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On zeros of Martin-Löf random Brownian motion
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Abstract: We investigate the sample path properties of Martin-Löf random Brow-
nian motion. We show (1) that many classical results which are known to hold
almost surely hold for every Martin-Löf random Brownian path, (2) that the effec-
tive dimension of zeroes of a Martin-Löf random Brownian path must be at least
1/2, and conversely that every real with effective dimension greater than 1/2 must
be a zero of some Martin-Löf random Brownian path, and (3) we will demonstrate
a new proof that the solution to the Dirichlet problem in the plane is computable.
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1 Background and notation

1.1 Brownian motion

Heuristically, Brownian motion is the random continuous function resulting from the
limit of discrete random walks as the time interval approaches zero. The paths of
Brownian motion are considered typical with respect to Wiener measure on a function
space, generally C[0, 1], C[0,∞), or C[I,Rn] for I = [0, 1] or [0,∞). The Martin-
Löf random elements of a function space with respect to Wiener measure are known
as Martin-Löf random Brownian motion. Fouché showed that the class of Martin-Löf
random Brownian motion is the same as the class of complex oscillations, a class
of functions defined by Asarin and Pokrovskii [2] and later investigated to a greater
degree by Fouché [7, 8, 9], Davie and Fouché [5], Kjos-Hanssen and Nerode [16], and
Szabados [17].

In this article, we continue the study of Martin-Löf random Brownian motion. We
will demonstrate that many classical theorems which hold almost surely hold for every
Martin-Löf random Brownian path, we will prove results toward a classification of
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the effective dimension of the zeroes of Martin-Löf random Brownian motion, and we
will demonstrate a new proof that the solution to the Dirichlet problem in the plane is
computable.

We use 2ω to denote infinite binary strings, which we sometimes identify with reals on
[0, 1]. We denote the space of continuous functions f : [0, 1]→ R and f : [0,∞)→ R
by C[0, 1] and C[0,∞) respectively. For other cases, the space of continuous functions
from a set X to a set Y will be denoted by C(X,Y).

Standard (one dimensional) Brownian motion is a real-valued stochastic process
{B(t) : t ∈ I} (I = [0, 1] or I = [0,∞)) where the following hold. First, for any t0 <
t1 < · · · < tn the increments B(tn)−B(tn−1),B(tn−1)−B(tn−2), . . . ,B(t2)−B(t1)
are independent random variables. Second, for all t ≥ 0 and h > 0 the increments
B(t+h)−B(t) are normally distributed with mean 0 and variance h. Third, B(0) = 0
almost surely, and B is almost surely continuous. These requirements induce a unique
measure on the space of real-valued continuous functions over I called Wiener mea-
sure, which we denote by P. The values taken by the random variable B are called
sample paths, or simply paths.

It is possible to define Brownian motion starting at any point x at time 0, rather than
starting at the origin, in which case we will denote the corresponding measure by Px

(in other words, Px(B ∈ A) = P(x + B ∈ A)). When we wish to emphasize that we
are talking about standard Brownian motion, we will use P0 .

We assume that the reader is familiar with algorithmic randomness and Kolmogorov
complexity for binary sequences. One can consult the two books by Downey and
Hirschfeldt [6] and Nies [21] for a good overview of the subject. Furthermore, we as-
sume some familiarity with Martin-Löf randomness for computable probability spaces.
Gács’ lecture notes [11] and the two papers [12, 13] by Hoyrup and Rojas are the stan-
dard references on the subject. Our main reference for the classical theory of Brownian
motion is the recent book by Mörters and Peres [20].

1.2 Effective aspects of Brownian motion

In order to define Martin-Löf randomness for Brownian motion, one needs to make
sure that the space of continuous functions C[0, 1] endowed with distance

d(f , g) = ||f − g||∞

and Wiener measure (denoted P) is a computable probability space.

Journal of Logic & Analysis 6:9 (2014)
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The computability of (C[0, 1],P) was proven by Fouché and Davie [5, 8] (see next
subsection for more details). One can take for a dense set of points the piecewise linear
functions which interpolate between finitely many points of rational coordinates. For p
such a function and r > 0 a rational number, the P-measure of

{f | ||f − p||∞ < r}

is computable uniformly in a code for p.

Therefore, it is possible to define Martin-Löf randomness for Brownian motion in the
usual way: the Martin-Löf random elements of (C[0, 1],P) are those which do not be-
long to the universal Martin-Löf test

⋂
n Un . To stress the difference between Brownian

motion as a stochastic process and Martin-Löf randomness on the space (C[0, 1],P),
we will use the cursive letter B for the random variable taking values in C[0, 1] and
distributed according to P, and use the letter B for individual elements of C[0, 1]. Re-
call that we refer to elements B ∈ C[0, 1] as (sample) paths, and therefore we will only
talk about Martin-Löf random paths, and not Martin-Löf random Brownian motion.

One can extend Brownian motion to C[0,∞) in the following way. Let {Bn(t)}n∈N
be independent Brownian motions on C[0, 1]. Then

(1) B(t) = Bbtc(t − btc) +
∑

0≤i<btc

Bi(1)

satisfies the definition of Brownian motion for the space of continuous functions
C([0,∞),R). One can adapt the definition of Martin-Löf randomness for Brown-
ian motions over [0, 1] to Brownian motion over [0,∞) in a straightforward way.
(For example, by the above correspondence (1) Brownian motion over [0,∞) can be
identified with ω copies of (C[0, 1],P), endowed with the product measure Pω ).

1.3 Layerwise computability

Throughout the paper, we will make extensive use of the notion of layerwise com-
putability developed by Hoyrup and Rojas [12, 13]. Layerwise computability is a
form of uniform relativisation. In computability theory, we often say that an element
y is computable in x if y can be computed given x as an oracle. We say that an
expression F(x) is computable uniformly in x if F is a computable function on the
space to which x belongs. There are many examples of this in computable analysis:
x2 is computable uniformly in x ∈ [0, 1], the integral

∫
f is computable uniformly in

f ∈ C[0, 1] (endowed with the ||.||∞ norm), etc.
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Layerwise computability is a slightly weaker form of uniformity. First of all when we
say that an expression F(x) is layerwise computable, we only ask that it be defined
for x Martin-Löf random on the computable probability space X to which it belongs.
(See Hoyrup and Rojas [12, 13] for the definition of computable probability space).
Moreover, we only require uniformity on each “layer” of X, uniformly in n. A layer
is a set of type Kn , where Kn is the complement of Un , the n-th level of a fixed
universal Martin-Löf test over X. An interesting aspect of layers is that they always
are effectively compact, even if the space X itself is not compact. So formally, we
say that F(x) is computable layerwise in x if there exists a partial computable function
G(., .) such that G(x, n) = F(x) for all x ∈ Kn .

Layerwise computability is a very powerful tool to study constructive versions of
classical results in probability theory and measure theory (as we shall see in this
paper!). Perhaps the most important result using layerwise computability is the so-
called “randomness preservation theorem”:

Theorem 1.1 (Hoyrup and Rojas [12, 13]) Let (X, µ) be a computable probability
space and F a layerwise computable function over X taking values in a computable
metric space Y. Then:

(i) The push forward measure ν defined over Y by ν(A) = µ(F−1(A)) is com-
putable.

(ii) If x is µ-Martin-Löf random, then F(x) is ν -Martin-Löf random.

(iii) For every y ∈ Y which is ν -Martin-Löf random, there is some µ-ML random
x ∈ X such that F(x) = y.

This theorem can for example be used to prove that C[0, 1] with the ||.||∞ norm
and Wiener measure is a computable probability space (as alluded to in the previous
subsection). Indeed, Fouche and Davie proved that the function Φ which maps a
sequence of reals ξ0, ξ1, {ξi,j}i∈N,j<2i to the function

B(t) = ξ0∆0(t) + ξ1∆1(t) +
∑

i

∑
j<2i

ξi,j∆i,j(t)

is layerwise computable from X to (C[0, 1], ||.||∞), where X is the space of sequences
of real numbers where each coordinate is distributed according to the normal distribu-
tion N (0, 1) independently of the others. It is obvious that X is a computable probabil-
ity space. Thus, by the above theorem, the measure induced by Φ on (C[0, 1], ||.||∞),
which we know to be Wiener measure, is a computable measure.

