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Abstract: Several variations on the definition of a Formal Topology exist in the
literature. They differ on how they express convergence, the formal property
corresponding to the fact that open subsets are closed under finite intersections.
We introduce a general notion of convergence of which any previous definition
is a special case. This leads to a predicative presentation and inductive genera-
tion of locales (formal covers), commutative quantales (convergent covers) and
suplattices (basic covers) in a uniform way. Thanks to our abstract treatment
of convergence, we are able to specify categorically the precise sense according
to which our inductively generated structures are free, thus refining Johnstone’s
coverage theorem.

We also obtain a natural and predicative version of a fundamental result by Joyal and
Tierney: convergent covers (commutative quantales) correspond to commutative
co-semigroups over the category of basic covers (suplattices).
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This paper aims to contribute to the development of constructive topology. By con-
structive topology we mean topology developed in a predicative and intuitionistic
foundation. In order to avoid impredicative definitions the foundation must distinguish
sets from collections; a typical example of a collection is given by all subsets of a
set. The usual axiom of separation is then restricted to formulas that do not contain
quantifications over collections. See Maietti and Sambin [18] and Maietti [17] for a
formal system and for further explanations about such a foundation.

It is commonly accepted that, in order to develop topology constructively, the pointfree
approach of locale theory by Johnstone [10] is the most convenient (Martin-Löf [21],
Fourman and Grayson [9], Johnstone [11] and Sambin [29]). The predicative devel-
opment of locale theory, started by Per Martin-Löf and the third author in [26], is now
known as Formal Topology. To define a locale predicatively, one needs a base of opens
that is a set, while the whole locale is only a collection (Curi [8]). The original notion
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2 F Ciraulo, M E Maietti and G Sambin

of formal topology, proposed in [26], corresponds to that of open (or overt) locale
(Joyal and Tierney [13] and Negri [24]). Here we call formal cover the generalization
of formal topology corresponding to a locale; it is obtained by simply dropping the
so-called positivity predicate in [26]. Because of the presence of bases, morphisms
between formal covers/formal topologies are suitable relations. So they acquire a direct
intuitive interpretation both in the direction of locales and in the opposite direction,
namely that of frames [10].

Since its introduction in [26], the notion of formal topology has been presented in
several different ways. One of the motivations was that of including relevant examples
in a direct way, without artificial tricks. For instance, the original version in [26], or that
in [29], works well for Stone spaces (Negri [23]), Scott domains, Zariski topologies,...,
while the variant in Coquand [6] and in Coquand et al. [7] is more suitable for Baire
spaces, algebraic domains, Kripke models and discrete topologies.

No variant superseded the others; actually, while in the general case they are all
equivalent, they are no longer equivalent in the unary or finitary case. For example,
one version of unary formal topologies represents Scott domains (Sambin, Valentini
and Virgili [31]), while another algebraic domains (Sambin [28]).

All presentations of formal topology in the literature differ only in their way of express-
ing closure of opens under finite intersections, which in a pointfree approach appears
as distributivity of finite meets over arbitrary joins in the lattice of opens. This property
is here called convergence. In order to express convergence, in this paper we introduce
a binary operation ◦ on subsets of the base with suitable conditions. We thus achieve
a new unifying notion of formal cover/formal topology. All previous presentations are
obtained as a special case by imposing some further conditions on the operation ◦.

Our definition gives a new predicative presentation of locales. This is obtained in a
modular way (see table in section 4.2) starting from suplattices and passing through
a new presentation of quantales. The constructive notion corresponding to suplattices
is called basic cover by Sambin [29, 30]. It is thought of as a generalized pointfree
topology without convergence. The category of basic covers is (impredicatively) dual
to that of suplattices and hence it gives a genuine generalization of the category of
locales.

By choosing to work in the direction of locale maps, the category of basic covers be-
comes the right setting to prove a predicative counterpart of Joyal-Tierney’s result [13]
stating that frames are special commutative monoids over the category of suplattices.
We achieve this by introducing the notion of convergent cover, namely a basic cover
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Convergence in formal topology 3

equipped with a weak form of the operation ◦. The category of convergent covers is
(impredicatively) dual to that of commutative quantales.1

By means of the new notions we can prove Joyal-Tierney’s result in the following
dualized form: convergent covers are commutative co-semigroups in the category of
basic covers. A predicative proof of this is possible as soon as the tensor product exists
predicatively, a fact which happens in the inductively generated case.

Just as a locale is a quantale in which multiplication and meet coincide, a formal cover
is a convergent cover in which the operation ◦ corresponds to the lattice-theoretic meet.
The category of formal covers is then (impredicatively) dual to that of locales.

The inclusion of all previous definitions in our new one leads to a unified, general
method of inductive generation that applies to all variants. In particular, the rules of
inductive generation, first given by Coquand et al. [7], become a special case of ours.
In addition, we provide a method for generating also suplattices (basic covers) and
quantales (convergent covers) in a modular way.

Thanks to the abstract character of our presentation of convergence, we are able to
give a categorical reading of the inductive generation of formal covers and convergent
covers. We can specify in what sense these constructions are free by showing that they
provide object parts of adjoints to suitable forgetful functors. These results can be read
as a refinement of Johnstone’s coverage theorem [10] (see also Vickers [33]).

All the definitions and results of the present paper work equally well, with no mod-
ification, also when a positivity relation n is added besides the cover as in Sambin
[29, 30]. In fact the addition of n, whose aim is to give a primitive pointfree version
of closed subsets, does not affect the notion of convergence.

A general treatment of convergence as the one given here seems to be a necessary
step towards a purely algebraic development of constructive topology. The present
approach via the operation ◦ on subsets can be easily generalized to the algebraic
framework basing on overlap algebras (for more on overlap algebras see Ciraulo and
Sambin [5], Sambin [30] and Ciraulo, Maietti and Toto [2]).

1Actually, a constructive presentation of quantales is possible also using Sambin’s notion
of pretopology [27], but that presentation does not allow to prove Joyal-Tierney’s result in a
direct way.
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1 Predicative suplattices: the notion of a basic cover

The notion of basic cover recalled below can be read as a predicative topological presen-
tation of a suplattice, or complete join-semilattice (Johnstone [10]). The corresponding
notion of morphism makes the category of basic covers BCov dual (impredicatively)
to that of suplattices and sup-preserving maps. This choice for the direction of arrows
is justified by the fact that a suitable subcategory of BCov becomes equivalent to the
category of locales; indeed, reaching a predicative version of locales in the context of
basic covers is one of our aims.

We use the notation Y ⊆ X to mean that Y is a subset of X , where X can be either a set
or a collection. A subset in our foundation is defined by a propositional function with
quantifications restricted to sets (see Maietti [17] and Sambin [30] for a more precise
explanation). The collection of all subsets of a set S is denoted by P(S).

Definition 1.1 Let S be a set. A basic cover on S is a relation � ⊆ S×P(S) between
elements and subsets of S that satisfies the following rules for every a, b ∈ S and
U,V ⊆ S:

a ε U
a � U reflexivity and a � U U � V

a � V
transitivity

where U � V
def⇐⇒ (∀ b ε U) (b � V).

Although this notion is pretty general, S is often interpreted as a set of (names of)
open subsets of a topology, typically a base. Then a � U is read: “the open subset
(whose name is) a is contained in the union of those belonging to U”. For the sake of
notation, we shall often confuse elements with singletons; for instance, we shall write
a � b instead of a � {b}, for a, b ∈ S . Moreover, we shall use the term “basic cover”
also for the pair (S,�) itself.

For every basic cover (S,�) and every subset U ⊆ S , we put:

(1) AU
def
= {a ∈ S | a � U}.

This defines a saturation (or closure operator) on P(S), that is, a map A : P(S)→ P(S)
which is monotone (with respect to inclusion), idempotent and expansive (that is,

U ⊆ AU for all U ⊆ S). Vice versa, if A is a saturation on P(S), then a � U
def⇔

a ε AU defines a basic cover on S . The correspondence between basic covers on S
and saturations on P(S) is a bijection (see Battilotti and Sambin [1] for details).
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Definition 1.2 For every basic cover (S,�) and every subset U ⊆ S , we say that U
is a formal open, or saturated, if U = AU . We write U =A V for AU = AV . The
collection of all formal open subsets is written Sat(A).

Since A is idempotent, Sat(A) can be described also as the collection of all subsets
of the form AU , for U ⊆ S . Moreover, it is easy to see that Sat(A) can be identified
with the quotient of P(S) modulo the equivalence relation =A .

It is well known that the collection of all fixed points of a saturation A can be given
the structure of a suplattice. Joins are defined by:

(2)
∨
i∈I

A
AWi

def
= A

⋃
i∈I

AWi = A
⋃
i∈I

Wi .

It is easy to see that the second equality holds; it says that =A is respected by unions.

As a suplattice, Sat(A) is generated by the set-indexed family {Aa | a ∈ S}. Vice
versa, if L is a suplattice which admits a set S ⊆ L of generators,2 then the structure
(S,�), where a � U if a ≤

∨
U , is a basic cover whose corresponding Sat(A) is

isomorphic to L. Thus, at least impredicatively, every suplattice is of the form Sat(A)
(see [1] for details).

Impredicatively, every suplattice has a meet operation too. In the case of the suplattice
Sat(A), meets exist also predicatively and are given by

(3) AU ∧A AV = A(AU ∩ AV) = AU ∩ AV .

1.1 Morphisms between basic covers

For every binary relation r between two sets S and T , that is for every r ⊆ S × T , as
in Sambin [30] we define an operator r− : P(T) −→ P(S) by putting

(4) a ε r−V ⇐⇒ (∃b ε V)(a r b)

for every a ∈ S and V ⊆ T .

Definition 1.3 Let S = (S,�S) and T = (T,�T ) be two basic covers. A relation r
between S and T is a basic cover map, or it is said to respect covers, if:

(5) b �T V =⇒ r−b �S r−V

for every b ∈ T and V ⊆ T . Two basic cover maps r1 and r2 from S to T are declared
equal if r1

−b =AS r2
−b for all b ∈ T .3

2This requirement is not trivial since, predicatively, suplattices are not sets (see Curi [8]).
3Thus, properly speaking, a morphism between two basic covers is an equivalence class of

relations satisfying (5).

Journal of Logic & Analysis 5:2 (2013)



6 F Ciraulo, M E Maietti and G Sambin

It is possible to show (see Sambin [30]) that equation (5) is exactly what is needed
to make the assignment AT V 7−→ AS r−V a well-defined sup-preserving map from
Sat(AT ) to Sat(AS). Vice versa, each sup-preserving map h : Sat(AT ) −→ Sat(AS)
can be obtained in this way. In fact, it corresponds to the relation r between S and T
defined by a r b if a ε h(AT b). One can see that two relations r1 and r2 are equal as
basic cover maps exactly when r1

−V =AS r2
−V for all V ⊆ T , that is, exactly when

they correspond to the same map between suplattices.

Proposition 1.4 Basic covers and basic cover maps (modulo their equality) form a
category, called BCov. Identities are represented by (the class of) identity relations.
Composition is usual composition of relations.

The category BCov is (impredicatively) dual to the category SupLat of suplattices and
sup-preserving maps.

Proof It is straightforward to show that BCov is a category. The previous discussion
shows that it is dual to SupLat (see Battilotti and Sambin [1] for more details).

1.2 Inductive generation of basic covers

Coquand et al. [7] describe a method for inductively generating basic covers and give a
predicative justification for it. Namely, they construct a basic cover satisfying arbitrary
axioms of the form a�U . The problem is that simply taking the reflexive and transitive
(in the sense of definition 1.1) closure of the axioms is not a well-founded procedure
from a predicative point of view. In fact, accepting transitivity as an inductive rule
requires to consider a collection of assumptions, one for each subset U in the rule. So,
an impredicative argument is necessary to get a fixed point of the operator associated
with the inductive clauses. This is confirmed by the fact that some formal topologies
cannot be inductively generated (see [7]).

