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On Uniform Spaces with
Invariant Nonstandard Hulls

NADER VAKIL

Abstract: Let (X,T') be a uniform space with its uniformity generated by a set of
pseudo-metrics I'. Let the symbol “ ~ " denote the usual infinitesimal relation
on *X, and define a new infinitesimal relation “ ~ " by writing x ~ y whenever
*px,p) ~ *p(y,p) foreach p € I' and each p € X. Let us call a uniform
space (X,I") an S-space if the relations ~ and ~ coincide on fin(*X). In [14], we
showed that every S-space whose uniformity is generated by a single pseudometric
has invariant nonstandard hulls. Here we extend that result to all uniform spaces
and use it to explore further properties of S-spaces, which can now be recognized
as uniform spaces that have invariant nonstandard hulls.
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1 Introduction

The notation is as in the abstract above. The concept of an S-space arises in connection
with the question of how to construct the nonstandard hull (Luxemburg [7]) of a uniform
space (X,I") within the framework of Internal Set Theory (Nelson [8], Vakil [13]). In
[14] we showed how this construction can be carried out for the class of S-spaces. It
was also shown in [14] that the class of S-spaces whose uniformity is generated by a
single pseudo-metric includes those that have invariant nonstandard hulls (INH). !

In Section 3 of the present paper, we extend our work in [14]. We introduce the internal
notion of a pseudo-precompact (PSPC) uniform space and prove that a standard uniform

'Recall that (X, T") has INH if fin(*X)=pns(*X). This notion was introduced and studied by
C. W. Henson and L. C. Moore in [5] and [6]. In the context of locally convex spaces, uniform
space with INH occur as HM-spaces, of which nuclear and Schwarz spaces are examples. For
a discussion of HM-spaces, see Stroyan and Luxemberg [12, page 312] and its references to
the works of C. W. Henson and L. C. Moore on this subject.
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2 Nader Vakil

space is an S-space if and only if it is PSPC. Moreover, we show that the S-space
property and the INH property are equivalent for all standard uniform spaces. Thus, in
the notion of a PSPC space we provide a new internal characterization of the familiar
INH property. The class of PSPC spaces extends the class of precompact uniform
spaces, and Section 3 contains a discussion of two useful examples of non-precompact
PSPC spaces. One example obtains by equipping a completely regular space (X, 7) that
admits at least one unbounded f € C(X) with the weakest uniformity U/, with respect
to which every f € C(X) is uniformly continuous (Example 3.8). Another example
is the uniform space (X,Uy), where Uy, is the finest compatible uniform structure on
(X, 7). This is proved in Theorem 3.11, which requires the additional condition that the
space (X, 7) be devoid of discrete closed subspaces that have measurable cardinality.

Applications are presented in Section 4, which begins with the observation that the
notion of a PSPC space provides a link between the theory of uniform spaces that
have invariant nonstandard hulls and the theory of uniform spaces that have a unique
structure. Through this link, we obtain two sufficient conditions for a uniform space
to have invariant nonstandard hulls. Next we present a nonstandard proof of the
fact that the uniform space (X,U,) is complete if (X, 7) is Lindeldf, thus providing
a nonstandard proof of the well-known result that a completely regular space that
is Lindeldf is realcompact. This leads to another application of the PSPC property
through Theorem 4.7, which states that if a topological space (X, 7) is T, regular and
Lindelof then a subset S of X is relatively compact if and only if f[S] is bounded for
each f € C(X). Our simple proof uses only the observation that if a complete uniform
space (X,U) is PSPC then a subset S of X is relatively compact if and only if it is
bounded.

2 Preliminaries

In this section we fix some notation and terminology concerning uniform structures
and their nonstandard theory. We work with pairs (X, A), where X is an infinite set
and A is a set of pseudo-metrics on X. The uniformity generated by A will be denoted
by Ux. The pair (X,Uy) as well as the pair (X, A) will be referred to as the uniform
space generated by A. We also recall that if we begin with a uniformity ¢/ (rather than
a set of pseudo-metrics A) on X then I/ may be regarded as the uniformity generated
by the set A, of all the pseudo-metrics on X that are uniformly continuous on the space
X x X equipped with the uniform structure ¢/ x U. The set A, is called the gauge
of U and we have U = Uy,. If A denotes the set of all the uniformly continuous
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On Uniform Spaces with Invariant Nonstandard Hulls 3

pseudo-metrics on (X, A) then A C A. The set A is the gauge of U/, and we have
Upn = Upx. Asubset G of X is called A-bounded if sup, g p(x,y) < oo forall p € A.
We refer to G as U -bounded in case it is A-bounded. For the basic theory of uniform
spaces, the reader may refer to Bourbaki [1], Page [10] or Willard [15].

