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Abstract: We prove that a real x is 1-generic if and only if every differentiable
computable function has continuous derivative at x. This provides a counterpart to
recent results connecting effective notions of randomness with differentiability. We
also consider multiply differentiable computable functions and polynomial time
computable functions.
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1 Introduction

The notion of 1-genericity is an effective notion of genericity from computability theory
that has been studied extensively, see e.g. Jockusch [6], or the textbooks Odifreddi [11]
and Downey and Hirschfeldt [5]. 1-Genericity, or 2(1) -genericity in full, can be defined
using computably enumerable (c.e.) sets of strings as forcing conditions. This notion
captures a certain type of effective finite extension constructions that is common in
computability theory. In this paper we give an characterization of 1-genericity in terms
of familiar notions from computable analysis. This complements recent results by
Brattka, Miller, and Nies [1] that characterize various notions of algorithmic randomness
in terms of computable analysis. For example, in [1] it was proven (building on earlier
work by Demuth [4]) that an element x € [0, 1] is Martin-Lof random if and only if
every computable function of bounded variation is differentiable at x. Note that the
notion of Martin-Lof randomness, which one could also call E?—randomness, is the
measure-theoretic counterpart of the topological notion of 1-genericity.

The main result of this paper is as follows.

Theorem 1.1 A real x € [0,1] is I-generic if and only if every differentiable
computable function f : [0, 1] — R has continuous derivative at x.
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The two implications of this theorem will be proven in Theorems 4.3 and 5.2. Note
that by “differentiable computable function” we mean a computable function that is
classically differentiable, so that in particular the derivative need not be continuous.
Our result can be seen an effectivization of a result by Bruckner and Leonard.

Theorem 1.2 (Bruckner and Leonard [3, p.27]) Aset A C R is the set of discontinuities
of a derivative if and only if A is a meager 22 set.

One might expect that, in analogy to Theorem 1.1, n times differentiable computable
functions would characterize n-genericity. However, in section 7 we show that 1-
genericity is also equivalent to the nth derivative of any n times differentiable computable
function being continuous at x. In section 8 we consider differentiable polynomial time
computable functions and show that again these characterize 1-genericity.

Our notation is mostly standard. We denote the natural numbers by w. The Cantor
space of all infinite binary sequences is denoted by 2%, and 2<% is the set of all finite
binary strings. For a finite string ¢ and a finite or infinite string x, we denote by o C x
that o is an initial segment of x. For a string o € 2<%, we have

[l ={x€2¥:0Cx}.

The product topology on 2%, sometimes called the tree topology, or the finite information
topology, has all sets of the form [o] as basic open sets. For a set A C 2<%, we let

[A] = | JIo].

oEA

Thus every set A of finite strings defines an open subset of 2“. A subset of 2% is a E(l)
class, or effectively open, if it is of the form [A], with A C 2<“ computably enumerable
(ce.). Asetisa H? class, or effectively closed, if it is the complement of a E? class.
Thus E(f and H(l) classes form the first levels of the effective Borel hierarchy. As usual,
the levels of the classical Borel hierarchy are denoted by boldface symbols 22 and 1'[2.
These notions are defined in the same way for [0, 1], using rational intervals as basic
opens. We denote the interior of a set V C 2% by Int(V).

For unexplained notions from computability theory, we refer to Odifreddi [10] or
Downey and Hirschfeldt [5]. For background in descriptive set theory we refer to
Kechris [7] or Moschovakis [9]. Further background on (classical) Baire category
theory can also be found in Oxtoby [12].
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2 1-Genericity

First, let us recall what it means for an element x € 2% to be 1-generic. We will
then discuss 1-genericity for elements of [0, 1]. A discussion of the properties of
arithmetically generic and 1-generic sets can be found in Jockusch [6]. The “forcing-
free” formulation of genericity we use here is due to Posner, see [6, p115].