In [7] it is shown how to solve this problem. Given a set S , one needs a set-indexed
family of axioms of the form a�U . This means that one has a set I(a) for each a ∈ S
and, for each a ∈ S and i ∈ I(A), a subset C(a, i) ⊆ S with the intended meaning that
a � C(a, i) holds. The pair I,C is called an axiom-set.

With every axiom-set I,C one can associate a basic cover, say �I,C , such that:

(i) a �I,C C(a, i) for every a ∈ S and i ∈ I(a);

(ii) if �′ is another basic cover such that a �′ C(a, i) for all a ∈ S and i ∈ I(A),
then a �I,C U ⇒ a �′ U for all a ∈ S and U ⊆ S .
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Convergence in formal topology 7

In other words, �I,C is the least cover satisfying the axioms a�I,C C(a, i) for all a ∈ S
and i ∈ I(a). One can show (see [7]) that �I,C is the unique relation between elements
and subsets of S which satisfies:

i.
a ε U
a � U

reflexivity;

ii.
i ∈ I(a) C(a, i) � U

a � U
infinity (transitivity restricted to axioms);

iii. induction: for every P ⊆ S , if P satisfies

b ε U
b ε P

and
i ∈ I(b) C(b, i) ⊆ P

b ε P
for all b ∈ S

then a � U implies a ε P;

for all a ∈ S and U ⊆ S .

As recalled in [7], this kind of inductive definition can be formalized and justified
in a constructive framework such as Martin-Löf type theory. In practice, proving
a�U → a ε P by induction on a�U means checking that a ε P holds in either of the
two cases: the assumption a ε U and the inductive hypothesis C(a, i) ⊆ P for some
i ∈ I(a).

Definition 1.5 A basic cover (S,�) is inductively generated if there exists an axiom-
set I,C such that � = �I,C , that is, � satisfies the rules above.

We call BCov i the full subcategory of BCov whose objects are inductively generated.

We recall from [7] that the category BCov i of inductively generated basic cover is
predicatively a proper subcategory of BCov, since there are examples of basic covers
(actually formal covers!) that cannot be inductively generated.

When restricting to inductively generated basic covers, a relation is a basic cover map
if it respects the axioms in the following sense:

Lemma 1.6 Let S = (S,�S) and T = (T,�T ) be two basic covers and let r be a
relation between S and T . If T is inductively generated by the axiom-set I,C , then r
is a basic cover map from S to T if and only if r−b �S r−C(b, i) holds for all b ∈ T
and all i ∈ I(b).

Proof If r is a basic cover map, then for all b ∈ T and i ∈ I(b) one has r−b �S
r−C(b, i) because b�T C(b, i). Vice versa, we prove that b�T V ⇒ r−b�S r−V for
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all b ∈ T and V ⊆ T by induction on the generation of b�T V . If b�T V follows by
reflexivity, then from b ε V we have r−b ⊆ r−V and hence r−b�S r−V by reflexivity
of �S . If b�T V follows by infinity, then we have C(b, i)�T V for some i ∈ I(b). By
the inductive hypothesis applied to all elements of C(b, i) we get r−C(b, i) �S r−V .
This, together with the assumption, gives r−b �S r−V (by transitivity of �S ).

Impredicatively, every basic cover (S,�) can be generated by means of an axiom-set
I,C , where I(a) = {U ⊆ S | a � U} for every a ∈ S and C(a,U) = U for U ∈ I(A).
So BCov i and BCov coincide impredicatively.

Recall from Mac Lane [15, chapter VII] that a symmetric monoidal category is given
by the following data: a category C ; a notion of “tensor product”, that is, a bifunctor
⊗ : C × C→ C ; a unit object E ; and four natural isomorphisms

αS1,S2,S3 : S1 ⊗ (S2 ⊗ S3 ) −→ (S1 ⊗ S2 )⊗ S3

λS : E ⊗ S −→ S ρS : S ⊗ E −→ S

γS1,S2 : S1 ⊗ S2 −→ S2 ⊗ S1

(with S , S1 ,. . . , S4 objects of C) which satisfy the following coherence conditions:

αS1⊗S2,S3,S4 · αS1,S2,S3⊗S4 = (αS1,S2,S3 ⊗ idS4) · αS1,S2⊗S3,S4 · (idS1 ⊗ αS2,S3,S4) ,

(ρS1 ⊗ idS2) · αS1,E,S2 = idS1 ⊗ λS2 , λE = ρE ,

γS2,S1 = γS1,S2
−1 , ρS = λS · γS,E ,

αS3,S1,S2 · γS1⊗S2,S3 · αS1,S2,S3 = (γS1,S3 ⊗ idS2) · αS1,S3,S2 · (idS1 ⊗ γS2,S3)

(actually λE = ρE and ρS = λS · γS,E are redundant by Kelly [14]).

Proposition 1.7 BCov i is a symmetric monoidal category.

Proof Let S and T be two basic covers inductively generated by the axiom-sets I,C
and J,D, respectively. The tensor S ⊗ T is the basic cover (S× T,�S⊗T ) generated
by the axioms

(6) (a, b) �S⊗T C(a, i)× {b} and (a, b) �S⊗T {a} × D(b, j)

for every (a, b) ∈ S×T and every i ∈ I(a) and j ∈ J(b). This definition, which follows
the same idea as in [7, section 4.3], is a predicative rendering of the construction of the
the tensor product by Joyal and Tierney [13] as presented by Vickers and Johnstone
[12]. We leave the details showing that this is indeed an axiom-set.
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For every pair (r1, r2) of morphisms in BCov i , with r1 : S1 −→ T1 and r2 : S2 −→
T2 , the tensor r1 ⊗ r2 is by definition the unique morphism from S1 ⊗ S2 to T1 ⊗ T2

such that (r1 ⊗ r2)−(b1, b2) =AS1⊗S2
(r1
−b1)× (r2

−b2) for all b1, b2 .

The unit E of the tensor is given by the cover generated on the singleton set {∗} by
means of no axioms. The due isomorphisms are defined in the obvious way. For
instance, γS1,S2 is the unique basic cover map (up to equality) such that γS1,S2

−(a2, a1)
=AS1⊗S2

(a1, a2). Similarly, α is defined by αS1,S2,S3
−((a1, a2), a3) =A(S1⊗S2)⊗S3

(a1, (a2, a3)). It is easy to check that α , ρ, λ and γ are all natural and satisfy the
required coherence conditions.

One can prove that the tensor functor on a basic cover S

S ⊗ (−) : BCovi −→ BCovi

has impredicatively the left adjoint

(−)→ S : BCovi −→ BCovi

where T → S is the impredicative basic cover corresponding to the suplattice of all
basic cover maps from T to S ordered pointwise:

r ≤ s ≡ (∀U ε P(S)) r−U � s−U

(a predicative treatment of exponentiation is known only in a more restricted setting
where the above tensor becomes a product, see Maietti [16] and Maietti and Valen-
tini [20]). In other words, S ⊗ (−) as a functor on BCovi

op has a right adjoint.
Therefore the tensor on BCov i , which is impredicatively the opposite of the category
SupLat, coincides with the Galois tensor defined by Joyal-Tierney in [13] (see also
Johnstone and Vickers [12]).

The above definition of ⊗ benefits from a topological intuition. Indeed, the following
lemma shows that the basic cover of S ⊗ T satisfies an analogue of a key property of
the product of two topological spaces.

Lemma 1.8 Let S and T be two inductively generated basic covers. Then

a �S U b �T V
(a, b) �S⊗T U × V

holds for all a ∈ S , b ∈ T , U ⊆ S and V ⊆ T .

Proof By double induction on the proofs of a �S U and b �T V . We must analyze
four different cases: a ε U and b ε V ; a ε U and D(b, j) �T V for some j ∈ J(b);
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C(a, i) �S U for some i ∈ I(a) and b ε V ; C(a, i) �S U for some i ∈ I(a) and
D(b, j) �T V for some j ∈ J(b). All cases are proved similarly. For instance, let
a ε U and D(b, j) �T V for some j ∈ J(b), that is b′ �T V for all b′ ε D(b, j).
Then by inductive hypothesis we get (a, b′) �S⊗T U × V for all b′ ε D(b, j), that is
{a} × D(b, j) �S⊗T U × V . Hence (a, b) �S⊗T U × V by (6).

This lemma can be expressed as ASU × AT V �S⊗T U × V and hence also as the
equation

(7) ASU ×AT V =AS⊗T U × V

since U × V �S⊗T ASU ×AT V holds by reflexivity.

2 Operations on formal opens

A locale is a suplattice in which binary meets distribute over arbitrary joins. Since
our aims include the inductive generation of locales, we wish to modify the inductive
generation of a basic cover A so that the resulting lattice Sat(A) (recall that by (3)
it always has a meet) satisfies distributivity. The mere requirement of distributivity
of Sat(A) says nothing on how to obtain it when � is generated inductively. As we
will see, however, it is possible to impose distributivity by adding an extra primitive
operation ◦ on subsets of the base S with certain suitable properties. In fact, using ◦
one can impose some conditions during the generation process which guarantee that
distributivity holds “at the end”, when the generation of � is “completed”.

This method extends in a natural way to the generation of quantales. Recall that a
quantale is a suplattice with an associative binary operation, called multiplication, that
is distributive over joins (Rosenthal [25]). The idea is to make Sat(A) a quantale
(Sat(A),

∨A, ◦A) where the multiplication ◦A is induced by an operation ◦ on subsets
of S . In this section we see what conditions on ◦ make ◦A well-defined, commutative
and associative in Sat(A). In the next section we will study the case of distributivity
of ◦A and later the special case of locales.

We start by specifying how an operation ◦A on Sat(A) is obtained in terms of a given
operation ◦ on P(S). Our heuristic criterion is to read an element AU of Sat(A) as an
ideal object which is approximated by the concrete subset U . This view is suggested
by the case in which A is inductively generated and thus AU is only the “limit” of
the generation process. Then it is natural to require that the operation ◦A on Sat(A) is
approximated by the operation ◦ on P(S). Thus we put

(8) AU ◦A AV = A(U ◦ V)
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which says that applying ◦ to approximations U of AU and V of AV produces an
approximation U ◦ V of AU ◦A AV . This equation is our starting point to find the
right conditions on the operation ◦. First of all, in order to read equation (8) as the
definition of ◦A , we must understand what conditions on ◦ make ◦A well-defined.

Proposition 2.1 For every basic cover (S,�) and every binary operation ◦ on P(S),
the following are equivalent:

(1) ◦A as defined in (8) is a well-defined operation on Sat(A), that is:

(AU = AU′) & (AV = AV ′) =⇒ A(U ◦ V) = A(U′ ◦ V ′)

for all U,U′,V,V ′ ⊆ S (in other words, ◦ respects =A );

(2) A(AU ◦ AV) = A(U ◦ V), for all U,V ⊆ S .

Proof (1⇒2) Since A is idempotent, AAU = AU and AAV = AV hold and then
A(AU ◦ AV) = A(U ◦ V), that is, 2.

(2⇒1) Assume AU = AU′ and AV = AV ′ . Then AU◦AV = AU′◦AV ′ and hence,
a fortiori, A(AU ◦ AV) = A(AU′ ◦ AV ′). By 2, this gives A(U ◦ V) = A(U′ ◦ V ′).
So 1 is proved.

Assuming (8), item 2 above says that

(9) AU ◦A AV = A(AU ◦ AV)

If one takes this equation as a definition of ◦A , one immediately obtains a well-defined
operation on Sat(A) without extra requirements for ◦. Nevertheless, we have not done
like that since (9) does not satisfy our intuition on approximations. In fact, (9) is of no
use when A is inductively generated since it produces an approximation of AU ◦AAV
only “after” the generation of the ideal objects AU and AV is “completed”.