As we mentioned earlier, the subject of this paper was inspired by the question of
representation of nonstandard hulls within Internal Set Theory (IST). It is thus natural
that we use IST (as outlined in Nelson [8] and expounded in Vakil [13]) as our
nonstandard framework. Nevertheless, all arguments in this paper would be trivial to
move over into the other foundational frameworks of NSA.

We assume that the reader is familiar with external and internal formulas (see Vakil
[13, page 20]), the transfer axiom [13, page 35], the idealization axiom [13, page 71]
and the standardization axiom [13, page 78]. We recall that if S is a standard set and
¢ is a formula (external or internal) then, by the standardization axiom, S has a unique
standard subset 7" whose standard elements satisfy ¢. We shall have occasions to use
this fact in the work ahead.” Given a class A by A we denote the class of all the
standard members of A. Let X be a standard infinite set and let F be a standard filter
on X. We recall that the monad of F is defined to be the class u(F) = (\pc oz F.
Moreover, by the idealization axiom there always exists an element ' € F such that
F C u(F). The basic concepts and results concerning the nonstandard theory of
uniform spaces are reviewed next.

2.1 Definition Let A be a standard family of pseudo-metrics on an infinite standard
set X. Then we write:

(@ fimy(X)={xeX:(pe ANVpe ?X)(IM € “RN)[p(x,p) < M]},

() pnsy(X) = {x € X: (Ve € “RN)¥p € “N3p € “X)px,p) < €},

(© nsp(X)={xeX:@pe "X)(Ve € “RM)Vp e N)[p(x,p) < €]}, and

(d) pupax)={yeX: e “R"Vpe “Nlp(x,y) < €]}, where x € X.

(© ulUy) ={(x,y) EXxX:(Vee “RY)(¥pe “Np(x,y) < el}.
The members of the classes (a)-(c) are called, respectively, finite, pre-nearstandard,
and nearstandard. 1t is evident that
2.1.1) 7X C nsp(X) C pnsy (X) C finy (X).

Recall that the space (X, A) is compact if and only if X = nsp(X), and that (X, A) is
complete if and only if nsy(X) = pns, (X) (see Luxemburg [7, Theorem 3.14.1, page

*This unique 7' may be denoted by *{x € S: ¢(x)}, orby *{x € S: ¢p(x)}.
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4 Nader Vakil

78]).> The class ua(x) is called the monad of x. Note that the class p(Ufy) is indeed
the monad of the filter /. We usually write x ~, y instead of (x,y) € u@y). We
also note that x € ua(y) if and only if x ~4 y, and

(2.1.2) XAy if and only if p(x,y) =0 forall pe °A.

We will use the notations w({fy) and ~ interchangeably. For a standard topological
space (X, 7) anda ¢ € ?X, the monad of ¢, denoted 1.-(c), is defined to be the class of
all x € X that belong to every standard G € 7 with ¢ € G. The class of nearstandard
points of (X, 7) is defined to be the class

ns.(X) = | pe0).
ce X
Notice that ns;(X) = nsj(X) in case 7 is a uniformizable topology induced by a set
of pseudo-metrics A. As to the the real line R, we use the notation ~ for the usual
infinitesimal relation in R, and we call a real number x limited if |x| < M for some
standard M € R. We call x unlimited and write |x| ~ oo if it is not limited. If x € R,
then °x is the unique element of “R U {—00, 00} such that x ~ °x. This is called the
standard part of x, and it is a standard real number if x is limited, and it is o0 if x is
unlimited. The next theorem is well known, and we omit the proof.

2.2 Theorem Let (X,A) be a standard uniform space. Then we have:

(1) Ifx € finp(X) and F(x) is the standard subset of P(X) whose standard elements
contain x then F(x) is a A-bounded ultrafilter on X.

(i1) A standard filter 7 on X is A-bounded if and only if p(F) C finy(X).

3 Pseudo-Precompact Spaces

The concept of a pseudo-precompact space introduced in this section is an internal
notion equivalent (for standard sets) to the external notion of an S-space (see the
abstract above). It is also equivalent (for standard sets) to the familiar notion of
uniform spaces that have INH. This latter equivalence obtains through Theorem 3.7,
which is the main theorem of this section. Interesting connections between the INH
property and other properties of uniform spaces are revealed through Theorem 3.7. This
and other applications of the notion of a pseudo-precompact space will be discussed in
Section 4. In this section, we define the concept and provide some basic information
about it. We begin by recalling the notion of a bounded filter in a uniform space.

