The connection of the theory of asymptotic numbers and
functions (Sect. 4) with non-standard analysis will be discussed in the next section. We
should mention that a similar ultrapower non-standard model (with the same index set
and different ultrafilter) was used in Berger’s thesis [1] for studying delta-like solutions
of Hopf’s equation.

For readers who are familiar with non-standard analysis this section is a short review
of the ultra-power approach to non-standard analysis introduced by Luxemburg [22]
almost 40 years ago (see also [36]). For the reader without background in non-standard
analysis, this section offers a short introduction to the subject. For additional reading,
we refer to Davis [12], Lindstrøm [21] and Chap. 2 in Capiński and Cutland [4].
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Full algebra of generalized functions and non-standard asymptotic analysis 225

Definition 6.1 (Distributional non-standard model).

1. Let S be an infinite set. The superstructure on S is defined by V (S) =:⋃∞
n=0 Vn(S), where V0(S) = S and Vn+1(S) = Vn(S) ∪ P (Vn(S)). The level

λ(A) of A ∈ V (S) is defined by the formula λ(A) =: min{n ∈ N0 : A ∈ Vn(S)}.
The superstructure V (S) is transitive in the sense that V (S)\ S ⊂ P(V (S)). Thus
V (S) \ S is a Boolean algebra. The members s of S are called individuals of the
superstructure V (S).

2. Let S = R. We observe that V (R) contains all objects in standard analysis:
all ordered pairs of real numbers thus the set of complex numbers C, Cartesian
products of subsets of R and of C thus all relations on R and on C, all binary
algebraic operations on R and on C, all real and complex functions, all sets of
functions, etc.

3. Let R
D0 be the set of all D0-nets in R (Definition 3.1). The set ∗

R of non-standard
real numbers is defined as follows:

(a) We define the equivalence relation ∼U on R
D0 by (Aϕ) ∼U (Bϕ) if

Aϕ = Bϕ a.e. or, equivalently, if {ϕ ∈ D0 : Aϕ = Bϕ} ∈ U (Defini-
tion 2.5).

(b) The equivalence classes in ∗
R = R

D0/ ∼U are called non-standard
real numbers. We denote by

〈
Aϕ

〉 ∈ ∗
R the equivalence class of the

net (Aϕ) ∈ R
D0 . The ring operations in ∗

R are inherited from the ring
R

D0 . The order in ∗
R is defined by

〈
Aϕ

〉
> 0 if Aϕ > 0 a.e., that is, if

{ϕ ∈ D0 : Aϕ > 0} ∈ U .
(c) We define the canonical embedding R ↪→ ∗

R by the constant nets, that
is, by A → 〈

Aϕ
〉
, where Aϕ = A for all ϕ ∈ D0. We shall write simply

R ⊆ ∗
R instead of R ↪→ ∗

R. Also if (Aϕ) is a constant net, we shall
write simply 〈A〉 instead of

〈
Aϕ

〉
.

4. Let S = ∗
R. The superstructure V (∗R) contains all objects in non-standard

analysis: ordered pairs of non-standard real numbers thus the set of non-standard
complex numbers ∗

C, all Cartesian products of subsets of ∗
R and of ∗

C thus all
relations on ∗

R and on ∗
C, all binary algebraic operations on ∗

R and on ∗
C, all

non-standard functions, all sets of non-standard functions, etc.
5. Let V (R)D0 stand for the set of all D0-nets in V (R) (Definition 3.1). A net (Aϕ)

in V (R)D0 is called tame if (∃n ∈ N0)(∀ϕ ∈ D0)(Aϕ ∈ Vn(R)). If (Aϕ) is a tame
net in V (R)D0 its level λ((Aϕ)) is defined (uniquely) as the number n ∈ N0 such
that {ϕ ∈ D0 : λ(Aϕ) = n} ∈ U , where λ(Aϕ) is the level of Aϕ in V (R) (see #1
above).