Lemma 2.2 Let (S,�) be a basic cover and let ◦ be a binary operation on P(S). Then
the following are equivalent:

(1)
U � V

U ◦W � V ◦W
and

U � V
W ◦ U � W ◦ V

localization;

(2)
U1 � V1 U2 � V2

U1 ◦ U2 � V1 ◦ V2
stability;

(3) ◦A as defined in (8) respects inclusion, that is:

(AU1 ⊆ AV1) & (AU2 ⊆ AV2) =⇒ (AU1 ◦A AU2) ⊆ (AV1 ◦A AV2)

for all U1,U2,V1,V2 ⊆ S .
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Proof (1.⇔ 2.) Assume localization. If U1 � V1 and U2 � V2 , then both U1 ◦U2 �

V1 ◦ U2 and V1 ◦ U2 � V1 ◦ V2 hold; hence U1 ◦ U2 � V1 ◦ V2 by transitivity. Vice
versa, the rules of localization are particular cases of stability, since W � W .

(2.⇔ 3.) Recall that U � V iff AU ⊆ AV . So 2 can be rewritten as AU1 ⊆ AV1 &
AU2 ⊆ AV2 ⇒ A(U1 ◦ U2) ⊆ A(V1 ◦ V2) that is 3 by definition of ◦A .

Item 3, together with (8), implies that ◦ respects =A . So each of the three items above
is a sufficient condition for ◦A to be well-defined. This is not surprising since they
express monotonicity of ◦ with respect to the preorder induced by � on P(S), and
=A is the equivalence relation associated with it.

Most properties one can require on ◦A are induced in a natural way by corresponding
properties linking ◦ with the cover. For instance, ◦A is commutative iff A(U ◦ V) =
A(V ◦ U), that is U ◦ V =A V ◦ U . Similarly, ◦A is associative iff ◦ is associative
modulo =A , that is (U ◦ V) ◦W =A U ◦ (V ◦W), for all U,V,W ⊆ S . In this paper,
for simplicity’s sake, we shall always assume ◦A to be associative and commutative.

For future reference, it is convenient to fix a name for a basic cover with an operation
◦ such that ◦A is well-defined, monotone, associative and commutative. Thanks to the
previous lemma, the definition can be reduced to the following form.

Definition 2.3 We say that (S,�, ◦) is a basic cover with operation if S = (S,�) is
a basic cover and ◦ is a binary operation on P(S) which satisfies:

(1)
U1 � V1 U2 � V2

U1 ◦ U2 � V1 ◦ V2
stability; or, equivalently, localization:

U � V
U ◦W � V ◦W

;

(2) (U ◦ V) ◦W � U ◦ (V ◦W) associativity with respect to =A ;

(3) U ◦ V � V ◦ U commutativity with respect to =A .

In this case, the equation AU ◦A AV
def
= A(U ◦ V) defines a monotone, associative

and commutative operation on the suplattice Sat(A).

Thanks to stability, ◦A is a map Sat(A)× Sat(A)→ Sat(A) in the category of partial
orders, where × is the cartesian product. Items 2 and 3 in the previous definition
make (Sat(A), ◦A) a commutative semigroup in the category of partial orders.

Basic covers with operation provide a ground framework for studying the concepts we
are mainly interested in, namely (commutative) quantales and locales. First, we shall
show how to obtain presentations of (commutative) quantales.
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3 Presenting commutative quantales: convergent covers

From now on we assume S = (S,�, ◦) to be a basic cover with operation (in the
sense of definition 2.3). In this section we are going to study the case in which the
corresponding structure (Sat(A),

∨A, ◦A) is a commutative quantale (Mulvey [22] and
Rosenthal [25]), that is, when multiplication ◦A distributes over arbitrary joins. This
we call a convergent cover. Together with a suitable notion of morphism, one gets a
category which is dual to the category cQu of commutative quantales.

Definition 3.1 A basic cover with operation (S,�, ◦) is called a convergent cover if
◦A distributes over

∨A , that is, if (Sat(A),
∨A, ◦A) is a commutative quantale.

Our next aim is to obtain some more elementary characterizations of this notion.

Lemma 3.2 For every basic cover with operation (S,�, ◦), the following are equiva-
lent:

(1) ◦A distributes over
∨A , that is:

∨A
i∈I(AUi ◦A AV) = (

∨A
i∈I AUi) ◦A AV ;

(2) ◦ distributes over
⋃

modulo =A , that is:
⋃

i∈I(Ui ◦ V) =A (
⋃

i∈I Ui) ◦ V ;

(3) ◦ is determined by its restriction on singletons, that is: U◦V =A
⋃

aεU, bεV ({a}◦
{b}).

Proof By unfolding the definitions of ◦A in (8) and
∨A in (2) one sees that 2

is just a rewriting of 1. Since U =
⋃

aεU{a} and V =
⋃

bεV{b}, 3 follows by
applying 2 twice. It remains to be checked that 3 implies 2:

⋃
i∈I(Ui ◦ V) =A (by 3)⋃

i∈I(
⋃

aεUi, bεV{a} ◦ {b}) =
⋃

i∈I, aεUi
(
⋃

bεV{a} ◦ {b}) =
⋃

aε
⋃

i∈I Ui, bεV{a} ◦ {b} =A

(by 3 again) (
⋃

i∈I Ui) ◦ V .

From now on, we write a ◦ b for {a} ◦ {b} and more generally a ◦ V and U ◦ b for
{a} ◦ V and U ◦ {b}, respectively.

When ◦ is determined by its restriction on singletons (item 3 in the lemma), stability
and localization become equivalent to their particular cases

(10)
a � U

a ◦ V � U ◦ V
a � U

a ◦ b � U ◦ b
a � U b � V
a ◦ b � U ◦ V

The equivalence between localization and the second rule in (10) will be crucial
for inductive generation. In a similar way, associativity and commutativity become
equivalent to (a ◦ b) ◦ c � a ◦ (b ◦ c) and to a ◦ b � b ◦ a, respectively. So we have:
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14 F Ciraulo, M E Maietti and G Sambin

Proposition 3.3 Let (S,�) be basic cover and let ◦ be an operation on P(S). Then
(S,�, ◦) is a convergent cover if and only if all the following hold:

(1) U ◦ V =A
⋃

aεU, bεV (a ◦ b)

(2) a�U & b�V =⇒ a◦b � U ◦V (or, equivalently: a�U =⇒ a◦b � U ◦b)

(3) (a ◦ b) ◦ c � a ◦ (b ◦ c)

(4) a ◦ b � b ◦ a

(for all a, b, c ∈ S and U,V ⊆ S).

We can characterize convergent covers also as basic covers with operation plus an
extra operation defining implication, as follows. It is well known that a monotone
function on a suplattice, which is an endofunctor on the corresponding poset category,
preserves arbitrary joins if and only if it admits a right adjoint. This means that, given a
basic cover with operation (S,�, ◦), the structure (Sat(A),

∨A, ◦A) is a quantale, that
is ◦A distributes over

∨A , if and only if every map ◦A AU has a right adjoint
AU →A . In other words, a basic cover with operation (S,�, ◦) is a convergent
cover iff there exists a binary operation →A on Sat(A) such that:

AW ◦A AU ⊆ AV ⇐⇒ AW ⊆ AU →A AV

for all U,V,W ⊆ S . When it exists, →A satisfies:

(11) AU →A AV =
∨A
{AW | W ⊆ S and AW ◦A AU ⊆ AV}.

By unfolding definitions, the right member becomes A(
⋃
{W ⊆ S | W ◦ U � V}).

Now we give a predicative definition of →A . So assume →A to exist; thus ◦A
distributes over

∨A . By lemma 3.2, ◦ is determined by its restriction on singletons.
So W ◦ U � V becomes equivalent to (∀a ε W)(a ◦ U � V); hence A

⋃
{W ⊆ S |

W ◦ U � V} can be rewritten as A{a ∈ S | a ◦ U � V}. Summing up, when →A
exists, it is

(12) AU →A AV = A{a ∈ S | a ◦ U � V}

(for all U,V ⊆ S). This suggests to define an operation

(13) U →S V
def
= {a ∈ S | a ◦ U � V}

on arbitrary subsets, for every basic cover with operation S = (S,�, ◦), and then to
put

(14) AU →A AV
def
= A(U →S V),

which is an analogue of equation (8). Then one can show by localization that →A is
well-defined on Sat(A).
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Proposition 3.4 For every basic cover with operation S = (S,�, ◦), the following are
equivalent:

a. S is a convergent cover b. →A is right adjoint of ◦A

c. W ◦ U � V ⇐⇒ W � U →S V (for all U,V,W ⊆ S) with→S defined in (12).

Proof By the discussion above.

To represent unital commutative quantales [25], we also need the following:

Definition 3.5 We say that a convergent cover (S,�, ◦) is unital if there exists a subset
I ⊆ S such that a ◦ I =A a =A I ◦ a for all a ∈ S .

3.1 Morphisms between convergent covers

Let S = (S,�S , ◦S) and T = (T,�T , ◦T ) be two convergent covers. A morphism
between the corresponding quantales h : Sat(AT ) −→ Sat(AS) is a map which
preserves joins and multiplication. As in proposition 1.4, h corresponds to a basic
cover map r from (S,�S) to (T,�T ). Then the further condition on h says that
r−(U ◦T V) =AS r−U ◦S r−V . This equation is equivalent to its version on singletons
since r− is determined by its restriction on singletons. So we put:

Definition 3.6 Let S = (S,�S , ◦S) and T = (T,�T , ◦T ) be two convergent covers.
A relation r between S and T is a convergent cover map if:

- r is a basic cover map (that is, a morphism between basic covers);

- r is convergent, that is

(15) r−(b1 ◦T b2) =A (r−b1) ◦S (r−b2)

for all b1, b2 ∈ T .

Two convergent cover maps are equal if they are equal as basic cover maps.

We then specialize the notion of convergent cover map in the presence of units:

Definition 3.7 Let S = (S,�S , ◦S , IS) and T = (T,�T , ◦T , IT ) be two unital
convergent covers. A relation r between S and T is a unital convergent cover map if:
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16 F Ciraulo, M E Maietti and G Sambin

- r is a convergent cover map;

- r preserves the ◦-units, that is

(16) r−(IT ) =A IS .

Two unital convergent cover maps are equal if they are equal as basic cover maps.

Given the discussion above, it is straightforward to show that:

Proposition 3.8 Convergent covers with convergent cover maps form a subcategory of
BCov, called CBCov. The category CBCov is dual to the category cQu of commutative
quantales.

Proposition 3.9 Unital convergent covers with unital convergent cover maps form a
subcategory of CBCov, called uCBCov. The category uCBCov is dual to the category
ucQu of unital commutative quantales and commutative quantale maps preserving
units.

The treatment of quantales in Battilotti and Sambin [1] is based on a binary operation •

on the base S of a basic cover. This operation can be seen as a very particular operation
◦ on subsets for which all a ◦ b are singletons. See section 5 below for further details.

A quite intuitive fact we shall need later is:

Lemma 3.10 Let S1 = (S,�, ◦1) and S2 = (S,�, ◦2) be two convergent covers
(sharing the same underlying basic cover). If ◦1 =A ◦2 , that is U ◦1 V =A U ◦2 V for
all U,V ⊆ S , then S1 and S2 are isomorphic (in CBCov).

Proof The isomorphism is given by the identity relation on S .

3.2 Inductive generation of convergent covers

We now wish to extend the method of inductive generation from the case of basic covers
to that of convergent covers. In order to generate a convergent cover (or, equivalently, a
commutative quantale), it is quite natural to start from the following data: a set S (that
is, a set of generators of the corresponding suplattice); an axiom-set I,C (encoding
axioms of the form a � U ); a partial description of an operation on subsets given by
its restriction to elements, namely a map δ : S× S −→ P(S) (we use a new symbol to
underline the fact that, in the generation of a convergent cover, it is sufficient to define
◦ on singletons).
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The first step is to extend δ to an operation ◦ on P(S). This is simple: we put

U ◦ V =
⋃

aεU, bεV

δ(a, b) .