Journal of Logic & Analysis 6:9 (2014)
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Another important result we will need in several occasions is that one can compute the
integral of layerwise computable functions.

Theorem 1.2 (Hoyrup and Rojas [12]) Let f be a bounded layerwise computable
function defined on some computable probability space (X, µ). Then the integral∫

x∈X
f (x) dµ(x)

is computable uniformly in an index of f and a bound for it.

2 Basic properties of Martin-Löf random paths

We begin by showing that the main “almost sure” properties of classical Brownian
motion hold for Martin-Löf random paths.

2.1 Scaling theorem

The classical scaling theorem states that the map B(t) 7→ 1
a B(a2t) is a Wiener-measure-

preserving map from C[0, 1] to C[0, 1] (or C[0,∞) → C[0,∞)), see for example
Mörters and Peres [20, Lemma 1.7]. For Martin-Löf random paths, we have the
following.

Proposition 2.1 Let B be a Martin-Löf random path of C[0, 1] (resp. of C[0,∞)).
Then 1

a B(a2t) is also a Martin-Löf random path of C[0, 1] (resp. of C[0,∞)) when-
ever B is random relative to a.

Proof The map B(t) 7→ 1
a B(a2t) is a-computable and measure preserving, therefore

it preserves Martin Löf randomness relative to a by Theorem 1.1 relativized to a.

2.2 Constructive strong Markov property

The strong Markov property of Brownian motion asserts the following. Let T be a
stopping time, that is, a random variable in [0,∞] which is a function of B , and
such that deciding whether {T ≤ t} depends only on B � [0, t] (the restriction of B

to the interval [0, t]). If T(B) is almost surely finite, then the process B̂ defined by
B̂(t) = B(T(B)+ t)−B(T(B)) is a Brownian motion independent of B � [0,T(B)].

From its classical version, we can derive a constructive version of the strong Markov
property which will be very useful in the sequel.

Journal of Logic & Analysis 6:9 (2014)
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Proposition 2.2 Let T be an almost surely finite layerwise computable stopping time.
Then the function

B 7→ B̂,

where B̂(t) = B(T(B) + t)− B(T(B)), is layerwise computable and if B is Martin-Löf
random, then B̂ is Martin-Löf random relative to B � [0,T(B)] and T(B).

Proof Consider the product space C[0,∞) × C[0,∞) endowed with the product
measure W ×W . Consider the map

(B1,B2) 7→
(

(B1 � [0,T(B1)])_B2 , B̂1

)
from C[0,∞)× C[0,∞) into itself, where (B1 � [0,T(B1)])_B2 is the concatenation
of B1 up to time T(B1) and then continued according to B2 :(

(B1 � [0,T(B1)])_B2

)
(t) =

{
B1(t) if t ≤ T(B1)
B1(T(B1)) + B2(t − T(B1)) if t ≥ T(B1)

By the strong Markov property this map is measure preserving, and it is layer-
wise computable since B1 7→ T(B1) is. Thus, if (B1,B2) is Martin-Löf random
the pair

(
(B1 � [0,T(B1)])_B2 , B̂1

)
is also Martin-Löf random, and thus by van

Lambalgen’s theorem B̂1 is random relative to (B1 � [0,T(B1)])_B2 . The stopping
time of (B1 � [0,T(B1)])_B2 is also T(B1) (by definition of a stopping time), thus
(B1 � [0,T(B1)])_B2 computes T(B1) and thus computes B1 � [0,T(B1)] (because T
is layerwise computable). Therefore, B̂1 is Martin-Löf random relative to T(B1) and
B1 � [0,T(B1)].

2.3 Continuity properties

In his paper establishing many of the local properties of Martin-Löf random Brownian
motion, Fouché [9] shows every Martin-Löf random Brownian motion obeys a modulus
of continuity φ(h) such that

lim sup
h→0

sup
0≤t≤1−h

|B(t + h)− B(t)|
φ(h)

≤ 1

and

(2) φ(h) = O
(√

h log(1/h)
)

Journal of Logic & Analysis 6:9 (2014)
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It is possible to extend this result with big-O notation to the particular constant (
√

2)
from the classical result, and moreover, while the classical result demonstrates that
the modulus of continuity holds for “sufficiently small” h, we will demonstrate that
“sufficiently small” is layerwise computable from a Martin-Löf random path.

Proposition 2.3 Let B be a Martin-Löf random Brownian motion. Then for all
c <
√

2, for all h0 there exists h < h0 such that

|B(t + h)− B(t)| > c
√

h log(1/h)

for all t .

Proof For a large n (to be specified later), split the interval [0, 1] into chunks of
size e−n (omitting the last bit). For each 0 ≤ k < en , consider the event

Ak : |B((k + 1)e−n)− B(ke−n)| ≥ c
√

e−nn

(ie, what we want, with h = e−n ).

Note that the Ak are independent by definition of Brownian motion, and by time-
translation invariance all have the same probability. Let us estimate the probability of
A0 , which is the event: |B(e−n)− B(0)| ≥ c

√
e−nn. By scaling, it is also equal to the

probability of the event |B(1) − B(0)| ≥ c
√

n. By the estimate given in Mörters and
Peres [20, Lemma 12.9], we have

P(A0) ≥ c
√

n
c2n + 1

e−c2n/2

so, by assumption on c, there exists an α < 1 such that for almost all n

P(A0) ≥ e−αn

Since the Ak are independent,

P(no Ak happens) ≤ (1− e−αn)en ∼ e−e(1−α)n

Thus for n taken large enough, this can be made arbitrarily small. Moreover, notice
that c can be supposed to be computable, which makes the Ak Π0

1 classes, hence the
event “no Ak happens” corresponds to a Σ0

1 class. Thus, we have a Solovay test that any
Martin-Löf random Brownian motion should pass, and for such a Martin-Löf random
Brownian path, there are infinitely many n for which some Ak happens.

Proposition 2.4 Let B be a Martin-Löf random Brownian motion. Then for all
c >
√

2, there is h0 such that for all h < h0 and all t ,

|B(t + h)− B(t)| ≤ c
√

h log(1/h)

Moreover, such an h0 can be found uniformly in B and an upper bound on its random-
ness deficiency.
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The proof is the same as that of Mörters and Peres [20, Theorem 1.14] with the
addition of keeping track of the layerwise computability of h0 . We recall the proof for
completeness.

We first look at increments over a class of intervals which is chosen to be sparse, but
big enough to approximate arbitrary intervals. More precisely, given n,m ∈ N, we let
Λn(m) be the collection of all intervals of the form

[(k − 1 + b)2−n+a, (k + b)2−n+a],

for k ∈ {1, ...2n}, a, b ∈ {0, 1
m , ...,

m−1
m }. We further define Λ(m) :=

⋃
n Λn(m).

Lemma 2.5 For any fixed m and c >
√

2, for B a Martin-Löf random Brownian
motion, and an upper bound on the randomness deficiency of B, one can effectively
find an n0 ∈ N such that for any n ≥ n0 ,

|B(t)− B(s)| ≤ c

√
(t − s) log

1
(t − s)

for all [s, t] ∈ Λm(n).

Proof From the tail estimate for a standard normal variable X , for example Mörters
and Peres [20, Lemma 12.9], we obtain

P
{

sup
k∈{1,...,2n}

sup
a,b∈{0, 1

m ,...,
m−1

m }

|B((k − 1 + b)2−n+a)− B((k + b)2−n+a)| > c
√

2−n+a log(2n+a)
}

≤ 2nm2P{X > c
√

log(2n)}

(3) ≤ m2

c
√

log(2n)
1√
2π

2n(1− c2
2 ).

Note that c can be taken to be computable, so for fixed m, n ∈ N the event

sup
k∈{1,...,2n}

sup
a,b∈{0, 1

m ,...,
m−1

m }

|B((k − 1 + b)2−n+a)− B((k + b)2−n+a)| > c
√

2−n+a log(2n+a)

Journal of Logic & Analysis 6:9 (2014)
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is computable in B(t) and the right hand side of 3 is summable, giving a Solovay test
which every Martin-Löf random Brownian motion B(t) will pass.