3A proof of this theorem in the context of a metric space can be found in Vakil [13, page
412].
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On Uniform Spaces with Invariant Nonstandard Hulls 5

3.1 Definition (Bounded Filters) Let (X,U) be a uniform space, and let F be a
filter on X. We call F bounded (precompact) if it has an element that is I/ -bounded
(U -precompact).

3.2 Definition (Coinciding on Filters) Let X be an infinite set, let F be a filter on X,
and let I/ and V be two uniform structures on X. We say that f and V coincide on F
if there is a G € F such that

{(GxGNU:UecU}={(GxGNV:VeV}

3.3 Definition (Anchored Dual of a Uniformity) Let (X, A) be a uniform space.
For each p € A and p € X, let p,(x,y) = [p(x,p) — p(y,p)| for all x,y € X. If
A ={p, : p € A,p € X} then we call the uniformity U/ the anchored dual of the
uniformity U/ . In case we begin with a uniformity ¢/ on X, the anchored dual of ¢/ is
the uniformity ¢/’ that is generated by the set A, = {p, : p € A,,p € X}, where A,
is the gauge of U .

Notice that when (X, A) is a standard uniform space we have
(3.3.1) x>~pny ifandonlyif p(x,p) =~ p(y,p) forall pe “A,p e °X.

It is not difficult to see that a uniformity / on X and its anchored dual I/’ induce the
same topology on X. Moreover, it follows easily from the triangle inequality that in
general U’ C U. The equality holds in case (X, ) is precompact, but we are interested
in the following weaker equality condition.

3.4 Definition (Pseudo-Precompactness) We call a uniform space (X,A) pseudo-
precompact if Uy and its anchored dual U/, coincide on all A-bounded ultrafilters on
X . We shall abbreviate the term “pseudo-precompact” by PSPC.

In Theorem 3.7 below, we prove that a standard uniform space is PSPC if and only of
it has INH. The following two results pave the way for that theorem.

3.5 Theorem Let the notation be as in Definition 3.4. If (X, A) is standard then the
two infinitesimal relations ~, and =,/ coincide on pns, (X).

Proof The inclusion u(ly) C u(Uys) is an immediate consequence of the triangle
inequality. For the reverse inclusion, fix x,y € pns, (X) with p(x, p) >~ p(y, p) for each
standard p € A and each standard p € X. Fix a standard € € R™. Since x € pns,(X),
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6 Nader Vakil

there is a standard point p € X such that p(x,p) < €/3. Since p(x,p) =~ p(y,p), we
have p(y,p) < €/2. We can thus write

px,y) < p(x,p) + p(y,p) <,

and the proof is complete. O

3.6 Lemma If (X, A) is a standard PSPC space then finy(X) C pns, (X).

Proof Assume that (X, A) is a standard PSPC space. Fix x € finp(X), p € A and
€ € R™, where p and e are standard. Let F(x) be the unique standard subset of P(X)
whose standard elements contain x. By Theorem 2.2, F(x) is a bounded ultrafilter.
Hence, by hypothesis and the transfer axiom, there is a standard B € F(x) on which
Up and Uy are identical. Therefore there exist a standard 6 € R and a standard
finite subset F = {p,,...,p,} of X such that the set

U = {{u,v) € B> : max | p(u, pi) = p(v, pi)| < 6}

is contained in the set V = {(u,v) € B? : p(u,v) < ¢}. Notice that U and V are
standard, and that U[x] C V[x]. Now let a; = °p(x, p;), and let

)
A ={v e B:max|a; — p(v,p))| < 5}-
1

Clearly, A is a standard subset of X with x € A. From the latter, it follows that A # ().
Pick a standard point ¢ € A. Since A C U[x] C V[x], we have p(x,q) < €, which
yields x € pns, (X) by Definition 2.1(b). The proof is complete.

We are now ready for the main theorem of this paper.

3.7 Theorem Let (X, A) be a standard uniform space. The following three conditions
are equivalent.

(i) The space (X, \) is pseudo-precompact.
(ii) The space (X, A) has invariant nonstandard hulls. That is, we have
finp (X) = pns, (X).

