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Limit laws and automorphism groups
of random nonrigid structures

OVE AHLMAN

VERA KOPONEN

Abstract: A systematic study is made, for an arbitrary finite relational language with
at least one symbol of arity at least 2, of classes of nonrigid finite structures. The
well known results that almost all finite structures are rigid and that the class of finite
structures has a zero-one law are, in the present context, the first layer in a hierarchy
of classes of finite structures with increasingly more complex automorphism groups.
Such a hierarchy can be defined in more than one way. For example, the k th level
of the hierarchy can consist of all structures having at least k elements which are
moved by some automorphism. Or we can consider, for any finite group G , all finite
structures M such that G is a subgroup of the group of automorphisms of M; in
this case the “hierarchy” is a partial order. In both cases, as well as variants of them,
each “level” satisfies a logical limit law, but not a zero-one law (unless k = 0 or G
is trivial). Moreover, the number of (labelled or unlabelled) n-element structures in
one place of the hierarchy divided by the number of n-element structures in another
place always converges to a rational number or to ∞ as n→∞ . All instances of
the respective result are proved by an essentially uniform argument.
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1 Introduction

In a sequence of articles by Erdős-Rényi [7], Fagin [9], Ford-Uhlenbeck [10], Harary
[12] and Oberschelp [18] it has been shown that for any finite relational vocabulary
(also called signature), the proportion of labelled (as well as unlabelled) n-element
structures which are rigid, ie have no nontrivial automorphism, approaches 1 as (the
positive integer) n approaches infinity. By the work of Glebskii et. al. [11] and Fagin
[8], for any sentence ϕ the proportion of n-element structures (labelled or unlabelled)

Published: March 2015 doi: 10.4115/jla.2015.7.2

http://www.ams.org/mathscinet/search/mscdoc.html?code=03C13,(60C05, 60F20)
http://www.ams.org/mathscinet/search/mscdoc.html?code=03C13,(60C05, 60F20)
http://dx.doi.org/10.4115/jla.2015.7.2


2 Ove Ahlman and Vera Koponen

in which ϕ is true approaches either 0 or 1 as n tends to infinity. In other words, the
class of finite structures satisfy a (labelled and unlabelled) zero-one law.

However, the asymptotic behaviour of nonrigid n-element structures appears to have
been neglected, besides work of Cameron [2, 3] in the case of unlabelled undirected
graphs. Possibly this is because the class of nonrigid finite structures make up to
only a “measure zero” subclass of the class of all finite structures. Nevertheless, for
any integer k the number of (nonisomorphic) n-element structures with at least k
elements which are moved by some automorphism grows exponentially with n, and
the same holds for the number of n-element structures whose automorphism group
contains some specified group. (This follows from the proofs in Section 2.) But, more
interestingly, consideration of finite structures whose automorphism group has a certain
(minimum) complexity gives rise to an infinitude of natural classes of finite (nonrigid)
structures with logical limit laws (Theorem 1.2). Each such class has the property that
there are more than one but only finitely many “convergence points”, all of which are
rational; that is, there is a finite set A of rational numbers such that |A| > 1 and, for
every sentence ϕ, the proportion of n-element structures in the class which satisfy ϕ
converges to a number in A. Moreover, in a sense that can be made precise, there are
only finitely many (but more than one) “limit theories” of any such class, all of which
are ℵ0 -categorical and simple with SU-rank one.1 It appears like the classes of nonrigid
structures considered here are the first nontrivial and “naturally occurring” classes of
finite structures with such limit law behaviour.2

Furthermore, for any two classes C and K of finite structures that are associated with
some (minimum) complexity of the automorphism group, the number of (labelled or
unlabelled) n-element structures which belong to C divided by the number of n-element
structures which belong to K converges to a rational number or to ∞ as n → ∞
(Theorem 1.1 and Remark 5.17).

In general, this study gives fairly complete answers, for any finite relational vocabulary
with at least one relation symbol with arity at least 2 and for labelled as well as

1 For any finite relational language with at least one symbol of arity at least 2 and integer
l ≥ 2, the class of all finite structures and the class of all (strongly) l-colourable finite structures
(Kolaitis, Prömel and Rothschild [14] and Koponen [15]) have a zero-one law with a “limit/almost
sure” theory which is ℵ0 -categorical and simple with SU-rank 1. The class of all finite partial
orders has a zero-one law (Compton [4]) with a limit theory which is probably ℵ0 -categorical
(because the “height” of a finite partial order is almost always 3, see Kleitman and Rothschild
[13]), although we have not checked this.

2 A trivial example can constructed by adding a new unary relation symbol R to a vocabulary
with some relation symbol of arity at least 2 and letting the interpretation of R be a singleton set
in half of all n-element structures in the initial vocabulary and the empty set in the other half.
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unlabelled structures, to questions initiated by Cameron long ago (in particular Cameron
[2, Theorems 1 and 2]), but also to other natural variations of his questions and to the
problem of whether logical limit laws hold for classes of structures defined in terms of
the complexity of their automorphism group.

A more detailed study, for any m ∈ N, of the typical automorphism groups of finite
structures such that at least m elements are moved by some automorphism is carried out
by the second author of this article in [16]. Roughly speaking, [16] shows that almost
all finite structures with some minimum complexity of their automorphism group have
as simple automorphism group as the minimum complexity allows.

Before stating the main results we introduce some basic terminology, notation and
assumptions that will be used throughout. We fix a finite vocabulary, also called
signature, {R1, . . . ,Rρ} of (only) relation symbols where Ri has arity ri . Let r =

max{r1, . . . , rρ} and call r the maximal arity. We always assume that r ≥ 2, although
this assumption is sometimes repeated. By a structure, we mean a structure for the
above vocabulary, that is, a tuple M = (M,RM1 , . . . ,RMρ ) where M is a set, called the
universe of M, and, for each i = 1, . . . , ρ, RMi ⊆ Mri . The relation RMi is called
the interpretation of Ri in M. Many of the results depend only on the vocabulary,
and in these cases they depend only on the sequence of arities r1, . . . , rρ . For every
positive integer n let [n] = {1, . . . , n}, let Sn be the set of all structures with universe
[n], and let S =

⋃∞
n=1 Sn . For every structure M, let Aut(M) denote the group of

automorphisms of M. (For basic model theory, see Marker [17] or Rothmaler [19].)

For groups G and H , G ∼= H means that they are isomorphic (as abstract groups) and
G ≤ H means that G is isomorphic to a subgroup of H . For structures M and N ,
M ∼= N means that they are isomorphic. Let N, N+ , Q and R denote the sets of
nonnegative integers, positive integers, rational and real numbers, respectively.

Theorem 1.1 For any two finite groups G and H , each one of the following limits
exists in Q ∪ {∞}:

lim
n→∞

|{M ∈ Sn : H ≤ Aut(M)}|
|{M ∈ Sn : G ≤ Aut(M)}|

, lim
n→∞

|{M ∈ Sn : H ∼= Aut(M)}|
|{M ∈ Sn : G ∼= Aut(M)}|

and

lim
n→∞

|{M ∈ Sn : G ∼= Aut(M)}|
|{M ∈ Sn : G ≤ Aut(M)}|

.

We introduce some more notation which will be used throughout the article. For a set
A, |A| denotes its cardinality and Sym(A) denotes the group of all permutations of A.
If f1, . . . , fk ∈ Sym(A) then 〈f1, . . . , fk〉 denotes the subgroup of Sym(A) generated by
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f1, . . . , fk ,

Spt(f1, . . . , fk) = {a ∈ A : g(a) 6= a for some g ∈ 〈f1, . . . , fk〉}

and spt(f1, . . . , fk) = |Spt(f1, . . . , fk)|. We call Spt(f1, . . . , fk) the support of the
sequence f1, . . . , fk . For a finite structure M we let

spt(M) = max{spt(f ) : f ∈ Aut(M)},
Spt∗(M) = {a ∈ M : a ∈ Spt(f ) for some f ∈ Aut(M)}, and

spt∗(M) = |Spt∗(M)|.

The set Spt∗(M) is called the support of M. Note that we always have spt(M) ≤
spt∗(M). Throughout, we use the following notation for p, p′ ∈ N:

Sn(spt = p) = {M ∈ Sn : spt(M) = p},
Sn(spt ≥ p) = {M ∈ Sn : spt(M) ≥ p},
Sn(spt ≤ p) = {M ∈ Sn : spt(M) ≤ p},

Sn(spt∗ = p) = {M ∈ Sn : spt∗(M) = p},
Sn(spt∗ ≥ p) = {M ∈ Sn : spt∗(M) ≥ p},
Sn(spt∗ ≤ p) = {M ∈ Sn : spt∗(M) ≤ p},

Sn(p ≤ spt ≤ p′) = {M ∈ Sn : p ≤ spt(M) ≤ p′}.

Whenever S′n ⊆ Sn is defined for n ∈ N+ we let S′ =
⋃∞

n=1 S′n . The expression almost
all M∈ S′ has property P means that

lim
n→∞

|{M ∈ S′n : M has P}|
|S′n|

= 1.

Suppose that S′n ⊆ Sn for all n ∈ N+ . We say that S′ =
⋃

n∈N+ S′n has a limit law if
for every first-order sentence ϕ over the vocabulary, the proportion of M∈ S′n which
satisfy ϕ converges as n → ∞. If the limit converges to 0 or 1 for every first-order
sentence ϕ, then we say that S′ has a zero-one law.

Theorem 1.2 (i) For every finite group G, {M ∈ S : G ∼= Aut(M)} and
{M ∈ S : G ≤ Aut(M)} have a limit law.
(ii) For every integer m ≥ 2, S(spt∗ = m), S(spt ≥ m) and S(spt∗ ≥ m) have a limit
law.
(iii) In each case of the previous parts there is a finite set A ⊆ Q such that, for every
first-order sentence ϕ, the proportion of n-element structures of the kind considered
which satisfy ϕ converges to some a ∈ A as n→∞.
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However, in each case of Theorem 1.2 we do not we have a zero-one law if G is
nontrivial, as explained in Remark 6.9.

Theorem 1.3 Theorems 1.1 and 1.2. also hold in the unlabelled case, that is if we only
count structures up to isomorphism.

Remark 1.4 (Asymptotic estimates) The results, in particular Propositions 4.4 and 5.9
and Lemmas 4.2, 4.3, 5.3 and 5.8 give, in principle, a method of finding, for any finite
group G, an asymptotic formula of the number of M ∈ Sn such that G ≤ Aut(M).
The same is true if ‘≤’ is replaced by ‘∼=’ or if we instead consider, for some arbitrary
fixed integer m ≥ 2, |Sn(spt ≥ m)|, |Sn(spt∗ ≥ m)| or |Sn(spt∗ = m)| as n→∞.

Remark 1.5 (Irreflexive and symmetric relations) (i) Suppose that every relation
symbol is always interpreted as an irreflexive relation, that is, if M |= Ri(a1, . . . , ari)
then aj 6= aj′ whenever j 6= j′ . Then Theorems 1.1 – 1.3 remain true, but some
modifications have to be made in some proofs and in some technical results of the
article.

(ii) Suppose that every relation symbol is always interpreted as an irreflexive and
symmetric relation, where the later means that if M |= Ri(a1, . . . , ari) then M |=
Ri(aπ(1), . . . , aπ(ri)) for every permutation π of [ri]. Again Theorems 1.1 – 1.3 remain
true, with minor modifications in some proofs and technical results.

Here follows an outline of the article. We deal with labelled structures until the last
section, where we show why the main results also hold for unlabelled structures. In
Section 2 we show that for every m ∈ N there is a number t , depending only on m
and the vocabulary, such that almost all M∈ S(spt ≥ m) have no automorphism the
support of which contains more than t elements. In Section 3 we show, by a Ramsey
type argument, that if M is finite and for every f ∈ Aut(M), spt(f ) ≤ t , then there
are at most tt+2 elements a ∈ M such that g(a) 6= a for some g ∈ Aut(M). More
briefly, with the notation after Theorem 1.1: if spt(M) ≤ t then spt∗(M) ≤ tt+2 . A
consequence of these results is that for every m ∈ N there is T ∈ N such that almost
all M ∈ S(spt ≥ m) have the property that at most T elements are moved by some
automorphism. (In the case of unlabelled undirected graphs this was proved, in a
different way by Cameron [2].)

Section 4 considers asymptotic estimates that are needed later. In this section, a structure
A ∈ S and subgroup H of Aut(A) are given and an asymptotic estimate is proved
for the number of M ∈ Sn such that M�spt∗(M) ∼= A and there is an isomorphism
f : A → M�spt∗(M) such that Hf = {fσf−1 : σ ∈ H} is a subgroup of the group
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{g�Spt∗(M) : g ∈ Aut(M)}, which implies that Aut(M) contains a copy of H . The
set of such structures is denoted Sn(A,H). Sets of this sort are the “building blocks”
of other sets of structures considered here, in the sense that almost all structures of
any set of structures in the main theorems belong to a finite union of sets of the form⋃∞

n=1 Sn(A,H). In Section 5 we use the results from previous sections, in particular the
asymptotic estimate of Sn(A,H), to prove Theorem 1.1, in the form of Propositions 5.10,
5.15 and 5.16.

Theorem 1.2, about logical limit laws, is proved in Section 6. Again, the set Sn(A,H)
plays a central role. In fact, the main task is to prove that S(A,H) has a zero-one law.
This and Proposition 5.9 implies Theorem 1.2. The final Section 7 shows why all main
results also hold for unlabelled structures. This is summarised in Theorem 7.7 which
implies Theorem 1.3.

Terminology and notation 1.6 We use the calligraphic letters A,B, C,M,N to
denote structures and the corresponding noncalligraphic letters A,B,C,M,N to denote
their universes. Usually the universe will be [n] = {1, . . . , n} for some n ∈ N+ . We
sometimes write ā to denote a finite tuple (a1, . . . , an), and if ā = (a1, . . . , an) and
b̄ = (b1, . . . , bm), then we let āb̄ = (a1, . . . , an, b1, . . . , bm). If M is a structure and
A ⊆ M , then M�A denotes the substructure of M with universe A.

Let H and H′ be permutation groups on sets Ω and Ω′ , respectively. A bijection
f : Ω → Ω′ is called an isomorphism from H to H′ as permutation groups if
H′ = {fhf−1 : h ∈ H}. We say that H and H′ are isomorphic as permutation groups if
such f exists; this clearly implies that they are isomorphic as abstract groups. We let
H ∼=P H′ mean that H and H′ are isomorphic as permutation groups. If f : A→ B is a
function and X ⊆ A, then f �X denotes the restriction of f to X . If H is a permutation
group on Ω and X ⊆ Ω is the union of some of the orbits of H on Ω, then we define
H�X = {h�X : h ∈ H}, which is a permutation group on X , and we call H�X the
restriction of H to X .

If f is a permutation of Ω then a ∈ Ω is called a fixed point of f if f (a) = a. If H is a
group of permutations of Ω then a ∈ Ω is called a fixed point of H if a is a fixed point
of every h ∈ H . For a structure A, a ∈ A is called a fixed point of A if a is a fixed
point of Aut(A). For any nonempty set Ω, Sym(Ω) denotes the symmetric group of Ω,
ie the group of all permutations of Ω, and Symn = Sym([n]).

If G is a group and g1, . . . , gn ∈ G then 〈g1, . . . , gn〉 denotes the subgroup of
G generated by g1, . . . , gn . For a permutation group G on a set Ω, if x ∈ Ω

then the orbit of x (with respect to G) is the set {g(x) : g ∈ G} and any set
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of this form is called an orbit of G. Let Orb(G) be the set of orbits of G and
orb(G) = |Orb(G)|. Such G also acts on Ωm , the set of ordered m-tuples of elements
from Ω, by the action g(a1, . . . , am) =

(
g(a1), . . . , g(am)

)
for every g ∈ G and

(a1, . . . , am) ∈ Ωm . When referring to “the orbits of G on Ωm ” we mean the
orbits with respect to this action, unless something else is said. We let Orbm(G) be
the set of orbits of G on Ωm and orbm(G) = |Orbm(G)|. For π1, . . . , πk ∈ Symn

we let Orb(π1, . . . , πk) = Orb(〈π1, . . . , πk〉), orb(π1, . . . , πk) = orb(〈π1, . . . , πk〉),
Orbm(π1, . . . , πk) = Orbm(〈π1, . . . , πk〉) and
orbm(π1, . . . , πk) = orbm(〈π1, . . . , πk〉). For unexplained notions such as ‘action, orbit’
etc., see for example Dixon and Mortimer [5].

We will also use the terminology and notation that was introduced between Theorems 1.1
– 1.3 as well as the following notation: if f1, . . . , fk are permutations of [n], then

Sn(f1, . . . , fk) = {M ∈ Sn : f1, . . . , fk ∈ Aut(M)}.