The standard proof of the equivalence of Solovay randomness and Martin-Löf ran-
domness gives a uniform way of converting a Solovay test {Si} to a Martin-Löf test
{Uj}. See, for example, Downey and Hirschfeldt [6]. Thus knowing a k such that a
Martin-Löf random path B(t) 6∈ Uk gives us an n0 where the path no longer appears in
any Sn for n > n0 .

Lemma 2.6 Given ε > 0 there exists m ∈ N such that for every interval [s, t] ⊂ [0, 1]
there exists an interval [s′, t′] ∈ Λ(m) with |t − t′| < ε(t − s) and |s− s′| < ε(t − s).

Proof See Mörters and Peres [20, Lemma 1.17].

Proof of Proposition 2.4 Given c >
√

2, pick 0 < ε < 1 small enough to ensure
that c∗ := c − ε >

√
2 and m ∈ N as in Lemma 2.6. Using Lemma 2.5 we choose

n0 ∈ N large enough that for all n ≥ n0 and all intervals [s′, t′] ∈ Λn(m), almost surely

|B(t′)− B(s′)| ≤ c∗
√

(t′ − s′) log
1

(t′ − s′)

Now let [s, t] ⊂ [0, 1] be arbitrary with t − s < min(2−n0 , ε), and pick [s′, t′] ∈ Λ(m)
with |t − t′| < ε(t − s) and |s − s′| < ε(t − s). Then, recalling (2), there is a C such
that

|B(t)− B(s)| ≤ |B(t)− B(t′)|+ |B(t′)− B(s′)|+ |B(s′)− B(s)|

≤ C

√
|t − t′| log

1
|t − t′|

+ c∗
√

(t′ − s′) log
1

(t′ − s′)
+ C

√
|s− s′| log

1
|s− s′|

≤ (4C
√
ε+ c∗

√
(1 + 2ε)(1− log(1− 2ε)))

√
(t − s) log

1
t − s

.

By making ε > 0 small, the first factor on the right can be chosen arbitrarily close
to c. This completes the proof of the theorem.

2.4 Computability of minimum and maximum

Since a sample path B is almost surely continuous, it almost surely reaches a maximum
and a minimum on any given interval. As it turns out, these extremal values can be
computed layerwise in B.

Journal of Logic & Analysis 6:9 (2014)
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Proposition 2.7 The function

max(B, x, y) = max{B(t) | t ∈ [x, y]}
is computable uniformly in x, y and layerwise in B. The same is true for the minimum
function.

Proof To compute the maximum of B(t) on [x, y] to within ε, we run the following
simple algorithm: Pick h0 small enough so that B(t) obeys a modulus of continuity
with constant c = 2 (see Proposition 2.4) and so that 2

√
h0 log(1/h0) < ε. Then we

know that the maximum of the values B(r1),B(r1 + h0),B(r1 + 2h0), ...,B(r2) must
be within 2

√
h0 log(1/h0), and therefore within ε, of the maximum value of B(t) on

[x, y]. The minima are also layerwise computable by the same argument.

Proposition 2.8 Local maxima and local minima of a Martin-Löf random Brownian
motion are Martin-Löf random reals (in particular, they cannot be computable reals).

Proof Fix two rational numbers x < y. It is known classically that max(B, 0, y) is
distributed according to the density function

f (a) = 2 · e−a2/(2y)
√

2πy
for a ≥ 0, and f (a) = 0 for a < 0 (see Mörters and Peres [20, Theorem 2.21]). By the
Markov property, max(B, x, y) has the same distribution as B(x) + max(B′, 0, y− x),
where B and B′ are two independent Brownian motions, and thus is distributed
according to the convolution f ∗ g of the functions

f (a) = 2
e−a2/(2x)
√

2πx
and

g(a) = 2
e−a2/(2(y−x))
√

2π(y− x)
for a ≥ 0, and f (a) = 0 for a < 0. This convolution product is computable (it
is just an integral of a product of two computable functions), and it is known that if
a measure µ on R admits a computable positive density function, then its random
elements are exactly the Martin-Löf random reals for the uniform measure (see Hoyrup
and Rojas [13]).

Corollary 2.9 If a Martin-Löf random B has a zero on some interval [a, b], there are
x, y ∈ [a, b] such that f (x) > 0 and f (y) < 0.

Proof Otherwise 0 would be a local maximum or minimum, which would contradict
Proposition 2.8.

Journal of Logic & Analysis 6:9 (2014)
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3 Zero sets of Martin-Löf random Brownian motion

In this section, we study the properties of the zero set

ZB = {t ≥ 0 : B(t) = 0}

of Martin-Löf random paths. Once again, we will need some classical results to prove
our effective theorems. Most importantly, we will need the next proposition, which
gives an exact expression of the probability that a path has a zero in a given interval.

Proposition 3.1 (see Peres [22]) For any ε ∈ (0, 1) and a > 0

P0

(
B(s) = 0 for some s ∈ [a, a + ε]

)
=

2
π

arctan
(√

ε

a

)
which is ∼ 2

π

√
ε
a as ε tends to 0.

We shall also need the following lemma.

Lemma 3.2 Let [a, b] be a sub-interval of [0,∞). Then for all x

P0
(
B has a zero in [a, b]

)
≥ Px

(
B has a zero in [a, b]

)
Proof Consider the random variable B consisting of a Brownian motion starting
at 0, and form the variable B′ defined as follows: B′(t) = x −B(t) for t ≤ τ and
B′(t) = B(t) for t ≥ τ , where τ is the first time s at which B(s) = x−B(s). Then the
distribution of B′ is that of a Brownian motion starting at x . Moreover, if B′(t) = 0
for some t ∈ [a, b], then by continuity we have τ < t , and thus B(t) = B′(t) = 0.
This shows that

P(B′ has a zero in [a, b]
)
≤ P

(
B has a zero in [a, b]

)
and the result follows.

3.1 The zero set of B is layerwise recursive in B

Following Weihrauch [26, Definition 5.1.1], we say that a closed set C is recursive if
the predicates

C ∩ [a, b] = ∅

and
C ∩ (a, b) 6= ∅

Journal of Logic & Analysis 6:9 (2014)
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over a pair (a, b) of rationals, are both Σ0
1 . More generally, if C is a subset of Rd ,

we say that it is recursive if one can enumerate the open balls of rational center and
rational radius which intersect C and one can enumerate the closed balls of rational
center and rational radius which are disjoint from C .

Remark 3.3 Note that a recursive closed set is in particular a Π0
1 class. Not all

Π0
1 classes are recursive. For example, the minimum element of a bounded recursive

closed set is necessarily a computable real, a property that not all bounded Π0
1 subsets

of R have. To see this, suppose without loss of generality that all members of C are
positive. Then the minimum is lower semicomputable as

min(C) = sup{q ∈ Q | (0, q) ∩ C = ∅}

and upper semicomputable as

min(C) = inf{q ∈ Q | ∃q′ ∈ Q (q′, q) ∩ C 6= ∅}

The main result of this subsection is that the zero set ZB is recursive layerwise in B.
To prove this fact, we first need to show the following proposition.

Proposition 3.4 For B Martin-Löf random, the origin is not an isolated zero.

Proof For all k , we know from Proposition 3.1 that the probability for Brownian
motion not having a zero on the interval (2−3k, 2−3k + 2−k) is

1− 2
π

arctan(2k)

which limits to zero, computably, as k → ∞. Moreover, we argued above that not
having a zero in a given rational interval is a Σ0

1 event, thus this gives us a Martin-Löf
test (in fact, a Schnorr test), and thus a Martin-Löf random B must have a zero in
infinitely many intervals of type (2−3k, 2−3k + 2−k).

Proposition 3.5 For B Martin-Löf random, the set ZB does not contain any com-
putable real other than 0.

Proof Suppose x > 0 is computable. Let [ak, ak + 2−k] be a computable sequence of
rational intervals containing x . The probability for B to have a zero in [ak, ak +2−k] is
O(2−k/2) (the multiplicative constant depending on x), and by Corollary 2.8 having a
zero in [ak, ak +2−k] for a Martin-Löf random Brownian motion is equivalent to having
a positive and a negative value on [ak, ak + 2−k], which is a Σ0

1 property. Therefore
this induces a Martin-Löf test, and thus any Martin-Löf random B must have no zero
in [ak, ak + 2−k] for some k .
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Theorem 3.6 For B a Martin-Löf random path, ZB is a non-empty closed set which
is recursive layerwise in B.