6. For every tame net (Aϕ) in V (R)D0 we define
〈
Aϕ

〉 ∈ V (∗R) inductively on
the level of the nets: If λ((Aϕ)) = 0, then

〈
Aϕ

〉
is defined in #3 above. Suppose〈

Aϕ
〉

is already defined for all tame nets (Aϕ) in V (R)D0 with λ((Aϕ)) < n. If
(Bϕ) ∈ V (R)D0 is a tame net withλ((Bϕ)) = n, we let

〈
Bϕ

〉 =: {(Aϕ) ∈ V (R)D0 :
λ((Aϕ)) < n & Aϕ ∈ Bϕ a.e.

}
, where, as before, Aϕ ∈ Bϕ a.e. means

{
ϕ ∈ D0 :

Aϕ ∈ Bϕ
} ∈ U (Definition 2.5). Let (Aϕ) be a constant net in V (R)D0 , that is,

Aϕ = A for all ϕ ∈ D0 and some A ∈ V (R). In the case of constant nets we shall
write simply 〈A〉 instead of

〈
Aϕ

〉
.
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226 T. D. Todorov, H. Vernaeve

7. An element A of V (∗R) is called internal if A = 〈
Aϕ

〉
for some tame net

(Aϕ) ∈ V (R)D0 . We denote by ∗V (R) the set of the internal elements of V (∗R)

(including the non-standard reals in ∗
R). The elements of ∗V (R) \ ∗

R are called
internal sets. The internal sets of the form 〈A〉, where A ∈ V (R) (i.e. generated by
constant nets), are called internal standard (or simply, standard). The elements
of V (∗R) \ ∗V (R) are called external sets.

8. We define the extension mapping ∗ : V (R) → V (∗R) by ∗ A = 〈A〉. Notice
that the range ran(∗) of the extension mapping ∗ consists exactly of the internal
standard elements of V (∗R). The terminology extension mapping for ∗ is due to
the following result: Let S ∈ V (R) \ R. Then S ⊆ ∗S and the equality occurs i f f
S is a finite set.

9. It can be shown that A is internal i f f A ∈ ∗ A for some A ∈ V (R). It can be
shown as well that an element A ∈ V (R) is internal i f f A ∈ R or A is a finite
set (notice that V (R) ⊆ V (∗R) since R ⊆ ∗

R). The infinite sets in V (R) \ R are
called external standard sets. For example, the familiar N,N0,Z,Q,R,C are
all external standard sets.

10. A point ζ ∈ ∗
C

d is called infinitesimal if ||ζ || < 1/n for all n ∈ N. Also,
ζ ∈ ∗

C
d is called finite if ||ζ || < n for some n ∈ N. Similarly, ζ ∈ ∗

C
d is called

infinitely large if n < ||ζ || for all n ∈ N. We denote by I(∗C
d),F(∗C

d) and
L(∗C

d) the sets of the infinitesimal, finite and infinitely large points in ∗
C

d ,
respectively. We often write ζ ≈ 0 instead of ζ ∈ I(∗C

d) and ζ1 ≈ ζ2 instead
of ζ1 − ζ2 ∈ I(∗C

d). More generally, if S ⊆ ∗
C

d , then I(S),F(S) and L(S)
denote the sets of infinitesimal, finite and infinitely large points in S, respectively.

11. We define the standard part mapping st : F(∗C
d) → C

d by the formula
st(ζ ) ≈ ζ . We observe that st is a vector homomorphism from F(∗C

d) onto C
d .

In particular, st : F(∗C) → C is an order preserving ring homomorphism from
F(∗C) onto C (relative to the partial order in ∗

C).
12. We call ρ ∈ ∗

R, defined by ρ = 〈
Rϕ

〉
(cf. (1)), the canonical infinitesimal in

∗
R. It is canonical because is defined uniquely in terms of the index set of the

distributional non-standard model. It is a positive infinitesimal because 0 < ρ <

1/n for all n ∈ N (Example 2.6).
13. Let x ∈ R

d and X ⊆ R
d . The monads of x and X are defined by

µ(x) =
{

x + dx : dx ∈ ∗
R

d & ||dx || ≈ 0
}
,

µ(X) =
{

x + dx : x ∈ X & dx ∈ ∗
R

d & ||dx || ≈ 0
}
,

respectively. Also, µ0(x) =: µ(x) \ {x} is the deleted monad of x .