Given a sequence x € 2% and a set A C 2<%, we say that x meets A if there exists
o C x such that o € A; equivalently, if x € [A]. The set A is dense along x if for every
o C x there is an extension 7 _J ¢ such that [7] C [A]; equivalently, if x is in the
closure of the open set [A].

Definition 2.1 An element x € 2¥ is 1-generic if x meets every c.e. set A C 2<% that
is dense along x.

We now reformulate the definition of 1-genericity into a form that will be convenient in
what follows. This formulation is also better suited for the discussion of generic real
numbers (as opposed to infinite strings).

Lemma 2.2 Let A C 2<% and let V = 2%\ [A]. Then A is dense along x if and only
if x is not in the interior of V. Therefore, A is dense along x and x does not meet A if
and only if x € V \ Int(V).

Proof Note that A is dense along x if and only if every open set containing x has
nonempty intersection with [A]. Thus, A is dense along x if and only if every open
set disjoint from [A] does not contain x. However, the open sets disjoint from [A] are
exactly the open sets contained in V, of which Int(V) is the largest. Thus A is dense
along x if and only if Int(V) does not contain x. |

Corollary 2.3 For any x € 2% we have that x is 1-generic if and only if for every H(l)
class V C 2% we have x ¢ V \ Int(V).

One of the reasons this is interesting to mention explicitly is because a typical example
of a nowhere dense set is a closed set with its interior removed, and the 19 sets are the
simplest type of closed sets. Thus, the Corollary 2.3 says that x is 1-generic if it is not
in any of the simple, typical nowhere dense sets. This way of looking at 1-generic sets
complements the usual motivation of 1-genericity by forcing, and it also allows one to
easily compare 1-genericity with weak 1-genericity (since x is weakly 1-generic if it is
not in any H? -class with empty interior, see [5]).

With this equivalence in mind, we can now also define what it means for an element of
[0, 1] to be 1-generic.

Journal of Logic & Analysis 6:4 (2014)



4 R. Kuyper and S. A. Terwijn

Definition 2.4 Let x € [0,1]. We say that x is 1-generic if for every II{ class
V C [0, 1] we have x ¢ V \ Int(V).

There is a natural ‘almost-homeomorphism’ between 2% and [0, 1]: given an infinite
sequence x € 2% we have 0.x € [0, 1] (interpreting the sequence as a decimal expansion
in binary), and conversely given y € [0, 1] we can take the binary expansion of y
containing infinitely many 0s, which gives us an element of 2. Note that the problem
of nonunique expansions only occurs for rationals, which are not 1-generic anyway. It
is thus natural to ask if the notions of 1-genericity in these two spaces correspond via
this mapping. The next proposition says this is indeed the case.

Proposition 2.5 For any irrational x € [0, 1] we have that x is 1-generic if and only if
its (unique) binary expansion is 1-generic in 2.

Proof Let 2“ be the set of infinite binary sequences which contain infinitely many Os
and infinitely many 1s. Then the ‘almost-homeomorphism’ given above in fact restricts
to a homeomorphism to 2* and [0, 1]_, where [0, 1]_ is [0, 1] without the dyadic
rationals. Therefore, 1-genericity on 2 and [0, 1]_ (which are defined as in Definition
2.4) coincide.

Note that 2% is dense in 2* and that [0, 1]_ is dense in [0, 1]. Thus, it is enough if
we can show that if ¥ C X is such that Y is dense in X, then 1-genericity on X and
Y coincide for elements y € Y. Given a H(l) class VC X,let W=VNY. Then W
isa H(l) class in Y. Conversely, every H? class W C Y is of the form W =V N Y by
definition of the induced topology.

We claim that Intx(V) NY = Inty(W). Clearly, Intx(V) N Y C Inty(W). Conversely, if
we let Inty(W) = UNY for some open U C X, then U C Intx(VU (X Y)). Towards a
contradiction, assume that U N (X \ V) # (), then this is a nonempty open set. However,
we also have UN (X \ V) C X \ Y, which contradicts the fact that ¥ is dense in X.
Thus, we see that U C V, and therefore U C Intx(V). So, Intx(V) N Y = Inty(W).