Recalling that a ◦ b stands for the subset {a} ◦ {b}, one sees that a ◦ b = δ(a, b) and
hence U ◦ V =

⋃
aεU, bεV a ◦ b, so that ◦ is determined by its restriction on singletons.

Next we add some conditions making the operation ◦ commutative and associative
modulo =A . In order to apply the general scheme of inductive generation of basic
covers, we are going to express such conditions as instances of the infinity rule. By
using transitivity, one can see that commutativity is expressed by any one of the
following equivalent conditions:

b ◦ c � c ◦ b
c ◦ b � U
b ◦ c � U

a ε b ◦ c c ◦ b � U
a � U

.

We choose the last one since it becomes an instance of the infinity rule provided that
the axiom schema “a � c ◦ b whenever a ε b ◦ c” is encoded in the axiom-set. To this
aim, it is sufficient first to enlarge the index set I(a) by adding all pairs (b, c) such that
a ε b ◦ c and then to define the corresponding cover of a to be c ◦ b.

Associativity is treated by following the same idea. One can see that

(b◦c)◦d�b◦ (c◦d)
b ◦ (c ◦ d) � U
(b ◦ c) ◦ d � U

a ε (b ◦ c) ◦ d b ◦ (c ◦ d) � U
a � U

are all equivalent. The last one becomes an instance of the infinity rule for a suitable
extension of the axiom-set I,C .

We call J,D the axiom-set extending I,C in the way just described. By the above
equivalences, the basic cover generated by J,D is the least basic cover which makes ◦
commutative and associative modulo =A .

Thus it only remains to take care of localization. It is convenient to express it in the
equivalent form given by the second rule in (10). In fact, as we now see, this allows
us to show that localization can equivalently be expressed by a set-indexed family of
conditions. A straightforward argument shows that the rules

b � V
b ◦ c � V ◦ c

b � V V ◦ c � U
b ◦ c � U

a ε b ◦ c b � V V ◦ c � U
a � U

are all equivalent. The last one looks more suitable for an inductive generation, since
it resembles the infinity rule. However, it is not acceptable from a constructive point
of view since the parameter V ranges over a collection, namely P(S). Then the idea is
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to restrict the cover V of b to be one of those given by the axioms, namely D(b, j) for
j ∈ J(b). This leads to the following rule:

a ε b ◦ c j ∈ J(b) D(b, j) ◦ c � U
a � U locax

(localization on axioms). This rule becomes an instance of the infinity rule for a suitable
extension J′,D′ of the axiom-set J,D. In fact, it is sufficient to enlarge the index set
J(a) by adding triples (b, j, c) such that a ε b ◦ c and j ∈ J(b) and then to define the
corresponding cover of a to be D(b, j) ◦ c. The rule locax is equivalently expressed by

j ∈ J(b) D(b, j) ◦ c � U
b ◦ c � U

which explains its name: every instance of the infinity rule for J,D is “localized” to
the basic neighbourhood c. Using the fact that ◦ is determined by its restriction on
singletons, one can easily check that locax holds also for subsets, that is

j ∈ J(b) D(b, j) ◦ V � U
b ◦ V � U locax on subsets

for every V ⊆ S .

It is worth noting that the rule locax cannot be limited to the axioms of I,C . If that
were the case, in fact, it would become impossible to prove the localized versions of
commutativity and associativity. For instance, to prove (a ◦ b) ◦ c � (b ◦ a) ◦ c it
is necessary to apply locax with respect to J,D: for x ε a ◦ b one has (a, b) ∈ J(x)
and D(x, (a, b)) = b ◦ a and hence from (b ◦ a) ◦ c � (b ◦ a) ◦ c by locax one gets
x ◦ c � (b ◦ a) ◦ c. An alternative approach would be to consider locax for I,C and
then add commutativity and associativity already in localized form.

Summing up, starting from any axiom-set I,C on a set S and any map δ : S× S −→
P(S), we first extended δ to a map ◦ : P(S) × P(S) −→ P(S) by putting U ◦ V =⋃
{δ(a, b) | a ε U , b ε V} for all U,V ⊆ S . Then we called J,D the axiom-set

obtained from I,C by adding axioms so that

b ◦ c � c ◦ b and (b ◦ c) ◦ d � b ◦ (c ◦ d)

become derivable. Finally, we let J′,D′ be the axiom-set extending J,D with axioms
making

b ◦ c � D(b, j) ◦ c

derivable for all b, c ∈ S and j ∈ J(b). Then we can prove:
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Proposition 3.11 Let I,C be an axiom-set on a set S and let δ : S× S −→ P(S) be
an arbitrary map. Define ◦ and J′,D′ as above and let � be the basic cover generated
by J′,D′ . Then (S,�, ◦) is a convergent cover in which � contains �I,C (that is,
a�I,C U ⇒ a�U for all a ∈ S and U ⊆ S) and ◦ extends δ (that is, a◦b =A δ(a, b)
for all a, b ∈ S).

Moreover, if (S,�′, ◦′) is any convergent cover in which �′ contains �I,C and ◦′
extends δ , then �′ contains � and ◦′ =A′ ◦.

Proof The operation ◦ trivially extends δ and satisfies U ◦ V =A
⋃

aεU, bεV (a ◦ b).
By the definition of J′,D′ , the basic cover � contains �I,C and associativity and
commutativity hold. So, to show that (S,�, ◦) is a convergent cover, only localization
remains to be proved. We prove a � U =⇒ a ◦ d � U ◦ d by induction on the proof
of a � U .

If a � U is obtained by reflexivity from a ε U , then by definition of ◦ we have a ◦ d
⊆ U ◦ d and hence a ◦ d � U ◦ d by reflexivity.

If a�U is obtained by infinity, we consider two cases according to whether the axiom
used in the rule belongs to J,D or not. In the former case, a � U is obtained from
the assumptions: j ∈ J(a) and D(a, j) � U . By the inductive hypothesis applied to
D(a, j) � U , we get D(a, j) ◦ d � U ◦ d (pedantically, for each b ε D(a, j), we use the
inductive hypothesis b � U ⇒ b ◦ d � U ◦ d ). This, together with j ∈ J(a), implies
a ◦ d � U ◦ d by locax on subsets (that is, by a suitable instance of the infinity rule for
J′,D′ ).

We now analyze the case in which a�U is obtained by infinity from an axiom of J′,D′

that does not belong to J,D. In other words, a � U is derived from the assumptions
a ε b ◦ c, j ∈ J(b) and D(b, j) ◦ c � U and hence the infinity rule corresponding to this
case is precisely locax. The inductive hypothesis on the assumption D(b, j) ◦ c � U
gives (D(b, j) ◦ c) ◦ d � U ◦ d and hence D(b, j) ◦ (c ◦ d) � U ◦ d by associativity.
This, together with j ∈ J(b), yields b ◦ (c ◦ d) � U ◦ d by locax on subsets and hence
(b ◦ c) ◦ d �U ◦ d by associativity again. So a ◦ d �U ◦ d as wished, because a ε b ◦ c
and ◦ is determined by its restriction on singletons.

Finally, let (S,�′, ◦′) be a convergent cover in which �′ contains �I,C and such that
a ◦′ b =A′ δ(a, b). Then U ◦′ V =A′

⋃
aεU,bεV δ(a, b) = U ◦ V . So also (S,�′, ◦) is a

convergent cover (in fact, it is isomorphic to (S,�′, ◦′) by lemma 3.10) and hence �′

fulfills all the axioms in J′,D′ . So �′ contains �.

Remark 3.12 In order to generate a unital convergent cover, it is sufficient to start
with an additional piece of data, namely a subset I , and then impose extra axioms
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about unit a � a ◦ I and a ◦ I � a. Note that, in the presence of commutativity and
associativity, it is irrelevant whether the unit axioms added before or after localizing
the axioms.

Definition 3.13 A convergent cover (S,�, ◦) is called inductively generated if it is
constructed as in proposition 3.11 for some axiom-set I,C over S and some map
δ : S× S→ P(S).

We call CBCov i the full subcategory of CBCov whose objects are inductively gener-
ated. Similarly, uCBCov i is the full subcategory of inductively generated objects in
uCBCov.

We end with a lemma characterizing convergent cover maps between inductively
generated unital convergent covers:

Lemma 3.14 Let S = (S,�S , ◦S , IS) and T = (T,�T , ◦T , IT ) be two unital con-
vergent covers. Assume that T is inductively generated by means of an axiom-set
I,C and a map δ : T × T −→ P(T) according to proposition 3.11. Then a relation
r between S and T is a unital convergent cover map from S to T if and only if the
following hold:

(1) r−a �S r−C(a, i) for all a ∈ T and all i ∈ I(a);

(2) r−δ(a, b) =A r−a ◦S r−b for all a, b ∈ T ;

(3) r−IT =A IS .

Proof By the definition of ◦T (in proposition 3.11), item 2 is equivalent to r−(a◦T b)
=A (r−a) ◦S (r−b). So we must check only that condition 1 is tantamount to r being
a basic cover map. By lemma 1.6, it is sufficient to show that 1 holds also for the
other axioms of J′,D′ , namely commutativity, associativity and localization. In fact,
condition 1 for these extra axioms follows from 2 and the corresponding properties of
S . We check this only in two cases.

First, we see that r−a �S r−(c ◦T b) whenever a ε b ◦T c, namely that condition 1
for one of the commutativity axioms of J,D. By 2 and commutativity of ◦S we have
r−(c ◦T b) =A (r−c) ◦S (r−b) =A (r−b) ◦S (r−c) =A r−(b ◦T c). So the claim is
equivalent to r−a� r−(b ◦T c). But this follows from r−a ⊆ r−(b ◦T c) which in turn
is a consequence of the assumption a ε b ◦T c.

Second, we consider a particular instance of locax. Assume a ε b ◦T c and C(b, i) ◦T
c �T U for some b, c ∈ T and some i ∈ I(b). Then r−(C(b, i) ◦T c) �S r−U
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by inductive hypothesis and hence (r−C(b, i)) ◦S (r−c) �S r−U by 2. From 1 by
localization in S one can deduce (r−b) ◦S (r−c) �S (r−C(b, i)) ◦S (r−c). So by
transitivity (r−b)◦S (r−c)�S r−U and hence r−(b◦T c)�S r−U by 2. Since a ε b◦T c
by assumption, one can conclude r−a �S r−U .

3.3 Categorical reading of convergence

In this section we wish to show that the category CBCov i is equivalent to the category
of commutative co-semigroups in BCov i . This result expresses in a constructive way
the fact that cQu (commutative quantales) is equivalent to the category of commutative
semigroups in SupLat (see Joyal and Tierney [13]). Once this is achieved, it is
straightforward to obtain a description of commutative co-monoids in BCov i simply
by considering unital convergent covers. Similarly, one can easily extends these results
to the non-commutative case.

Definition 3.15 A commutative co-semigroup in the category BCov i is an inductively
generated basic cover S together with a map µ : S → S ⊗ S in BCov i such that the
following diagrams commute.

S
µ

yy

µ

%%
S ⊗ S

idS⊗µ
��

S ⊗ S
µ⊗idS
��

S ⊗ (S ⊗ S) αS,S,S
// (S ⊗ S)⊗ S

S
µ

||

µ

""
S ⊗ S γS,S

// S ⊗ S

A morphism between two commutative co-semigroups (S, µ) and (S ′, µ′) is a basic
cover map r : S −→ S ′ such that the following diagram commutes.

S r //

µ

��

S ′

µ′

��
S ⊗ S

r⊗r
// S ′ ⊗ S ′

Lemma 3.16 Every inductively generated convergent cover can be seen as a commu-
tative co-semigroup in BCov i .