(iii) The space (X, A) is an S-space. That is, the relations ~, and ~,: coincide on
finp (X).
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On Uniform Spaces with Invariant Nonstandard Hulls 7

Proof Since the inclusion pns,(X) C finp(X) holds in general, the implication
[(i)—(i1)] is an immediate consequence of Lemma 3.6. The implication [(ii) — (iii)] is
trivial in light of Theorem 3.5. To prove [(iii)— (i)], fix a standard A-bounded ultra-
filter 7 on X and pick any standard p € A. Then by Definition 3.2 and the transfer
axiom there is a standard G € F and a standard M € RT with p(x,y) < M for all
x,y € G. This implies that G C finy(X). Hence, by (iii), the relations ~, and =~/
coincide on G. Since ~, is the monad of U and ~,/ is the monad of Ify/, it follows
that the uniformities U/y and U, are identical on G. Apply the transfer axiom to see
that each bounded ultrafilter has an element on which /s and Uy are identical. The
proof of the theorem is now complete. |

Recall that a standard uniform space is precompact if and only if pns(X) = X. Hence,
by Theorem 3.7 each precompact uniform space is PSPC. But the converse does not
hold. The simplest example is the Euclidean space R", where the uniformity is
generated by its usual norm. Here is another example.

3.8 Example Any completely regular space that admits at least one unbounded con-
tinuous function has a compatible uniformity that is PSPC without being precompact.

Proof Let (X, 7) be completely regular that admits at least one unbounded real-valued
continuous function. Let C(X) be the set of all the real-valued continuous functions on
X, and for each f € C(X), let pr(x,y) = |f(x) —f(y). Itis well known that the uniform
structure on X that is generated by the set A. = {pr : f € C(X)} is compatible with
7. To see that the space (X, A.) is pseudo-precompact, assume that it is standard, and
verify that

(3.8.1) finy (X) = {x € X : f(x) is limited for all f € “C(X)}.

By Theorem 3.7, we are done once we show that finy (X) C pns, (X). Fix x €
finp,(X), f € °C(X),and € € “RT. Let a = °f(x), and let

A={ueX:|f(u)—al <e/2}.

Then A is a standard set and it is not empty because it contains x. So A also contains
a standard element p. Hence pr(x,p) = |[f(x) — f(p)| < € for some standard p € X,
which completes the proof that x € pns, (X). We have thus shown that (X, A.) is
pseudo-precompact. By transfer, there is a standard f € C(X) that is not bounded.
Hence there is an x € X with f(x) unlimited. Hence, by 3.8.1 x ¢ finy (X). Therefore
x ¢ pns, (X). Since (X, A.) is precompact if and only if X = pns, (X), it follows
that (X, A.) is not precompact. O
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8 Nader Vakil

Let (X, 7) be a completely regular space, let U, be the finest uniform structure on X
that is compatible with 7, and let U, be the uniform structure on X that is generated
by the set of pseudo-metrics A, described in Example 3.8. Part (i) of Theorem 3.11
provides another example of a non-precompact PSPC space. We need the next theorem,
which is due to C. Ward Henson [5].

3.9 Theorem (Henson) Let (X,7) be a standard completely regular space. The
following two conditions hold.

(i) Foreach x,y € pns¢(X), we have x ~4 y if and only if x ~. y.

(ii) We have pns(X) = fin.(X) provided that X has no closed discrete subspace of
measurable cardinality.

Proof See [5, Theorem 2, page 165]. O

The notion of boundedness in an arbitrary topological space may be defined as follows.
We need this notion in the next theorem and in Theorem 4.7.

3.10 Definition (Topologically Bounded Sets) Let (X, 7) be a topological space, let
S be a subset of X, and let F be a filter on X. We call S topologically bounded if its
image f[S] under each f € C(X) is bounded. We call F topologically bounded if it
has a topologically bounded element.

3.11 Theorem Let (X,7) be a completely regular space that admits at least one
unbounded continuous function. If X has no closed discrete subspace of measurable
cardinality then we have:

(i) The uniform space (X,Uy,) is a non-precompact PSPC space.

(ii) The uniformities U, and Uy coincide on topologically bounded ultrafilters.

Proof Assume the data are standard. For (i), by Theorem 3.7, we need only show that
fing(X) C pns¢(X). Since U, C Uy, we have fing(X) C fin.(X). Now use part (ii) of
Theorem 3.9 to complete the proof of (i). Condition (ii) is equivalent to stating that
x ~¢ y if and only if x ~. y for each x,y € fin.(X). By part (i) of Theorem 3.9, we
have x ~ y if and only if x ~. y for each x,y in pns¢(X), which equals fin.(X) by
part (ii) of Theorem 3.9. The proof of (ii) is complete. O

Subspaces, projective limits, Cartesian products and uniformly continuous images of

PSPC spaces are PSPC spaces. Most of these have straightforward proofs. Here is a
precise statement and a proof of the last result in the list.