Theorem 6.2 (Extension principle). ∗
R is a proper extension of R, that is, R �

∗
R.

Consequently, V (R) � V (∗R).

Proof We observe that ρ ∈ ∗
R \ R (#12 in Definition 6.1). ��

In what follows we assume a particular case of the continuum hypothesis in the
form c+ = 2c.
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Full algebra of generalized functions and non-standard asymptotic analysis 227

Theorem 6.3 (Saturation principle). Our non-standard model V (∗R) is c+-saturated
in the sense that every family (Aγ )γ∈� of internal sets in V (∗R) with the finite inter-
section property and card(�) ≤ c has the non-empty intersection

⋂
γ∈� Aγ 
= ∅.

Also V (∗R) is fully saturated in the sense that V (∗R) is card(∗R)-saturated (cf. [5,
Chap. 5].

Proof We refer the reader to the original proof in Chang and Keisler [5] (for a presen-
tation see also Lindstrøm [21]). We should mention that the property of the ultrafilter
U to be c+-good (# 6 in Lemma 2.4) is involved in the proof of this theorem. To
show that V (∗R) is fully saturated, we have to show that card(∗R) = c+. Indeed,
card(∗R) ≤ card(RD0) = 2c follows from the definition of ∗

R in the distributional
model and card(∗R) ≥ 2c follows from the fact that V (∗R) is c+-saturated. ��

The next result demonstrates the remarkable feature of non-standard analysis to
reduce (and sometimes even to eliminate completely) the number of quantifiers com-
pared with standard analysis.

Theorem 6.4 (Usual topology on R
d and monads). Let X ⊆ R

d and x ∈ R
d . Then: (a)

x is an interior point of X i f f µ(x) ⊆ ∗ X. Consequently, X is open i f f µ(X) ⊆ ∗ X.
(b) X is closed i f f st(∗ X) = X, where st : F(∗R

d) → R
d stands for the standard

part mapping. (c) x is an adherent point of X (i.e. x ∈ X) i f f ∗ X ∩µ(x) 
= ∅. (d) X
is a cluster point of X i f f ∗ X ∩ µ0(x) 
= ∅. (e) X is a bounded set i f f ∗ X consists
of finite points only. (f) X is compact i f f ∗ X ⊆ µ(X).

Proof We refer the reader to the original proofs in Robinson [32] (or, to a presentation
in Salbany and Todorov [34]). ��

To complete our survey on non-standard analysis, we would have to discuss several
more important principles: the order completeness principle in ∗

R for internal sets,
different spilling principles (underflow and overflow), transfer principle and internal
definition principle. The transfer principle is considered by many as the “heart and
soul of non-standard analysis”. On these topics we refer the reader to Davis [12],
Lindstrøm [21] and Chap. 2 in Capiński and Cutland [4]. For reader with experience
in mathematical logic we recommend Robinson [32].

7 Colombeau’s theory of generalized functions and non-standard analysis

We show that the field of asymptotic numbers ̂
CD0 (Definition 4.1) is isomorphic to

a particular Robinson field ρ
C [33] of ρ-asymptotic numbers. We also prove that the

algebra of asymptotic functions ̂E(�)D0 (Definition 4.9) is isomorphic to a particular
algebra of ρ-asymptotic functions ρE(�) introduced in [28]. Both ρ

C and ρE(�) are
defined in the framework of non-standard analysis (see Definitions 7.1 and 7.7 below).

As far as we treat ̂CD0 and ̂E(�)D0 as modified and, we believe, improved versions of
Colombeau’s C and G(�), respectively, these results establish a connection between
Colombeau theory and non-standard analysis.