By f (n) ∼ g(n) (as n→∞) we mean that f (n)/g(n)→ 1 as n→∞. The parameter n
will (with some exceptions in Section 3) always be the number of elements in structures
we consider and any o(. . .) or O(. . .) will be with respect to n as it approaches infinity.
It will be convenient to use the notation exp2(x) = 2x .

2 Upper bounds of the support of automorphisms

The main result of this section, Proposition 2.3, is that for any m ∈ N there is t ∈ N
such that the proportion of M ∈ Sn(spt ≥ m) such that spt(M) ≤ t approaches 1 as
n → ∞. We also derive a couple of corollaries of this which are important for the
rest of the article. The following elementary result, often called Burnside’s Lemma or
Theorem3, will be used. Proofs are found in Burnside [1] and Dixon and Mortimer [5],
for example.

Proposition 2.1 If G is a group of permutations of a finite set M then

orb(G) =
1
|G|
∑
g∈G

|{a ∈ M : g(a) = a}|

Recall that [n] = {1, . . . , n} and by [n]r we denote the set of ordered r-tuples of
elements from [n].

3 But was actually proved earlier by Cauchy and Frobenius, according to Dixon and Mortimer
[5]
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Lemma 2.2 Suppose that d, n ∈ N+ , π1, . . . , πs ∈ Symn and spt(π1, . . . , πs) = p.
Then

nd + (p!− 1)(n− p)d

p!
≤ orbd(π1, . . . , πs

)
≤ nd − pnd−1

2
.

Proof For each π ∈ Symn let π̃ ∈ Sym([n]d) be defined by π̃(x1, . . . , xd) =

(π(x1), . . . , π(xd)). We consider the subgroup G = 〈π1, . . . , πs〉 of Symn and the
subgroup G̃ = 〈π̃1, . . . , π̃s〉 of Sym([n]d). The map π 7→ π̃ is an isomorphism
from G onto G̃, so spt(G̃) = p, and hence |G̃| ≤ p!. Note that orb(G̃) = orbd(G) =

orbd(π1, . . . , πs
)

. Also observe that, by the assumption that spt(G) = spt(π1, . . . , πs) =

p, every g ∈ G has at least n−p fixed points. Therefore every g ∈ G̃ has at least (n−p)d

fixed points. In particular, the identity permutation has nd fixed points. Therefore we
get, by also using Proposition 2.1,

orbd(π1, . . . , πs) = orb(G̃) =
1

|G̃|

∑
g̃∈G̃

|{ā ∈ [n]d : g̃(ā) = ā}|

≥ (|G̃| − 1)(n− p)d + nd

|G̃|
= (n− p)d +

nd − (n− p)d

|G̃|

≥ (n− p)d +
nd − (n− p)d

p!
=

nd + (p!− 1)(n− p)d

p!

On the other hand we also have that

orb(G) ≤ (n− p) +
p
2

= n− p
2

which implies that

orbd(π1, . . . , πs
)

= orb(G̃) ≤ orb(G) · nd−1 ≤ nd − pnd−1

2
,

because if (a1, . . . , ad) and (b1, . . . , bd) belong to the same orbit of G̃ then a1 and b1

belong to the same orbit of G.

Recall that r ≥ 2 is the maximal arity among relation symbols in the vocabulary.

Proposition 2.3 Suppose that m, t ∈ N, f1, . . . , fs ∈ Symn and spt(f1, . . . , fs) = m.
For all sufficiently large n the following holds, where k is the number of r-ary relation
symbols and the bound O( ) depends only on m, t and the vocabulary:

|Sn(spt ≥ t)|
|Sn(f1, . . . , fs)|

≤ exp2

(
k

(
2(m!− 1)rm − (t − 1)m!

)
nr−1

2(m!)
± O

(
nr−2)).

Hence, if t > 2r(m!− 1)m/m! + 1 then the quotient approaches 0 as n→∞.
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Proof For each i = 1, . . . , r , let ki be the number of i-ary relation symbols. Suppose
that m, t ∈ N, f1, . . . , fs ∈ Symn and spt(f1, . . . , fs) = m. Observe that for every i
and every i-ary relation symbol R we have: if ā, b̄ ∈ [n]i belong to the same orbit of
〈f1, . . . , fs〉 and M∈ Sn(f1, . . . , fs), then M |= R(ā) if and only if M |= R(b̄). Since
this is the only restriction on members of Sn(f1, . . . , fs) we get

(2–1) |Sn(f1, . . . , fs)| = exp2

( r∑
i=1

kiorbi(f1, . . . , fs)).
For every M ∈ Sn(spt ≥ t) there exists π ∈ Aut(M) such that Spt(π) ≥ t and
therefore

(2–2) |Sn(spt ≥ t)| ≤
∑

π∈Symn
spt(π)≥t

|Sn(π)| =
∑

π∈Symn
spt(π)≥t

exp2

( r∑
i=1

kiorbi(π)
)
.

By first applying Lemma 2.2 on f1, . . . , fs and then on an arbitrary π ∈ Symn we get,
for each i = 1, . . . , r ,

(2–3)
ni + (m!− 1)(n− m)i

m!
≤ orbi(f1, . . . , fs), and

(2–4) orbi(π) ≤ ni − ni−1spt(π)
2

for every π ∈ Symn .

A straightforward computation4 shows that for all sufficiently large n

n∑
j=t

exp2

(
j log2 n − j

r∑
i=1

ki
ni−1

2

)
(2–5)

≤ exp2

(
− kr

(t − 1)nr−1

2
± O

(
nr−2 + log2 n

))
,

where the bound O( ) depends only on the vocabulary. Notice that the number of

π ∈ Symn with spt(π) = j is
(

n
j

)
j! ≤ nj . By also using (2–1)–(2–5) we now get

4 Set a = exp2

(
log2 n −

∑r
i=1 ki

ni−1

2

)
and we have

∑n
j=t aj ≤ at/(1− a) ≤ at−1 if n is

large enough.
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|Sn(spt ≥ t)|
|Sn(f1, . . . , fs)|

≤
∑

π∈Symn
spt(π)≥t

exp2

( r∑
i=1

kiorbi(π)−
r∑

i=1

kiorbi(f1, . . . , fs)
)

≤
∑

π∈Symn
spt(π)≥t

exp2

( r∑
i=1

ki

[
ni − ni−1spt(π)

2

]
−

r∑
i=1

ki
ni + (m!− 1)(n− m)i

m!

)

≤
n∑

j=t

nj exp2

( r∑
i=1

ki

[
ni − jni−1

2

]
−

r∑
i=1

ki
ni + (m!− 1)(n− m)i

m!

)

= exp2

( r∑
i=1

ki

[
ni − ni + (m!− 1)(n− m)i

m!

]) n∑
j=t

exp2

(
j log2 n− j

r∑
i=1

ki
ni−1

2

)

≤ exp2

(
k1

(m!− 1)m
m!

+

r∑
i=2

ki
(m!− 1)imni−1 ±O

(
ni−2

)
m!

)
·

exp2

(
− kr

(t − 1)nr−1

2
±O

(
nr−2 + log2 n

))
= exp2

(
kr

(
2(m!− 1)rm− (t − 1)m!

)
nr−1

2(m!)
±O

(
nr−2 + log2 n

))
.

Remark 2.4 Suppose that we require that a relation symbol Ri of arity ri ≥ 2 is always
interpreted as an irreflexive and symmetric relation. Then we need to use a modification
of Lemma 2.2 where, for π1, . . . , πs ∈ Symn , we consider the orbits of G = 〈π1, . . . , πs〉
on the set of ri -subsets of [n] by the action g({a1, . . . , ari}) = {g(a1), . . . , g(as)} for
every g ∈ G and ri -subset {a1, . . . , ari} ⊆ [n]. By slightly modifying the proof of
Lemma 2.2 one gets that if q is the number of orbits of G by its action on the set of
ri -subsets of [n], then(n

d

)
− (p!− 1)

(n−p
d

)
p!

≤ q ≤ n
(

n
d

)
− p

2

(
n

d − 1

)
.

By using this when estimating (the appropriate analogues of) orbi(π) and orbi(f1, . . . , fs)
in the proof of Proposition 2.3 for each i-ary relation symbol (where i ≥ 2) that is
always interpreted as an irreflexive and symmetric relation, one gets a similar upper
bound, by a bit more involved computations. Similar adaptations work if we require
that some relation symbols are always interpreted as irreflexive, but not necessarily
symmetric, relations.
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Corollary 2.5 Let m ∈ N. If t > 2r(m!− 1)m/m! + 1 then

lim
n→∞

|Sn(spt ≥ t)|
|Sn(spt ≥ m)|

= lim
n→∞

|Sn(spt ≥ t)|
|Sn(spt∗ ≥ m)|

= 0.

Proof This follows immediately from Proposition 2.3, because if f ∈ Symn and
spt(f ) = m, then Sn(f ) ⊆ Sn(spt ≥ m) ⊆ Sn(spt∗ ≥ m).

Corollary 2.6 Suppose that G is a finite group which is isomorphic to a group of
permutations of [m]. If t = 2r(m!− 1)m/m! + 1 then

lim
n→∞

|{M ∈ Sn : G ≤ Aut(M) and spt(M) ≤ t)}|
|{M ∈ Sn : G ≤ Aut(M)}|

= 1.

Proof Let H = {h1, . . . , hs} be a permutation group on [m] such that H ∼= G. Let
t = 2r(m! − 1)m/m! + 1. Extend each hi to a permutation h′i of [n] by letting
h′i(j) = j for every j > m and h′i(j) = hi(j) for every j ≤ m. Observe that for every
M∈ Sn(h′1, . . . , h

′
s), G ≤ Aut(M). From Proposition 2.3 we get

|{M ∈ Sn : G ≤ Aut(M) and spt(M) > t}|
|{M ∈ Sn : G ≤ Aut(M)}|

≤ |Sn(spt > t)|
|Sn(h′1, . . . , h′s)|

→ 0,

as n→∞.

3 Upper bounds of the support of structures

In this section we prove that for every t ∈ N there is T ∈ N, depending only on t ,
such that for every finite structure M, if spt(M) ≤ t then spt∗(M) ≤ T . In other
words, if no automorphism of M moves more than t elements, then not more than T
elements of M are moved by some automorphism. This is stated by Proposition 3.5.
Corollaries 3.7 and 3.8 will be used in later sections.

Definition 3.1 Let M∈ S and X ⊆ M .
(i) For f ∈ Aut(M) let d(f ,X) = |Spt(f )− X|.
(ii) We call f ∈ Aut(M) maximal if for all g ∈ Aut(M), if Spt(f ) ⊆ Spt(g) then
Spt(f ) = Spt(g).
(iii) Let Aut∗(M) = {f ∈ Aut(M) : f is maximal}.
(iv) For M ∈ S, a sequence f0, . . . , fn ⊆ Aut∗(M) is called a special sequence of
automorphisms of M if it satisfies the following condition:
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12 Ove Ahlman and Vera Koponen

For each k = 0, . . . , n− 1,

d
(
fk+1,Spt(f0, . . . , fk)

)
= max

g∈Aut∗(M)
d
(
g,Spt(f0, . . . , fk)

)
.

Notation 3.2 Whenever a special sequence of automorphisms f0, . . . , fn ∈ Aut∗(M),
k ≤ n and g ∈ Aut(M) are given, then we may use the abbreviation

dk(g) = d
(
g,Spt(f0, . . . , fk)

)
.

The following lemma states some basic facts about special sequences of automorphisms.

Lemma 3.3 Let M ∈ S and let f0, . . . , fn ∈ Aut∗(M) be a special sequence of
automorphisms. Then

(1) for all 0 ≤ k ≤ n and all g ∈ Aut(M), dk(g) ≥ dk+1(g),

(2) if k + 1 ≤ p ≤ n then dk(fk+1) ≥ dk(fp) and

(3) if 0 ≤ k < n and dk(fk+1) = 0 then for all g ∈ Aut∗(M), Spt(g) ⊆
Spt(f1, . . . , fk).

Proof Let M ∈ S and let f0, . . . , fn ∈ Aut∗(M) be a special sequence of automor-
phisms.

(1) Suppose that g ∈ Aut(M). As Spt(f0, . . . , fk) ⊆ Spt(f0, . . . , fk+1) we get

|Spt(g) \ Spt(f0, . . . , fk)| ≥ |Spt(g) \ Spt(f0, . . . , fk+1)|,

that is, dk(g) ≥ dk+1(g).

(2) Suppose that k + 1 ≤ p ≤ n. Since

dk(fk+1) = max
g∈Aut∗(M)

dk(g)

we get dk(fk+1) ≥ dk(fp).

(3) If 0 ≤ k < n and dk(fk+1) = 0, then maxg∈Aut∗(M) dk(g) = 0, so Spt(g) ⊆
Spt(f1, . . . , fk) for every g ∈ Aut∗(M).

Now to a less obvious claim:

Lemma 3.4 Let M ∈ S. Suppose that f0, . . . , fn ∈ Aut∗(M) is a special sequence
and 1 ≤ k < p ≤ n. If dk(fp) > 0 then there is x ∈ Spt(fk) \ Spt(f0, . . . , fk−1) such that
x /∈ Spt(fp).
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Proof Let M ∈ S, let f0, . . . , fn ∈ Aut∗(M) be a special sequence and suppose
that 1 ≤ k < p and dk(fp) > 0. We use the abbreviations Spt(k) = Spt(fk) and
Spt(0, . . . , k) = Spt(f0, . . . , fk). Let

X = Spt(k) \ Spt(0, . . . , k − 1).

For a contradiction, we assume that X ⊆ Spt(p). Since dk(fp) > 0 we know that there is
an element a ∈ Spt(p) such that a /∈ Spt(0, . . . , k). Then Lemma 3.3 (1) together with
dk(fp) > 0 gives us that dk−1(fp) > 0. By Lemma 3.3 (2) we get dk−1(fk) > 0, which
implies that X 6= ∅. Also notice that a /∈ X , by the choice of a. From the definition of
X and the assumption that X ⊆ Spt(p) it follows that X ⊆ Spt(p) \ Spt(0, . . . , k − 1).
By the choice of a we have a ∈ Spt(p) \ Spt(0, . . . , k − 1), so we get

X ∪ {a} ⊆ Spt(p) \ Spt(0, . . . , k − 1),

and recall that a /∈ X . Hence we get

dk−1(k) = |Spt(k)− Spt(0, . . . , k − 1)| = |X|
< |X ∪ {a}| ≤ |Spt(p) \ Spt(0, . . . , k − 1)| = dk−1(p),

ie dk−1(k) < dk−1(p) which contradicts Lemma 3.3 (2).

The next proposition tells that, for each k ≥ 2, S(spt ≤ k) ⊆ S
(
spt∗ ≤ kk+2

)
.

Proposition 3.5 For every integer k ≥ 2 and every M ∈ S(spt ≤ k) we have
spt∗(M) ≤ kk+2 .

Proof Fix any integer k ≥ 2. For i = 0, . . . , k , let li = kk−i+1 . Note that l0 = kk+1

and li = kli+1 for each i. Suppose that M∈ S(spt ≤ k) and, for a contradiction, that
spt∗(M) > kk+2 .

By definition, any f0 ∈ Aut∗(M) is a special sequence of length 1. Now let f0, . . . , fn ∈
Aut∗(M) be any special sequence and suppose that n < l0 . By the assumption that
M ∈ S(spt ≤ k) we have |Spt(f0, . . . , fn)| ≤ kl0 = kk+2 . From the assumption
that spt∗(M) > kk+2 it now follows that there is g ∈ Aut(M) such that dn(g) =

|Spt(g) \ Spt(f0, . . . , fn)| > 0. Hence there is also a maximal f ∈ Aut∗(M) such that
dn(f ) > 0. If we choose fn+1 ∈ Aut∗(M) so that dn(fn+1) = maxg∈Aut∗(M) dn(g),
then f0, . . . , fn+1 is a special sequence. This proves that there is a special sequence
f0, . . . , fl0 ∈ Aut∗(M) such that dp(fp+1) > 0 for every p = 0, . . . , l0 − 1. We fix this
special sequence for the rest of the proof and use the abbreviations Spt(p) = Spt(fp)
and Spt(0, . . . , p) = Spt(f0, . . . , fp).
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14 Ove Ahlman and Vera Koponen

We will prove that there are a subsequence (of distinct numbers) t1, . . . , tk+1 of the
sequence 0, . . . , l0 and elements bi ∈ Spt(fti), for i = 1, . . . , k+1, such that bi /∈ Spt(ftj)
if j 6= i; so i 6= j implies bi 6= bj . Then b1, . . . , bk+1 ∈ Spt(ft1 ◦ ... ◦ ftk+1), where
of course the composition ft1 ◦ ... ◦ ftk+1 belongs to Aut(M). This contradicts the
assumption that M∈ S(spt ≤ k).