Journal of Logic & Analysis 6:1 (2014)



On Uniform Spaces with Invariant Nonstandard Hulls 9

3.12 Theorem Let (X,A) and (Y,T') be uniform spaces, and let f : X — Y be
a uniformly continuous surjection such that the filter f~'(G) is A-bounded for each
I"-bounded ultrafilter G on Y. If (X, A) is PSPC then Y is also PSPC.

Proof Assume that the data are standard. Fix y € finp(Y), vy € °T',and e € R™T.
Since f is uniformly continuous, by the transfer axiom there is an F € ?Fin(A) and
ad € “R* such that

(3.12.1) (Vx1,x0 € X)[fgg‘;‘ d(xy,x2) < 6 — Y(f(x1),f(x2) < €l.

Now fix an x € X with y = f(x). Let F(x) be the standard ultrafilter whose standard
elements contain x. Then the set G = f(F(x)) is an ultrafilter in ¥ whose standard
elements contain y. Since y € finp(Y), the filter G is I'-bounded by Theorem 2.2. By
hypothesis, f~!(G)) is A-bounded, and we have j(F(x)) C u(f~'(G)) C finy(X) by
Theorem 2.2. This implies that x is finite, and hence pre-nearstandard because X is
PSPC. Therefore there is a standard p € X with max,cr d(x,p) < 6. So, by formula
3.12.1, v(f(x),f(p)) < €. Since f(p) is standard, this proves that y = f(x) € pnsp(Y),
and the proof is complete. |

4 Some Applications

Let (X, 7) be a Hausdorff completely regular space, and let /- be a compatible uniform
structure on X. Since U, and its anchored dual U are both compatible with 7, if
(X, 7) admits only one compatible uniform structure, then the uniform space (X, )
is PSPC. The uniqueness of uniform structure was studied by several authors in the
1950s (see eg Doss [3], Dickinson [2] and newns [9]). The internal notion of PSPC
provides a link between this uniqueness theory and the theory of uniform spaces with
INH through Theorem 3.7. This is illustrated in the next two theorems. The first is in
terms of functionally separated pairs of subsets. By a functionally separated pair of
subsets of a topological space X we mean a pair A, B for which there is a real-valued
continuous function such that f[A] = {0} and f[B] = {1}.

4.1 Theorem Let (X, 7) be a Hausdorff completely regular space. If for each func-
tionally separated pair of closed sets at least one is compact then each compatible
uniformity on X is a PSPC space.
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10 Nader Vakil

Proof Assume the condition holds. Then, by a theorem due to R. Doss [3, page 20]
the space (X, 7) has only one compatible uniformity. Hence if U, is any compatible
uniformity on X and U/, is its anchored dual then U, = U., which implies that U, is
PSPC. d

4.2 Theorem Let (X, 7) be a Hausdorff completely regular space. If (X, ) is locally
compact and has a unique compactification then it has the PSPC property with respect
to all of its compatible uniform structures.

Proof Recall that there is a one-to-one correspondence between the compatible uni-
formities on (X, 7) that are precompact and its compactifications. Thus the condition
that the space (X, 7) has a unique compactification implies that (X, 7) has a unique
precompact uniform structure. This, in turn, is equivalent to the condition that (X, 7)
has a unique uniform structure (see Newns [9, Theorem 1]). Hence the space (X, 7)
has the PSPC property with respect to all of its compatible uniform structures. O

4.3 Remark Each of the above two theorems provided a sufficient condition for all of
the compatible uniformities of a completely regular space (X, 7) to be PSPC. In case
(X, ) is standard, these theorems provide sufficient conditions for all of the compatible
uniformities of (X, 7) to have the INH property.

Our next application is based on the following observation.

4.4 Theorem If a complete Hausdorff uniform space (X,U) is PSPC then a subset S
of X is relatively compact if and only if it is bounded.