So, we see that y € V \ Intx(V) if and only if y ¢ W \ Inty(W). This completes the
proof. |

3 Effective Baire class 1 functions

In this section we will discuss what it means for a function to be of effective Baire class
1, and discuss some of the basic properties of these functions. First, let us recall what it
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means for a function on the reals to be computable. Our definitions follow Moschovakis

[9].

Definition 3.1 Let f : [0,1] — R. We say that f is computable if for every basic
open set U we have that f~!(U) is E? uniformly in U, i.e. if there exists a computable
function o : Q x Q — w such that for all ¢, 7 € Q we have that f~!((g, r)) is equal to
the E(l’ class given by the index a(q,r).

Definition 3.1 is equivalent to the formulation with computable functionals, see e.g. the
discussion in Pour-El and Richards [13].

Functions of effective Baire class 1 are obtained by weakening the above definition as
follows.

Definition 3.2 A function f : [0, 1] — R is of effective Baire class I if for every basic
open set U we have that f~1(U) is X9 uniformly in U.

Replacing 28 by 28 in the above definition, we obtain what is known as a function
of (non-effective) Baire class 1. Before we give an important example of an effective
Baire class 1 function, let us first consider the following proposition, which gives an
equivalent condition for a function to be of effective Baire class 1. This proposition
mirrors the classical proposition which says that a function is of Baire class 1 if and only
if it is a pointwise limit of continuous functions, see e.g. Kechris [7, p. 192]. (This does
not hold for all Polish spaces; it holds for f : X — Y if either X is zero-dimensional or
Y=R)

Proposition 3.3 Letf : [0,1] — R. The following are equivalent:

(i) f is of effective Baire class 1,

(i1) f is the pointwise limit of a uniform sequence of computable functions, i.e. there
exists a sequence fy, f1,... of functions from [0, 1] to R converging pointwise
to f and a computable function « : w X @ X Q — w such that for all g,r € Q
and all n € w we have that f;'((g, r)) is equal to the E(l) class given by the index

an, q,r).

Proof (ii)) — (i): Let fy,f1,... be a sequence of uniformly computable functions
converging to f and let U be any basic open set. Then U = Uiew,v,-gU Vi, where
Vo, V1, ... is a computable enumeration of the closed intervals with rational endpoints.

We claim:
o= UNs o,

ViCUn€wmz=n
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6 R. Kuyper and S. A. Terwijn

which is clearly Eg uniformly in U.

To prove the claim, let x € f*I(U). Then f(x) € U, so there exists V; C U such that
f(x) € Int(Vy), say (f(x) — e,f(x) + ) C V;. Let n € w be such that for every m > n
we have that |f,,(x) — f(x)| < €. Then for every m > n we have that x € £, '(V;), which
proves the first inclusion.

Conversely, let n € w, V; C U and x € ﬂm% Im Y(V;). Then for every m > n we have
fn(x) € Vi, and since V; is closed we then also have f(x) = lim,;,_ o fin(x) € V; C U,
which completes the proof of the claim.

(i) — (i1): This follows by effectivizing Kechris [7, Theorem 24.10]; this result is also
mentioned (without proof) in Moschovakis [9, Exercise 3.E.14]. Since this implication
is not used anywhere in this paper, we will not go into further detail. a

Using this proposition, we can now give an important example of effective Baire class 1
functions: derivatives of computable functions. This also explains our interest in them.

Corollary 3.4 Letf : [0,1] — R be a differentiable computable function. Then [’ is
of effective Baire class 1.

Proof Let f,(x) = 2"(f(x+27")—f(x)). To account for the problem that for x+27" > 1
the value f(x 4+ 27") is not defined, we let f(y) = —f(2 — y) + 2f(1) for y > 1 (i.e. we
flip and mirror f on [1,2]). Then the sequence fy, fi, ... is uniformly computable and
converges pointwise to 7, so f” is of effective Baire class 1 by Proposition 3.3. a

4 Continuity of Baire class 1 functions

At the basis of this section lies the following important classical result.