We will inductively define sequences ti
0, . . . , t

i
li , for i = 0, . . . , k + 1, of indices from

which we can extract a sequence t1, . . . , tk+1 as above. Let t0
j = j for j = 0, . . . , l0 =

kk+1 . For each p = 2, . . . , l0 , there is, by Lemma 3.4, ap ∈ Spt(1) \ Spt(0) such that
ap /∈ Spt(p). As |Spt(1)| ≤ k there are b1 ∈ Spt(1) \ Spt(0) and a subsequence of
distinct numbers t1

1, . . . , t
1
l1 of the sequence 2, . . . , l0 such that, for all p = t1

1, . . . , t
1
l1 ,

ap = b1 . Let t1 = t1
0 = 1.

Now suppose that m ≤ k and that, for i = 1, . . . ,m, ti
0, . . . , t

i
li is a subsequence (of

distinct numbers) of ti−1
0 , . . . , ti−1

li−1
, bi ∈ Spt(ti

0) \ Spt(0, . . . , ti
0 − 1) and bi /∈ Spt(p)

for all p = ti
1, . . . , t

i
li . By Lemma 3.4, there is for each p = tm

2 , . . . , t
m
lm an element

ap ∈ Spt(tm
1 ) \ Spt(0, . . . , tm

1 − 1) such that ap /∈ Spt(p). Since |Spt(tm
1 )| ≤ k there

are bm+1 ∈ Spt(tm
1 ) and a subsequence tm+1

1 , . . . , tm+1
lm+1

of tm
2 , . . . , t

m
lm such that, for all

p = tm+1
1 , . . . , tm+1

lm+1
, ap = bm+1 . Let tm+1 = tm+1

0 = tm
1 . When ti

0, . . . , t
i
li are defined

for every i = 0, . . . , k + 1 and bi for every i = 1, . . . , k + 1, then, as already indicated,
we take ti = ti

0 for i = 1, . . . , k + 1.

Remark 3.6 Notice that the proofs up to now of this section do not need the assumption
that we have considered a structureM and its automorphisms. We could, more generally,
have considered a set M and a group of permutations H of M . If we do this, we get
the following version of Proposition 3.5: If k ≥ 2 is an integer and H is a group of
permutations of a set M such that spt(h) ≤ k for every h ∈ H, then

|{a ∈ M : h(a) 6= a for some h ∈ H}| ≤ kk+2.

Corollary 3.7 Let m ∈ N. If k = 2r(m!− 1)m/m! + 1 and T = kk+2 then

lim
n→∞

|Sn(spt ≥ m) ∩ Sn(spt∗ ≤ T)|
|Sn(spt ≥ m)|

= lim
n→∞

|Sn(spt∗ ≥ m) ∩ Sn(spt∗ ≤ T)|
|Sn(spt∗ ≥ m)|

= 1.

Proof Let k = 2r(m!− 1)m/m! + 1 and T = kk+2 . By Corollary 2.5,

|Sn(spt ≥ m)| =
(
1 + o(1)

)
|Sn(m ≤ spt ≤ k)|

and by Proposition 3.5,

|Sn(m ≤ spt ≤ k)| = |Sn(m ≤ spt ≤ k) ∩ Sn(spt∗ ≤ T)|,
so we get |Sn(spt ≥ m)| =

(
1 + o(1)

)
|Sn(m ≤ spt ≤ k) ∩ Sn(spt∗ ≤ T)|. The other

limit is proved in the same way.
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Corollary 3.8 Suppose that G is a finite group which is isomorphic to a group of
permutations of [m] where m ∈ N+ . Then there is T ∈ N, depending only on G and
the vocabulary, such that

lim
n→∞

|{M ∈ Sn : G ≤ Aut(M) and spt∗(M) ≤ T}|
|{M ∈ Sn : G ≤ Aut(M)}|

= 1.

Proof By Corollary 2.6 we know that if k = 2r(m!− 1)m/m! + 1 then

lim
n→∞

|{M ∈ Sn : G ≤ Aut(M) and spt(M) ≤ k)}|
|{M ∈ Sn : G ≤ Aut(M)}|

= 1.

Let T = kk+2 . As Proposition 3.5 says that Sn(spt ≤ k) ⊆ Sn(spt∗ ≤ T) we are
done.

4 Asymptotic estimates of the number of structures with
bounded support

By Corollary 3.7, for arbitrary fixed m ∈ N and all large enough n, an overwhelming
part of the members of Sn(spt ≥ m) belong Sn(spt∗ ≤ T) for some T depending only
on m and the vocabulary. We will show that an overwhelming part of the members of,
for example, Sn(spt ≥ m) for large enough n, belong to a finite union of sets of the
form Sn(A,H), defined below, where the structure A and permutation group H depend
only on the vocabulary and m. In order to understand the asymptotic behaviour of
Sn(spt ≥ m) we will therefore, in this section, find asymptotic estimates of |Sn(A,H)|
as n→∞. As will become clear in the sequel, the sets of the form Sn(A,H) are the
“atomic” pieces of our analysis, and questions about, for example, Sn(spt ≥ m) or
{M ∈ Sn : G ≤ Aut(M)}, for a fixed G, will be reduced to analysing quotients of the
form |Sn(A′,H′)|

/
|Sn(A,H)| as n→∞.

Recall that if H is a group of permutations of Ω and X ⊆ Ω is the union of some of
the orbits of H on Ω, then H�X = {h�X : h ∈ H} which is a permutation group on
X . For every structure M, Spt∗(M) is the union of all nonsingleton orbits of Aut(M)
on M , so it always makes sense to speak about Aut(M)�Spt∗(M) and we always have
Aut(M)�Spt∗(M) ∼= Aut(M).

Definition 4.1 Let A ∈ S be such that Aut(A) has no fixed point. Suppose that H is a
subgroup of Aut(A) such that H has no fixed point. For each integer n > 0, Sn(A,H)
is the set of M ∈ Sn such that there is an isomorphism f : A → M�Spt∗(M) such
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that Hf = {fσf−1 : σ ∈ H} is a subgroup of Aut(M)�Spt∗(M). Note that Hf ∼=P H ,
so Aut(M) contains a copy of H if M∈ Sn(A,H). Let S(A,H) =

⋃
n∈N+ Sn(A,H).

Lemma 4.2 Let m ≥ 2 be an integer. There are A1, . . . ,Al ∈ Sm without any fixed
point and, for each i = 1, . . . , l , subgroups Hi,1, . . . ,Hi,li ⊆ Aut(Ai) without any fixed
point such that

S(spt∗ = m) =

l⋃
i=1

li⋃
j=1

S(Ai,Hi,j).

Proof Let A1, . . . ,Al enumerate all structures of Sm that do not have any fixed
point. Suppose that M ∈ S(spt∗ = m). Then M�Spt∗(M) ∼= Ai for some i. If
K = Aut(M)�Spt∗(M), f : Ai →M�Spt∗(M) is an isomorphism and H = {f−1σf :
σ ∈ K}, then H is a subgroup of Aut(Ai) without any fixed point. From the definition
of S(Ai,H) it follows that M ∈ S(Ai,H). Hence every M ∈ S(spt∗ = m) belongs
to S(Ai,H) for some i and some subgroup H ⊆ Aut(Ai). Conversely, for every
i = 1, . . . , l and every subgroup H ⊆ Aut(Ai) we have S(Ai,H) ⊆ S(spt∗ = m), since
spt∗(M) = m for every M∈ S(Ai,H).

Lemma 4.3 (i) Let m ≥ 2 be an integer. There are finitely many A1, . . . ,Al ∈ S
without any fixed point and, for each i = 1, . . . , l, subgroups Hi,1, . . . ,Hi,li ⊆ Aut(Ai)
without any fixed point such that

|Sn(spt∗ ≥ m)| ∼
∣∣∣∣ l⋃

i=1

li⋃
j=1

Sn(Ai,Hi,j)
∣∣∣∣ as n→∞.

(ii) Part (ii) holds if ‘spt∗ ≥ m’ is replaced by ‘spt ≥ m’.
(iii) Let G be a nontrivial finite group. There are finitely many A1, . . . ,Al ∈ S without
any fixed point and, for each i = 1, . . . , l , subgroups Hi,1, . . . ,Hi,li ⊆ Aut(Ai) without
any fixed point such that G ≤ Hi,j for all i and j and

|{M ∈ Sn : G ≤ Aut(M)}| ∼
∣∣∣∣ l⋃

i=1

li⋃
j=1

Sn(Ai,Hi,j)
∣∣∣∣ as n→∞.

Proof (i) By Corollary 3.7, there is an integer T such that

|Sn(spt∗ ≥ m)| ∼ |Sn(m ≤ spt∗ ≤ T)| as n→∞.

Since Sn(m ≤ spt∗ ≤ T) =
⋃T

i=m Sn(spt∗ = m), part (i) follows from Lemma 4.2.

(ii) By Corollary 3.7, there is T such that

|Sn(spt ≥ m)| ∼ |Sn(spt ≥ m) ∩ Sn(spt∗ ≤ T)| as n→∞.
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As every M ∈ Sn(spt ≥ m) ∩ Sn(spt∗ ≤ T) belongs to Sn(spt∗ = p) for some
m ≤ p ≤ T , we get (ii) from Lemma 4.2.

(iii) By Corollary 3.8, there is an integer T such that

|{M ∈ Sn : G ≤ Aut(M)}| ∼ |{M ∈ Sn : G ≤ Aut(M) and spt∗(M) ≤ T}|

as n→∞. Since every M ∈ {M ∈ Sn : G ≤ Aut(M) and spt∗(M) ≤ T} belongs
to Sn(spt∗ = p) for some p ≤ T , we also get part (iii) from Lemma 4.2 and its proof,
which shows that we only need to consider Ai and Hi,j such that G ≤ Hi,j .

As suggested by the previous lemma, an essential step towards the main results is
to asymptotically estimate |Sn(A,H)| for any A ∈ S without a fixed point and any
subgroup H ⊆ Aut(A) without a fixed point.

Proposition 4.4 Suppose that A ∈ S has no fixed point. Let H be a subgroup of
Aut(A) such that H has no fixed point. Let p = |A|, for every i = 1, . . . , r − 1 let qi

be the number of orbits of H on Ai and, for every i = 1, . . . r , let ki be the number of
relation symbols with arity i. There is an integer c(A,H) > 0, depending only on A,
H and the vocabulary, such that

|Sn(A,H)| ∼ c(A,H)
(

n
p

)
exp2

( r∑
i=1

ki(n− p)i +
r∑

j=2

j−1∑
i=1

kj

(
j
i

)
qi(n− p)j−i

)
.

As will be explained below, Proposition 4.4 is a consequence of Lemma 4.6 which in
turn follows from Lemmas 4.9–4.12.

Assumption 4.5 For the rest of this section we assume the following, although the
assumptions may be restated:

Suppose that A ∈ S has no fixed point.

Let H be a subgroup of Aut(A) such that H has no fixed point.

Also let

p = |A|,

for every i = 1, . . . , r − 1 let qi be the number of orbits of H on Ai and,

for every i = 1, . . . r , let ki be the number of relation symbols with arity i.
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18 Ove Ahlman and Vera Koponen

We consider the number of ways in which the relation symbols can be interpreted
on [n] so that the resulting structure belongs to Sn(A,H). Let cA be the number of
structures in Sp that are isomorphic to A. First, it is clear that we can choose the set
X ⊆ [n] which is going to be the support of the structure in

(n
p

)
ways, since we want

that |X| = p = |A|. Then we can choose interpretations of the relation symbols on X in
cA ways so that the resulting substructure with universe X , call it AX , is isomorphic to
A. Now suppose that X ⊆ [n] of cardinality p and AX ∼= A with universe X are fixed.
Let

(4–1) Sn(AX,H) = {M ∈ Sn(A,H) :M�Spt∗(M) = AX}.

Note that the condition M�Spt∗(M) = AX means that M�Spt∗(M) is identical with
AX . Also observe that if X,X′ ⊆ [n] and X 6= X′ then Sn(AX,H) and Sn(AX′ ,H) are
disjoint. Moreover, if both A′X and AX have universe X and are isomorphic with A,
but A′X 6= AX , then Sn(AX,H) and Sn(A′X,H) are disjoint. Therefore Proposition 4.4
follows from the following:

Lemma 4.6 Suppose that X ⊆ [n] and |X| = |A| = p. There is an integer d(A,H) > 0,
depending only on A, H and the vocabulary, such that

|Sn(AX,H)| ∼ d(A,H) exp2

( r∑
i=1

ki(n− p)i +

r∑
j=2

j−1∑
i=1

kj

(
j
i

)
qi(n− p)j−i

)
.

Lemma 4.6 follows from Lemmas 4.9–4.12, as we will show after proving them. We
begin with some preparatory work. Until Lemma 4.6 has been proved we fix X ⊆ [n]
such that |X| = |A| = p and AX ∼= A with universe X . For every isomorphism
f : A → AX , let

Hf = {fσf−1 : σ ∈ H},

so Hf is a subgroup of Aut(AX) and Hf ∼=P H .

Suppose thatM∈ Sn(AX,H). By the definition of Sn(AX,H),M�Spt∗(M) = AX and
there is an isomorphism f : A → AX such that Hf is a subgroup of Aut(M)�Spt∗(M).
For each t = 1, . . . , r − 1, the orbits of Hf on Xt forms a partition of Xt . If, for each
t = 1, . . . , r − 1, this partition is denoted Πt , then since Spt∗(M) = X , the following
holds for M:

(a) Whenever 2 ≤ j ≤ r , R ∈ {R1, . . . ,Rρ} is a j-ary relation symbol, 1 ≤ i < j,
(a1, . . . , ai) ∈ Xi and (a′1, . . . , a

′
i) ∈ Xi belong to the same part of Πi and

(ai+1, . . . , aj) = (a′i+1, . . . , a
′
j) ∈

(
[n] \ X

)j−i , then for every π ∈ Symj , either
both of

(aπ(1), . . . , aπ(j)) and (a′π(1), . . . , a
′
π(j)),
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or neither of them, belong to the interpretation of R.

Definition 4.7 If, for every t = 1, . . . , r− 1, Πt is a partition of Xt such that (a) holds
(for M), then we say that M respects (the sequence of partitions) Π1, . . . ,Πr−1 .

Note that in the above definition there is no requirement that the partition Πt is the set
of orbits of a permutation group.

Definition 4.8 A sequence Π1, . . . ,Πr−1 is called a sequence of (AX,H)-partitions if
the following holds:

(b) there is an isomorphism f : A → AX such that, for each t = 1, . . . , r − 1, Πt is
the set of orbits of Hf on Xt .

We note the following: If M ∈ Sn(AX,H) then M�Spt∗(M) = AX and, for each
t = 1, . . . , r − 1, there is a partition Πt of Xt such that M respects (Π1, . . . ,Πr−1)
and for some isomorphism f : A → AX , Πt is the set of orbits of Hf on Xt for
t = 1, . . . , r− 1. Conversely, ifM∈ Sn is such thatM�Spt∗(M) = AX and, for each
t = 1, . . . , r − 1, there is a partition Πt of Xt such that M respects (Π1, . . . ,Πr−1)
and for some isomorphism f : A → AX , Πt is the set of orbits of Hf on Xt for
t = 1, . . . , r−1, then Hf is a subgroup ofM�Spt∗(M) and thereforeM∈ Sn(AX,H).

For every sequence of (AX,H)-partitions Π1, . . . ,Πr−1 we define

Sn(AX,Π1, . . . ,Πr−1) =(4–2)

{M ∈ Sn :M�X = AX, Spt∗(M) = X andM respects Π1, . . . ,Πr−1}

and

Tn(AX,Π1, . . . ,Πr−1) =(4–3)

{M ∈ Sn : M�X = AX andM respects Π1, . . . ,Πr−1}.

It follows directly from the definition that

Sn(AX,Π1, . . . ,Πr−1) ⊆ Tn(AX,Π1, . . . ,Πr−1).

From the argument before the definition of Sn(AX,Π1, . . . ,Πr−1) it follows that

(4–4) Sn(AX,H) =
⋃

Π1,...,Πr−1

Sn(AX,Π1, . . . ,Πr−1),

where the union ranges over all sequences Π1, . . . ,Πr−1 of (AX,H)-partitions. The
next step in the proof of Lemma 4.6 is to estimate |Sn(AX,Π1, . . . ,Πr−1)|. Then we
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deal with the slightly problematic issue that even if Π1, . . . ,Πr−1 and Π′1, . . . ,Π
′
r−1 are

different sequences of (AX,H)-partitions it may be the case that S(AX,Π1, . . . ,Πr−1)
and S(AX,Π

′
1, . . . ,Π

′
r−1) have nonempty intersection. However, as we will show,

their intersection will always be negligibly small, which implies that we can add
the asymptotic estimates of the cardinalities of all Sn(AX,Π1, . . . ,Πr−1) to get an
asymptotic estimate of the cardinality of Sn(AX,H). Recall that for i = 1, . . . , r , ki is
the number of i-ary relation symbols. Also, p = |A| = |X| and, for i = 1, . . . , r− 1, qi

is the number of orbits of H on Ai .