Proof ZB is closed because B(t) is continuous. Let us now prove that ZB is recursive
layerwise in B. Since we already know that no rational can be a zero of Bn all
we need to show is that one can decide, layerwise in B, whether B has a zero in
a rational interval (a, b) with a < b. If a = 0, we know by Proposition 3.4 that
answer is necessarily yes, so we can assume a > 0. By Corollary 2.9, in case B does
have a zero on (a, b), it must take a positive and a negative value somewhere on the
interval. Conversely, having a positive and a negative value on the interval guarantees
the existence of zero. Since having a positive and a negative value is a Σ0

1 event,
the predicate C ∩ (a, b) 6= ∅ is itself Σ0

1 , uniformly in B. It remains to show that
C ∩ (a, b) = ∅ is Σ0

1 layerwise in B. Note that by Proposition 3.5, B cannot have a
zero at a nor at b, so

C ∩ (a, b) = ∅ ⇔ max(B, a, b) > 0 or min(B, a, b) < 0

Since max(B, a, b) and min(B, a, b) are layerwise computable in B, this shows that
C ∩ (a, b) = ∅ is a Σ0

1 predicate.

This theorem yields several useful corollaries.

Corollary 3.7 The first zero of B on an interval [a, b] with a < b rationals (taking
value ⊥ if there is no such zero) is computable layerwise in B and uniformly in a, b.

Proof Again, note that if a = 0, then the first zero is 0. Now, suppose a > 0. By
Proposition 3.5 B cannot have a zero at a nor at b, thus ZB ∩ [a, b] = ZB ∩ (a, b), and
one can immediately check whether the latter is empty (layerwise in B) since ZB is
recursive layerwise in B. In the case ZB ∩ [a, b] 6= ∅ we have explained in Remark 3.3
that the minimum of a recursive closed set can be computed (uniformly in a code for
this closed set). It is easy to see that ZB ∩ [a, b] is itself recursive layerwise in B
and uniformly in a, b, thus its minimum element can be computed layerwise in B and
uniformly in a, b.

Corollary 3.8 If F be is a finite union of rational intervals, P{ZB ∩ F 6= ∅} is
computable uniformly in a code for F . If U is an effectively open subset of [0, 1],
then P{ZB ∩ U 6= ∅} is lower semi-computable uniformly in an index for U .
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Proof For a given F , let EF be the event [ZB ∩ F 6= ∅]. By Theorem 3.6, the
characteristic function 1EF is layerwise computable, uniformly in a code for F . Thus,
by Theorem 1.2

P[ZB ∩ F 6= ∅] =

∫
B

1EF (B) dP(B)

is computable uniformly in a code for F . To get the lower semi-computability of
P{ZB ∩ U} 6= ∅} when U is an effectively open set, it suffices to observe that

P[ZB ∩ U 6= ∅] = sup
t
P[ZB ∩ U[t] 6= ∅]

where U[t] is the approximation of U at stage t , which is a finite union of rational
intervals.

Finally, we show that ZB has no isolated point for B Martin-Löf random.

Proposition 3.9 For B Martin-Löf random, ZB has no isolated point.

Proof Consider τq = inf{t ≥ q : B(t) = 0}, the first zero after some q ∈ Q. By
closure of ZB , the infimum is a minimum. Moreover, τq is layerwise computable in B
by Corollary 3.7 and is an almost surely finite stopping time. Thus by the constructive
strong Markov property, and Proposition 3.4, τq is not an isolated zero from the right.

Now, consider zeros that are not of the form τq . Call some such zero t0 . To see it is not
isolated from the left, consider a sequence of rationals qn ↑ t0 . By assumption on t0 ,
for all n there is some τqn ∈ (qn, t0), so t0 is not an isolated zero from the left.

3.2 Effective version of Kahane’s Theorem

Next, we prove an effective version of the following theorem of Kahane’s, which we
will need in the next section.

Theorem 3.10 (Kahane [14, p246]) Let E1 and E2 be two (disjoint) closed subsets
of [0, 1] such that dim(E1 × E2) > 1/2 then:

P(B[E1] ∩ B[E2] 6= ∅) > 0

(where B[E] is the set {B(t) : t ∈ E} and dim denotes Hausdorff dimension). We
shall prove the following.
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Theorem 3.11 Let E1 and E2 be two (disjoint) Π0
1 classes such that dim(E1×E2) >

1/2; then:

(i) There exists a Martin-Löf random path B such that B[E1] ∩ B[E2] 6= ∅
(ii) Given a fixed Martin-Löf random path B, there exists an integer c such that

B[E1/c] ∩ B[E2/c] 6= ∅

Proof First of all, observe that item (i) of the theorem follows from item (ii). Indeed, if
we have a Martin-Löf random path B and an integer c such that B[E1/c]∩B[E2/c] 6= ∅,
by the scaling property 1√

c B(ct) is also Martin-Löf random and satisfies (i). Thus we
only need to prove (ii). For this we will use the classical version of theorem (Kahane’s)
theorem, together with Blumenthal’s 0-1 law and some recent results of algorithmic
randomness. Recall that Blumenthal’s 0-1 law states that any event which only depends
on a infinitesimal time interval on the right of the origin (formally, any event in the
σ -algebra

⋂
s>0 σ{B(t) : 0 ≤ t ≤ s}) has probability either zero or one (see Mörters

and Peres [20, Theorem 2.7]).

Consider the scaling map S : B 7→ 1
2 B(4t). As we saw in Subsection 2.1, S is

computable and preserves Wiener measure P on C[0, 1]. Moreover, this map is
ergodic. Indeed, let A be an P-measurable event which is invariant under S , i.e we
have B ∈ A ⇔ S(B) ∈ A. By induction, B ∈ A ⇔ ∀n Sn(B) ∈ A. The function
Sn(B) on [0, 1] only depends on the values of B on [0, 4−n]. Therefore the event A,
which is equal to [∀n Sn(B) ∈ A], only depends on the germ of B. By Blumenthal’s
0-1 law, this ensures that A has probability 0 or 1. Thus S is ergodic.

Now, consider the set
U = {B | B[E1] ∩ B[E2] = ∅}

We claim that U is a Σ0
1 subset of C([0, 1]). This is because of a classical result

in computable analysis: the image of a bounded Π0
1 class by a computable function

is a bounded Π0
1 class. This fact is uniform: from an index of a Π0

1 class P and a
computable function f one can effectively compute the index of the Π0

1 class f [P]. By
uniform relativization, there is a computable function γ s.t. given a pair (f ,P) where
f is a continuous function given as oracle, and P is a Π0

1 class of index e, γ(e) is an
index for f [P] as a Π0,f

1 -class. Moreover, one can effectively compute an upper and
lower bound a, b for f [P] from f and P. Here we have two Π0

1 classes E1 and E2 ,
say of respective indices e1 and e2 . By the above discussion B[E1] and B[E2] have
respective indices γ(e1) and γ(e2) as Π0,B

1 -classes, and since the intersection of two Π0
1

classes is index-computable there is a computable function θ such that B[E1] ∩ B[E2]
has index θ(e1, e2) as a Π0,B

1 -class. Since one can computably enumerate, uniformly
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16 Kelty Allen, Laurent Bienvenu and Theodore A. Slaman

in the oracle B, the indices of Π0,B
1 -classes whose intersection with [a, b] is empty, it

follows that the set U is Σ0
1 , as wanted.

We can now apply the effective ergodic theorem proven in Bienvenu et al. [3] and
independently Franklin et al. [10]: since U has measure less than 1 (by Kahane’s
theorem) and is a Σ0

1 set, there are infinitely many n such that Sn(B) /∈ U (in fact, the
set of such n’s is a subset of N of positive density), ie such that B[E1/2n]∩B[E2/2n] 6=
∅.

4 The effective dimension of zeros

Effective Hausdorff dimension is a modification of Hausdorff dimension for the com-
putability setting. Intuitively, effective Hausdorff dimension describes how “com-
putably locatable” a point or set is in addition to its size. For example, an algorith-
mically random point in Rn has effective Hausdorff dimension n because it can’t
be computably located any more precisely than a small computable ball, which has
Hausdorff dimension n.