Conversely every commutative co-semigroup in BCov i determines a convergent basic
cover.
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Proof Given a convergent cover S = (S,�, ◦), let us define

µ◦ : S −→ S ⊗ S as cµ◦(a, b) ≡ c ε a ◦ b

for all c, a, b ∈ S . That is, we put µ◦−(a, b) = a◦b. In order to prove that µ◦ is a basic
cover map, by lemma 1.6 it is sufficient to check that µ◦−(a, b)�µ◦−E((a, b), j) holds
for every axiom (a, b)�E((a, b), j) of S ⊗S . By symmetry, we can consider only the
case E((a, b), j) = C(a, i)×{b} for some axiom a�C(a, i) of S . From a�C(a, i) by
localization one has a ◦ b � C(a, i) ◦ b and so:

µ◦
−(a, b) = a ◦ b � C(a, i) ◦ b =A

⋃
cεC(a,i)

c ◦ b .

Since c ◦ b = µ◦
−(c, b) and since µ◦− distributes over unions, one gets⋃

cεC(a,i)

c ◦ b = µ◦
−(

⋃
cεC(a,i)

{(c, b)}) = µ◦
−( C(a, i)× {b} ).

So we can conclude that µ◦−(a, b) � µ◦
−E((a, b), j).

Commutativity and associativity of ((S,�), µ◦) follow from the fact that ◦ is commuta-
tive and associative modulo =A . For instance, the equality γS,S ·µ◦ =BCovi µ◦ means
that µ◦−γS,S−(a, b) =A µ◦

−(a, b) for all (a, b) ∈ S× S; by unfolding definitions and
since µ◦ respects covers, this becomes µ◦−(b, a) =A a ◦ b, that is, b ◦ a =A a ◦ b.

Conversely, given a commutative co-semigroup with µ : S −→ S ⊗ S , we put

U ◦µ V = Aµ−(U × V)

for all U,V ⊆ S . Note that this definition respects the equality of morphisms (definition
1.3).

By (7), AU × AV =AS⊗S U × V holds and hence µ−(AU × AV) =A µ−(U × V)
because µ respects covers. By the definition of ◦µ , this means that AU ◦µ AV =A
U ◦µ V , so that ◦µ is well-defined (proposition 2.1). The operation ◦µ is determined
by its restriction on singletons:

U ◦µ V =A µ
−( U × V ) =

⋃
uεU,vεV

µ−(u, v) =A
⋃

uεU,vεV

u ◦µ v .

Finally, ◦µ is associative and commutative modulo =A because so is the co-semigroup.
For instance, by the equation αS,S,S · (idS ⊗ µ) · µ = (µ⊗ idS) · µ one has

µ−(idS ⊗ µ)−α−S,S,S((U × V)×W) =A µ−(µ⊗ idS)−((U × V)×W)

for all U,V,W ⊆ S . By the definition of αS,S,S and of the tensor of two morphisms,
this gives µ−(U × µ−(V ×W)) =A µ−(µ−(U × V) ×W)). By the definition of ◦µ
this is precisely U ◦µ (V ◦µ W) =A (U ◦µ V) ◦µ W .
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Proposition 3.17 The category CBCov i of inductively generated convergent covers
is equivalent to the category of commutative co-semigroups in BCov i .

Proof Thanks to the previous lemma, to each object (S,�, ◦) in CBCov i we asso-
ciate the commutative co-semigroup ((S,�), µ◦). Conversely, to every commutative
co-semigroup ((S,�), µ) we associate (S,�, ◦µ). By lemma 3.10, (S,�, ◦) is iso-
morphic to (S,�, ◦µ◦) because U ◦µ◦ V = Aµ◦−(U × V) = A

⋃
aεU, bεV µ◦

−(a, b)
= A

⋃
aεU, bεV a ◦ b = A(U ◦ V). Moreover, ((S,�), µ) coincides with ((S,�), µ◦µ)

because µ◦µ
−(a, b) = a ◦µ b = Aµ−(a, b), for all a, b ∈ S and so µ◦µ =BCovi µ.

Morphisms between co-semigroups correspond to convergent cover maps. In fact, a
basic cover map r : S −→ S ′ is a co-semigroup map from (S, µ) to (S ′, µ′) if and only
if µ′ ·r =BCovi (r⊗r) ·µ iff r−µS′−(a, b) =A µS

−(r⊗r)−(a, b) for all a, b ∈ S′ . This
means precisely that r−(a ◦µ′ b) =A r−a ◦µ r−b, that is r is a convergent cover map
from (S,�, ◦µ) to (S′,�′, ◦µ′). Vice versa, r : (S,�, ◦) −→ (S′,�′, ◦′) is a convergent
cover map iff r−(a ◦′ b) =A r−a ◦ r−b, that is, r−µ◦′−(a, b) =A µ◦

−(r ⊗ r)−(a, b).
This means that µ◦′ · r =BCovi (r ⊗ r) · µ◦ , that is r is a morphism of co-semigroups
from ((S,�), µ◦) to ((S′,�′), µ◦′).

The restriction to inductive generated structures in the previous statement is needed only
to be sure that ⊗ exists predicatively. In an impredicative framework, the above result
states that the whole category CBCov is equivalent to the category of commutative co-
semigroups in BCov. By passing to the opposite categories, one gets that (commutative)
quantales are equivalent to (commutative) semigroups over suplattices.

Definition 3.18 A commutative co-monoid in the category BCov i is a commutative
co-semigroup (S, µ) in BCov i together with a map η : S → E such that the following
diagram commutes.

S
λS
−1

yy
µ

��

ρS
−1

%%
E ⊗ S S ⊗ S

η⊗idS
oo

idS⊗η
// S ⊗ E

Analogously to the previous result, one can show that:

Corollary 3.19 The category uCBCovi of inductively generated unital convergent
covers is equivalent to the category of commutative co-monoids in BCovi .
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4 Predicative locales: formal covers

In this section we finally come to the case of locales. It is common to associate the
name “Formal Topology” with a predicative version of the theory of Locales. However,
following its first appearance in Sambin [26], we prefer to conceive formal topologies as
a predicative version of open (also known as overt) locales (see Joyal and Tierney [13]).
Predicative presentations of locales tout court are called here formal covers.

As usual a locale or frame is a suplattice in which binary meets distribute over arbitrary
joins. It is well known that a quantale is a locale exactly when its multiplication coin-
cides with the order-theoretic meet. In our framework, the quantale (Sat(A),

∨A, ◦A)
presented by a convergent cover (S,�, ◦) is actually a locale when

AU ◦A AV = AU ∧A AV

for every U,V ⊆ S . By unfolding definitions, this reduces to A(U ◦ V) = AU ∩ AV
for every U,V ⊆ S .

Definition 4.1 A convergent cover (S,�, ◦) is called a formal cover if ◦A = ∧A , that
is:

A(U ◦ V) = AU ∩ AV

for all U,V ⊆ S . In this case, (Sat(A),
∨A, ◦A) is a locale.

Lemma 4.2 For every convergent cover all the items in each column are equivalent
one to another:

A1. A(U ◦ V) ⊆ AU ∩ AV B1. AU ∩ AV ⊆ A(U ◦ V)

A2. U ◦ V � U and U ◦ V � V (weakening) B2. U � U ◦ U (contraction)

A3.
U � W

U ◦ V � W
and

V � W
U ◦ V � W

(◦-left) B3.
W � U W � V

W � U ◦ V
(◦-right)

A4. a ◦ b � a and a ◦ b � b (weakening) B4. a � a ◦ a (contraction)

A5.
a � W

a ◦ b � W
and

b � W
a ◦ b � W

(◦-left) B5.
a � U a � V

a � U ◦ V
(◦-right)

Summing up, the following are equivalent:

i) ◦A = ∧A , that is A(U ◦ V) = AU ∩ AV ;
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ii) weakening and contraction axioms;

iii) ◦-left and ◦-right.

Proof A2 is just a rewriting of A1 and it is also a special case of A3, which in turn is
obtained from A2 by transitivity. A4 is a special case of A2. Conversely, since U ◦ V
is determined by its restriction to singletons, it is sufficient to show that a ◦ b � U
and a ◦ b � V for all a ∈ U and b ∈ V . These follow immediately from A4 by
reflexivity and transitivity. Finally, A4 is a special case of A5 and the converse holds
by transitivity.

B1 is a rewriting of B5. B4 is a special case of B5. Conversely, from the premises of
B5 one has a ◦ a�U ◦V by stability and hence a�U ◦V by B4 and transitivity. The
equivalence between B2 and B3 is proved similarly. Finally, B3 is clearly equivalent
to B5.

This leads to a number of characterizations of formal covers. For instance, formal
covers are precisely the convergent covers satisfying weakening and contraction. We
have also the following.

Proposition 4.3 A structure S = (S,�, ◦) is a formal cover if and only if (S,�) is a
basic cover and ◦ is a binary operation on subsets of S such that:

(1) U ◦ V =A
⋃

aεU, bεV (a ◦ b) (◦ is determined by its restriction on singletons)

(2) a � U & a � V =⇒ a � U ◦ V (◦-right)

(3) a ◦ b � a and a ◦ b � b (weakening)

for all a, b, c ∈ S and U,V ⊆ S .

Proof Stability, associativity and commutativity are all derivable from ◦-right and
weakening. In fact, if a � U and b � V , then a ◦ b � U and a ◦ b � V by weakening
(and transitivity); so a ◦ b � U ◦ V by ◦-right. This proves stability. Commutativity is
easy: since a ◦ b is covered both by b and a (weakening), it is also covered by b ◦ a
(◦-right). Finally, we check associativity in the form (a◦b)◦c�a◦ (b◦c). By ◦-right
it is sufficient to prove (a ◦ b) ◦ c � a and (a ◦ b) ◦ c � b ◦ c. The former follows by
combining (a ◦ b) ◦ c � a ◦ b and a ◦ b � a which both hold by weakening. To prove
the latter it is sufficient to have both (a ◦ b) ◦ c � b and (a ◦ b) ◦ c � c which, again,
follow by weakening and transitivity.

Note that every formal cover is unital:
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Proposition 4.4 If S = (S,�, ◦) is a formal cover, then S is a unit for ◦.

Proof a ◦ S =A a holds thanks to weakening and contraction.

This proposition says that, impredicatively, every frame is a unital quantale.

4.1 Morphisms between formal covers

Morphisms between frames are functions preserving both arbitrary joins and finite
meets. The category of frames is called Frm. The category of locales Loc is usually
introduced as the opposite of Frm. So objects are the same, while morphisms of
locales are usually just morphisms of frames “in the opposite direction”. Contrary to
this common practice, one can provide an intuitive topological definition of morphisms
between formal covers (see Maietti and Valentini [20] and Sambin [30]).

When frames are seen as particular unital quantales, their morphisms are precisely
unital quantale morphisms. In our framework, thanks to proposition 4.4, we put:

Definition 4.5 The full subcategory of uCBCov whose objects are formal covers is
called FCov. A unital convergent cover map between two formal covers is called a
formal cover map.

In particular, a formal cover map r : S → T is total, that is, it satisfies the equation
r−T =AS S .

Proposition 4.6 FCov is impredicatively dual to Frm and equivalent to Loc.

Proof Recall that uCBCov is dual to ucQu (proposition 3.9). So it is sufficient to
observe that a convergent cover is a formal cover iff the corresponding quantale is a
locale.

If S = (S,�, ◦) and S ′ = (S,�, ◦′) are two formal covers with the same underlying
basic cover, then U ◦ V =A U ◦′ V for all U,V ⊆ S by the definition of formal
cover. So S and S ′ are isomorphic as convergent covers by lemma 3.10. Since the
isomorphism provided by that lemma is given by the identity relation on S , it is also
total and hence it is an isomorphism of formal covers. This proves the following:
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Lemma 4.7 Two formal covers sharing the same underlying basic cover are isomor-
phic. In other words, given a basic cover (S,�), there exists, up to isomorphism of
formal covers, at most one operation ◦ such that (S,�, ◦) is a formal cover.

We will see (lemma 5.4) that, when it exists, the operation ◦ of a formal cover coincides
up to =A with an operation that can be characterized explicitly in terms of the cover
(see (18) below). Hence, while for convergent covers the operation ◦ is new structure,
for a formal cover the existence of ◦ becomes a property.