Recall the definition of Robinson’s field ρ
R [33] and its complex counterpart ρC.
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228 T. D. Todorov, H. Vernaeve

Definition 7.1 (Robinson ρ-asymptotic numbers). Let ∗
R and ∗

C be the non-standard
extensions of R and C, respectively in an arbitrary κ-saturated non-standard model
with set of individuals R, where κ is an infinite cardinal. (In particular, this could
be the distributional non-standard model constructed in Sect. 6). Let ρ be a positive
infinitesimal in ∗

R. Following Robinson [33], we define:

1. The sets of the ρ-moderate and ρ-negligible non-standard complex numbers are

Mρ(
∗
C) = {

ζ ∈ ∗
C : |ζ | ≤ ρ−m for some m ∈ N

}
, (6)

Nρ(
∗
C) = {

ζ ∈ ∗
C : |ζ | < ρn for all n ∈ N

}
, (7)

respectively. The Robinson field of complex ρ-asymptotic numbers is the factor
ring ρ

C =: Mρ(
∗
C)/Nρ(

∗
C). We denote by ζ̂ the equivalence class of ζ ∈

Mρ(
∗
C). For example, ρ̂ is the asymptotic number corresponding to ρ.

2. If S ⊆ ∗
C, we let Ŝ = {̂ζ : ζ ∈ S ∩ Mρ(

∗
C)}. If S ⊆ C, then ρS =: ∗̂S is

called the ρ-extension of S. In particular, the field of Robinson real ρ-asymptotic
numbers ρR is the ρ-extension of R, that is, ρR = ∗̂R. We define an order relation
in ρ

R as follows: Let ξ̂ ∈ ρ
R and ξ̂ 
= 0. Then ξ̂ > 0 if ξ > 0 in ∗

R.
3. We supply ρ

C with the order topology, that is, the product topology inherited
from the order topology on ρ

R.
4. The valuation v : ρ

C → R ∪ {∞} is defined by v(0) = ∞ and v(̂ζ ) =
st (ln |ζ |/ ln ρ) if ζ̂ ∈ ρ

C, ζ̂ 
= 0. We define an ultra-norm | · |v : ρC → R by
the formula |z|v = e−v(z) (under the convention that e−∞ = 0) and an ultra-
metric by dv(a, b) = |a − b|v .

5. Let ξ = (ξ1, . . . , ξd) ∈ ∗
R

d and ||ξ || ∈ Mρ(
∗
C). We define ξ̂ ∈ ρ

R
d by

ξ̂ = (ξ̂1, . . . , ξ̂d). Let � be an open set of R
d and µ(�) be the monad of � (#13

in Definition 6.1). We denote µ̂(�) = {̂ξ : ξ ∈ µ(�)}.
The next result appears in Lightstone and Robinson [20, p. 97].

Theorem 7.2 (Principles of permanence). Let A ⊆ ∗
R be an internal set.

(a) Overflow of Mρ(
∗
R): If A contains arbitrarily large numbers in Mρ(

∗
R), then

A contains arbitrarily small numbers in ∗
R \ Mρ(

∗
R).

(b) Underflow of Mρ(
∗
R) \ Nρ(

∗
R): If A contains arbitrarily small numbers in

Mρ(
∗
R) \ Nρ(

∗
R), then A contains arbitrarily large numbers in Nρ(

∗
R).

(c) Overflow of Nρ(
∗
R): If A contains arbitrarily large numbers in

Nρ(
∗
R), then A contains arbitrarily small numbers in Mρ(

∗
R) \ Nρ(

∗
R).

(d) Underflow of ∗
R \ Mρ(

∗
R): If A contains arbitrarily small numbers in ∗

R \
Mρ(

∗
R), then A contains arbitrarily large numbers in Mρ(

∗
R).

Theorem 7.3 (Field properties). ρC is an algebraically closed field, ρR is a real
closed field and we have the usual connection ρ

C = ρ
R(i).

Proof The connection ρ
C = ρ

R(i) follows directly from the definition of ρC and
ρ
R. The proof that ρR is a field can be found in Lightstone and Robinson [20, p.