There are many equivalent definitions of effective Hausdorff dimension, but we will
use the following definition of Mayordomo[19]. See the book by Downey and
Hirschfeldt [6], or papers by Lutz [18] and Reimann [23, 25] for more details.

Definition 4.1 The effective (or constructive) Hausdorff dimension of X ∈ 2ω is

cdim(x) := lim inf
n

K(X � n)
n

This definition can be extended to real numbers by identifying them with their binary
representation.

In this section, we will try to characterize the effective dimension of the zeroes of
Martin-Löf random paths. This can be broken down in two questions:

(1) Given a Martin-Löf random B, what is the set {cdim(x) | x > 0 and x ∈ ZB}?

(2) Given a real x , can we give a necessary or sufficient condition in terms of the
effective dimension of x for the existence of some Martin-Löf random path
which has a zero at x?
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As to the first question, Kjos-Hanssen and Nerode [16] have showed that with proba-
bility 1 over B, {cdim(x) | x > 0 and x ∈ ZB} is dense in [1/2, 1]1. We make this
more precise by showing that for every Martin-Löf random path B (not just almost
all paths) {cdim(x) | x > 0 and x ∈ ZB} is contained in [1/2, 1] and contains all the
computable reals > 1/2 of this interval.

We will answer the second question by proving that having effective dimension at
least 1/2 is necessary, while having effective dimension strictly greater than 1/2 is
sufficient (but having dimension exactly 1/2 is not sufficient).

4.1 The dimension spectrum of ZB

The next theorem is a direct consequence of the effective version of Kahane’s theorem.

Theorem 4.2 Given a Martin-Löf random path B and computable real α > 1/2, there
exists a real x in ZB of constructive dimension α .

Proof Let B be such a path and α such a real. Consider the Bernoulli measure µp (ie
measure where each bit has probability p of being a zero, independently of all other
bits) such that p < 1/2 and −p log p− (1−p) log(1−p) = α . Since α is computable,
so is p (and hence µp ), because the function x 7→ −x log x − (1 − x) log(1 − x) is
computable and increasing on [0, 1/2]. Let E1 = {0} and E2 be the complement
of the first level of the universal Martin-Löf test for µp (it is a Π0

1 class since µp is
computable). It is well-known that every set of positive µp -measure has Hausdorff
dimension ≥ α , and moreover that every µp random real has constructive Hausdorff
dimension α (see for example Reimann [23]). Applying Theorem 3.11, there exists
some c such that B[E1/2c] ∩ B[E2/2c] 6= ∅. That is, there is some x ∈ E2 such that
B(2cx) = 0. Multiplying by 2c just adds c zeros in the binary expansion of x , thus 2cx
has the same constructive dimension as x , which is α .

Question 1 The previous theorem could be strengthened with some additional effort
to 0′ -computable α . However, we conjecture that a stronger result is true, namely that
for every Martin-Löf random B, it holds that

{cdim(x) | x > 0 and x ∈ ZB} = [1/2, 1]

We do not know how to show this and leave it as an open question.
1This is actually a stronger form of the theorem proven in Kjos-Hnassen and Nerode [16],

but the proof of the latter can easily be adapted
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4.2 Being a zero of an Martin-Löf random path

We now address the second of the two above questions: what properties (in terms of
effective dimension or Kolmogorov complexity) characterize the reals that belong to
ZB for some Martin-Löf random B? To do so, we largely borrow from the work of
Kjos-Hanssen [15], but with a number of necessary adaptations to Brownian motion.
(Kjos-Hanssen [15] studies a different stochastic process, namely random closed sets,
a particular type of percolation limit sets.) Proposition 3.1 gives us a precise expression
for the probability of a Brownian motion B to have a zero in a given interval. The key
step needed to adapt Kjos-Hanssen’s techniques is to estimate the probability for B to
have a zero in each of two intervals of the same length.

Proposition 4.3 Let 0 < a < b < 1 and ε > 0. Suppose that the intervals [a, a + ε]
and [b, b + ε] are disjoint. Let δ be the distance between them (ie, δ = b − a − ε).
Let A1 be the event “B(s) = 0 for some s1 ∈ [a, a + ε]” and A2 be “B(s) =

0 for some s2 ∈ [b, b + ε]”. Then

P0 (A1 ∧ A2) ≤ ε · O(1)√
aδ

where the term O(1) is a constant independent of a, b, ε.

Proof In this proof, we make use of the following notation: given an event A, A↑τ
is the unique (by assumption on A) event such that t 7→ B(t + τ ) ∈ A↑τ if and only if
t 7→ B(t) ∈ A.

Now, let A1 and A2 be the above events, and let us write

P0 (A1 ∧ A2) = P0(A1)P0(A2 | A1)

The term P0(A1) is, by Proposition 3.1, equal to O(
√

ε
a ). It remains to evaluate the

term P(A2 | A1). The event A2 only depends on the values of B on the interval
[b, b + ε], thus

P0(A2 | A1) =

∫
z∈R

Pz(A↑(a+ε)
2 ) f (z) dz

where f is the density function of B(a + ε) conditioned by A1 . By shift invari-
ance of the Wiener measure, we observe that in this expression, the term Pz(A↑(a+ε)

2 )
is equal to Pz(B has a zero in [δ, δ + ε]). This is, in turn, always bounded by
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P0(B has a zero in [δ, δ + ε]), by Lemma 3.2. Thus

P0(A2 | A1) =

∫
z∈R

Pz(A↑(a+ε)
2 ) f (z) dz

≤
∫

z∈R
P0(A↑(a+ε)

2 ) f (z) dz

≤ P0(A↑(a+ε)
2 )

≤ P0(B has a zero in [δ, δ + ε])

≤ 2
π

arctan
(√

ε

δ

)
≤ 2

π

√
ε

δ

We have thus established the desired result.

4.2.1 A necessary and a sufficient condition

Our next theorem gives a necessary condition for a point to be a zero of some Martin-Löf
random path.

Theorem 4.4 If B is a Martin-Löf random path, then all members of the set ZB \ {0}
have effective dimension at least 1/2.

Proof Suppose that for a given B, we have B(a) = 0 for some a such that cdim(a) <
1/2. We will show that B is not Martin-Löf random.

Let cdim(a) < ρ < 1/2. Take also some rational b such that 0 < b < a. By
definition of constructive dimension, for all n, there exists a prefix σ of a such that
K(σ) ≤ ρ|σ| − n. For all strings σ such that 0.σ > b, let Iσ = [0.σ, 0.σ + 2−|σ|] and
the event

Eσ :
[
B has a positive and a negative value in Iσ

]
The event Eσ is a Σ0

1 subset of C[0, 1], uniformly in σ the probability of Eσ is
O(2−|σ|/2) by Proposition 3.1 (the multiplicative constant depending on b). Define

Un =
⋃
{Eσ | K(σ) ≤ ρ|σ| − n}
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By assumption, B belongs to almost all Un . However, we have

P(B ∈ Un) ≤ O(1) ·
∑
{2−|σ|/2 | K(σ) ≤ ρ|σ| − n}

≤ O(1) ·
∑
σ

2−K(σ)−n

≤ O(2−n)

Thus the Un form a Martin-Löf test, which shows that B is not Martin-Löf random.

We now prove an (almost) counterpart of Theorem 4.4:

Theorem 4.5 Let x ∈ [0, 1] be of effective dimension strictly greater than 1/2. Then
there exists a Martin-Löf random path B such that B(x) = 0.

The proof is much more difficult and involves the notion of α-energy. Given a
measure µ on R and α ≥ 0, the α-energy of µ is the quantity∫ ∫

dµ(x)dµ(y)
|x− y|α

This quantity might be finite or infinite, depending on the value of α . We will need
the following two lemmas.

Lemma 4.6 Let β > α ≥ 0. If µ is a measure satisfying µ(A) ≤ c · |A|β for every
interval A (or equivalently, for every dyadic interval) and for some constant c, then µ
has finite α-energy.

Proof See Mörters and Peres [20, proof of Theorem 4.32].