Proof Assume that (X,{) and S are standard. If B is bounded then B C fin(X).
Since (X,U) is PSPC, we have fin(X) = pns(X); and since (X,U) is complete, we
have ns(X) = pns(X). Hence B C ns(X), which implies that B is relatively compact.
The converse is obvious. O

We need the following notation for the next theorem. Let (X, 7) be a standard com-
pletely regular space, and let A, be the set of pseudo-metrics on X that was described
in Example 3.8. We shall use the symbol ~, to denote the uniformity on X that is
generated by A.. Thus, given x,y € X, we have

44.1) x~y if and only if f(&x) ~f(@y) forall f e 7CX).
Thus y € p.(x) if and only if |[f(x) —f(y)| < € foreach f € “C(X) and each ¢ € “R*.

Journal of Logic & Analysis 6:1 (2014)



On Uniform Spaces with Invariant Nonstandard Hulls 11

4.5 Theorem Let (X, T) be a completely regular space. If (X, ) is Lindeldf then the
uniform space (X, A.) is complete.

Proof Assume the data are standard. Recall that a standard uniform space is complete
if and only if every pre-nearstandard point is nearstandard (see Luxemburg [7, Theorem
3.14.1, p. 78]). So fix p € pns, (X). We will show that p is nearstandard. For each
f€ 9C(X)andeach m € 7Z7, let

1
B = {u € X1 [fw) — o) < -,

where °f(p) is the standard part of f(p). Note that each By, is standard and contains
p. Let B, be the standard subset of P(X) whose standard elements consist of the
sets By, and let ;(B,) be the monad of B,. Then p.(p) = wuw(B,). Therefore
N B, C w(B,) = pe(p). Since the set () B, is standard, if it is not empty, it contains a
standard element x with p ~. x, proving that p is a nearstandard element of (X, A.).
Thus the proof will be complete once we show that (| B, # (). Note that 3, is a family
of closed subsets of X. So the fact that (X, 7) is Lindelof will yield (B, # () once
it is established that B3, has the countable intersection property. For this, let (C,) be
any standard countable subset of B,, which we may assume is decreasing. We will
prove ﬂnEZ+ C, # () by showing that the condition ﬂnez+ C, = 0 will lead to a
contradiction.

By the definition of B,, there is a standard sequence (f,) in C(X) and a standard
subsequence (k,) of the sequence (m) with C, = By, s, for each n € Z*. Now, for
each n € Z*, let g,(u) = infrec, [fu(w) —fo(v)]. Since [g,() — 80| < () —£,0)]
for all x,y € X,* we have g, € C(X). Let gu) = Y nez+ min{|g,(w)|, 27"}, If
Muez+ Cn = 0 then for each u € X there is an n € Z* with u ¢ C,, which implies
that g,(u) # 0. Hence g(u) > 0 for all u € X, and é € 2C(X). Since p € C, for all
standard n, g,(p) = 0 for all standard n. Therefore g, (p) = O for all n less than or
equal to some unlimited w € Z*. So we can write

o0
. 3 _ - |
8p) = Z min{|g,(p)|,27"} = Z min{|g.(p)|, 27"} < ot
neZ* n=w+1
Hence é(l?) > 2%. This contradicts the fact that p € pns, (X). O

*To see this inequality, fix x,y € X and n € Z*. Then, for all v € C,, we can write
) = LW < ) = i) + fa) — fu()|. Taking infimum over v yields g,(x) <

8n )+ ()=o), or g, (xX) —£x(») < |fu(x) —fu(¥)|. Similarly, g,(y) —ga(x) < [fu(x) —fu ()|
These two inequalities yield |g,(x) — g:()| < |[fu(x) — £, ()] .
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12 Nader Vakil

4.6 Remark Recall that a completely regular space (X, 7) is realcompact if and only
if the uniform space (X, A.) is complete. Thus the preceding discussion provides
a nonstandard proof for the fact that a completely regular space that is Lindelof is
realcompact. The usual proofs of this theorem use the zero-set machinery developed
within the theory of rings of continuous functions (see eg Gillman and Jerison [4]).

4.7 Theorem Let (X,7) be a Ty space that is regular and Lindelof, and let S be a
subset of X. Then S is relatively compact if and only if it is topologically bounded.

Proof The forward direction is obvious. To prove the converse, note that since S
is topologically bounded, it is A.-bounded as a subset of the uniform space (X, A.).
Moreover, X is completely regular because it is regular and Lindelof (see Pervin [11,
Theorem 5.5.6, page 92 and Theorem 5.6.1, page 95]). In Example 3.8, we saw that
the space (X, A.) is PSPC and, by Theorem 4.5, it is complete. So, by Theorem 4.4,
S is relatively compact since it is a bounded subset of (X, A.). d
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