Theorem 4.1 (Baire) Let f : [0, 1] — R be of (non-effective) Baire class 1. Then the
points of discontinuity of f form a meager 23 set.

Proof See Kechris [7, Theorem 24.14] or Oxtoby [12, Theorem 7.3]. O

We will now effectivize this result.

Theorem 4.2 Let f : [0,1] — R be of effective Baire class 1. Then f is continuous
at every 1-generic point.
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Effective Genericity and Differentiability 7

Proof We effectivize the proof from Kechris [7, Theorem 24.14]. Let Uy, Uy, ... be
an effective enumeration of the basic open sets. Now f is continuous at x if and only if
the inverse image of every neighborhood of f(x) is a neighborhood of x. Thus, f is
discontinuous at x if and only if there exists an open set U containing f(x) such that
every open set contained in f~!(U) does not contain x. Hence

{x €[0,1] | fis discontinous at x} = | J £~ (Uyp) \ Int(f ™" (U,)).

ncw

Now, let x be such that f is discontinuous at x and let n be such that x € f -, \
Int(f~'(U,)). Because f is of effective Baire class 1, we know that f~!(U,) is Eg. So,
let f~1(U,) = Uicw Vi» where each V; is H(l). Then it is directly verified that

U\ Int(F " (U)) € (Vi \ Int(Vy)).
iCw

Let i be such that x € V; \ Int(V;). Then x is not 1-generic by Definition 2.4. a

Combining this result with the fact that derivatives of computable functions are of
effective Baire class 1, we get the first implication of Theorem 1.1 as a consequence.

Theorem 4.3 If f : [0,1] — R is a computable function, then f’ is continuous at
every l-generic real.

Proof From Corollary 3.4 and Theorem 4.2. |

5 Functions discontinuous at non-1-generics

In this section we will prove the second implication of Theorem 1.1. To this end, we will
build, for each H(1) class V, a Volterra-style differentiable computable function whose
derivative will fail to be continuous at the points whose non-1-genericity is witnessed
by V. We have to be careful in order to make this function computable.

Theorem 5.1 Let V be a H(1) class. Then there exists a differentiable computable
function f : [0, 1] — R such that f’ is discontinuous at every x € V \ Int(V).

Proof In the construction of f below, we first define auxiliary functions g and 4.

Construction. We define an auxiliary function g, with the property that g is differentiable
and computable, and g’ is continuous on (0, 1) and discontinuous at 0 and 1.
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8 R. Kuyper and S. A. Terwijn

Define the function % on [0, 1] by #(0) = 0 and
1
h(x) = x° sin(—z)
X
for x > 0. Then A is computable and differentiable, with derivative /#'(0) = 0 and
1 1 1
H (x) = 2xsin(—) — 2= cos(—)
X X X

when x > 0. Note that /’ is discontinuous at x = 0. Fix a computable xy € (0, %] such
that 4/(xg) = 0. Such an x; exists, because /' has isolated roots, and isolated roots of

computable functions are computable. Now define g on [0, 1] by
4

0 ifx=0

h(x) if x € (0, xo]

g(x) = < h(xo) if x € [x0, 1 — xo]
h(1 —x) ifx€[1—xp,1)

\0 ifx=1.
Then g is a differentiable computable function, with derivative
0 ifx=20
K (x) if x € (0, xo]
g =<0 if x € [xp,1 — x0]
W1 —x) ifxe[l—xyl)
0 if x = 1.

In particular, we see that g’ is continuous exactly on (0, 1). We will use g to construct f.