Lemma 4.9 If Π1, . . . ,Πr−1 is a sequence of (AX,H)-partitions, then

|Tn(AX,Π1, . . . ,Πr−1)| = exp2

( r∑
i=1

ki(n− p)i +
r∑

j=2

j−1∑
i=1

kj

(
j
i

)
qi(n− p)j−i

)
.

Moreover, there is ε : N → R, depending only on A, H and the vocabulary,
such that limn→∞ ε(n) = 0 and for all large enough n the proportion of M ∈
Tn(AX,Π1, . . . ,Πr−1) such that M /∈ Sn(AX,Π1, . . . ,Πr−1) is at most ε(n).

Proof Suppose that Π1, . . . ,Πr−1 is a sequence of (AX,H)-partitions, so there is an
isomorphism f : A → AX such that, for each t = 1, . . . , r − 1, Πt is the set of orbits
of Hf on Xt . Since Hf ∼=P H it follows that Πt partitions Xt into qt parts, for every
t = 1, . . . , r − 1. Let

γ(n) = exp2

( r∑
i=1

ki(n− p)i +
r∑

j=2

j−1∑
i=1

kj

(
j
i

)
qi(n− p)j−i

)
.

First we will prove that |Tn(AX,Π1, . . . ,Πr−1)| = γ(n). As observed before Lemma 4.9,

Sn(AX,Π1, . . . ,Πr−1) ⊆ Tn(AX,Π1, . . . ,Πr−1)

and X ⊆ Spt∗(M) for every M ∈ Tn(AX,Π1, . . . ,Πr−1). Then we show that the
proportion of M∈ Tn(AX,Π1, . . . ,Πr−1) such that X is a proper subset of Spt∗(M)
approaches 0 as n→∞. Moreover, we will get a bound ε(n) as in the lemma. For the
rest of the proof of this lemma we use the abbreviation

Tn = Tn(AX,Π1, . . . ,Πr−1).

To determine |Tn| we consider the number of ways in which the relation symbols can be
interpreted on [n] so that the resulting structure M has the properties that M�X = AX

and M respects Π1, . . . ,Πr−1 , that is, (a) holds for M. Since the substructure on
X must be AX , there is only one choice for the interpretations on tuples all of which
coordinates belong to X .

Journal of Logic & Analysis 7:2 (2015)



Limit laws of random nonrigid structures 21

Now we consider in how many ways the relation symbols can be interpreted on tuples
that intersect both X and [n] \X so that resulting structure respects Π1, . . . ,Πr−1 , so in
this stage we only consider relation symbols of arity at least 2. Let R ∈ {R1, . . . ,Rρ}
be a relation symbol of arity j ≥ 2 and let 1 ≤ i ≤ j− 1. We consider the number of
ways in which R can be interpreted on j-tuples ā ∈ [n]j with exactly i coordinates of ā
from X in such a way that the resulting structure respects Π1, . . . ,Πr−1 .

Suppose that

a1, . . . , ai, a′1, . . . , a
′
i ∈ X and bi+1, . . . , bj ∈ [n] \ X

and that the i-tuples (a1, . . . , ai) and (a′1, . . . , a
′
i) belong to the same part of Πi . Since

we want (a) to be satisfied we have the choice of letting both j-tuples

(a1, . . . , ai, bi+1, . . . , bj) and (a′1, . . . , a
′
i, bi+1, . . . , bj),

or none of them, belong to the interpretation of R (and this independently of other
choices). We considered the case when a1, . . . , ai and a′1, . . . , a

′
i occurred in the first

i positions of the respective j-tuple, but the same is clearly true if a1, . . . , ai and
a′1, . . . , a

′
i take other positions in the respective j-tuples, but still so that al precedes

al′ if l < l′ and al takes position t if and only if a′l takes position t .5 There are
(j

i

)
ways in which i positions in an j-tuple can be chosen. Therefore the number of ways to
choose the interpretation of R on j-tuples with exactly i coordinates in X in such a way
that (a) is satisfied is

exp2

((
j
i

)
qi(n− p)j−i

)
,

where we recall that qi is the number of parts of the partition Πi of Xi .6 If i′ 6= i and
1 ≤ i′ ≤ j − 1 then the corresponding number of choices for j-tuples with exactly
i′ coordinates in X is independent from the previously made choices. Therefore the
number of ways in which R can be interpreted on tuples that intersect both X and
[n] \ X is

exp2

( j−1∑
i=1

(
j
i

)
qi(n− p)j−i

)
.

The same argument can be carried out for every relation symbol R of arity at least 2.
The number of choices for each such R is independent of previously made choices.

5 We consider only the given order of a1, . . . , ai and a′1, . . . , a
′
i because, in general, an

i-tuple obtained by reordering a1, . . . , ai need not belong to the same part of Πi as (a1, . . . , ai).
6 If we assume that R is always interpreted as an irreflexive and symmetric relation, then the

corresponding number is exp2(q′i
(n−p

j−i

)
) where q′i is the number of orbits of the action of H on

{B ⊆ A : |B| = i} given by h({b1, . . . , bi}) = {h(b1), . . . , h(bi)} for every h ∈ H and i-subset
{b1, . . . , bi} of A .
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Therefore the number of ways in which all relation symbols with arity at least 2 can be
interpreted on tuples that intersect both X and [n] \ X in such a way that (a) is satisfied
is

(4–5) exp2

( r∑
j=2

j−1∑
i=1

kj

(
j
i

)
qi(n− p)j−i

)
.

Finally we consider interpretations on tuples ā such that none of the coordinates of ā
belongs to X . If R has arity i, then there are 2(n−p)i

ways in which to interpret R on
tuples ā ∈ ([n] \ X)i , independently of other choices. As there are ki relation symbols
of arity i, the number of ways to interpret all relation symbols on [n] \ X is

(4–6) exp2

( r∑
i=1

ki(n− p)i
)
,

Suppose that a structureM has been constructed by making the choices described above.
Then, by construction, M�X = AX and M respects Π1, . . . ,Πr−1 . By assumption, H
has no fixed point which implies that every part of the partition Π1 of X has at least
two members. Since M respects Π1, . . . ,Πr−1 and Π1, . . . ,Πr−1 is a sequence of
(AX,H)-partitions it follows that X ⊆ Spt∗(M). It is also clear that every member
of Tn can be obtained in exactly one way by making choices as described by the
construction. Hence, by multiplying (4–6) and (4–5), we see that |Tn| = γ(n).

It remains to prove that for all large enough n,

(4–7)
|{M ∈ Tn : Spt∗(M) 6= X}|

|Tn|
≤ ε(n),

where limn→∞ ε(n) = 0 and ε depends only on A,H and the vocabulary. After
defining Tn = Tn(AX,Π1, . . . ,Πr−1), see (4–3), we observed that if M ∈ Tn then
X ⊆ Spt∗(M). Since Π1, . . . ,Πr−1 is a sequence of (AX,H)-partitions, there is an
isomorphism f : A → AX such that, for each t = 1, . . . , r − 1, Πt is the set of
orbits of Hf = {fσf−1 : σ ∈ H} on Xt . Let Hf = {h1, . . . , hs} and extend every
hi ∈ Hf to h′i ∈ Symn by h′i(x) = hi(x) if x ∈ X and h′i(x) = x if x ∈ [n] \ X . Then
Spt(h′1, . . . , h

′
s) = X and hence spt(h′1, . . . , h

′
s) = |X| = |A| = p.

If M ∈ Sn , then M belongs to Sn(h′1, . . . , h
′
s) if and only if the following condition

holds: for every t = 1, . . . , r and every t-ary relation symbol R, if ā and b̄ are two t-
tuples from the same orbit of 〈h′1, . . . , h′s〉 on [n]t (which here denotes the set of ordered
t-tuples of elements from [n]), then either M |= R(ā) ∧ R(b̄) or M |= ¬R(ā) ∧ ¬R(b̄).
As X is a union of orbits of 〈h′1, . . . , h′s〉 it follows that if we define

Sn(h′1, . . . , h
′
s,AX) = {M ∈ Sn(h′1, . . . , h

′
s) :M�X = AX},
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then there is a constant 0 < c ≤ 1, depending only on A, H and the vocabulary, such
that

(4–8) |Sn(h′1, . . . , h
′
s,AX)| = c|Sn(h′1, . . . , h

′
s)|.

From the definition of h′1, . . . , h
′
s it follows that

(4–9) Sn(h′1, . . . , h
′
s,AX) ⊆ Tn.

By (4–8), (4–9) and Propositions 2.3 and 3.5, there are λ, p0 > 0, depending only on
A, H and the vocabulary, such that for all sufficiently large n,

|Sn(spt∗ > p0)|
|Tn|

≤ |Sn(spt∗ > p0)|
c|Sn(h′1, . . . , h′s)|

≤ 2−λnr−1
.

Hence, for all large enough n, the proportion of M∈ Tn such that spt∗(M) ≤ p0 is at
least 1− 2−λnr−1

.

Fix any a ∈ [n] \ X and a′ ∈ [n] such that a 6= a′ . From the definition of Tn it is clear
that for every sequence of distinct (r − 1)-tuples b̄1, . . . , b̄κ ∈

(
[n] \ (X ∪ {a, a′})

)r−1 ,
the proportion of M∈ Tn that satisfies the following is 2−κ :

(4–10) for every i = 1, . . . , κ, M |= R(a, b̄i) ⇐⇒M |= R(a′, b̄i).

Observe that if M ∈ Tn , spt∗(M) ≤ p0 and g(a) = a′ for some g ∈ Aut(M), then
there is a sequence of distinct (r− 1)-tuples b̄1, . . . , b̄κ ∈

(
[n] \ (X ∪ {a, a′})

)r−1 such
that κ = 2(n−p0−2)r−1

and (4–10) is satisfied. Hence the proportion of M ∈ Tn such
that spt∗(M) ≤ p0 and g(a) = a′ for some g ∈ Aut(M) is at most 2−(n−p0−2)r−1

. As
the proportion of M∈ Tn such that spt∗(M) ≤ p0 is at least 1− 2−λnr−1

, it follows
that the proportion of M∈ Tn with an automorphism g such that g(a) = a′ is at most
2−(n−p0−2)r−1

+ 2−λnr−1
. It follows that the proportion of M∈ Tn which have distinct

elements a ∈ [n] \ X and a′ ∈ [n] and an automorphism g such that g(a) = a′ is at
most n2

(
2−(n−p0−2)r−1

+ 2−λnr−1
)

. This immediately implies (4–7), so the proof of
Lemma 4.9 is finished.

Remark 4.10 If we assume that all relation symbols are always interpreted as irreflexive
and symmetric relations then we get

|Tn(AX,Π1, . . . ,Πr−1)| = exp2

( r∑
i=1

ki

(
n− p

i

)
+

r∑
j=2

j−1∑
i=1

kjq′i

(
n− p
j− i

))
,

where q′i is the number of orbits of the action of H on {B ⊆ A : |B| = i} given by
h({b1, . . . , bi}) = {h(b1), . . . , h(bi)} for every h ∈ H and i-subset {b1, . . . , bi} of A.
Under the same assumptions we still have

|Sn(AX,Π1, . . . ,Πr−1)| ∼ |Tn(AX,Π1, . . . ,Πr−1)|
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by the same argument as above (and a modification of Proposition 2.3).

Lemma 4.11 Suppose that Π1, . . . ,Πr−1 is a sequence of (AX,H)-partitions. For
each 1 ≤ i < r , the proportion of M ∈ Sn(AX,Π1, . . . ,Πr−1) with the following
property is at most ε(n) where ε(n)→ 0 as n→ 0 and the function ε depends only on
A, H and the vocabulary:

(†) There are an r-ary relation symbol R, different parts P,P′ ∈ Πi , ā =

(a1, . . . , ai) ∈ P and ā′ = (a′1, . . . , a
′
i) ∈ P′ such that for every

b̄ = (bi+1, . . . , br) ∈ ([n] \ X)r−i ,

M |= R(ā, b̄) ⇐⇒ M |= R(ā′, b̄).

Proof By Lemma 4.9 it suffices to prove that the proportion of
M∈ Tn(AX,Π1, . . . ,Πr−1) with property (†) is at most ε(n) where ε(n)→ 0 as n→ 0
and ε depends only onA, H and the vocabulary. Suppose thatM∈ Tn(AX,Π1, . . . ,Πt)
and (†) holds, so there are different parts P,P′ ∈ Πi , ā = (a1, . . . , ai) ∈ P and
ā′ = (a′1, . . . , a

′
i) ∈ P′ such that for every b̄ = (bi+1, . . . , br) ∈ ([n] \ X)r−i ,

M |= R(ā, b̄) ⇐⇒ M |= R(ā′, b̄).

Fix these tuples ā and ā′ . The number of ways in which we can interpret R, in suchM,
on tuples of the form āb̄ and ā′b̄ where b̄ ∈ ([n] \ X)r−i is 2(n−p)r−i

, independently of
how R is interpreted on other tuples and independently of how other relation symbols
are interpreted.

On the other hand, for M∈ Tn(AX,Π1, . . . ,Πr−1) without property (†), the number
of ways in which R can be interpreted on tuples of the form āb̄ and ā′b̄ where
b̄ ∈ ([n] \ X)r−i is 4(n−p)r−i

, independently of how R is interpreted on other tuples and
independently of how other relation symbols are interpreted. Therefore the proportion
of M ∈ Tn(AX,Π1, . . . ,Πr−1) with property (†) is at most 2(n−p)r−i

/
4(n−p)r−i ≤

2−(n−p) .

Lemma 4.12 If Π1, . . . ,Πr−1 and Π′1, . . . ,Π
′
r−1 are two different sequences of

(AX,H)-partitions, then

|Sn(AX,Π1, . . . ,Πr−1) ∩ Sn(AX,Π
′
1, . . . ,Π

′
r−1)|

|Sn(AX,Π1, . . . ,Πr−1) ∪ Sn(AX,Π′1, . . . ,Π
′
r−1)|

≤ ε(n).

where ε(n)→ 0 as n→ 0 and the function ε depends only on A, H and the vocabulary.
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Proof Suppose that Π1, . . . ,Πr−1 and Π′1, . . . ,Π
′
r−1 are different sequences of

(AX,H)-partitions and that

M ∈ Sn(AX,Π1, . . . ,Πr−1) ∩ Sn(AX,Π
′
1, . . . ,Π

′
r−1).

Then for some 1 ≤ i < r , there are ā, ā′ ∈ Xi such that ā and ā′ are in the same part of
the partition Π′i but in different parts of the partition Πi , or vice versa. In the first case,
M has property (†) from Lemma 4.11 (for every r-ary relation symbol R) when seen
as a member of Sn(X,Π1, . . . ,Πr−1). In the second case, M has property (†) when
seen as a member of Sn(X,Π′1, . . . ,Π

′
r−1). Therefore, using Lemma 4.11, the quotient

of the lemma is at most 2ε(n) where ε(n)→ 0 as n→ 0 and the function ε depends
only on A, H and the vocabulary..

Proof of Lemma 4.6. Let

γ(n) = exp2

( r∑
i=1

ki(n− p)i +

r∑
j=2

j−1∑
i=1

kj

(
j
i

)
qi(n− p)j−i

)
and let d(A,H) be the number of different sequences Π1, . . . ,Πr−1 of (AX,H)-
partitions. Hence, d(A,H) is finite and depends only on A, H and the vocabulary. We
prove that |Sn(AX,H)| ∼ d(A,H)γ(n). From (4–4) it follows that

(4–11) |Sn(AX,H)| ≤ d(A,H)γ(n).