Lemma 4.7 2 Let β ≥ 1/2 and let µ be a finite Borel measure on [0, 1] such that for
every dyadic interval I , µ(I) ≤ c · |I|β for some fixed constant c. Suppose that µ has
finite 1/2-energy (which is automatically verified when β > 1/2). Then there exists
a constant c′ > 0 such that the following holds: for any set A ⊆ [1/2, 1] which is a
countable union of closed dyadic intervals

P0
(
ZB ∩ A 6= ∅

)
≥ c′ · µ(A)2

Proof It suffices to prove this theorem for a finite number of intervals, and up to
splitting them if necessary we can assume that they all have the same length 2−n for
some n. Let I1, ..., Ik be those intervals. Define for all k the random variable Xk by

Xk = µ(Ik) · 2(n/2) · 1{ZB∩Ik 6=∅}
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and Y =
∑k

j=1 Xj . We want to show that P(Y > 0) ≥ µ(A)2

c0
for constant c0 which does

not depend on A, which immediately gives the result (since Y > 0 implies ZB∩A 6= ∅).
To do so, we will use the Paley-Zigmund inequality

P(Y > 0) ≥ E(Y)2

E(Y2)

Let us evaluate separately E(Y) and E(Y2). We have

E(Y) =

k∑
j=1

E(Xj)

≥
k∑

j=1

2(n/2) · µ(Ij) · c1 · (
√

2−n)

≥ c1

k∑
j=1

·µ(Ij)

≥ c1 · µ(A)

for some constant c1 6= 0, the second inequality coming from Proposition 3.1.

Let us now turn to E(Y2), which we need to bound by a constant. We have

E(Y2) =
∑

1≤i≤k
1≤j≤k

E(XiXj)

To evaluate this sum, we decompose it into three parts:

E(Y2) =
k∑

i=1

E(X2
i ) + 2

∑
1≤i<j≤k

Ii,Ij adjacent

E(XiXj) + 2
∑

1≤i<j≤k
Ii,Ij nonadjacent

E(XiXj)

The first part is an easy computation. For all i,

E(X2
i ) = µ(Ii)2 · 2n · P{ZB ∩ Ii 6= ∅}

= O
(
µ(Ii)2 · 2n · 2−(n/2))

= O
(
µ(Ii) · 2−βn · 2n · 2−(n/2))

= µ(Ii) · O
(
2(1/2−β)n)

= µ(Ii) · O(1)
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(for the third equality, we use the fact that µ(Ii) ≤ |Ii|β , and for the fifth one the fact
that β ≥ 1/2). Thus

k∑
i=1

E(X2
i ) =

k∑
i=1

µ(Ii) · O(1) = O(1)

For the second part, we use a rough estimate: first notice that

E(XiXj) = µ(Ii) · µ(Ij) · 2n · P{ZB ∩ Ii 6= ∅ ∧ ZB ∩ Ij 6= ∅}

and for the second part only, we will use the trivial upper bound:

P{ZB ∩ Ii 6= ∅ ∧ ZB ∩ Ij 6= ∅} ≤ P{ZB ∩ Ii 6= ∅} = O(2−n/2)

Combining this with µ(Ij) ≤ 2−βn , we get:

E(XiXj) = µ(Ii) · O(2(1/2−β)n) = µ(Ii) · O(1)

Moreover, each interval Ii has at most two adjacent intervals Ij . Thus,

∑
1≤i<j≤k

Ii,Ij adjacent

E(XiXj) ≤ 2
k∑

i=1

µ(Ii) · O(1) = O(1)

Finally, for the third part, we will use the fact that the 1/2-energy of µ is finite. Let
us, for a pair of nonadjacent intervals Ii, Ij with max(Ii) < min(Ij), denote by g(i, j)
the length of the gap between the two, ie g(i, j) = min(Ij)−max(Ii). We have
(4) ∑

1≤i<j≤k
Ii,Ij nonadjacent

E(XiXj) =
∑

1≤i<j≤k
Ii,Ij nonadjacent

µ(Ii) · µ(Ij) · 2n · P{ZB ∩ Ii 6= ∅ ∧ ZB ∩ Ij 6= ∅}

By Proposition 4.3,

(5) P{ZB ∩ Ii 6= ∅ ∧ ZB ∩ Ij 6= ∅} =
2−n · O(1)√

g(i, j)

(Note that we use the fact that Ii and Ij are contained in [1/2, 1], hence min(Ii) is
bounded away from 0.)

Thus,

(6)
∑

1≤i<j≤k
Ii,Ij nonadjacent

E(XiXj) =
∑

1≤i<j≤k
Ii,Ij nonadjacent

µ(Ii) · µ(Ij)√
g(i, j)

· O(1)
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Note that, since Ii and Ij are non-adjacent dyadic intervals of length 2−n , we have
g(i, j) ≥ 2−n . Therefore, for two reals x, y, if x ∈ Ii and y ∈ Ij , then |y− x| ≤ 3g(i, j).
By this observation, we have∑

1≤i<j≤k
Ii,Ij nonadjacent

µ(Ii) · µ(Ij)√
g(i, j)

≤ O(1) ·
∫ ∫

dµ(x)dµ(y)
|x− y|1/2 ≤ O(1)

(the last inequality comes from the hypothesis that the 1/2-energy of µ is finite).

We have thus established that E(Y2) = O(1), which completes the proof.

Let KM denote the a priori Kolmogorov complexity function (see Downey and
Hirschfeldt [6, Section 6.3.2]). Recall that KM(σ) = K(σ) + O(log |σ|), thus in
particular K can be replaced by KM in the definition of effective dimension. The
reason we need KM instead of K is the following result of Reimann [24, Theorem
14], which we will apply in the proof of Theorem 4.5: Let z be a real such that
KM(z � n) ≥ βn−O(1). Then, there exists a measure µ such that µ(A) = O(|A|β) for
all intervals A, and such that z is Martin-Löf random for the measure µ.

Proof of Theorem 4.5 Let z be of dimension α > 1/2. Let β be a rational such that
1/2 < β < α . Then for almost all n, KM(z � n) ≥ βn. By Reimann’s theorem,
let µ be a measure such that µ(A) = O(|A|β) for all intervals A, and such that z is
Martin-Löf random for the measure µ.

For all n, let Kn be the complement of the n-th level of the universal Martin-Löf test
over (C[0, 1],P) and consider the set

Un = {x | ∀B ∈ Kn B(x) 6= 0}

We claim that Un is Σ0
1 uniformly in n, and µ(Un) = O(2−n/2). To see that it is Σ0

1
suppose that x ∈ Un , ie B(x) 6= 0 for all B ∈ Kn . The set Kn being compact (see
Section 1), the value of |B(x)| for B ∈ Kn reaches a positive minimum. Thus there is
a rational a such that B(x) > a for all B ∈ Kn . By uniform continuity of the members
of Kn (ensured by Proposition 2.3), there is a rational closed interval I containing x
such that |B(t)| > a/2 for all t ∈ I and B ∈ Kn . Thus Un is the union of intervals
(s1, s2) such that min{B(t) : t ∈ [s1, s2]} > b for some rational b and all B ∈ Kn .
Moreover, the condition “min{B(t) : t ∈ [s1, s2]} > b for all B ∈ Kn ” is Σ0

1 , because
the function B 7→ min{B(t) : t ∈ [s1, s2]} is layerwise computable (thus uniformly
computable on Kn ), and the minimum of a computable function on an effectively
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compact set is lower semi-computable uniformly in a code for that set. This shows that
Un is Σ0

1 .

To evaluate µ(Un), let us first observe that by definition of Un ,

P0(ZB ∩ Un 6= ∅) ≤ P0(B ∈ Kn and ZB ∩ Un 6= ∅) + 2−n ≤ 2−n

Applying Lemma 4.7, it follows that µ(Un) = O(2−n/2), as wanted. Since z is Martin-
Löf random with respect to µ, it cannot be in all sets Un , and thus it must be the zero
of some Martin-Löf random path.

4.2.2 The case of points of effective dimension 1/2

In the previous section we showed that no point of effective dimension less than 1/2
can be the zero of a Martin-Löf random path, and that every point of dimension greater
than 1/2 is necessarily a zero of some Martin-Löf random path. This leaves open the
question of what happens at effective dimension exactly 1/2. While we do not provide
a full answer, we show that among points of effective dimension 1/2, some are zeros
of some Martin-Löf random path, and some are not.