For the given H? class V, let U = [0,1] \ V, and fix computable enumerations
q0,41, .. and rg, ry, ... of rational numbers in [0, 1] such that U = U,zew[qn, r,] and
such that the (g, r,) are pairwise disjoint. We will construct f as a sum of a sequence
Jo,f1, ... of uniformly computable functions. We define f,, by:

0 if x € [0, gp]
Yn — {n X —{gn .
(5-1) filo) = § P g( 1 ) if x € [qu, ral
'n — (qn
0 ifx € [ry, 1].

Finally, we let f = >~ f,.
Verification. We first show that f is computable. To this end, first observe that each

Ju 1s supported on (g, ), and therefore the supports of the different f;, are disjoint.
Furthermore, each f;, is bounded by 27".
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Let (a,b) be a basic open subset of R. We distinguish two cases. First, assume
0 & (a,b). We assume a > 0, the case b < 0 is proven in a similar way. Let n € w
be such that 27" < a. Then, since the supports of the f,, are disjoint, and each f,, is
bounded by 27", we have

@by = (fo + -+ + £ (@, b)),
which is EO because a finite sum of computable functions is computable.

In the second case, we have 0 € (a,b). Let n be such that |a|, |b| > 27". Then, again
because the supports of the f,,, are disjoint, we see that if x is not in the support of any
Jfm for m < n then certainly f(x) € (a, b). Therefore we have
FN@b) = (fo+ -+ + £ (@, ) U ()10, 11\ [gm, ),
m<n
which is also Z(l). It is clear that the case distinction is uniformly computable, so it
follows that f is computable.

Next, we check that f is differentiable. We first note that every f; is differentiable,
because g is differentiable. Let x € [0,1]. We distinguish two cases. First, if x is
in some (g, r,) then it is immediate that f is differentiable at x with derivative f (x),
because the intervals (g, r,) are disjoint. Next, we consider the case where x is not in
any interval (g, r,). Note that in this case we have f(x) = 0. Fix m € w. Then we
have:

lim M (fm—i—l +fm+2 + ... )(y) )

y=x |y — X y—Xx
Because fy + - - - + f;, is differentiable at x with derivative 0, this is equal to:

lim (fing1 + fing2 —|—...)(y)‘ .
y—x y—x

< lim (fo + - +fm)(y)

y ' y—>x

y—Xx

(5-2)

To show that this limit is 0, we will prove that it is bounded by m for every m.
Let y € [0, 1] be distinct from x. Let us assume that x < y; the other case is proven in
the same way. If y is not in any (g, r,) for n = m+ 1 then (f4-1 +finr2 +...)») = 0.
Otherwise, there is exactly one such n. Then:

(ﬁn—f—] +fm+2 + ... )(Y) _ fn(y) fn(y)

y—x y—x Y—4qn
where the last inequality follows from the fact that x does not lie in (g,,r,). We
distinguish three cases. First, if z = 2=~ q” - € (0, x0], then

Jn()
Y —dqn

_ ‘ M — Qn)g(z)
Y —qn

A= . 2 _
— ‘2 nZSln(Z )’ < 2 n < m
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10 R. Kuyper and S. A. Terwijn

Next, if z € [xp, 1 — xp] (which is nonempty because xp < %), then

hO) | 270w —ad 27
Y —4qn Y —dqn z 21 — xo)
where we use the fact that z > xy. Finally, if z € [1 — x, 1], then

LO) | |2 =gk =2 _ L _ 1

Y = G Y = G 21z T 2n(1 —x) - 2"(1 — xo)

Combining this with (5-2) we see that lim,_, Jy% < m Since m was arbitrary

this shows that f is differentiable at x, with derivative f'(x) = 0.

Finally, we need to verify that f’ is discontinuous at x for all x € V \ Int(V). Therefore,
let x € V \ Int(V). Then every open set W containing x has nonempty intersection
W N U (recall that U = [0, 1]\ V), but this intersection does not contain x. We have
shown above that f’(x) = 0. We will show that for every open interval I containing
x there is a point y € I such that f’(y) < —1, which clearly shows that f’ cannot be
continuous at x. Fix an open interval I containing x. Then I N U # (), so there is
an n € w such that I N [gy, r,] is nonempty. Note that / contains x and therefore /
cannot be a subinterval of (g, ,;]. Therefore there exists a g, < s < r; such that either
[gn,s) C I or (s,r,] C I. We will assume the first case; the second case is proven in a
similar way.