Let Un be the union of all intersections

Sn(AX,Π1, . . . ,Πr−1) ∩ Sn(AX,Π
′
1, . . . ,Π

′
r−1)

where Π1, . . . ,Πr−1 and Π′1, . . . ,Π
′
r−1 range over all unordered pairs of different

sequences of (AX,H)-partitions. If the sums below ranges over such unordered pairs,
then, by Lemma 4.12, we have

|Un| ≤
∑∣∣∣Sn(AX,Π1, . . . ,Πr−1) ∩ Sn(AX,Π

′
1, . . . ,Π

′
r−1)

∣∣∣
≤ ε(n)

∑(
|Sn(AX,Π1, . . . ,Πr−1)| + |Sn(AX,Π

′
1, . . . ,Π

′
r−1)|

)
∼ ε(n) ·

(
d(A,H)

2

)
· 2γ(n),

where ε(n)→ 0 as n→∞. By Lemma 4.9, Sn(AX,Π1, . . . ,Πr−1) ∼ γ(n) for every
sequence Π1, . . . ,Πr−1 of (AX,H)-partitions. It follows that, for every such sequence,

|Sn(AX,Π1, . . . ,Πr−1)| − |Un| ∼ γ(n).
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Since Sn(AX,Π1, . . . ,Πr−1) \ Un and Sn(AX,Π
′
1, . . . ,Π

′
r−1) \ Un are disjoint if

Π1, . . . ,Πr−1 and Π′1, . . . ,Π
′
r−1 are different sequences, it follows that

|Sn(AX,H)| ≥
∑
|Sn(AX,Π1, . . . ,Πr−1) \ Un|

≥
∑(

|Sn(AX,Π1, . . . ,Πr−1)| − |Un|
)
∼ d(A,H)γ(n),

where the sums range over all sequences Π1, . . . ,Πr−1 of (AX,H)-partitions. This
together with (4–11) implies that |Sn(AX,H)| ∼ d(A,H)γ(n), so Lemma 4.6 is
proved

As explained in the paragraph after the statement of Proposition 4.4, it follows from
Lemma 4.6, so now we have also proved Proposition 4.4. We can now derive two
corollaries of this proposition. These corollaries, as well as the proposition itself will
be used in the next section. It will be convenient to use the following notation:

Definition 4.13 Suppose that H is a group of permutations of the set Ω. Then
p(H) = |Ω|, q(H) is the number of orbits of H on Ω and s(H) is the number of orbits
of H on Ω2 .

Corollary 4.14 Suppose that r = 2, that A ∈ S has no fixed point and let H be a
subgroup of Aut(A) without any fixed point. Let p = p(H) = |A|, let q = q(H) and
for i = 1, 2 let ki be the number of relation symbols of arity i. Then there is an integer
c(A,H) > 0, depending only on A, H and the vocabulary, such that

|Sn(A,H)| ∼ c(A,H)
(

n
p

)
exp2

(
k2n2 − 2k2(p− q)n + k1n + k2p2 − k1p

)
.

Proof By Proposition 4.4 with r = 2 and q = q1 , there is an integer c(A,H) > 0,
depending only on A, H and the vocabulary, such that

|Sn(A,H)| ∼ c(A,H)
(

n
p

)
exp2

( 2∑
i=1

ki(n− p)i + 2k2q(n− p)
)

= c(A,H)
(

n
p

)
exp2

(
k2n2 − 2k2(p− q)n + k1n + k2p2 − k1p

)
.

Corollary 4.15 Suppose that r > 2, that A ∈ S has no fixed point and that H is a
subgroup of Aut(A) without any fixed point. Let p = p(H) = |A|, let q = q(H) and
s = s(H). Moreover, let k be the number of r-ary relation symbols, let l be the number
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of (r − 1)-ary relation symbols, let m be the number of (r − 2)-ary relation symbols
and define

β(x, y, z) = k
(

r
2

)
x2 − kr(r − 1)xy − l(r − 1)x + l(r − 1)y + k

(
r
2

)
z.

Then there is an integer c(A,H), depending only on A, H and the vocabulary, such that

|Sn(A,H)| ∼ c(A,H)
(

n
p

)
exp2

(
knr −

(
kr(p− q)− l

)
nr−1

+
(
β(p, q, s) + m

)
nr−2 +O

(
nr−3)).

Proof For every i = 1, . . . r − 1, let qi be the number of orbits of H on Ai . For
every j = 1, . . . , r , let kj be the number of relation symbols of arity j. So we have
q1 = q, q2 = s, kr = k , kr−1 = l and kr−2 = m. By Proposition 4.4, there is an integer
c(A,H) > 0, depending only on A, H and the vocabulary, such that

|Sn(A,H)| ∼ c(A,H)
(

n
p

)
exp2

(
λ(n)

)
,

where

λ(n) =
r∑

i=1

ki(n− p)i +
r∑

j=2

j−1∑
i=1

kj

(
j
i

)
qi(n− p)j−i

=

( r−3∑
i=1

ki(n− p)i
)

+ m(n− p)r−2 + l(n− p)r−1 + k(n− p)r

+

( r−2∑
j=2

j−1∑
i=1

kj

(
j
i

)
qi(n− p)j−i

)
+

( r−2∑
i=1

l
(

r − 1
i

)
qi(n− p)r−1−i

)

+
r−1∑
i=1

k
(

r
i

)
(n− p)r−i

= m(n− p)r−2 + l(n− p)r−1 + k(n− p)r

+ l(r − 1)q(n− p)r−2 + krq(n− p)r−1 + k
(

r
2

)
s(n− p)r−2 + O

(
nr−3)

= knr −
(
kr(p− q) − l

)
nr−1 +

(
β(p, q, s) + m

)
nr−2 + O

(
nr−3).
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5 Comparing different groups

In this section we use the analysis from Section 4 to prove Theorem 1.1, which collects
the statements of Propositions 5.10, 5.15 and 5.16. The main technical result of
the section is Proposition 5.9 which helps to break down more complex problems to
problems about quotients of the form Sn(A,H)

/
Sn(A′,H′), where the meaning of

Sn(A,H) was given by Definition 4.1. Also recall Definition 4.13 of p(H), q(H) and
s(H) for a permutation group H . As usual, r denotes the maximal arity, and in this
section k denotes the number of r-ary relation symbols and l denotes the number of
(r − 1)-ary relation symbols.

Proposition 5.1 Suppose that A,A′ ∈ S are such that neither Aut(A) nor Aut(A′)
has a fixed point. Moreover, suppose that H is a subgroup of Aut(A) without fixed
any point and that H′ is a subgroup of Aut(A′) without any fixed point. Let p = p(H),
q = q(H), s = s(H), p′ = p(H′), q′ = q(H′) and s′ = s(H′).
(i) The following limit exists in Q ∪ {∞}:

lim
n→∞

|Sn(A′,H′)|
|Sn(A,H)|

.

(ii) Suppose that r = 2.

(a) If p− q < p′ − q′ or if p− q = p′ − q′ and p > p′ , then

lim
n→∞

|Sn(A′,H′)|
|Sn(A,H)|

= 0.

(b) If p− q = p− q′ and p = p′ then there is a rational number a > 0, depending
only on A, A′ , H , H′ and the vocabulary, such that

lim
n→∞

|Sn(A′,H′)|
|Sn(A,H)|

= a.

(iii) Suppose that r > 2 and let β(x, y, z) be as in Corollary 4.15. If any one of the two
conditions

p− q < p′ − q′ , or

p− q = p′ − q′ and β(p, q, s) > β(p′, q′, s′)

hold, then

lim
n→∞

|Sn(A′,H′)|
|Sn(A,H)|

= 0.
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Proof (i) From Proposition 4.4 it follows that there are integers C,C′ > 0 and
polynomials λ(x), λ′(x) with integer coefficients, depending only on A, A′ , H , H′

and the vocabulary, such that

|Sn(A′,H′)|
|Sn(A,H)|

∼
C′
( n

p′
)

C
(n

p

) exp2
(
λ′(n)− λ(n)

)
.

Depending on whether the leading term in the polynomial λ′(n) − λ(n) has positive
degree and negative coefficient, positive degree and positive coefficient, or is constant,

exp2
(
λ′(n)− λ(n)

)
approaches 0, ∞, or a positive real as n→∞, respectively. In the first case

|Sn(A′,H′)|
/
|Sn(A,H)|

approaches 0. In the second case it approaches ∞. In the third case, when λ′(n)− λ(n)
is constant, we get the conclusion by considering whether p > p′ , p = p′ or p < p′ .

(ii) Suppose that r = 2. Then Corollary 4.14 says that for some positive integers C and
C′ , depending only on A, A′ , H , H′ and the vocabulary, we have

|Sn(A′,H′)|
|Sn(A,H)|

∼
C′
( n

p′
)

C
(n

p

) exp2

(
2k
[
(p− q)− (p′ − q′)

]
n + k

[
(p′)2 − (p)2]+ l[p− p′]

)
.

From this we immediately get claims (a) and (b).

(iii) Suppose that r > 2. Then Corollary 4.15 implies that for some positive integers C
and C′ , depending only on A, A′ , H , H′ and the vocabulary, we have

|Sn(A′,H′)|
|Sn(A,H)|

∼
C′
( n

p′
)

C
(n

p

) exp2

(
kr
[
(p− q) − (p′ − q′)

]
nr−1

+
[
β(p′, q′, s′) − β(p, q, s)

]
nr−2 + O

(
nr−3)).

So if p − q < p′ − q′ or if p − q = p′ − q′ and β(p, q, s) > β(p′, q′, s′), then this
quotient approaches 0 as n→∞.

For the rest of this section, whenever we denote structures by A or A′ , sometimes
with indices, we assume that they have no fixed point. Also, whenever we denote
groups by H or H′ , sometimes with indices, we assume that they have no fixed point.
Sometimes these assumptions are repeated and sometimes they are not necessary.

For different subgroups H and H′ of Aut(A) the sets Sn(A,H) and Sn(A,H′) may have
nonempty intersections, which complicates the analysis of an asymptotic estimate of the
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cardinality of a union like
⋃m

i=1 Sn(A,Hi). However, it turns out that for subgroups H
and H′ of Aut(A), either Sn(A,H) = Sn(A,H′) or |Sn(A,H)∩Sn(A,H′)| is negligibly
small for large enough n. The results 5.3 – 5.8 make this statement precise.

Definition 5.2 Suppose that A ∈ S and that H and H′ are subgroups of Aut(A).
We write H ≈A H′ if there is an automorphism g ∈ Aut(A) such that, for every
t = 1, . . . , r − 1, and every orbit O of H on At ,

g(O) = {(g(a1), . . . , g(at)) : (a1, . . . , at) ∈ O}

is an orbit of H′ on At .

Observe that ≈A is an equivalence relation on the set of subgroups of Aut(A).

Lemma 5.3 Suppose that A ∈ S and that H and H′ are subgroups of Aut(A). If
H ≈A H′ then Sn(A,H) = Sn(A,H′).

Proof Suppose that H ≈A H′ . Recall from the discussion after the statement of
Proposition 4.4 that Sn(A,H) is the disjoint union of all sets of the form

Sn(AX,H) = {M ∈ Sn(A,H) :M�Spt∗(M) = AX},

where X ⊆ [n], |X| = |A|, AX has universe X and AX ∼= A; and similarly for
H′ . Therefore it suffices to prove that for all such X ⊆ [n] and AX we have
Sn(AX,H) = Sn(AX,H′). By (4–4),

Sn(AX,H) =
⋃

Π1,...,Πr−1

Sn(AX,Π1, . . . ,Πr−1),

where the union ranges over all sequences Π1, . . . ,Πr−1 of (AX,H)-partitions (see
Definition 4.8) and Sn(AX,Π1, . . . ,Πr−1) was defined in (4–2). The same holds for
H′ . Hence it suffices to show that if Π1, . . . ,Πr−1 is a sequence of (AX,H)-partitions,
then Π1, . . . ,Πr−1 is a sequence of (AX,H′)-partitions.

So suppose that Π1, . . . ,Πr−1 is a sequence of (AX,H)-partitions and hence there is an
isomorphism f : A → AX such that, for each t = 1, . . . , r− 1, Πt is the set of orbits of
Hf = {fσf−1 : σ ∈ H} on Xt . As we assume that H ≈A H′ , there is an automorphism
g ∈ Aut(A) such that, for every t = 1, . . . , r − 1 and every orbit O of H on At , g(O)
is an orbit of H′ on At . It follows that f ′ = fg−1 : A → AX is an isomorphism and for
each t and each orbit O′ of H′ on At , g−1(O′) is an orbit of H on At . Consequently, for
each t , Πt is the set of orbits of Hf ′ = {f ′σ(f ′)−1 : σ ∈ H′} on Xt , so Π1, . . . ,Πr−1 is
a sequence of (AX,H′)-partitions.
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Lemma 5.4 Suppose that A ∈ S and that H and H′ are subgroups of Aut(A) such
that H 6≈A H′ . Let X ⊆ [n], |X| = |A| and let AX have universe X and AX ∼= A. If
Π1, . . . ,Πr−1 is a sequence of (AX,H)-partitions and Π′1, . . . ,Π

′
r−1 is a sequence of

(AX,H′)-partitions, then (Π1, . . . ,Πr−1) 6= (Π′1, . . . ,Π
′
r−1).

Proof Suppose that H 6≈A H′ , Π1, . . . ,Πr−1 is a sequence of (AX,H)-partitions and
Π′1, . . . ,Π

′
r−1 is a sequence of (AX,H′)-partitions. Towards a contradiction, assume

that (Π1, . . . ,Πr−1) = (Π′1, . . . ,Π
′
r−1). Then there are isomorphisms f : A → AX

and f ′ : A → AX such that, for every t = 1, . . . , r − 1, Πt is the set of orbits of
Hf = {fσf−1 : σ ∈ H} on Xt and Πt is also the set of orbits of Hf ′ = {f ′σ(f ′)−1 :
σ ∈ H′} on Xt . So Hf and Hf ′ have the same orbits on Xt , for each t . It follows
that g = (f ′)−1f : A → A is an automorphism such that for every t = 1, . . . , r − 1
and every orbit O of H on At , g(O) is an orbit of H′ on At . Hence H ≈A H′ which
contradicts our assumption.

Lemma 5.5 Suppose that A ∈ S and that H and H′ are subgroups of Aut(A) such
that H 6≈A H′ . Suppose that X ⊆ [n], |X| = |A| and that AX is a structure with
universe X such that AX ∼= A. If Π1, . . . ,Πr−1 is a sequence of (AX,H)-partitions
and Π′1, . . . ,Π

′
r−1 is a sequence of (AX,H′)-partitions, then

|Sn(AX,Π1, . . . ,Πr−1) ∩ Sn(AX,Π
′
1, . . . ,Π

′
r−1)|

|Sn(AX,Π1, . . . ,Πr−1) ∪ Sn(AX,Π′1, . . . ,Π
′
r−1)|

≤ ε(n),

where ε(n) → 0 as n → ∞ and the function ε : N → R only depends on A, H , H′

and the vocabulary.

Proof The assumptions and Lemma 5.4 imply that (Π1, . . . ,Πr−1) 6= (Π′1, . . . ,Π
′
r−1).

Lemma 4.11 is applicable to each one of the sequences Π1, . . . ,Πr−1 and Π′1, . . . ,Π
′
r−1 .

Now observe that the proof of Lemma 4.12 works out in exactly the same way even if
Π1, . . . ,Πr−1 is a sequence of (AX,H)-partitions and Π′1, . . . ,Π

′
r−1 is a sequence of

(AX,H′)-partitions; the proof of Lemma 4.12 only uses the assumption that the sequences
Π1, . . . ,Πr−1 and Π′1, . . . ,Π

′
r−1 are different. Hence Lemma 5.5 is proved.

Remark 5.6 If A ∈ S and H ⊆ Aut(A) is a subgroup, then, by Lemma 4.6 and the
argument between Proposition 4.4 and Lemma 4.6,

|Sn(A,H)| ∼ C
(

n
|A|

)
|Sn(AX,H)|,

where C is a constant that depends only on A, H and the vocabulary, X ⊆ [n], AX is a
structure with universe X such that AX ∼= A (and Sn(AX,H) is as defined in (4–1)).
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Corollary 5.7 Suppose that A ∈ S and that H and H′ are subgroups of Aut(A) such
that H 6≈A H′ . Then

|Sn(A,H) ∩ Sn(A,H′)|
|Sn(A,H) ∪ Sn(A,H′)|

≤ ε(n),

where ε(n) → 0 as n → ∞ and the function ε only depends on A, H , H′ and the
vocabulary.

Proof Suppose that A ∈ S and that H and H′ are subgroups of Aut(A) such that
H 6≈A H′ . By Remark 5.6, it suffices to prove that there is a function ε(n), depending
only on A, H and the vocabulary, such that limn→∞ ε(n) = 0 and for every X ⊆ [n]
and AX as above,

|Sn(AX,H) ∩ Sn(AX,H′)|
|Sn(AX,H) ∪ Sn(AX,H′)|

≤ ε(n).

Recall from (4–4) that

Sn(AX,H) =
⋃

Π1,...,Πr−1

Sn(AX,Π1, . . . ,Πr−1)

where the union ranges over all sequences of (AX,H)-partitions. Given X and AX there
is a finite bound α , depending only on A, H , H′ and the vocabulary, such that there
are at most α sequences Π1, . . . ,Πr−1 of (AX,H)-partitions and at most α sequences
Π′1, . . . ,Π

′
r−1 of (AX,H′)-partitions. Therefore the bound we are looking for is a fixed

multiple of the bound given by Lemma 5.5.

Lemma 5.8 Suppose that A ∈ S and that Hi , i = 1, . . . ,m, are subgroups of Aut(A)
such that if i 6= j, then Hi 6≈A Hj and |Sn(A,Hi)|

/
|Sn(A,Hj)| converges to a positive

rational number. Then ∣∣∣∣ m⋃
i=1

Sn(A,Hi)
∣∣∣∣ ∼ m∑

i=1

|Sn(A,Hi)|.