4.2 Inductive generation of formal covers

In this section we extend the method for generating basic covers (suplattices) and
convergent covers (commutative quantales) to the case of formal covers (locales).
Given an axiom-set I,C and a map δ as in proposition 3.11, we consider the axiom-set
J′,D′ constructed there. Here we define a further axiom-set, say J′′,D′′ , by enlarging
J′,D′ in a suitable way in order to take care of the extra axiom schemata a ◦ b � a
(weakening) and a � a ◦ a (contraction).

Definition 4.8 Let I,C be an axiom-set on a set S and let δ : S × S −→ P(S) be
an arbitrary map. We put U ◦ V =

⋃
{δ(a, b) | a ε U , b ε V}. We call J′′,D′′ the

axiom-set obtained by enlarging the axiom-set J′,D′ in section 3.2 with the axioms of
the form

b ◦ c � c a � a ◦ a

for a, b, c in S . Formally, for every a ∈ S , J′′(a) is obtained from J′(a) by adding a
new index for every pair (b, c) such that a ε b ◦ c and a single further index ∗. Then
one adds respectively the axioms a � c for every (b, c) and a � a ◦ a.

Proposition 4.9 Let I,C be an axiom-set on a set S and let δ : S × S −→ P(S) be
an arbitrary map. We put U ◦ V =

⋃
{δ(a, b) | a ε U , b ε V} and we consider the

basic cover � generated by the axiom-set J′′,D′′ described above. Then (S,�, ◦) is
the least formal cover containing �I,C (that is, a �I,C U ⇒ a � U for all a ∈ S and
U ⊆ S) and extending δ (that is, a ◦ b =A δ(a, b) for all a, b ∈ S).

Proof The claim is almost obvious after proposition 3.11. One should only note
that it is not necessary to modify locax in order to take care of the new axioms of
weakening and contraction. For instance, the localized form of weakening, namely
(a ◦ b) ◦ c � a ◦ c, follows already from its standard form. In fact, by associativity and
commutativity, it is equivalent to (a ◦ c) ◦ b � a ◦ c which holds by weakening.
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Definition 4.10 A formal cover (S,�, ◦) is inductively generated if it is constructed
as in proposition 4.9 for some axiom-set I,C over S and some map δ : S × S −→
P(S).

We call FCov i the full subcategory of FCov whose objects are inductively generated.

It is straightforward to extend lemma 3.14 to the framework of formal covers.

Lemma 4.11 Let S = (S,�S , ◦S) and T = (T,�T , ◦T ) be two formal covers. Assume
that T is inductively generated by means of an axiom-set I,C and a map δ : T × T
−→ P(T) according to proposition 4.9. Finally, let r be a relation between S and T .
Then r is a formal cover map from S to T if and only if the following hold:

(1) r−a � r−C(a, i) for all a ∈ T and all i ∈ I(a);

(2) r−δ(a, b) =A (r−a) ◦ (r−b) for all a, b ∈ T ;

(3) r−T =A S .

The following picture summarizes the main definitions of this paper.

STRUCTURE MORPHISMS
ON OPENS

basic cover suplattice basic cover map =
S = (S,�) (Sat(A),

∨A) r : S→ T relation +

b �T V ⇒ r−b �S r−V
convergent cover commutative quantale convergent cover map =
S = (S,�, ◦) (Sat(A),

∨A, ◦A) basic cover map +

basic cover + associativity + r−(a ◦T b) =A r−a ◦S r−b
commutativity + localization +
◦ determined by singletons
unital convergent cover unital comm. quantale unital conv. cover map =
S = (S,�, ◦, I) (Sat(A),

∨A, ◦A,AI) convergent cover map +

convergent cover + a =A a ◦ I r−IT =A IS
formal cover locale (frame) formal cover map =

convergent cover + (Sat(A),
∨A,∧A) convergent cover map +

◦A = ∧A (weakening and contraction) r−T =A S

5 Connection with other definitions in the literature

In this section we review the most relevant different presentations of formal cover
(derived from the corresponding versions of formal topology) given in the literature.
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We prove constructively that they all give rise to equivalent categories; this seems
to appear here explicitly for the first time. Moreover, we show that they can all be
obtained as particular instances of our present definition.

The preorder induced by a basic cover

For (S,�) a basic cover and a, b ∈ S , we consider the preorder (that is, the reflexive
and transitive binary relation)

(17) a ≤ b
def⇐⇒ a � b.

As usual, we write ↓U for the subset {a ∈ S : (∃u ε U)(a ≤ u)}. Moreover, we put

(18) U ↓ V = (↓U) ∩ (↓V) .

Trivially, we have a ↓ b = Aa ∩ Ab and U ↓ V =
⋃

aεU,bεV a ↓ b so that ↓ is deter-
mined by its restriction on singletons. The map U 7→ ↓U is a saturation (or closure)
operator on P(S). Thus it makes sense to consider the structure (Sat(↓),

∨↓,∧↓) which
is always a lattice. Moreover, all the following hold:

(1) ↓ is commutative U ↓ V = V ↓ U

(2) ↓ is associative (U ↓ V) ↓ W = U ↓ (V ↓ W)

(3) ↓ distributes over unions U ↓ (
⋃

i∈I Vi) =
⋃

i∈I(U ↓ Vi)

(4) ↓-left A(U ↓ V) ⊆ AU ∩ AV

(5) contraction U ↓ U =A U

for every U,V,U′,V ′ ⊆ S and every set-indexed family {Vi}i∈I in P(S). Note,
however, that the operation ↓ does not in general satisfy stability (it does not respect
=A ), so the triple (S,�, ↓) is neither a formal cover, nor a convergent cover, nor even
a basic cover with operation (definition 2.3).

5.1 �-formal covers

Thanks to the discussion above and by proposition 4.3, it is immediate to see that:

Lemma 5.1 Given a basic cover (S,�), the structure (S,�, ↓) is a formal cover if and
only if ↓ satisfies ↓-right (in the sense of lemma 4.2).

This justifies the following (see Coquand et al. [7]):
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Definition 5.2 Let S = (S,�) be a basic cover. We say that S is a �-formal cover if
(S,�, ↓) is a formal cover, that is, if a � U & a � V ⇒ a � (U↓V) for all a ∈ S
and all U,V ⊆ S .

Clearly, �-formal covers can be identified with those particular formal covers (S,�, ◦)
for which ◦ = ↓, that is a ◦ b = {c ∈ S | c � a & c � b} for all a, b ∈ S . Thus:

Definition 5.3 We call �-FCov the full subcategory of FCov whose objects are
�-formal covers.

So a morphism r between two �-formal covers (S,�) and (S′,�′) is a morphism
between the corresponding basic covers which satisfies the extra conditions: r−(a ↓′ b)
=A r−a ↓ r−b and r−S′ =A S .

Lemma 5.4 If (S,�, ◦) is a formal cover, then ◦ coincides with ↓ modulo =A , that
is U ◦ V =A U ↓ V for all U,V ⊆ S . Hence (S,�) is a �-formal cover and (S,�, ◦)
is isomorphic to (S,�, ↓).

Proof To prove the first part of the statement, it is sufficient to check that a ↓ b =A
a ◦ b for all a, b ∈ S . One gets a ↓ b � a ◦ b by ◦-right and a ◦ b ⊆ a ↓ b by
weakening. The second part follows from lemma 4.7.

This lemma gives immediately that:

Corollary 5.5 The categories �-FCov and FCov are equivalent.

Finally, one can show that the inclusion functor from FCov to BCov reflects isomor-
phisms:

Proposition 5.6 Assume that r : S → S ′ is an isomorphism in BCov with inverse s.
Then S is a formal cover if and only if S ′ is a formal cover. In this case, r and s form
an isomorphism also in FCov.

Proof The assumption means that the maps Ar− and A′s− form a suplattice isomor-
phism between Sat(A) and Sat(A′), and hence in particular an order-isomorphism. By
a general fact of order theory, both Ar− and A′s− preserve meets, besides joins; in
fact, both Ar− is left adjoint to A′s− and vice versa. So Sat(A) satisfies distributivity
iff so does Sat(A′), that is, S is a formal cover iff so is S ′ . When S and S ′ are
formal covers, meets are presented by ↓ and ↓′ , that is, AU ∩ AV = A(U ↓ V) and
A′W ∩ A′Z = A′(W ↓ Z). It is immediate to see that Ar− preserves meets means
precisely that r is convergent. Similarly for s.
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5.2 ≤-formal covers

The approach via �-formal covers can appear as the most general since it describes the
meet of Sat(A) in terms of ↓ and so, in the end, by means of the cover itself. However,
it has a serious drawback: to generate � inductively one cannot use axioms or rules
involving ↓, at least constructively. In fact, the operation ↓ is not well-defined until
the process of generation of � is completed. Thus one has to modify the presentation.
One possibility is to approximate the meet by means of a primitive operation ◦, as in
the present paper, and only at the end of the generation process one sees that ◦ and ↓
coincide (up to =A ).

Another way to modify the definition of �-formal cover in order to include inductively
generated examples is to use the definition in Coquand [6] and Coquand et al. [7]. The
idea is to start from a preordered base and hence to define ↓ depending on the preorder
rather than on �. The resulting notion is here called a ≤-formal cover. The inductive
generation of ≤-formal covers corresponds to that in Johnstone and Vickers [12] via
generators (represented by the preordered set of basic opens) and relations (the starting
axiom-set). This approach turned out to be crucial to describe algebraic domains as
unary ≤-formal covers (see Sambin [28]).

Definition 5.7 A ≤-formal cover is a basic cover whose carrier S is equipped with a
preorder ≤ such that:

a ≤ b b � U
a � U ≤ -left and a � U a � V

a � U ↓≤ V
≤ -right

where: U ↓≤ V =
⋃

uεU, vεV (u ↓≤ v) and u ↓≤ v = {a ∈ S | a ≤ u & a ≤ v}.

Clearly, for every ≤-formal cover, the structure (S,�, ↓≤) is a formal cover. Actually,
the original ≤-formal cover can be identified with (S,�, ↓≤).

Definition 5.8 Let ≤-FCov be the full subcategory of FCov whose objects are ≤-
formal covers.

Every �-formal cover (S,�, ↓) is clearly also a ≤-formal cover, with ≤ defined as
in (17). Conversely, every ≤-formal cover (S,�, ↓≤) is isomorphic to the �-formal
cover (S,�, ↓) by lemma 5.4. Therefore we can conclude that:

Proposition 5.9 The category ≤-FCov is equivalent to �-FCov and hence to FCov.

Note that the notion of ≤-formal cover does not admit a generalization to quantales
because convergence expressed via the operation ↓≤ already enjoys weakening and
contraction.
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5.3 Formal covers with a monoid operation

In the original definition by Sambin [26] of formal topology, later revised in [29],
convergence was defined by means of a primitive binary operation between basic opens.
This approach to pointfree topology turned out to be crucial in order to represent in
a predicative way formal topologies on algebraic structures (Schuster [32]), Stone
spaces (Ciraulo and Sambin [3] and Negri [23]), Scott domains (Sambin, Valentini and
Virgili [31]) and exponentiations between Scott domains (Maietti and Valentini [19]).
In the terminology of the present paper, the notion of formal cover in Sambin [29] can
be rephrased as:

Definition 5.10 A •-formal cover is a formal cover (S,�, ◦) together with a binary
operation • : S× S→ S on elements of S such that a ◦ b = {a•b} for all a, b ∈ S .

Definition 5.11 We call •-FCov the full subcategory of FCov whose objects are
•-formal covers.

We are now going to prove that the notion of •-formal cover is equivalent to that of
�-formal cover (and hence to all the other notions). We need the following

Lemma 5.12 For every basic cover S = (S,�), there exists a basic cover Dot(S) such
that:

(1) Dot(S) is isomorphic to S in BCov;

(2) the carrier of Dot(S) is naturally endowed with a binary operation •;

(3) S is a �-formal cover if and only if Dot(S) is a •-formal cover; in that case
they are isomorphic as �-formal covers.