78]. It follows that ρC is also a field. Let P(x) = x p + ap−1x p−1 + · · · + a0 be a
polynomial with coefficients in ρ

C and a degree p ≥ 1. We have an = α̂n for some
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Full algebra of generalized functions and non-standard asymptotic analysis 229

αn ∈ Mρ(
∗
C). We let Q(x) = x p + αp−1x p−1 + · · · + α0. Next, we observe that ∗

C

is an algebraically closed field by transfer principle [12] since C is an algebraically
closed field. Thus the equation Q(ζ ) = 0 has a solution ζ in ∗

C. The estimation
|ζ | ≤ 1 + |αp−1| + · · · + |α0| shows that ζ ∈ Mρ(

∗
C). Thus P (̂ζ ) = Q̂(ζ ) = 0̂ = 0

proving that ρC is an algebraically closed field. It follows that ρR is a real closed field
as a maximal real subfield of ρC [39, Chap. 11]. ��

We turn to the connection between Robinson’s theory of the field ρ
R and the field

of asymptotic numbers defined in Definition 4.1.

Theorem 7.4 (Isomorphic fields). Let ∗
R and ∗

C be the non-standard extensions of
R and C, respectively (#3 and #8, Definition 6.1) defined within our distributional
non-standard model (Sect. 6). Let ρ = 〈

Rϕ
〉

be the canonical infinitesimal in ∗
R (#12

in Definition 6.1). Then:

(i) If (Aϕ) ∈ C
D0 , then (Aϕ) ∈ M(CD0) (Definition 4.1) i f f

〈
Aϕ

〉 ∈ Mρ(
∗
C).

(ii) The fields ̂
CD0 and ̂

RD0 are isomorphic to ρ
C and ρ

R, respectively, under the

mapping Âϕ → 〈̂
Aϕ

〉
from ̂

CD0 to ρ
C. This isomorphism preserves also the

valuation, non-archimedean norm and ultra-metric (Definition 4.6).

(iii) The order topology and the metric topology on ̂
CD0 are the same.

Proof (i) (Aϕ) ∈ M(CD0) i f f (∃m ∈ N){ϕ ∈ D0 : |Aϕ | ≤ (Rϕ)−m} ∈ U i f f
(∃m ∈ N)(| 〈Aϕ

〉 | ≤ ρ−m) i f f
〈
Aϕ

〉 ∈ Mρ(
∗
C) as required.

(ii)
〈̂
Aϕ

〉 = 0 in ρ
C i f f (∀n ∈ N)(| 〈Aϕ

〉 | < 〈
Rϕ

〉n
) in ∗

C i f f (∀n ∈ N)({ϕ ∈ D0 :
|Aϕ | < (Rϕ)n

} ∈ U) i f f (Aϕ) ∈ N (CD0) (Definition 4.1) i f f Âϕ = 0 in ̂
CD0 which

means that the mapping Âϕ → 〈̂
Aϕ

〉
is injective. We leave to the reader to verify that

this mapping preserves the ring operations.

(iii) The order topology and the metric topology on ̂
CD0 are the same because they

are the same on ρ
C for any choice of ∗

C and ρ [38]. ��
In what follows we assume a particular case of the generalized continuum hypoth-

esis in the form c+ = 2c.

Corollary 7.5 Let ∗R be a non-standard extension of R in a c+-saturated non-
standard model with set of individuals R such that card(∗R) = c+. Let ε be a positive
infinitesimal in ∗R and let εC and εR be the corresponding Robinson’s fields (see

above). Then εC and εR are isomorphic to ̂
CD0 and ̂

RD0 , respectively.

Proof Let ∗
R be the non-standard extension of R in our distributional non-standard

model and let ρ = 〈
Rϕ

〉
(#12 in Definition 6.1). We observe that ∗

R is fully satu-
rated by (Theorem 6.3) and ∗R is fully saturated by assumption. Thus ρR and εR are

isomorphic by Todorov and Wolf [38, p. 370]. It follows that εR and ̂
RD0 are isomor-

phic (as required) since ρR and ̂
RD0 are isomorphic by Theorem 7.4. ��

The sets of the form B = {z ∈ ρ
C : |z − a|v ≤ b}, where a ∈ ρ

C and b ∈ R+, are
called closed balls in ρ

C. Similarly, if a ∈ ρ
R and b ∈ R+, then the sets B = {z ∈

ρ
R : |z − a|v ≤ b} are closed balls in ρ

R. The next result is due to Luxemburg [23].
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230 T. D. Todorov, H. Vernaeve

Theorem 7.6 (Luxemburg). The field ρ
R is spherically complete in the sense that

every family of closed balls in ρ
R with the finite intersection property (f.i.p.) has

non-empty intersection. Consequently, the field ρ
C is also spherically complete.