The next theorem, which strengthens Theorem 4.4, gives a necessary condition for a
point to be a zero of some Martin-Löf random path.

Theorem 4.8 If x > 0 is a zero of some Martin-Löf random path, then∑
n

2−K(x�n)+n/2 <∞

It is interesting to notice the parallel with the so-called ‘ample excess lemma’ (see
Downey and Hirschfeldt [6, Theorem 6.6.1]): a real x is Martin-Löf random if and
only if

∑
n 2−K(x�n)+n <∞.

Proof The proof is an adaptation of that of Theorem 4.4. First take a rational a
such that 0 < a. We shall prove the lemma for all x > a, which will be enough
since a is arbitrary. For each string σ consider, like in Theorem 4.4, the interval
Iσ = [0.σ, 0.σ + 2−|σ|] and the event

Eσ :
[
B has a positive and a negative value in Iσ

]
Now, consider the function t defined on C[0, 1] by

t(B) =
∑

σ s.t. a<0.σ

2−K(σ)+|σ|/2 · 1Eσ (B)
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The event Eσ is a Σ0
1 subset of C[0, 1], uniformly in σ . Thus the function t is lower

semi-computable. Moreover, the probability of Eσ is O(2−|σ|/2) by Proposition 3.1
(the multiplicative constant depending on a). Thus the integral of t is bounded, and
therefore t is an integrable test (see Gács [11]). Let now B be a Martin-Löf random
path and suppose B(x) = 0 for some x > a. Then for almost all n, a < 0.(x � n).
Moreover, for every n, B having a zero in Ix�n , it must in fact have a positive and a
negative value on that interval (by Proposition 2.8). Thus, by definition of t

t(B) + O(1) ≥
∑

n

2−K(x�n)+n/2

(the O(1) accounts for the finitely many terms such that a ≥ 0.(x � n)). But since B
is Martin-Löf random and t is a integrable test, we have t(B) <∞, which proves our
result.

This theorem shows in particular that if x is the zero of some Martin-Löf random path,
then K(x � n)− n/2→ +∞.

We now give a sufficient condition which actually is very close to our necessary
condition.

Theorem 4.9 Let f : N → N be a nondecreasing computable function such that
f (n + 1) ≤ f (n) + 1 for all n, and such that

∑
n 2−f (n) <∞. Let x be a real such that

KM(x � n) ≥ n/2 + f (n) + O(1). Then x is the zero of some Martin-Löf random path.

For this, we need the following refinement of Lemma 4.6.

Proposition 4.10 Let f : N → N be a function such that
∑

n 2−f (n) < ∞. Let
µ be a Borel measure on [0, 1] such that for every interval A of length ≤ 2−n ,
µ(A) ≤ 2−αn−f (n) . Then µ has finite α-energy.

Proof For now, let us fix some x . Define for all n the interval In to be [x−2−n+1, x−
2−n] ∩ [0, 1] and Jn = [x + 2−n, x + 2−n+1] ∩ [0, 1]. Then∫

dµ(y)
|x− y|α

≤
∑

n

∫
y∈In

dµ(y)
|x− y|α

+
∑

n

∫
y∈Jn

dµ(y)
|x− y|α

≤
∑

n

2αnµ(In) +
∑

n

2αnµ(Jn)

≤
∑

n

2αn2−αn−f (n) +
∑

n

2αn2−αn−f (n)

≤ 2 ·
∑

n

2−f (n)

< ∞
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Therefore, the µ-integral over x of
∫ dµ(y)
|x−y|α is itself finite, which is what we wanted.

Proof of Theorem 4.9 Let f be such a function and x such a real. By a result of
Reimann [24, Theorem 14], there exists a measure µ such that µ(A) ≤ 2−n/2−f (n)+O(1)

for all intervals of length ≤ 2−n such that x is Martin-Löf random with respect to µ.
By Proposition 4.10, µ has finite 1/2-energy. The rest of the proof is identical to the
proof of Theorem 4.5.

Theorem 4.11 Let 0 < α < 1 and let f : N→ N be a function such that supn f (n +

m)− f (n) = o(m). Then there exists x ∈ [0, 1] such that K(x � n) = αn + f (n) + O(1).

Remark 4.12 This theorem was proven by J. Miller (unpublished) in the particular
case where f = 0.

Proof Fix a “large enough” integer m, which we will implicitly define during the
construction. We will build the sequence x by blocks of length m. For m large
enough, the empty string has complexity less than 3 log m. Suppose we have already
constructed a prefix σ of x such that |K(σ � n)− αn− f (n)| ≤ 3 log m for all n ≤ |σ|
multiple of m. Pick a string τ of length m such that

K(τ | σ,K(σ)) ≥ m

We then have
K(στ ) ≥ K(σ) + m− 2 log m− O(1)

On the other hand
K(σ0m) ≤ K(σ) + 2 log m + O(1)

For each i ≤ m, consider the “mixture” between 0m and τ : ρi = (τ � i)0m−i .
Since ρi and ρi+1 differ by only one bit in position ≤ m from the right, we have
|K(σρi)−K(σρi+1)| ≤ 2 log m+O(1). By this “continuity” property, setting N = |σ|,
we see that the function i 7→ |K(σρi)− α(N + m)− f (N + m)| (whose value at i = 0
is −αm + o(m) and value at i = m is (1 − α)m − o(m)), must take a value smaller
than 3 log m, as long as m is chosen large enough. Thus, if m is large enough, we can
iterate this argument to build a sequence x such that |K(x � n)− αn− f (n)| ≤ 3 log m
for all n multiple of m. Since αn + f (n) is a Lipschitz function, this is sufficient to
ensure |K(x � n)− αn− f (n)| = O(1).

We can finally prove the promised theorem.
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Theorem 4.13 Among reals of effective dimension 1/2, some are zeros of some
Martin-Löf random path and some are not.

Proof By Theorem 4.11, first consider a real x such that K(x � n) = n/2 + O(1).
This real has effective dimension 1/2 and cannot be a zero of a Martin-Löf random
path (Theorem 4.8).

Applying Theorem 4.11 again, let y be a real such that K(y � n) = n/2+4 log n+O(1).
Since for every σ , KM(σ) ≥ K(σ)−K(|σ|)−O(1) ≥ K(σ)−2 log |σ|−O(1), it follows
that KM(y � n) ≥ n/2+2 log n−O(1), and thus y is a zero of some Martin-Löf random
path (Theorem 4.9). Of course, y has effective dimension 1/2 as well.

This section leaves open the existence of a precise characterization of the reals x of
dimension 1/2 for which there exists a Martin-Löf random path B such that B(x) = 0.
Short of an exact characterization, it would be interesting to know whether this depends
on Kolmogorov complexity alone. By this, we mean the following question.

Question 2 If K(x � n) ≤ K(y � n)+O(1) and x is a zero of some Martin-Löf random
path, must y be a zero of some Martin-Löf random path? Same question with KM
instead of K .

5 Planar Brownian Motion

5.1 Brownian motion in higher dimensions

So far we have talked about Brownian motion on C[0, 1] or C[0,∞), but it is also
possible to define Brownian motion in higher dimensions.

Definition 5.1 If B1, . . . ,Bd are independent linear Brownian motions started in
x1, . . . , xd , then the process {B(t) : t ≥ 0} given by B(t) = (B1(t), . . . ,Bd(t)) is
d-dimensional Brownian motion started in (x1, ..., xd). The d-dimensional Brownian
motion started at the origin is also called standard Brownian motion. One-dimensional
Brownian motion is also called linear, and two-dimensional Brownian motion is also
called planar Brownian motion.

And similarly, we have
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Theorem 5.2 A function B(t) = (B1(t), . . . ,Bd(t)) in the space of continuous func-
tions from [0,∞) to Rd with Wiener measure is a Martin-Löf random path if and only
if B1(t), . . . ,Bd(t) are mutually Martin-Löf random linear Brownian motion.

Proof This follows immediately from Van Lambalgen’s theorem which states that
given a computable probability space (X, µ), a pair (A,B) is a Martin-Löf random
element of the product space (X, µ) × (X, µ) if and only if A and B are mutually
Martin-Löf random elements of (X, µ).