Proof From Corollary 5.7 it follows that if i 6= i′ then

(5–1) |Sn(A,Hi) ∩ Sn(A,Hi′)| ≤ o(1)
(
|Sn(A,Hi)| + |Sn(A,Hi′)|

)
,

where the bound o(1) depends only on A, H1, . . . ,Hm and the vocabulary. Now
the assumption that |Sn(A,Hi)|

/
|Sn(A,Hi′)| converges to a positive rational number

and (5–1) implies that if i 6= i′ , then

|Sn(A,Hi) ∩ Sn(A,Hi′)| ≤ o(1)|Sn(A,Hi)|,
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for some bound o(1) which depends only on A, H1, . . . ,Hm and the vocabulary. If we
let Un be the union of all intersections

Sn(A,Hi) ∩ Sn(A,Hi′)

where {i, i′} range over all subsets of [m] with cardinality 2, then we get, for every i,

|Sn(A,Hi)| − |Un| ≥
(
1− o(1)

)
|Sn(A,Hi)|,

where the bound o(1) depends only on A and H1, . . . ,Hm . Now we get∣∣∣∣ m⋃
i=1

Sn(A,Hi)
∣∣∣∣ ≥ m∑

i=1

(
|Sn(A,Hi)| − |Un|

)
≥
(
1− o(1)

) m∑
i=1

|Sn(A,Hi)|.

Since also ∣∣∣∣ m⋃
i=1

Sn(A,Hi)
∣∣∣∣ ≤ m∑

i=1

|Sn(A,Hi)|

the proof of the lemma is finished.

Proposition 5.9 Let A1, . . . ,Am,A′1, . . . ,A′m′ ∈ S be such that none of them has any
fixed point. Suppose that for every i = 1, . . . ,m and j = 1, . . . , li , Hi,j is a subgroup of
Aut(Ai) without any fixed point and that for every i = 1, . . . ,m′ and j = 1, . . . , l′i H′i,j
is a subgroup of Aut(A′i) without any fixed point. Then the following limit exists in
Q ∪ {∞}:

(5–2) lim
n→∞

∣∣∣⋃m′
i=1
⋃l′i

j=1 Sn(A′i,H′i,j)
∣∣∣∣∣∣⋃m

i=1
⋃li

j=1 Sn(Ai,Hi,j)
∣∣∣ .

Proof By just removing if necessary some Ai or A′i and relabelling the rest of the
structures and groups, we may assume that Ai 6∼= Aj if i 6= j and A′i 6∼= A′j if i 6= j.
Also, by Lemma 5.3, we may assume that Hi,j 6≈Ai Hi,j′ if j 6= j′ and that H′i,j 6≈A′i H′i,j′
if j 6= j′ .

By Proposition 5.1 (i), for all 1 ≤ i ≤ m and all 1 ≤ j, j′ ≤ li ,

|Sn(Ai,Hi,j′)|
/
|Sn(Ai,Hi,j)|

converges to a rational number or approaches infinity, as n → ∞. The same holds
for all 1 ≤ i ≤ m′ , all 1 ≤ j, j′ ≤ l′i and |Sn(A′i,H′i,j′)|

/
|Sn(A′i,H′i,j)|. Therefore

it suffices to prove (5–2) under the assumption that for all 1 ≤ i ≤ m and all
1 ≤ j, j′ ≤ li , |Sn(Ai,Hi,j′)|

/
|Sn(Ai,Hi,j)| converges to a positive rational number and
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for all 1 ≤ i ≤ m′ and all 1 ≤ j, j′ ≤ l′i , |Sn(A′i,H′i,j′)|
/
|Sn(A′i,H′i,j)| converges to a

positive rational number.

From our assumptions we have Sn(Ai,Hi,j) ∩ Sn(Ai′ ,Hi′,j′) = ∅ if i 6= i′ (and the same
for A′i , A′j , H′i,j and H′i,j′ ). By applying Lemma 5.8 and the assumptions, we now get∣∣∣⋃m′

i=1
⋃l′i

j=1 Sn(A′i,H′i,j)
∣∣∣∣∣∣⋃m

i=1
⋃li

j=1 Sn(Ai,Hi,j)
∣∣∣ =

∑m′
i=1
∑l′i

j=1 |Sn(A′i,H′i,j)|∑m
i=1
∑li

j=1 |Sn(Ai,Hi,j)|

=
|Sn(A′1,H1,1)|∑m

i=1
∑li

j=1 |Sn(Ai)|
+ . . . +

|Sn(A′m′ ,Hm′lm′ )|∑m
i=1
∑li

j=1 |Sn(Ai,Hi,j)|

=

( m∑
i=1

li∑
j=1

|Sn(Ai,Hi,j)|
|Sn(A′1,H

′
1,1)|

)−1

+ . . . +

( m∑
i=1

li∑
j=1

|Sn(Ai,Hi,j)|
|Sn(A′m′ ,H

′
m′,lm′

)|

)−1

.

Note that Proposition 4.4 implies that, for all i, j and all sufficiently large n,
|Sn(Ai,Hi,j)| > 0, and similarly for and A′i and H′i,j , so we do not divide by zero in the
above expression if n is large enough. By Proposition 5.1 (i), for every choice of i, i′, j
and j′ , |Sn(Ai,Hi,j)|

/
|Sn(A′i′ ,H′i′,j′)| converges to a rational number or approaches ∞.

This implies (5–2) so the proposition is proved.

Proposition 5.10 Let G and G′ be finite groups. Then the following limit exists in
Q ∪ {∞}:

lim
n→∞

|{M ∈ Sn : G′ ≤ Aut(M)}|
|{M ∈ Sn : G ≤ Aut(M)}|

.

Proof Let G and G′ be finite groups. Lemma 4.3 implies that there are finitely many

structures A1, . . . ,Am,A′1, . . . ,A′m′ ∈ S,
subgroups Hi,1, . . . ,Hi,li ⊆ Aut(Ai), for i = 1, . . . ,m, and

subgroups H′i,1, . . . ,H
′
i,l′i
⊆ Aut(A′i), for i = 1, . . . ,m′,

such that the following hold:

(i) None of the permutation groups Aut(Ai), Aut(A′i), Hi,j or Hi,j has any fixed
point.

(ii) |{M ∈ Sn : G ≤ Aut(M)}| ∼
∣∣∣⋃m

i=1
⋃li

j=1 Sn(Ai,Hi,j)
∣∣∣ as n→∞.

(iii) |{M ∈ Sn : G′ ≤ Aut(M)}| ∼
∣∣∣⋃m′

i=1
⋃l′i

j=1 Sn(A′i,H′i,j)
∣∣∣ as n→∞.
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Hence it suffices to prove that

lim
n→∞

∣∣∣⋃m′
i=1
⋃l′i

j=1 Sn(A′i,H′i,j)
∣∣∣∣∣∣⋃m

i=1
⋃li

j=1 Sn(Ai,Hi,j)
∣∣∣

exists in Q ∪ {∞}. But this follows immediately from Proposition 5.9.

By the definition of Sn(A,H) (Definition 4.1), for every M ∈ Sn(A,H), Aut(M)�
Spt∗(M) has a subgroup Hf such that Hf ∼=P H . The next lemma shows that for almost
all M∈ S(A,H) any such Hf has the same orbits as Aut(M)�Spt∗(M).

Lemma 5.11 Suppose that A ∈ S has no fixed point and that H is a subgroup of
Aut(A) without any fixed point. There is a function ε(n), depending only on A, H and
the vocabulary, such that limn→∞ ε(n) = 0 and the proportion of M∈ Sn(A,H) with
the following property is at most ε(n):

(∗) For some isomorphism f : A →M�Spt∗(M) such that Hf = {fσf−1 : σ ∈ H}
is a subgroup of Aut(M)�Spt∗(M), there is t ∈ {1, . . . , r − 1} such that the
orbits of Aut(M)�Spt∗(M) on Spt∗(M)t are not the same as the orbits of Hf

on Spt∗(M)t .

Proof Let M∈ Sn(A,H), X = Spt∗(M) and AX =M�X , so AX ∼= A. Moreover,
let f : A → AX be an isomorphism and assume that Hf = {fσf−1 : σ ∈ H} is
a subgroup of Aut(M)�X . Suppose that for some t ∈ {1, . . . , r − 1} the orbits of
Aut(M)�X on Xt are not the same as the orbits of Hf on Xt . It follows that Aut(M)�X
has fewer orbits on Xt than Hf . Hence there is a subgroup H′ of Aut(A) such that
H ⊆ H′ , H′ has fewer orbits than H on At and M ∈ Sn(A,H′). It follows that
H′ 6≈A H and that

M∈ Sn(A,H′) ∩ Sn(A,H).

Now Corollary 5.7 implies that

|Sn(A,H) ∩ Sn(A,H′)| ≤ ε(n)|Sn(A,H) ∪ Sn(A,H′)|,

where ε(n)→ 0 as n→∞ and ε(n) only depends on A, H , H′ and the vocabulary.
Since H is a subgroup of H′ we have

Sn(A,H′) ⊆ Sn(A,H),

which implies that

(5–3) |Sn(A,H′)| ≤ ε(n)|Sn(A,H)|.
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We have proved that if M∈ Sn(A,H) and satisfies (∗) then M∈ Sn(A,H′) for some
subgroup H′ of Aut(A) such that (5–3) holds. As the number of subgroups H′ of
Aut(A) is finite and depends only on A the lemma follows.

Definition 5.12 Suppose that A ∈ S has no fixed point and that H is a subgroup
of Aut(A) without any fixed point. For M ∈ Sn(A,H) we say that H is the
full automorphism group of M if for every isomorphism f : A → M�Spt∗(M)
such that Hf = {fσf−1 : σ ∈ H} is a subgroup of Aut(M)�Spt∗(M) we have
Hf = Aut(M)�Spt∗(M).

Lemma 5.13 Suppose that A ∈ S has no fixed point and that H is a subgroup of
Aut(A) without any fixed point. The proportion of M∈ Sn(A,H) such that H is the
full automorphism group of M converges to either 0 or 1 as n→∞.

Proof By Lemma 5.11, it suffices to consider M ∈ Sn(A,H) with the following
property:

For every isomorphism f : A → M�Spt∗(M) such that Hf is a subgroup of
Aut(M)�Spt∗(M), Hf and Aut(M)�Spt∗(M) have the same orbits on Spt∗(M)t

for all t = 1, . . . , r − 1.

For such M the question whether there is g ∈ Aut(M)�Spt∗(M) such that g /∈ Hf

depends only on the isomorphism type of A, H and the isomorphism f : A →M�
Spt∗(M). In fact, it depends only on the isomorphism type of A and H . For if
f and f ′ are isomorphisms from A to M�Spt∗(M), Hf = Aut(M)�Spt∗(M) and
g ∈ Aut(M)�Spt∗(M) does not belong to Hf ′ , then, since |Hf | = |Hf ′ | (because f ′f−1

is an isomorphism from Hf to Hf ′ as permutation groups), we get |Hf ′ | < |Aut(M)| =
|Hf | = |Hf ′ |, which is impossible.

Lemma 5.14 Suppose that A ∈ S has no fixed point and that H ⊆ Aut(A) is
a subgroup without any fixed point. For every group G ≤ H , the proportion of
M∈ Sn(A,H) such that G ∼= Aut(M) converges to either 0 or 1 as n→∞.

Proof Suppose that A ∈ S has no fixed point, that H ⊆ Aut(A) is a subgroup without
any fixed point and G ≤ H . Since Aut(M) ∼= Aut(M)�Spt∗(M) for every M ∈ S,
Lemma 5.13 implies that the proportion of M ∈ Sn(A,H) such that H ∼= Aut(M)
converges to either 0 or 1 as n → ∞. If G ∼= H it follows that the proportion
of M ∈ Sn(A,H) such that G ∼= Aut(M) converges to either 0 or 1 as n → ∞.
If G is isomorphic to a proper subgroup of H then, since H ≤ Aut(M) for every
M∈ Sn(A,H), it follows that G 6∼= Aut(M) for every M∈ Sn(A,H).
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Proposition 5.15 If G is a finite group then there is a rational number 0 ≤ a ≤ 1 such
that

lim
n→∞

|{M ∈ Sn : G ∼= Aut(M)}|
|{M ∈ Sn : G ≤ Aut(M)}|

= a.

Proof Let G be a finite group. By Lemma 4.3, there are finitely many

structures A1, . . . ,Am ∈ S and

subgroups Hi,1, . . . ,Hi,li ⊆ Aut(Ai), for i = 1, . . . ,m

such that:

(i) None of the permutation groups Aut(Ai) or Hi,j has a fixed point.

(ii) G ≤ Hi,j for all i and j.

(iii) |{M ∈ Sn : G ≤ Aut(M)}| ∼
∣∣∣⋃m

i=1
⋃li

j=1 Sn(Ai,Hi,j)
∣∣∣ as n→∞.

Lemma 5.14 says that for every Ai and every Hi,j the proportion of M∈ Sn(Ai,Hi,j)
such that G ∼= Aut(M) converges to either 0 or 1. Let (A′i,H′i,j), i = 1, . . . ,m′ ,
j = 1, . . . , l′i , enumerate the pairs (Ai,Hi,j) such that the proportion ofM∈ Sn(Ai,Hi,j)
for which G ∼= Aut(M) converges to 1. Then

|{M ∈ Sn : G ∼= Aut(M)}|
|{M ∈ Sn : G ≤ Aut(M)}|

∼

∣∣∣⋃m′
i=1
⋃l′i

j=1 Sn(A′i,H′i,j)
∣∣∣∣∣∣⋃m

i=1
⋃li

j=1 Sn(Ai,Hi,j)
∣∣∣ → a as n→∞

for some rational 0 ≤ a ≤ 1, by Proposition 5.9.

Proposition 5.16 Let G and G′ be finite groups. Then the following limit exists in
Q ∪ {∞}:

lim
n→∞

|{M ∈ Sn : G′ ∼= Aut(M)}|
|{M ∈ Sn : G ∼= Aut(M)}|

.

Proof By Lemma 4.3, there are finitely many

structures A1, . . . ,Am,A′1, . . . ,A′m′ ∈ S,
subgroups Hi,1, . . . ,Hi,li ⊆ Aut(Ai), for i = 1, . . . ,m, and

subgroups H′i,1, . . . ,H
′
i,l′i
⊆ Aut(A′i), for i = 1, . . . ,m′,

such that:

(i) None of the permutation groups Aut(Ai), Aut(A′i), Hi,j or Hi,j has any fixed
point.
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(ii) G ≤ Hi,j and G′ ≤ H′i,j for all i, j.

(iii) |{M ∈ Sn : G ≤ Aut(M)}| ∼
∣∣∣⋃m

i=1
⋃li

j=1 Sn(Ai,Hi,j)
∣∣∣ as n→∞.

(iv) |{M ∈ Sn : G′ ≤ Aut(M)}| ∼
∣∣∣⋃m′

i=1
⋃l′i

j=1 Sn(A′i,H′i,j)
∣∣∣ as n→∞.

As in the proof of Proposition 5.15 we now use Lemma 5.14. So let (A∗i ,H∗i,j),
i = 1, . . . ,m∗ , j = 1, . . . , l∗i , enumerate all pairs (Ai,Hi,j) such that the proportion of
M ∈ Sn(Ai,Hi,j) for which G ∼= Aut(M) converges to 1. Similarly, let (A+

i ,H
+
i,j),

i = 1, . . . ,m+ , j = 1, . . . , l+i , enumerate all pairs (A′i,H′i,j) such that the proportion of
M∈ Sn(A′i,H′i,j) for which G′ ∼= Aut(M) converges to 1. Then

|{M ∈ Sn : G′ ∼= Aut(M)}|
|{M ∈ Sn : G ∼= Aut(M)}|

∼

∣∣∣⋃m+

i=1
⋃l+i

j=1 Sn(A+
i ,H

+
i,j)
∣∣∣∣∣∣⋃m∗

i=1
⋃l∗i

j=1 Sn(A∗i ,H∗i,j)
∣∣∣ ,

where, by Proposition 5.9, the right side converges to a rational number or tends to
infinity as n→∞.

Remark 5.17 By the use of Lemma 4.3 and arguments similar to those already carried
out one can prove that an/bn converges to a rational number as n→∞ if, for example,
an = |Sn(spt ≥ k1)| and bn = |Sn(spt ≥ k2)|.

6 Logical limit laws

The main results of this section are Theorems 6.1 and 6.2, where the later implies
Theorem 1.2. In Remark 6.9 we observe that we do not have a zero-one law in
Theorems 6.2 or 1.2.

Theorem 6.1 Suppose that A ∈ S has no fixed point and let H be a subgroup of
Aut(A) without any fixed point. Then S(A,H) has a zero-one law.