Proof Let List(S) be the set of all finite lists of elements of S . As usual [ ] is the
empty list and [a1, . . . , an] is the list whose elements are a1, . . . , an ∈ S . Let • denote
concatenation between lists; we extend • also to subsets K,L ⊆ List(S) in the following
way:

K•L = {k•l | k ε K, l ε L}.

Let r be the relation between S and List(S) defined by:

b r [a1, . . . , an] ⇔ (b � a1) & · · · & (b � an) and b r [ ] true

for all a1, . . . , an ∈ S . In other words, we have r−[a1, . . . , an] = Aa1 ∩ . . . ∩ Aan

= a1 ↓ . . . ↓ an and r−[ ] = S . Finally, let l �′ K be r−l � r−K , for all l ∈ List(S)
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and K ⊆ List(S). We put Dot(S) = (List(S),�′, •). This completes the definition of
Dot(S) (and proves 2).

It is easy to check that �′ is a basic cover. By the very definition of �′ , the relation
r becomes a morphism in BCov from (S,�) to (List(S),�′). We check that this is an
isomorphism by defining its inverse. Consider the relation r′ defined by [a1, . . . , an] r′ b
if a1 ↓ . . . ↓ an � b and by [ ] r′ b if S � b. In other words, for l ∈ List(S) and b ∈ S ,
one has l r′ b iff r−l� r−[b] iff l�′ [b]. So (r′)−b = A′[b] =A′ [b]. Since r is a basic
cover map, it follows that r−(r′)−b =A r−[b] =A b and hence r−(r′)−U =A U for
all U ⊆ S . As a consequence, r′ is a basic cover map from (List(S),�′) to (S,�); in
fact, if a�U , then r−(r′)−a� r−(r′)−U , that is, (r′)−a�′ (r′)−U by definition of �′ .
The equation r−(r′)−b =A b also shows that r′r =BCov idS . It remains to be checked
that rr′ =BCov idDot(S) ; for every list l, r−(r′)−r−l =A r−l because r′r =BCov idS ; so
(r′)−r−l =A′ l by definition of A′ . Summing up, r is an isomorphism (with inverse
r′ ) of basic covers. This completes the proof of item 1.

Because of proposition 5.6, to obtain 3 it is sufficient to show that Dot(S) is a •-formal
cover iff (List(S),�′) is a �-formal cover. One direction follows from lemma 5.4.
Conversely, first note that r−(k•l) = (r−k) ↓ (r−l) so that • satisfies weakening,
associativity and commutativity. Hence to prove that Dot(S) is a •-formal cover it is
sufficient to show that •-right holds. To this aim, since ↓′ -right holds, it is sufficient
to show that k ↓′ l � k•l. So let m ε k ↓′ l, that is, m �′ k and m �′ l. This means
r−m � r−k and r−m � r−l. So r−m � (r−k) ↓ (r−l) since S satisfies ↓-right by
proposition 5.6. This is precisely r−m � r−(k•l), that is, m �′ k•l. Hence k ↓′ l �′

k•l.

Corollary 5.13 The category •-FCov is equivalent to �-FCov and hence also to
FCov and ≤-FCov.

By unfolding the equivalence between •-FCov and ≤-FCov one can deduce that a
•-formal cover (S,�, •) is identified with the ≤-formal cover (S,�,≤) where a ≤ b
is a � b. However, in many cases there exists a way to construct a ≤-formal cover
corresponding to a given •-formal cover without using the cover � in the definition of
≤. For instance, if the operation • on S is associative (and not just associative modulo
=A ), then one can define a preorder on S by: a ≤m b if either a = b or a = l•b
or a = b•r or a = l•b•r for some l, r ∈ S .4 This is the smallest preorder making
both a•b ≤m a and a•b ≤m b true. In particular, a•b ε a ↓≤m b and hence ≤-right

4In Battilotti and Sambin [1] a similar definition is given under the further assumption that
• is commutative.
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follows from the corresponding property for •. Moreover, a ≤m b yields a� b; hence
≤m -left holds and so also a ↓≤m b � a•b. Summing up, (S,�,≤m) is a ≤-formal
cover and a ↓≤m b =A a•b; hence (S,�, •) and (S,�,≤m) are isomorphic in FCov
by lemma 4.7.

We can also prove that the notions of formal cover presented here are essentially
equivalent to the original notion in [26], where the base is required to be a semilattice.
There are several ways to see this. For instance, given a �-formal cover (S,�, ↓),
one can modify the proof of lemma 5.12 by taking Pω(S), the set of finite subsets of
S (see Ciraulo and Sambin [4]), instead of List(S) and ∪ instead of concatenation.
By adapting the definition of the cover in the obvious way, one gets a formal cover
(Pω(S),�′,∪) which is isomorphic to the given one and, moreover, whose base is a
semilattice.

5.4 Connection with other presentations of quantales

In [27] the third author introduced the notion of a pretopology in order to give con-
structive semantics for a class of linear-like logics. The same notion was used in [1] to
give a presentation of unital commutative quantales.

In our notation, a pretopology is essentially a unital convergent cover such that a ◦ b is
a singleton for all a, b. So pretopologies form a category, say •-uCBCov, which is to
uCBCov as •-FCov is to FCov. By suitably modifying lemma 5.12 (in particular, by
replacing ↓ with ◦), it is possible to show that •-uCBCov and uCBCov are equivalent.

5.5 Remark on the unary and finitary cases

When we pass to consider the unary or finitary case, the connection between the
different definitions of formal covers changes considerably. Recall that a cover is
finitary if for all a and U with a � U , there exists a finite subset K of U such that
a � K . A finitely cover is unary if the subset K in the definition has at most one
element.

For instance, the equivalence between ≤-formal covers and •-formal covers no longer
holds if we restrict to their unary or finitary versions. Indeed, unary ≤-formal covers are
presentations of algebraic domains while unary •-formal covers present Scott domains
(see Sambin [28] and Sambin, Valentini and Virgili [31]). The formal-topological pre-
sentation of such classes of domains allows to see why Scott domains are closed under
exponentiation whilst algebraic domains are not. Indeed, looking at the construction
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in Maietti and Valentini [20] of the exponential object from an algebraic domain to
an inductively generated formal cover (in the category of inductively generated formal
covers), one can see that the exponentiation of two algebraic domains is not an algebraic
domain, in general.

Concerning the finitary case, we know that Stone spaces correspond to finitary •-formal
covers (see Negri [23] and Ciraulo and Sambin [3]). Similar characterizations of the
finitary versions of the other presentations are still unknown. In particular, it is not
clear what structures finitary �-formal covers represent.

6 Categorical reading of inductive generation

In this section, we provide a categorical analysis of our modular method for generating
basic covers, convergent covers and formal covers as in sections 1.2, 3.2 and 4.2. We
clarify in what sense the generation of a formal cover or of a convergent cover from
a given axiom-set is free. This requires finding suitable categories in such a way that
our inductive generation processes provide object parts of right adjoints to suitable
forgetful functors (right adjoints become left adjoints, as expected, if one works in the
opposite categories following the direction of frame maps).

There exists a well known construction of the free frame over a suplattice as a conse-
quence of Johnstone’s coverage theorem [10] (see also Vickers [33, theorem 4.4.2]).
Here we consider this construction in the corresponding dual categories, and hence
we speak of the (co)free formal cover over an inductively generated basic cover. We
decompose it into three steps as follows.

- First, we use the base S of the given basic cover to construct a new induc-
tively generated basic cover O(S), with different base and axiom-set, naturally
equipped with a pre-convergence operation on subsets and a distinguished sub-
set (that will become the convergence operation and the unit of a quantale,
respectively, in a later step).

- Then, as explained in proposition 3.11, we localize the axiom-set of O(S) and
generate a unital convergent cover, that is a unital commutative quantale.

- Finally, we add the axioms of weakening and contraction (see proposition 4.9)
thus obtaining a formal cover.

These three steps give rise to three adjunctions that are all in the form of a right adjoint
to a forgetful functor U ; the object part of each right adjoint is provided by one of our
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methods of inductive generation.5

BCovi
O
⊥ // BCov◦,i

Q
⊥ //

Uoo
uCBCovi

Uoo

L
⊥ // FCovi

Uoo

The novelty of our decomposition lies in introducing a subcategory BCov◦ of BCov
whose objects include those built in the first step of the above generation process. The
objects of BCov◦ , called ◦-basic covers, are basic covers equipped with an operation
on subsets of the base that distributes over unions, is associative, commutative and has
a unit. This we call a pre-convergence operation; in fact, it enjoys all properties of a
convergence operation (section 3) but localization. The morphisms of BCov◦ are basic
cover maps preserving the pre-convergence operation and the units. ◦-basic covers
represent the starting data from which we can generate a formal or convergent cover.
By using BCov◦ we are able to recognize our inductively generated formal covers and
convergent covers as free structures. Indeed, in the generation of formal covers, the
category BCov◦ plays a role analogous to that played by semilattices in Johnstone’s
coverage theorem.

As we will see, the functor Q is a categorical rendering of proposition 3.11 and lemma
3.14. A similar remark applies to the functor L with respect to proposition 4.9 and
lemma 4.11. The object part of the composition L · Q · O coincides impredicatively
with the construction of the free frame over a suplattice. Impredicatively, the functor
Q · L is surjective on objects since every locale is co-freely generated from a ◦-basic
cover. On the contrary, the functor L ·Q ·O is not surjective on objects, since not every
frame is free over some suplattice.

Now we start by introducing the category of ◦-basic covers:

Definition 6.1 A ◦-basic cover S = (S,�, ◦) is a basic cover (S,�) with an operation
◦ on subsets of S such that

- ◦ is distributive over unions modulo =A , that is,
⋃

i∈I(Ui◦V) =A (
⋃

i∈I Ui)◦V ;

- ◦ is associative modulo =A , that is, (U ◦ V) ◦W =A U ◦ (V ◦W);

- ◦ is commutative modulo =A , that is, U ◦ V =A V ◦ U ;

- there exists a unit, that is, a subset I such that a =A a ◦ I for all a ∈ S .

5A similar decomposition holds also by taking the non commutative case of ◦-basic covers
and unital convergent covers, that is, unital (not necessarily commutative) quantales.
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Given two ◦-basic covers S and T , a ◦-basic cover map from S to T is a basic cover
map r : (S,�S) −→ (T,�T ) preserving operation and unit as follows:

r−(U ◦T V) =A (r−U) ◦S (r−V) and r−IT =A IS

for all U,V ⊆ T .

It is easy to check that ◦-basic covers and ◦-basic cover maps form a category. We say
that a ◦-basic cover is inductively generated when so is its underlying basic cover.

Definition 6.2 We call BCov◦ the category of ◦-basic covers with ◦-basic cover maps.
BCov◦, i is the full subcategory of BCov◦ whose objects are inductively generated.

These subcategories of basic covers are not relevant per se, in the sense that they do
not correspond to specific algebraic structures. Their role is just that of explaining the
universal property of inductive generation for formal covers.

Here we prove that there exists a functor O, from the category of inductively generated
basic covers to its subcategory of ◦-basic covers, that is right adjoint to the corre-
sponding forgetful functor. This means that we can build the (co)free ◦-basic cover
generated from a basic cover:

Proposition 6.3 The forgetful functor from BCov◦, i to BCov i has a right adjoint

O : BCov i −→ BCov◦, i .

Proof Let S be a basic cover inductively generated by an axiom-set I,C . To define
the (co)free ◦-basic cover over S , called O(S), we start from the base List(S). For
l, k ∈ List(S), let l ◦O(S) k be (the singleton whose element is) l•k , the concatenation
of l and k . Let the unit IO(S) be (the singleton whose element is) [ ], the empty list.
Then the cover of O(S) is the least basic cover �O(S) such that:

- [a] �O(S) {[u] | u ε C(a, i)} holds for every a ∈ S and i ∈ I(a) (where [b], for
b ∈ S , denotes the list of length one whose element is b);

- l•k �O(S) k•l for all l, k ∈ List(S);

(associativity, as well as l =AO(S) l•[ ], holds automatically).