We recall the definition of the algebra ρE(�) [28].

Definition 7.7 (ρ-Asymptotic functions). Let ∗
R and ∗E(�) be the non-standard

extensions of R and E(�) =: C∞(�), respectively, in an arbitrary κ-saturated non-
standard model with set of individuals R, where κ is an infinite cardinal. (In particular,
this could be the distributional non-standard model constructed in Sect. 6). Let ρ be
positive infinitesimal in ∗

R. Following [28], we define:

1. The sets of the ρ-moderate and ρ-negligible functions in ∗E(�) are

Mρ(
∗E(�)) =

{
f ∈ ∗E(�) : (∀α ∈ N

d
0)(∀x ∈ µ(�)) (∂α f (x) ∈ Mρ(

∗
C)

)}
,

Nρ(
∗E(�)) =

{
f ∈ ∗E(�) : (∀α ∈ N

d
0)(∀x ∈ µ(�)) (∂α f (x) ∈ Nρ(

∗
C)

)}
,

respectively, where µ(�) is the monad of � (#13 in Definition 6.1). The dif-
ferential algebra of ρ-asymptotic functions on � is the factor ring ρE(�) =:
Mρ(

∗E(�))/Nρ(
∗E(�)). We denote by f̂ the equivalence class of f ∈ Mρ

(∗E(�)).
2. For any S ⊆ ∗E(�)we let Ŝ = { f̂ : f ∈ S ∩Mρ(

∗E(�))}. If S ⊆ E(�), the set
ρS = ∗̂S is called the ρ-extension of S. The algebra ρE(�) consists of particular
pointwise functions from µ̂(�) into ρ

C [37].

The next result appears in Oberguggenberger and Todorov [28].

Theorem 7.8 (Existence of embedding). There exists an embedding�D,� : D′(�) →
ρE(�) of Colombeau type, where D ∈ ∗E(Rd) stands for a particular non-standard
delta-function (non-standard mollifier). Thus ρE(�) are special algebras of general-
ized functions of Colombeau’s type (see 1).

Remark 7.9 (Non-canonical embedding). We should notice that the embedding�D,�

is non-canonical because the existence of D is proved in [28] by saturation principle
and thus D cannot be defined uniquely in the terms already used in the definition of
ρE(�). Actually, D cannot be determined uniquely by any properties expressed in
the language of standard or non-standard analysis; D is chosen and fixed in [28] “by
hand”.

The next two simple lemmas provide examples of the ability of non-standard analy-
sis to reduce the number of quantifiers.

Lemma 7.10 Let f ∈ ∗E(�). Then the following are equivalent:

(a) (∀K � �)(∃m ∈ N)(supξ∈∗K | f (ξ)| ≤ ρ−m).
(b) (∀ξ ∈ µ(�))( f (ξ) ∈ Mρ(

∗
C)).
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Full algebra of generalized functions and non-standard asymptotic analysis 231

Proof (a) ⇒ (b): Suppose that ξ ∈ µ(�) and let st(ξ) = s. Since s ∈ � and � is
open, there exists an open relatively compact subset O of�which contains s and such
that O ⊂ �. So, we have ξ ∈ ∗K , where K = O. Thus supη∈∗K | f (η)| ≤ ρ−m for
some m ∈ N (by assumption) implying f (ξ) ∈ Mρ(

∗
C) as required.