Before proving Theorem 6.1 we derive:

Theorem 6.2 (i) Let A1, . . . ,Am ∈ S be such that none of them has any fixed point.
Suppose that for every i = 1, . . . ,m and j = 1, . . . , li , Hi,j is a subgroup of Aut(Ai)

without any fixed point. Then
m⋃

i=1

li⋃
j=1

S(Ai,Hi,j) has a limit law. Moreover, there is a

finite set Q of rational numbers that depends only on the Ai and Hi,j such that for every
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sentence ϕ, the proportion of n-element structures in the double union in which ϕ is
true converges to a number in Q as n→∞.

(ii) The following sets have limit laws: for every finite group G, {M ∈ S : G ∼=
Aut(M)} and {M ∈ S : G ≤ Aut(M)}, and for every integer m ≥ 2, S(spt∗ = m),
S(spt ≥ m) and S(spt∗ ≥ m). Moreover, in each case there is a finite set Q ⊆ Q such
that for every sentence ϕ, the proportion of n-element structures in which ϕ is true
converges to a number in Q as n→∞.

Proof Part (i) is immediate from Theorem 6.1 and Proposition 5.9. For part (ii) let X
be any one of the sets of structures considered. By Lemmas 4.2 and 4.3 (and in one case
the proof of Proposition 5.15), there are structures A1, . . . ,Al ∈ S without any fixed
point and for every i = 1, . . . , l and j = 1, . . . , li , a subgroup Hi,j of Aut(Ai) without
any fixed point, such that if Xn = X ∩ Sn then

|Xn| ∼
∣∣∣∣ l⋃

i=1

li⋃
j=1

Sn(Ai,Hi,j)
∣∣∣∣.

Now part (ii) follows from part (i).

6.1 Proof of Theorem 6.1

Suppose that A ∈ S has no fixed point and let H be a subgroup of Aut(A) without any
fixed point. We will define a theory TA,H and show that it is consistent and complete
and that for every finite subset ∆ ⊆ TA,H , the proportion of M∈ Sn(A,H) such that
M |= ∆ approaches 1 as n → ∞. Then the compactness theorem implies that if
TA,H |= ϕ then the proportion of M ∈ Sn(A,H) in which ϕ is true approaches 1 as
n→∞; otherwise that proportion approaches 0. The argument follows a well known
path, using so-called extension axioms. What makes things more complicated here,
compared with Fagin’s original proof Fagin ([8] or Ebbinghaus and Flum [6]) that for
every k ∈ N the proportion of M∈ Sn satisfying the k-extension axiom approaches 1
as n→∞, is that all members of Sn(A,H) have nonempty support (of cardinality |A|).
We will define TA,H to consist of a sentence ψ implying that the support is isomorphic
to A and, for each k ∈ N, a k-extension axiom ϕk which takes the support in careful
consideration.

To make the main ideas of the argument more transparent, to avoid heavy formulations
and notation and to expose more clearly how our argument differs from the “standard
argument” (in [6, 8] for example), we will prove Theorem 6.1 in the special case when
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the vocabulary consists of only one binary relation symbol R. It is straightforward to
generalise the argument to any finite relational vocabulary with at least one relation
symbol of arity at least 2, but it comes at the expense of longer definitions and heavier
notation and formulations in order to keep track of all data and how it can be combined.
Moreover, the arguments can be modified to the case when we assume that some
(possibly all) relation symbols are always interpreted as irreflexive relations, or when
we assume that some (possibly all) relation symbols are always interpreted as irreflexive
and symmetric relations.

For any structure M and formula ϕ(x) we let

ϕ(M) = {a ∈ M :M |= ϕ(a)}.

Let p = |A|, A = {a1, . . . , ap} and let x1, . . . , xp be distinct variables. For ai, aj ∈ A,
let ai ≈ aj mean that ai and aj belong to the same orbit of H . Let χA(x1, . . . , xp) be a
formula which describes the isomorphism type of A. More precisely, χA(x1, . . . , xp)
is the conjunction of all formulas of the following form: xi 6= xj for i 6= j; R(xi, xj) if
A |= R(ai, aj); and ¬R(xi, xj) if A |= ¬R(ai, aj).

We will define formulas θ(x), ξ(x, y) such that the proportion of M∈ Sn(A,H) such
that the following hold approaches 1 as n→∞:

(I) For every a ∈ M , M |= θ(a) if and only if a ∈ Spt∗(M).

(II) M satisfies the following sentence, denoted by ψ :

∃x1, . . . , xm

(
χA(x1, . . . , xm) ∧ ∀y

[
θ(y) ←→

m∨
i=1

y = xi

]
∧∧

ai≈aj

ξ(xi, xj) ∧
∧

ai 6≈aj

¬ξ(xi, xj) ∧

m∧
i,j=1

∀y
[
¬θ(y) ∧ ξ(xi, xj) −→

(
ξ(y, xi)←→ ξ(y, xj)

)
∧
(
ξ(xi, y)←→ ξ(xj, y)

)])
.

Then ψ says that there exists a copy of A whose universe is defined by θ and whose
orbit equivalence relation is defined by ξ . It is straightforward to define, for every
k ∈ N, a sentence ϕk such that for every, possibly infinite, structure M:

(III) If M |= ϕk then the following hold:

(a) |θ(M)| = m and the relation defined by ξ(x, y) restricted to θ(M) is an
equivalence relation.
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(b) For every choice of i ∈ {0, 1}, B ⊆ M \ θ(M) with |B| = k , sets E,E′

of ξ -equivalence classes on θ(M) and Y,Y ′ ⊆ B, there is c ∈ M \ θ(M)
such that

(i) M |= R(c, c) ⇐⇒ i = 1,

(ii) for every a ∈ θ(M),
M |= R(c, a) ⇐⇒ a belongs to some class in E and
M |= R(a, c) ⇐⇒ a belongs to some class in E′ , and

(iii) for every b ∈ B,
M |= R(c, b) ⇐⇒ b ∈ Y and
M |= R(b, c) ⇐⇒ b ∈ Y ′ .

We call ϕk the k-extension axiom. Assuming that we have θ(x), ξ(x, y), ψ and ϕk ,
k ∈ N, as above, we let

TA,H = {ψ} ∪ {ϕk : k ∈ N}.

Note that every model of TA,H is infinite. We postpone the proof that TA,H has a model
to the end of the argument. By Łos’ and Vaught’s categoricity theorem (see Rothmaler
[19, Theorem 8.5.1], for instance), TA,H is complete if we can prove that it is countably
categorical.

Lemma 6.3 If M1 and M2 are countable models of TA,H then M1 ∼=M2 .

Proof This is a standard back-and-forth argument, so we only sketch it. Suppose
that M1 and M2 are countable models of TA,H . Since both M1 and M2 satisfy
ψ it follows that θ(M1) and θ(M2) are finite and that there is an isomorphism
f0 :M1�θ(M1)→M2�θ(M2) such that for all a, b ∈ θ(M1), M1 |= ξ(a, b) if and
only if M2 |= ξ(f0(a), f0(b)). Therefore it suffices to prove the following statement:

Claim Suppose that B1 ⊆ M1 \ θ(M1), B2 ⊆ M2 \ θ(M2) and that

f :M1�(θ(M1) ∪ B1)→M2�(θ(M2) ∪ B2)

is an isomorphism. If c1 ∈ M1 \ (θ(M1)∪ B1) (or c2 ∈ M2 \ (θ(M2)∪ B2)) then there
is c2 ∈ M2 \ (θ(M2) ∪ B2) (or c1 ∈ M1 \ (θ(M1) ∪ B1)) such that f can be extended
to an isomorphism from M1�(θ(M1) ∪ B1 ∪ {c1}) to M2�(θ(M2) ∪ B2 ∪ {c2}).

Let k = |B1| = |B2|. The claim follows in a straightforward way since M and N are
models of {ψ,ϕk}.

Journal of Logic & Analysis 7:2 (2015)



42 Ove Ahlman and Vera Koponen

It remains to show that there are θ(x) and ξ(x, y) such that, for every k , the proportion
of M∈ Sn(A,H) that satisfy (I) and the sentences ψ and ϕk approaches 1 as n→∞.
Recall that, with the notation from Section 4,

Sn(A,H) =
⋃
X

⋃
AX

SX(AX,H),

where the first union ranges over all subsets of [n] with cardinality m = |A|, and for
each such subset X , the second union ranges over all structures AX with universe X that
are isomorphic to A. As observed in that section, if X 6= X′ then Sn(AX,H) is disjoint
from Sn(AX′ ,H). Moreover, if AX and A′X are different structures with universe X
then Sn(AX,H) is disjoint from Sn(A′X,H). Recall our assumption in this proof that
there is only one relation symbol R and it has arity r = 2. In Section 4 we also saw
(recall (4–4)) that for each Sn(AX,H),

Sn(AX,H) =
⋃
Π1

Sn(AX,Π1),

where the union ranges over all (AX,H)-partitions Π1 of X ; see Definition 4.8. The
number of (AX,H)-partitions of X is the same for every sufficiently large n, every
X ⊆ [n] with |X| = m and every AX ∼= A. Therefore it suffices to prove that there are
θ(x), ξ(x, y) and, for every k , 0 < α < 1 such that for every X ⊆ [n] with |X| = m,
every AX ∼= A with universe X and every (AX,H)-partition Π1 , the proportion of
M∈ Sn(AX,Π1) that satisfy (I) and the sentences ψ and ϕk is at least 1− αn .

For the rest of this section we fix X ⊆ [n] with |X| = |A| = m and AX ∼= A
with universe X . The results below refer to all large enough n with respect to other
parameters that occur.

Definition 6.4 We say that M∈ Sn(AX,Π1) has the k-extension property if (III) (b)
holds when ‘θ(M)’ is replaced by ‘X ’ and ‘ξ -equivalence classes’ with ‘parts of the
partition Π1 (of X )’.

Lemma 6.5 For every k ∈ N there is 0 < αk < 1, depending only on k and A, such
that the proportion of M∈ Sn(AX,Π1) which does not have the k-extension property
is at most αn

k .

Proof Recall that Sn(AX,Π1) ⊆ Tn(AX,Π1), where Tn(AX,Π1) was defined in (4–3)
in Section 4. From Lemma 4.9 we know that |Sn(AX,Π1)|

/
|Tn(AX,Π1)| → 1 as

n→∞, so it suffices to prove the statement of the lemma for Tn(AX,Π1) in the place
of Sn(AX,Π1). The reason for doing this is that Tn(AX,Π1) is easier to work with
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because its members do not have the constraint that the support of the structure is exactly
X (but from the arguments in Section 4 we know that for every M ∈ Tn(AX,Π1),
X ⊆ Spt∗(M)).

Let M∈ Tn(AX,Π1). A subset B ⊆ [n] \ X of cardinality k can be chosen in no more
than nk ways. Once B ⊆ [n] \ X with |B| = k is fixed, the number of ways to choose
i ∈ {0, 1}, E,E′ ⊆ Π1 and Y,Y ′ ⊆ B is bounded where the bound depends only on k
and A. Therefore it suffices to show, for an arbitrary fixed B ⊆ [n] \ X with |B| = k
and an arbitrary choice of i ∈ {0, 1}, E,E′ ⊆ Π1 and Y,Y ′ ⊆ B, that the proportion
of M∈ Tn(AX,Π1) such that there is no c ∈ M such that the conjunction of (i)–(iii)
of (III) is satisfied is at most αn

k for some constant 0 < αk < 1 that depends only on k
and A.

For arbitrary c ∈ [n] \ (X ∪ B) we estimate the probability that at least one of (i)–(iii)
of (III) fails. We consider Tn(AX,Π1) as a probability space by giving each member
the same probability. From the definition of Tn(AX,Π1) we see that the probability
that M ∈ Tn(AX,Π1) satisfies (i)–(iii) of (III) is 2−β for some β > 0 depending
only on |X| and |B|, and independently of what the case is for other elements than c
in [n] \ (X ∪ B). The probability that, for every c ∈ [n] \ (X ∪ B), the conjunction
of (i)–(iii) does not hold is therefore(

1− 2−β
)n−|X∪B|

.

As B can be chosen in at most nk ways it follows that the probability that the conjunction
of (i)–(iii) is not satisfied in M∈ Tn(AX,Π1) is at most αn

k for some 0 < αk < 1 that
depends only on k and A.

Remember that m = |A| = |X|. Let θ(x) denote the following formula:

∃y1, . . . , ym−1

( m−1∧
i=1

x 6= yi ∧
∧
i6=j

yi 6= yj ∧

∀z
[(

z 6= x ∧
m−1∧
i=1

z 6= yi

)
−→

(
R(x, z) ←→ R(y1, z)

)])
.

Lemma 6.6 Suppose that M ∈ Sn(AX,Π1) has the 2-extension property. Then for
all a ∈ M , a ∈ X = Spt∗(M) if and only if M |= θ(a).

Proof Suppose that M |= θ(a). Then there are distinct b1, . . . , bm−1 ∈ M different
from a such that for all c different from b1, . . . , bm−1 and from a,

M |= R(a, c) ←→ R(b1, c).
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As M has the 2-extension property this is only possible if a, b1 ∈ X = Spt∗(M) and
a and b1 belong to the same part of Π1 .

Now suppose that a ∈ Spt∗(M) = X . Let b1, . . . , bm−1 be such that

X = {a, b1, . . . , bm−1}

and a and b1 belong to the same part of Π1 . By the definition of Sn(AX,Π1), there is
an automorphism of M which sends a to b1 and fixes every element outside of X and
therefore we must have

M |= ∀z
[(

z 6= a ∧
m−1∧
i=1

z 6= bi

)
−→

(
R(a, z) ←→ R(b1, z)

)]
.

Let ξ(x1, x2) be the formula

∀z
(
¬θ(z) −→

[
R(z, x1) ←→ R(z, x2)

])
.

Lemma 6.7 Suppose that M ∈ Sn(AX,Π1) has the 2-extension property. Then for
all a1, a2 ∈ X = Spt∗(M), a1 and a2 belong to the same part of Π1 if and only if
M |= ξ(a1, a2).

Proof Suppose that a1, a2 ∈ X = Spt∗(M) and a1 and a2 belong to the same part of
Π1 . By the definition of Sn(AX,Π1), for every c ∈ M \ X there is an automorphism
which sends a1 to a2 and fixes every element outside of X . From Lemma 6.6 it follows
that M |= ξ(a1, a2).

Now suppose that a1, a2 ∈ X = Spt∗(M) and M |= ξ(a1, a2). From Lemma 6.6 it
follows that for all c ∈ M \ X

M |= R(c, a1)⇐⇒ R(c, a2).

Since we assume that M has the 2-extension property this is only possible if a1 and
a2 belong to the same part of Π1 .

According to the arguments before Definition 6.4 and the compactness theorem, the
following corollary concludes the proof of Theorem 6.1.

Corollary 6.8 For every k ∈ N, there is 0 < α < 1, depending only on k and A,
such that the proportion of M∈ Sn(AX,Π1) that satisfy (I) and the sentences ψ and
ϕl for l = 0, . . . , k is at least 1− αn .
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Proof Let k′ = max(2, k,m) (where m = |A|). By Lemma 6.5 there is 0 < α < 1,
depending only on k′ and A such that the proportion of M ∈ Sn(AX,Π1) with the
l-extension property for every l ≤ k′ is at least 1 − αn . From Lemmas 6.6 and 6.7
it follows that all M ∈ Sn(AX,Π1) with the l-extension property for every l ≤ k′

satisfy (I) and the sentences ψ and ϕl for l = 0, . . . , k .

Remark 6.9 Let S′ be any one of the sets of structures in part (ii) of Theorem 6.2
and let S′n = S′ ∩ Sn . We assume that if a finite group G is involved in the definition
of S′ then G is nontrivial. We will show that S′ does not satisfy a zero-one law. By
Lemmas 4.2 and 4.3 (and in one case the proof of Proposition 5.15), there are mutually
nonisomorphic A1, . . . ,Al ∈ S without any fixed point and, for i = 1, . . . , l and
j = 1, . . . , li , subgroups Hi,j ⊆ Aut(Ai) without any fixed point such that

|S′n| ∼
∣∣∣∣ l⋃

i=1

li⋃
j=1

Sn(Ai,Hi,j)
∣∣∣∣.

If S′ is {M ∈ S : G ≤ Aut(M)} or {M ∈ S : G ∼= Aut(M)}, then we may also
assume that G ≤ Hi,j or G ∼= Hi,j , respectively, for all i and j.