We need to show that, for every inductively generated basic cover S , a morphism iS :
O(S) −→ S exists in BCov i such that, for every r : T −→ S in BCov i with T an
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inductively generated ◦-basic cover, there exists a unique ◦-basic cover map r̂ such
that the following diagram in BCov i commutes.

S

T

r

77

r̂
// O(S)

iS

OO

Let iS be the relation between List(S) and S defined by iS−a = {[a]}. This is a basic
cover map

iS : (List(S),�O(S)) → (S,�S)

by lemma 1.6; indeed, i−S a �O(S) iS−C(a, i) holds by the definitions of �O(S) and
iS . To complete the proof it is sufficient to give the definition of r̂ , which is actually
compulsory. In fact, r̂−[a] =AT r−a because the diagram must commute, r̂−[ ] =AT
IS because r̂ must preserve units and finally r̂−[a1, . . . , an] = r̂−([a1]• . . . •[an]) =T
r̂−[a1] ◦ . . . ◦ r̂−[an] =T r−a1 ◦ . . . ◦ r−an because r̂ must respect convergence. It
remains to be proved that r̂ is a basic cover map. Since O(S) is inductively generated,
it is sufficient to check that r̂−[a] �T r̂−{[b] | b ε C(a, i)}, that is, r−a �T r−C(a, i)
which holds because r is a basic cover map.

The right adjoint in the previous proposition represents the first step to build the co-free
formal cover generated from a basic cover. The second step is to add the axioms making
O(S) a unital convergent cover (unital commutative quantale). Also this step enjoys a
universal property, namely there exists a functor Q, from BCov◦, i to its subcategory
uCBCov i of inductively generated unital convergent covers, that is right adjoint to the
corresponding forgetful functor.

Proposition 6.4 The forgetful functor from uCBCov i to BCov◦, i has a right adjoint

Q : BCov◦, i −→ uCBCov i

that is surjective on objects.

Proof Let S be a ◦-basic cover inductively generated by an axiom-set I,C . We
call Q(S) the unital convergent cover generated from the same axiom-set, the same ◦
and the same unit of S as described in proposition 3.11 and the remark following it.
We need to show that for every inductively generated ◦-basic cover S there exists a
morphism jS : Q(S) −→ S in BCov◦, i such that, for every r : T −→ S in BCov◦, i
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with T a unital convergent cover, there exists a unique unital convergent cover map r̃
such that the following diagram in BCov◦, i commutes.

S

T

r

77

r̃
// Q(S)

jS

OO

Let jS be the identity relation on the set S . This is a ◦-basic cover map from Q(S) to
S . In fact a �Q(S) C(a, i) holds for all a ∈ S and i ∈ I(a), because Q(S) is generated
by an axiom-set extending I,C . Moreover, jS respects convergence and units since
Q(S) has the same ◦ and unit of S . To complete the proof it is sufficient to define r̃
as r itself given that r is also a map toward Q(S) by lemma 3.14.

Since every inductively generated unital convergent cover can be obtained as in propo-
sition 3.11 we conclude that Q is surjective.

The above proposition is a refinement of the universal property of quantale presentations
in Battilotti and Sambin [1]. In fact, the authors of [1] work with a monoid operation
on the base. Hence their result corresponds to the existence of a right adjoint, from
the subcategory BCov•, i (see below for a precise definition) of BCov◦, i , that is just a
restriction of our functor Q.

The last step is the generation of a formal cover from an inductively generated unital
convergent cover.

Proposition 6.5 The forgetful functor from FCov i to uCBCov i has a right adjoint

L : uCBCov i −→ FCov i

that is surjective on objects.

Proof Let S be a convergent cover with unit inductively generated by an axiom-set
I,C . We call L(S) the formal cover generated from the same I,C and the same ◦
of S as in proposition 4.9. We show that there exists a morphism kS : L(S) −→ S
in uCBCov i such that, for every r : T −→ S in uCBCov i with T a formal cover,
there exists a unique continuous map r such that the following diagram in uCBCov i

commutes.

S

T

r

77

r
// L(S)

kS

OO
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Let kS be the identity relation on the set S . This is a unital convergent cover map from
L(S) to S by lemma 3.14. In fact a �L(S) C(a, i) holds for all a ∈ S and i ∈ I(a),
because L(S) is generated by an axiom-set extending I,C . Moreover, kS trivially
respects ◦ and units. Finally, we define r as r itself, since r is also a map into L(S)
by lemma 4.11.

Since every inductively generated formal cover can be obtained from an inductively
generated unital convergent cover by adding the axioms of weakening and contraction,
we conclude that L is surjective.

The functors O, Q and L give a decomposition of the right adjoint of the forgetful
functor from formal covers to basic covers:

Corollary 6.6 The functor L · Q · O : BCov i −→ FCov i is a right adjoint to the
forgetful functor from FCov i to BCov i .

This is a predicative counterpart of the existence of a left adjoint to the forgetful functor
from the category of frames to that of suplattices. If S already is a formal cover, that is
Sat(A) is a locale, then the construction L · Q · O (S) gives a predicative presentation
of what is known as the lower power locale (see Vickers [33]) of Sat(A).

From propositions 6.4 and 6.5, we conclude:

Corollary 6.7 The functor L · Q : BCov◦,i −→ FCov i is right adjoint to the
forgetful functor from FCov i to BCov◦,i and, moreover, is surjective on objects.

This result shows that the method of inductively generating formal covers from an
axiom-set enjoys a universal property with respect to the category BCov◦,i . Besides
the functor L · Q presented here, there are in the literature other ways for generating a
formal cover given some initial data. We need to recall three such methods to be able
to explain how our approach is a refinement of them all.

In Coquand et al. [7] it is shown how to generate a ≤-formal cover starting from an
axiom-set on a preordered set (S,≤). One can easily check that, in the specific case in
which δ(a ◦ b) = a ↓≤ b, our rules to generate formal covers (proposition 4.9) become
perfectly equivalent to those given in [7]. We now can see that the construction in [7]
is co-free with respect to a suitable subcategory of BCov◦, i .

Definition 6.8 We call BCov≤ the full subcategory of BCov◦ whose objects satisfy
◦ = ↓≤ for some preorder ≤ on the base. BCov≤,i is its full subcategory whose
objects are inductively generated.
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As a consequence of the results above, we have:

Corollary 6.9 The functor L · Q restricts to a functor from BCov≤,i to the category
≤-FCov i of inductively generated ≤-formal covers. This restriction is right adjoint to
the forgetful functor in the opposite direction and, moreover, is surjective on objects.

This adjunction explains in what sense the construction of inductively generated ≤-
formal covers in [7] is co-free. A direct proof can be obtained by the instantiation of
lemma 4.11 to formal covers where ◦ = ↓≤ . This gives precisely the result which
has played a key role when dealing with inductively generated ≤-formal covers (see
for instance [16]). Note, however, that the adjunction between BCov≤,i and ≤-FCov i

cannot be decomposed via quantales. In fact, the functor Q, when applied to an object
in BCov≤,i , gives already a ≤-formal cover (weakening and contraction automatically
hold). In other words, L · Q and Q coincide on BCov≤,i .

The second approach we want to recall is that described in Battilotti and Sambin [1].
There a monoid structure is assumed on the base. So the starting data for generating a
formal cover can be thought of as objects of the following category.

Definition 6.10 We call BCov• the full subcategory of BCov◦ whose object satisfy
a ◦ b = {a•b} (for all a, b ∈ S) for some monoid operation • on the base S . BCov•,i

is its full subcategory whose objects are inductively generated.

As before, the functor L · Q can be restricted to BCov•,i to obtain the following
categorical result of the universal property in [1]:

Corollary 6.11 The functor Q restricted to a functor from BCov•,i to •-uCBCov is
a right adjoint to the forgetful functor in the opposite direction.

We finally come to the third approach, namely Johnstone’s coverage theorem in [10, 33].
As one can recognize, Johnstone’s result reads in our framework just as proposition 4.9
in the case in which S has a ∧-semilattice structure and a ◦ b = {a ∧ b}. Hence the
data required by Johnstone’s method amount to an inductively generated basic cover
whose base has a semilattice structure. So we give the following:

Definition 6.12 We call BCov∧ the full subcategory of BCov◦ whose objects satisfy
a ◦ b = {a ∧ b} (for all a, b ∈ S) for some semilattice operation ∧ on the base S .
BCov∧,i is its full subcategory whose objects are inductively generated.
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Clearly BCov∧ is a subcategory both of BCov≤ and of BCov• . With this notation,
Johnstone’s result becomes:

Proposition 6.13 The functor L ·Q restricted to a functor from BCov∧,i to FCov i is
right adjoint to the forgetful functor in the opposite direction.

The following diagram summarizes the adjunctions discussed above (each forgetful
functor U is a left adjoint) together with the (full) inclusions between the various
categories. It is easy to check that all sub-diagrams commute.

BCov∧,i� _

��

��

t T

��

BCov≤,i� _

�� &&
BCovi

O
// BCov◦,i

Uoo
Q
// uCBCovi

L
//

Uoo FCovi
Uoo

U
nn

U

nn

U
uu

BCov•,i
?�

OO

// •− uCBCovi
Uoo ?�

OO CC

There is also another way to obtain a formal cover from an arbitrary basic cover, which
however does not lead to a functor from BCov i to FCov i . This construction starts from
a basic cover S = (S,�) generated from an axiom-set I,C and applies the method of
proposition 4.9 with δ(a, b) = a↓b, where ↓ is defined through � itself as in (17) and
(18). No doubt, this method produces a formal cover, namely L ·Q (S,�, ↓). However,
it cannot be extended to a functor from BCov i to FCov i since there is no reason for
a basic cover map to respect the operation ◦ = ↓. Note also that the formal cover
L · Q (S,�, ↓) is quite different from L · Q · O (S,�). This is well visible when S
itself is a �-formal cover. In fact, in this case L · Q (S,�, ↓) is (S,�, ↓) itself, while
L ·Q ·O (S) presents the lower power locale of Sat(A) and hence it is not isomorphic
to S . In general, one can see that the formal cover L · Q (S,�, ↓) presents the largest
frame contained in the suplattice Sat(A).

Conclusions

We have presented a new definition of formal cover/formal topology that generalizes
all other definitions given so far. This has been obtained by considering an operation ◦

Journal of Logic & Analysis 5:2 (2013)



Convergence in formal topology 43

between subsets which is uniquely determined by its trace on singletons. Our approach
seems to gather all the advantages of previous definitions. It allows us to reach the
definition of formal cover in a modular way passing through the case of quantales, as
it happens for the approach via a monoid operation on the base (see •-formal covers
in section 5). At the same time, it provides a uniform method of inductive generation
that includes the one originally introduced in [7].

Our new definition of convergent covers and formal covers allows us to reproduce
Joyal-Tierney’s characterization of quantales and locales [13] in a straightforward way.
Previous definitions of formal cover were not apt to this purpose. The definition of ≤-
formal cover does not generalize to represent quantales. Also the original definition [26]
is too specific; it can be generalized as in [27] and [1] to represent quantales, but the
only way one can see to obtain Joyal-Tierney’s characterization is to pass through the
equivalence with the new notion introduced here.

Our new presentation of convergence offers a uniform and modular method for gener-
ating formal covers, convergent covers and basic covers inductively. This uniformity
allows us to recognize in what sense the various inductive constructions provide free
structures and thus refine Johnstone’s coverage theorem. Our analysis supplies a neat
decomposition of the well known adjunction associated to the free frame over a su-
plattice. This would hardly be possible with the presentation of formal covers in the
literature.
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