(a) ⇐ (b): Let K be a compact subset of � and suppose (on the contrary) that
(∀m ∈ N)(supξ∈∗K | f (ξ)| > ρ−m). That means that the internal set A =: {m ∈
∗
N : supξ∈∗K | f (ξ)| > ρ−m} contains N and thus contains an infinitely large number
ν ∈ ∗

N by overflow of F(∗R) [4, p. 24]. Thus we have supξ∈∗K | f (ξ)| > ρ−ν . On
the other hand, we have | f (ξ0)| > ρ−ν for some ξ0 ∈ ∗K by transfer principle [12],
contradicting (a), since ∗K ⊂ µ(�) by Theorem 6.4. ��
Lemma 7.11 Let f ∈ ∗E(�). Then the following are equivalent:

(a) (∀K � �)(∀n ∈ N)(supξ∈∗K | f (ξ)| < ρn).
(b) (∀ξ ∈ µ(�))( f (ξ) ∈ Nρ(

∗
C)).

Proof The proof is very similar to the proof of the above lemma and we leave it to the
reader. ��
Theorem 7.12 (Isomorphic algebras). Let ∗E(�) be the non-standard extension of
E(�) (#8, Definition 6.1) in the distributional ultrapower non-standard model con-
structed in Sect. 6. Let ρ = 〈

Rϕ
〉

be the canonical infinitesimal in ∗
R (#12 in Defini-

tion 6.1). Then:

(i) If ( fϕ) ∈ E(�)D0 , then ( fϕ) ∈ M(E(�)D0) (Definition 4.9) i f f
〈
fϕ
〉 ∈

Mρ(
∗E(�)).

(ii) The differential algebras ̂E(�)D0 and ρE(�) are isomorphic under the mapping

f̂ϕ → 〈̂
fϕ
〉

from ̂E(�)D0 to ρE(�).

Proof In view of the previous two lemmas, the proof of this theorem is almost identical
to the proof of Theorem 7.4 and we leave it to the reader. ��

8 The Hahn–Banach extension principle for asymptotic functionals

In this section we show that a Hahn–Banach extension principle holds for continuous
asymptotic functionals, that is, linear continuous functionals defined on vector spaces
over the field ρ

C taking values also in ρ
C (Corollary 8.3). This result is based on the

spherical completeness of ρC (Luxemburg [23]; see Theorem 7.6 in this article) and
a result due to (Ingleton [15]). Here ρ

C is Robinson’s field (Definition 7.1) within
an arbitrary non-standard model with individuals R and ρ is an arbitrary positive
infinitesimal in ∗

R. Consequently, the results in this section hold as well for linear

continuos functionals with values in ̂
CD0 (Definition 4.1) since ̂

CD0 is isomorphic to
a field of the form ρ

C (Theorem 7.4).
The rings of Colombeau generalized numbers R and C [6, pp. 136] are also spher-

ically complete [25], and a result similar to Theorem 8.1 appears in Mayerhofer’s
thesis [24], where K (see below) is a field which is a (proper) subring of C. Also
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232 T. D. Todorov, H. Vernaeve

Mayerhofer raised the question whether or not it is possible to generalize his result to
the whole rings R and C (cf. Conjecture 3.11 in Mayerhofer [24]). Later Vernaeve [40]
proved that such a generalization is impossible. Thus Corollary 8.3 at the end of this
section does not have a counterpart in Colombeau theory. We look upon this fact as
one more piece of evidence supporting the point (advocated for a long time by the
first author of this article) that Robinson’s field ρ

C along with the algebra of asymp-
totic functions ρE(�) are better alternatives to the ring of Colombeau’s generalized
scalars C and Colombeau’s algebra of generalized functions G(�) for the purpose of
non-linear theory of generalized functions and functional analysis in general.

The reader might observe some similarity between the field ρ
R (and ρ

C as well)
and the fields of the p-adic numbers Qp [15]. This similarity is due to the fact that ρR,
ρ
C and Qp are all ultra-metric spaces. For a discussion on this topic we refer to [23].