Now observe the following: Suppose that A ∈ S has no fixed point and that H is a
subgroup of Aut(A) without any fixed point. Let A′ and A′′ have the same universe
A as A and assume that for every relation symbol R, RA

′
= ∅ and RA

′′
= Ai if R is

i-ary. Then H is a subgroup of Aut(A′) and of Aut(A′′) and, from Proposition 4.4, it
follows that

|Sn(A′,H)|
|Sn(A,H)|

and
|Sn(A′′,H)|
|Sn(A,H)|

converge to the same c ∈ Q as n → ∞. From the assumption that S′ is one of the
sets of structures in part (ii) of Theorem 6.2 (and G is assumed to be nontrivial) it
follows that there must be i, i′, j, j′ such that Ai 6∼= Ai′ and both |Sn(Ai,Hi,j)|

/
|S′n| and

|Sn(Ai′ ,Hi′,j′)|
/
|S′n| converge to positive numbers c and c′ as n→∞. With the help

of the formula θ from the proof of Theorem 6.1 one can easily construct a sentence ϕ
which, in almost allM∈ S′ , expresses that “M�Spt∗(M) ∼= Ai ”. Then the proportion
of M∈ S′n in which ϕ is true converges to some number 0 < d < 1.

7 Unlabelled structures

The main result of this final section is Theorem 7.7, which implies Theorem 1.3, which
says that Theorems 1.1 and 1.2 hold also for unlabelled structures.
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Definition 7.1 (i) For every M∈ S, let [M] = {N ∈ S : N ∼=M}.
(ii) For every X ⊆ S, let [X] = {[M] :M∈ X}.
(iii) We say that a set X ⊆ S is closed under isomorphism if M ∈ X, N ∈ S and
N ∼=M implies that N ∈ X.

The next lemma is a generalisation of Lemma 4.3.10 in Ebbinghaus and Flum [6].

Lemma 7.2 If Xn ⊆ Sn is closed under isomorphism then

|
[
Xn
]
|n! =

∑
π∈Symn

|Sn(π) ∩ Xn|.

Proof For every M ∈ Sn and π ∈ Symn , let π(M) denote the unique structure
N ∈ Sn such that π is an isomorphism from M onto N . Fix an arbitrary M ∈ Xn

and let H = Aut(M). Then H is a subgroup of Symn and we consider the left cosets
of H in Symn . Note that for every N ∈ Xn we have N ∼=M if and only if there is
π ∈ Symn such that π(M) = N . For all π, σ ∈ Symn we have

πH = σH ⇐⇒ H = π−1σH ⇐⇒ π−1σ ∈ H = Aut(M) ⇐⇒ π(M) = σ(M)

As we assume that Xn is closed under isomorphism it follows that

|{N ∈ Xn : N ∼=M}| = the number of cosets (the index) of Aut(M) in Symn .

Hence
|Aut(M)| · |{N ∈ Xn : N ∼=M}| = |Symn| = n!,

and, as |Aut(N )| = |Aut(M)| if N ∼=M, we get∑
N∈Xn
N∼=M

|Aut(N )| =
∑
N∈Xn
N∼=M

|Aut(M)| = |{N ∈ Xn : N ∼=M}| · |Aut(M)| = n!.

If M1, . . . ,Mm is a sequence containing exactly one representative from every
isomorphism class that is represented in Xn , then m = |

[
Xn
]
| and∑

M∈Xn

|Aut(M)| =
m∑

i=1

∑
N∈Xn
N∼=Mi

|Aut(N )| =

m∑
i=1

n! = |
[
Xn
]
| · n!.

We also have∑
M∈Xn

|Aut(M)| = |{(M, π) :M∈ Xn and π ∈ Aut(M)}| =
∑

π∈Symn

|Sn(π) ∩ Xn|,

which concludes the proof of the lemma.
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Lemma 7.3 If Y ⊆ S is closed under isomorphism and p ≥ 2 is fixed, then

|Sn(spt∗ ≤ p) ∩ Y| ∼ n!|
[
Sn(spt∗ ≤ p) ∩ Y

]
| as n→∞.

Proof For every permutation π of [n] and M ∈ Sn , let π(M) denote the unique
structureM′ ∈ Sn such that π is an isomorphism fromM toM′ . IfM∈ Sn(spt∗ ≤ p),
π is a permutation of [n] and π(M) =M, then Spt(π) ⊆ Spt∗(M). Hence there are
at most p! permutations π of [n] such that π(M) =M. Since we assume that Y is
closed under isomorphism we get

|Sn(spt∗ ≤ p) ∩ Y| ≥ (n!− p!)|
[
Sn(spt∗ ≤ p) ∩ Y

]
|.

It is also clear that

|Sn(spt∗ ≤ p) ∩ Y| ≤ n!|
[
Sn(spt∗ ≤ p) ∩ Y

]
|.

Since (n!− p!) ∼ n! as n→∞, it follows that

|Sn(spt∗ ≤ p) ∩ Y| ∼ n!|
[
Sn(spt∗ ≤ p) ∩ Y

]
|.

Proposition 7.4 Suppose that m, t ∈ N, f1, . . . , fs ∈ Symn , spt(f1, . . . , fs) = m and
t > 2r(m! − 1)m/m! + 1, where r ≥ 2 is the maximal arity of the relation symbols.
Then there is λ > 0 such that for all sufficiently large n,

|
[
Sn(spt ≥ t)

]
|

|
[
Sn(f1, . . . , fs)

]
|
≤ 2−λnr−1

.

Proof Suppose that m ∈ N, f1, . . . , fs ∈ Symn and spt(f1, . . . , fs) = m. Let

Ŝn(f1, . . . , fs) = {M ∈ Sn :M∼= N for some N ∈ Sn(f1, . . . , fs)}

and observe that
[
Ŝn(f1, . . . , fs)

]
=
[
Sn(f1, . . . , fs)

]
. By Propositions 2.3 and 3.5, there

are constants p, α > 0 such that for all sufficiently large n,

|Sn(spt∗ > p)|
|Sn(f1, . . . , fs)|

≤ 2−αnr−1±O
(

nr−2
)
.

Since |Sn(f1, . . . , fs)| ≤ |Ŝn(f1, . . . , fs)|, we get

|Sn(spt∗ > p)|
|Ŝn(f1, . . . , fs)|

≤ 2−αnr−1±O
(

nr−2
)
,

which implies that

(7–1) |Ŝn(f1, . . . , fs) ∩ Sn(spt∗ ≤ p)| ∼ |Ŝn(f1, . . . , fs)|.
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Lemma 7.3 with Y = Ŝn(f1, . . . , fs) gives

|Ŝn(f1, . . . , fs) ∩ Sn(spt∗ ≤ p)| ∼ n!|
[
Ŝn(f1, . . . , fs) ∩ Sn(spt∗ ≤ p)

]
|.

This and (7–1) gives

(7–2) n!|
[
Ŝn(f1, . . . , fs) ∩ Sn(spt∗ ≤ p)

]
| ∼ |Ŝn(f1, . . . , fs)|.

Suppose that t > 2r(m!− 1)m/m! + 1. By Lemma 7.2 with Xn = Sn(spt ≥ t) we get

(7–3) |
[
Sn(spt ≥ t)

]
| · n! =

∑
π∈Symn

|Sn(π) ∩ Sn(spt ≥ t)|.

For every π ∈ Symn , |Sn(π) ∩ Sn(spt ≥ t)| ≤ |Sn(spt ≥ t)| and there are not more
than (t − 1)!nt−1 permutations π ∈ Symn such that spt(π) < t . Therefore,

(7–4)
∑

π∈Symn
spt(π)<t

|Sn(π) ∩ Sn(spt ≥ t)| ≤ (t − 1)!nt−1|Sn(spt ≥ t)|.

If π ∈ Symn and spt(π) ≥ t then Sn(π) ∩ Sn(spt ≥ t) = Sn(π), so we get

(7–5)
∑

π∈Symn
spt(π)≥t

|Sn(π) ∩ Sn(spt ≥ t)| =
∑

π∈Symn
spt(π)≥t

|Sn(π)|.

Now we get∑
π∈Symn

|Sn(π) ∩ Sn(spt ≥ t)|(7–6)

≤ (t − 1)!nt−1|Sn(spt ≥ t)| +
∑

π∈Symn
spt(π)≥t

|Sn(π)| by (7–4) and (7–5)

≤ (t − 1)!nt−1
∑

π∈Symn
spt(π)≥t

|Sn(π)| +
∑

π∈Symn
spt(π)≥t

|Sn(π)| by (2–2)

≤ 2(t − 1)!nt−1
∑

π∈Symn
spt(π)≥t

|Sn(π)|.
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Moreover, as |
[
Sn(f1, . . . , fs)

]
| = |

[
Ŝn(f1, . . . , fs)

]
| we have

|
[
Sn(spt ≥ t)

]
|

|
[
Sn(f1, . . . , fs)

]
|

=
|
[
Sn(spt ≥ t)

]
|

|
[
Ŝn(f1, . . . , fs)

]
|

(7–7)

≤
|
[
Sn(spt ≥ t)

]
|

|
[
Ŝn(f1, . . . , fs) ∩ Sn(spt∗ ≤ p)

]
|

=
n! · |

[
Sn(spt ≥ t)

]
|

n! · |
[
Ŝn(f1, . . . , fs) ∩ Sn(spt∗ ≤ p)

]
|

∼
∑

π∈Symn
|Sn(π) ∩ Sn(spt ≥ t)|
|Ŝn(f1, . . . , fs)|

by (7–3) and (7–2)

≤
2(t − 1)!nt−1∑

π∈Symn
spt(π)≥t

|Sn(π)|

|Sn(f1, . . . , fs)|
by (7–6)

≤ 2(t − 1)nt−1
∑

π∈Symn
spt(π)≥t

exp2

( r∑
i=1

kiorbi(π) −
r∑

i=1

kiorbi(f1, . . . , fs)
)

by (2–1) and (2–2).

Since t > 2r(m! − 1)m/m! + 1 it follows from the final estimates of the proof of
Proposition 2.3 that there is β > 0 such that∑

π∈Symn
spt(π)≥t

exp2

( r∑
i=1

kiorbi(π) −
r∑

i=1

kiorbi(f1, . . . , fs)
)
≤ 2−βnr−1±O(nr−2).

This together with (7–7) implies that there is λ > 0 such that

|
[
Sn(spt ≥ t)

]
|

|
[
Sn(f1, . . . , fs)

]
|
≤ 2−λnr−1

for all large enough n.

Corollary 7.5 Let m, t ∈ N.
(i) If t > 2r(m!− 1)m/m! + 1 then

lim
n→∞

|
[
Sn(spt ≥ t)

]
|

|
[
Sn(spt ≥ m)

]
|

= lim
n→∞

|
[
Sn(spt ≥ t)

]
|

|
[
Sn(spt∗ ≥ m)

]
|

= 0.

(ii) There is T > m such that

lim
n→∞

|
[
Sn(spt ≥ m) ∩ Sn(spt∗ ≤ T)

]
|

|
[
Sn(spt ≥ m)

]
|

= lim
n→∞

|
[
Sn(spt∗ ≥ m) ∩ Sn(spt∗ ≤ T)

]
|

|
[
Sn(spt∗ ≥ m)

]
|

= 1.
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Proof Part (i) follows immediately from Proposition 7.4, because if f ∈ Symn and
spt(f ) = m, then Sn(f ) ⊆ Sn(spt ≥ m) ⊆ Sn(spt∗ ≥ m).

Part (ii) is proved like Corollary 3.7, but with part (i) instead of Corollary 2.5.

Corollary 7.6 For every finite group G there is T ∈ N such that

lim
n→∞

|
[
{M ∈ Sn : G ≤ Aut(M) and spt∗(M) ≤ T}

]
|

|
[
{M ∈ Sn : G ≤ Aut(M)}

]
|

= 1.

Proof Let G be isomorphic to a permutation group without fixed points on [m] for
some m ∈ N+ . Let t = 2r(m! − 1)m/m! + 1. In the same way as we proved
Corollary 2.6, but using Proposition 7.4 instead of Proposition 2.3, we get

lim
n→∞

|
[
{M ∈ Sn : G ≤ Aut(M) and spt(M) ≤ t)}

]
|

|
[
{M ∈ Sn : G ≤ Aut(M)}

]
|

= 1.

By Proposition 3.5 the sought after T exists.

Theorem 7.7 For each result in the previous sections which, for some sequence
S′n ⊆ Sn , n ∈ N+ , and set X ⊆ S that is closed under isomorphism, can be stated in
the form

lim
n→∞

|S′n ∩ X|
|S′n|

= c

where 0 ≤ c ≤ 1, we also have

lim
n→∞

|
[
S′n ∩ X

]
|

|
[
S′n
]
|

= c

for the same constant c.

Remark 7.8 The statement in Theorem 7.7 that we get exactly the same limit c in
both the labelled and unlabelled case may seem counter intuitive, because we consider
structures with a nontrivial automorphism. Roughly speaking, the reason why we
indeed get exactly the same limit in the labelled and the unlabelled case is that for
each S′ =

⋃
n∈N+ S′n considered, there is p such that |S′n| ∼ |S′n ∩ Sn(spt∗ ≤ p)| and

therefore Lemma 7.3 can be applied in the proof of Theorem 7.7.

Example 7.9 Here are two examples of applications of Theorem 7.7.
(i) Let t ≥ 2, let ϕ be a sentence and let

Xϕ = {M ∈ S :M |= ϕ}.
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By Theorem 6.2, |Sn(spt ≥ t) ∩ Xϕ|
/
|Sn(spt ≥ t)| converges to some 0 ≤ c ≤ 1 as

n→∞. Now Theorem 7.7 implies that

lim
n→∞

|
[
Sn(spt ≥ t) ∩ Xϕ

]
|

|
[
Sn(spt ≥ t)

]
|

= c.

(ii) Let G be a finite group, ϕ a sentence and Xϕ as above. By Theorem 6.2,

|{M ∈ Sn : G ≤ Aut(M)} ∩ Xϕ|
|{M ∈ Sn : G ≤ Aut(M)}|

converges to some 0 ≤ c ≤ 1. Theorem 7.7 implies that

lim
n→∞

|
[
{M ∈ Sn : G ≤ Aut(M)} ∩ Xϕ

]
|

|
[
{M ∈ Sn : G ≤ Aut(M)}

]
|

= c.

Proof of Theorem 7.7. Suppose that S′n ⊆ Sn , for n ∈ N+ , that X ⊆ S is closed under
isomorphism and that we have proved (in previous sections) that

(7–8) lim
n→∞

|S′n ∩ X|
|S′n|

= c

for some 0 ≤ c ≤ 1. In all of these cases it is clear that S′ =
⋃∞

n=1 S′n is closed under
isomorphism. It also follows, either by definition or by results that have been proved,
that there is an integer p such that

lim
n→∞

|S′n ∩ Sn(spt∗ ≤ p)|
|S′n|

= 1 and(7–9)

lim
n→∞

|
[
S′n ∩ Sn(spt∗ ≤ p)

]
|

|
[
S′n
]
|

= 1.(7–10)

It follows from (7–8) and (7–9) that

(7–11) lim
n→∞

|Sn(spt∗ ≤ p) ∩ S′ ∩ X|
|Sn(spt∗ ≤ p) ∩ S′|

= c.

Lemma 7.3 with Y = S′ gives

|Sn(spt∗ ≤ p) ∩ S′| ∼ n!|
[
Sn(spt∗ ≤ p) ∩ S′

]
|,

and with Y = S′ ∩ X it gives

|Sn(spt∗ ≤ p) ∩ S′ ∩ X| ∼ n!|
[
Sn(spt∗ ≤ p) ∩ S′ ∩ X

]
|.

This together with (7–11) gives

|
[
Sn(spt∗ ≤ p) ∩ S′ ∩ X

]
|

|
[
Sn(spt∗ ≤ p) ∩ S′

]
|

=
n!|
[
Sn(spt∗ ≤ p) ∩ S′ ∩ X

]
|

n!|
[
Sn(spt∗ ≤ p) ∩ S′

]
|

∼ |Sn(spt∗ ≤ p) ∩ S′ ∩ X|
|Sn(spt∗ ≤ p) ∩ S′|

→ c as n→∞.
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Combining this with (7–10) gives

|
[
Sn(spt∗ ≤ p) ∩ S′n ∩ X

]
|

|
[
S′n
]
|

(7–12)

=
|
[
Sn(spt∗ ≤ p) ∩ S′n ∩ X

]
|

|
[
Sn(spt∗ ≤ p) ∩ S′n

]
|

·
|
[
Sn(spt∗ ≤ p) ∩ S′n

]
|

|
[
S′n
]
|

→ c as n→∞.

Finally we have

|
[
S′n ∩ X

]
|

|
[
S′n
]
|

=
|
[
Sn(spt∗ ≤ p) ∩ S′n ∩ X

]
|

|
[
S′n
]
|

+
|
[
Sn(spt∗ ≥ p + 1) ∩ S′n ∩ X

]
|

|
[
S′n
]
|

which tends to c as n→∞, because of (7–12) and (7–10). This concludes the proof of
Theorem 7.7.
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