Note that on [gy, s) the function f” is equal to f; . For y € (¢,,s) we thus have:
Fo) =27"¢( — g2/ ra — qn))-

So, we need to show that there is a y € (g, s) such that g'((y — gn)/(rs — qn)) < —2", or
equivalently, that there is a z € (0, (s — g,)/(rn — ¢»)) such that g’'(z) < —2". Without

loss of generality, (s — g,)/(r» — gn) < Xo. Let k > n be such that 27% < rsn%qq””. Then:
1
g (1/(25m) = T sin(2%7) — 2K\ /7 cos(2%)
_2k+lﬁ < _2]{ < _2}1
This completes the verification. a

Theorem 5.2 If x € [0, 1] is such that every differentiable computable function
f :10,1] = R has continuous derivative at x, then x is 1-generic.

Proof If x is not 1-generic, then there is a H? class V such that x € V \ Int(V).
Applying Theorem 5.1 to V gives a differentiable computable function f for which f’
is discontinuous at x. O
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6 n-Genericity

The notion of 1-genericity (Definition 2.1) corresponds to the first level of the arithmetical
hierarchy. Higher genericity notions can be defined using forcing conditions from higher
levels of the arithmetical hierarchy. As for 1-genericity, an equivalent formulation can
be given as follows, see Jockusch [6]:

Definition 6.1 An element x € 2“ is n-generic if x meets every X0 set of strings
A C 2=V that is dense along x.

As usual, let () denote the halting set, and let ) denote the n-th jump. Since a X0 set
of strings is the same as a E? set of strings relative to )"~1, a set is n-generic if and
only if it is 1-generic relative to (¢~

Corollary 2.3 relativizes to:

Proposition 6.2 For any x € 2“ we have that x is n-generic if and only if for every
n—1
H(l)’@( " class V C 2% we have x ¢ V \ Int(V).

. (n—1) . . .
Note that in general a H?’w class in 2“ is not the same as a I1Y class, since the latter
need not even be closed. (And even if one assumes that the class is closed the notions
are not the same, see [5, p76].)
Given this equivalence, we can now generalize Definition 2.4 to:

. .. (n—1)

Definition 6.3 Let x € [0, 1]. We say that x is n-generic if for every H?’w class
V C [0, 1] we have x ¢ V \ Int(V).

Further justification for this definition comes from the fact that Proposition 2.5 relativizes:
An irrational x € [0, 1] is n-generic according to Definition 6.3 if and only if its binary
expansion is n-generic in 2%.

It is straightforward to check that the results of all the previous sections relativize to an
arbitrary oracle A. This gives the following relativized version of Theorem 1.1:

Theorem 6.4 A real x € [0, 1] is 1-generic relative to A if and only if for every
differentiable A-computable function f : [0,1] — R, f’ is continuous at x.

Taking A = ()"~ D, this immediately gives the following characterization of n-genericity:

Corollary 6.5 A real x € [0, 1] is n-generic if and only if for every differentiable
(=1 _computable function f : [0,1] — R, f’ is continuous at x.

Also, taking all n together, we see that a real x is arithmetically generic if and only if
every differentiable arithmetical function has continuous derivative at x.

Journal of Logic & Analysis 6:4 (2014)



12 R. Kuyper and S. A. Terwijn

7 Multiply differentiable functions

We have characterized 1-genericity using the continuity of the derivatives of (once)
differentiable computable functions. One might wonder: what kind of effective
genericity for x corresponds to every twice differentiable, computable function having
continuous second derivative at x? Or, more generally, what corresponds to every n
times differentiable, computable function having continuous nth derivative at x? It
turns out that the answer is always 1-genericity. To show this we will need the following
proposition, which essentially tells us that the case for n > 2 collapses to the case
n=72.