We should mention; however, that the fields ρR, ρC and Qp are quite different from
each other. For example, each ρ

R (just like ∗
R) is a real closed, and thus, a totally

ordered field. Also each ρ
C (just like ∗

C) is an algebraically closed field. In contrast,
the fields Qp are neither algebraically closed, nor real closed fields. In fact Qp are
not even real fields, that is to say that Qp are non-orderable. Recall that a field K is
orderable i f f K is real in the sense that equations of the form x2

1 + x2
2 + · · ·+ x2

n = 0
admit only trivial solutions x1 = x2 = · · · = xn = 0 in K [39, Chap. 11]. Neither of
the fields Qp has this property [31, pp. 144–145].

We start with some preliminaries:

1. Let K be a subfield of ρC. Let V be a vector space over K and let ||·||v : V → R be
an ultra-norm on V . The latter means that for every x, y ∈ V and c ∈ K, we have:
(a) ||x ||v ≥ 0 and ||x ||v = 0 occurs only if x = 0; (b) ||cx ||v = |c|v ||x ||v , where
|c|v is defined in #4 in Definition 7.1; (c) ||x + y||v ≤ max{||x ||v, ||y||v} (ultra-
norm inequality). We denote by (V,K, || · ||v) the corresponding ultra-normed
vector space over K. Notice, in particular, that if V is an inner vector space over
K, then the formula ||x ||v = √|(x, x)|v defines an ultra-norm on V . Also, if K is
an algebraically closed (or real closed) field, then the formula ||x ||v = |√(x, x)|v
also produces an ultra-norm on V .

2. Let V ∗ be the algebraic dual of V , that is, the vector space over K of all linear
functionals T : V → K. We shall use the same notation, || · ||v , for the non-
archimedean norm || · ||v : V ∗ → R ∪ {∞} inherited from V by duality, that is,
||F ||v = sup x∈V||x ||v=1

|T (x)|v .

3. T ∈ V ∗ is called continuous if ||T ||v ∈ R (i.e. if ||T ||v 
= ∞). We denote by
V ′ the vector space over K of all continuous functionals in V ∗. Thus |T (x)|v ≤
||T ||v ||x ||v ∈ R holds for all T ∈ V ′ and all x ∈ V .

Here is our Hahn–Banach extension principle.

Theorem 8.1 (Hahn–Banach). Let K be a subfield of ρC which is spherically complete
under the ultrametric on ρC. Let (V,K, || · ||v) be an ultra-normed vector space over
K. Let U be a K-linear subspace of V . Then every functional T ∈ U ′ can be extended
(non-uniquely) to a functional M ∈ V ′ such that ||T ||v = ||M ||v .

Proof The above theorem is a particular case of Ingleton’s result in [15]. ��
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Full algebra of generalized functions and non-standard asymptotic analysis 233

Example 8.2 (Power Series). Let C 〈x〉 be the Levi-Civita field consisting of all for-
mal series of the form

∑∞
n=0 an xrn , where an ∈ C and (rn) is a strictly increasing

unbounded sequence in R [18]. The field C 〈x〉 is isomorphic to the field of algebraic
functions in one variable in the sense that C 〈x〉 is an algebraic closure of the field
of rational functions C(x). The field C 〈x〉 is spherically complete [23] and it can be
embedded in ρ

C by the mapping
∑∞

n=0 an xrn → ∑∞
n=0 anρ

rn (cf. [33] or [20]). The
above Hahn–Banach extension principle holds for its image K = C 〈ρ〉. For more
examples of spherically complete algebraically closed and real closed subfields K of
ρ
C, we refer to [38].

The next result does not have a counterpart in Colombeau theory since R and C are
rings with zero divisors [40].

Corollary 8.3 (The Case K = ρ
C). Let (V, ρC, || · ||v) be an ultra-normed vector

space over the field ρ
C. Let U be a ρ

C-linear subspace of V . Then every functional
T ∈ U ′ can be extended (non-uniquely) to a functional M ∈ V ′ such that ||T ||v =
||M ||v . A similar result holds about any ultra-normed vector space (V, ρR, || · ||v)
over the field ρ

R.

Proof Since both ρ
C and ρ

R are spherically complete fields [23, Theorem 2.16,
p. 195], we can apply the above theorem for K = ρ

C and K = ρ
R, respectively. ��
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