Proposition 7.1 Let f : [0,1] — R be computable and twice continuously differen-
tiable. Then f’ is computable.

Proof See e.g. Pour-El and Richards [13, Theorem 1.2]. O

If the second derivative of a computable function exists, it is easy to see that it is of
effective Baire class 2 (i.e. a pointwise limit of a computable sequence of functions
of effective Baire class 1), by similar arguments as in the proof of Corollary 3.4
However, using the following proposition we can easily see that the second derivative
of a computable function is in fact of effective Baire class 1.

Proposition 7.2 Let f : [0, 1] — R be twice differentiable. Then

ne g SR +f(x—h) — 2f(x)
' = fm i .
Proof Seee.g. Rudin [14, p. 115]. a

Theorem 7.3 Fix n > 1. Then areal x € [0, 1] is 1-generic if and only if every n
times differentiable, computable function f : [0, 1] — R has continuous nth derivative
at x.

Proof For n = 1 this is exactly Theorem 1.1. So, we may assume n > 2. First, if
x € [0, 1] is not 1-generic, then by Theorem 1.1 there is a differentiable, computable
function g : [0, 1] — R such that g’ is not continuous at x. Now let 7; = g and let A;
be a computable antiderivative of ;_; for 2 < i < n (which exists by Ko [8, Theorem
5.29]). Then, if we let f = h,, we see that f is an n times differentiable, computable
function such that ™ is discontinuous at x.

Conversely, if f is an n times differentiable, computable function, then f("_z) is
computable by Proposition 7.1. So, f™ is of effective Baire class 1 by Proposition 7.2.
Thus, if ™ is discontinuous at x, then x is not 1-generic by Theorem 4.2. a
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8 Complexity theoretic considerations

In this section we discuss polynomial time computable real functions. The theory of
these functions is developed in Ko [8], to which we refer the reader for the basic results
and definitions. Briefly, a function f : [0, 1] — R is polynomial time computable if for
any x € [0, 1] we can compute an approximate value of f(x) to within an error of 27"
in time n* for some constant k.

Most of the common functions from analysis, such as rational functions and the
trigonometric functions, as well as their inverses, are all polynomial time computable,
see e.g. Brent [2] and Weihrauch [15]. Also, the polynomial time computable functions
are closed under composition. With this knowledge, it is not difficult to see that the
construction of the function f in section 5 can be modified to yield a polynomial time
computable function, rather than just a computable one. For this it is also needed
that the complement of the H(l) class V from Theorem 5.1 can be represented by
a polynomial time computable set of strings. This is similar to the fact that every
nonempty computably enumerable set is the range of a polynomial time computable
function, simply by sufficiently slowing down the enumeration. Since the enumeration of
U = [0, 1]\ V in the proof of Theorem 5.1 is now slower, the definition of f,, in (5-1) has
to be adapted by replacing 2" by 2/” | where #(n) is the stage at which the interval (g,,, ,,)
is enumerated into U. This modification ensures that the functions f,, are uniformly
polynomial time computable, so that also the function f =}, f,, is polynomial time
computable. Thus we obtain the following strengthening of Theorem 5.1:

Theorem 8.1 LetV be a H(l) class. Then there exists a differentiable polynomial time
computable function f : [0, 1] — R such that " is discontinuous at every x € V\ Int(V).

We now have the following variant of Theorem 1.1:

Theorem 8.2 A real x € [0, 1] is 1-generic if and only if for every differentiable
polynomial time computable function f : [0,1] — R, f’ is continuous at x.

Proof The “only if” direction is immediate from Theorem 1.1. For the “if” direction;
if x is not 1-generic, then there is a H? class V such that x € V \ Int(V). Theorem 8.1
then gives a differentiable polynomial time computable function f for which f” is
discontinuous at x. |
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