Theorem 5.3 At any time t > 0, for B(t) a planar Martin-Löf random path started
at (0,0), B is not random relative to any point (Bx(t),By(t)) on the path, other than the
origin.

Proof Let z be a point of the plane. The probability that B passes through z is 0.
Morevover, for all integers d,T , the set

{B | deficiency(B) ≤ d ∧ ∃t ≤ T B(t) = z}

is a Π0
1(z)-class. Indeed because the set of B of randomness deficiency at most d is a Π0

1
class, and knowing a bound on the randomness deficiency of B, one can approximate
{B(t) | t ∈ [0,T]} with arbitrary precision. Thus, the predicate [∃t ≤ T B(t) = z]
means that for all ε, the distance between Bε (an effectively computed approximation
of B at distance at most ε) is at distance at most, say, 2ε of z which is clearly a Π0

1(z)
sentence. The above class being Π0

1(z) and having measure 0, no z-Martin-Löf random
(in fact, no z-Kurtz random) can belong to it.

Corollary 5.4 For B a Martin-Löf random planar path, the range of B has zero area.

Proof Only Lebesgue measure zero many points derandomize any particular real, so
any Martin-Löf random path hits only Lebesgue measure zero many points.

Corollary 5.5 For any point (x, y) 6= (0, 0), only measure zero many Brownian paths
hit (x, y). (Almost surely, Brownian motion does not hit a given point.)

Proof A real derandomizes only Lebesgue measure zero many reals.

Corollary 5.6 At any time t > 0, for B(t) a standard planar Martin-Löf random
Brownian motion, B does not pass through any computable point.

Proof A Martin-Löf random path is always random relative to a computable point.
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5.2 Dirichlet Problem

The Dirichlet problem asks the following question: given a domain (ie connected open
set) U ⊆ Rn and a function φ defined everywhere on the boundary ∂U of U , is there a
unique, continuous function u such that u is harmonic on the interior of U and u = φ

on ∂U? The Dirichlet problem arises whenever one considers notions of potential –
for example, the problem may be thought of as finding the temperature of the interior
of a heat-conducting region for which the temperature on the boundary is known, or
alternatively, finding the electric potential on the interior of a region for which the
charge on the boundary is known.

These physical interpretations of the problem make it clear that there should be a
unique solution, and indeed, many ways of finding this unique solution are known.
One method of solving the Dirichlet problem which arises from an intuition of heat
diffusion in a heat-conducting substance uses the mathematical model of Brownian
motion.

Definition 5.7 A point x ∈ Rn is called regular for a closed set C ⊂ Rn if a Brownian
motion started at x does not immediately leave C with positive probability, ie if the the
following holds

Px
[
inf{t > 0 : B(t) ∈ C} = 0

]
= 1.

A useful criterion for regularity is the so-called Poincaré cone condition: if there exists
if there exists a cone V based at x with positive opening angle and h > 0 such that
V ∩ β(x, h) ⊂ C , where β(x, h) denotes the open ball around x of radius h, then x is
regular for C .

Theorem 5.8 (see Mörters and Peres [20, Theorem 8.5]) Suppose U ⊂ Rd is a
bounded domain such that every boundary point is regular for Uc , and suppose φ is
a continuous function on ∂U . Let τ = inf{t > 0 : B(t) ∈ ∂U}, which is an almost
surely finite stopping time. Then the function u : U → R given by

u(x) = Ex [φ(B(τ ))] , for x ∈ U,

is the unique continuous function on U which is harmonic on U and such that u(x) =

φ(x) for all x ∈ ∂U .

The central result of this section is that the natural effective version of this theorem
holds. Namely, we prove the following.
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Theorem 5.9 Let U ⊂ Rd be a bounded domain such that every boundary point
is regular for Uc . Assume that both U and Uc are effectively open and that φ is
a computable function on ∂U . Then the function u of Theorem 5.8 is computable
(and is the unique continuous function on U which is harmonic on U and such that
u(x) = φ(x) for all x ∈ ∂U ).

This result is more general than the result of Andreev et al [1] who essentially show this
result in the case where the boundary of U is a single (computable) Jordan curve. This
is incomparable with our theorem, since some Jordan curves have irregular boundary
points, but our theorem covers different cases such as an annulus in dimension 2 of
computable center and radii. Bridges and McKubre-Jordens [4] also studied similar
questions, but in a slightly different context, namely in the Bishop-style constructive
mathematical framework BISH.

It is not immediately clear in the above theorem what it means for a function φ defined
on ∂U to be computable. However, under the assumptions of the theorem, ∂U must
be a recursive closed set (refer to Section 3.1 for the definition of recursive closed set),
and thus ∂U can be viewed as a computable metric subspace of Rd , on which there
is a canonical notion of computable function. Let us explain why the hypotheses of
the theorem imply that ∂U is recursive. First, notice that an open ball β intersects
∂U if and only if it intersects both U and Uc . Indeed, if it intersected both but not
∂U = U ∩Uc , then β ∩U and β ∩Uc – which are both open – would form a partition
of β , which would contradict the connectedness of β . Conversely if β intersects ∂U ,
then it must intersect U since every point of ∂U is the limit of points of U , and it must
intersect Uc due to the Poincare cone condition. If β is a rational open ball, β∩U 6= ∅
and β ∩ Uc 6= ∅ are Σ0

1 predicates (since U and Uc are effectively open), and thus so
is β ∩ ∂U 6= ∅. Finally, a closed ball β is disjoint from ∂U , then it must be at positive
distance of it, and thus must be contained in an open ball β′ disjoint from ∂U . By the
above discussion, this β′ must be either contained in U , or contained in Uc . It remains
to notice that ∃β′ ⊇ β : β′ ⊆ U ∨β′ ⊆ Uc (where β ’ ranges over rational open balls),
is a Σ0

1 predicate.

The core of the proof of Theorem 5.9 is that the first hitting time of ∂U of a path B
started inside U is layerwise computable in B, uniformly in the starting point, which
is a generalization of Corollary 3.7.

Proposition 5.10 Let U be a domain satisfying the condition of Theorem 5.9, and
let x ∈ U . For B a Martin-Löf random (relative to x) path, τ (x + B) = inf{t > 0 :
(x + B(t)) ∈ ∂U} is finite and is computable layerwise in B and uniformly in x .
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Proof Fix x in U . Let us first check that τ (x + B) is defined (ie is finite) for every B
Martin-Löf random relative to x . By the hypothesis, U is bounded, say of diameter D.
There exists an l such that the probability for a Brownian motion to move by a distance
at least D during a time interval of length l is greater than 1/2. Thus, if τ (x + B) is
infinite, this means that x + B fails the test (Vn)n∈N , where Vn is the set of Brownian
paths which do not move by more than D on each of the intervals [kl, (k + 1)l] with
k = 0, ..., n. By the Markov property we have P(Vn) ≤ 2−n and it is easy to see that Vn

is an effectively open set uniformly in n. Thus x + B is not Martin-Löf random, which
by the shift-invariance of P shows that B is not Martin-Löf random relative to x . Note
that this argument further shows that given B and a bound on the randomness deficiency
of B, we can find a T such that {B(s) | s ∈ [0,T]} is guaranteed to intersect ∂U .

We know that P-almost surely, for each δ > 0, there is a time t ∈ [τ (x + B), τ (x +

B) + δ] such that (x +B(t)) ∈ Uc (this is what the regularity condition ensures). This
means that P-almost surely, the stopping time τ (x + B) coincides with the infimum
over times t such that (x + B(t)) ∈ Uc . Call τ ′ this infimum (which is a random
variable).

Now observe that τ (x+B) is lower semi-computable layerwise in B and uniformly in x .
Indeed, the predicate t < τ means that {x + B(s) | s ∈ [0, t]} does not intersect ∂U ,
which means that there is some ε > 0 such that {x + B(s) | s ∈ [0, t]} is at distance
at least ε from ∂U , and thus contained in U (since x + B starts at x ∈ U ). By
the hypothesis, U is effectively open, thus one can enumerate the rational open balls
contained in U . But we know that given x , B, a bound on its randomness deficiency,
and t , we can approximate the curve {x + B(s) | s ∈ [0, t]} to arbitrary precision, and
thus eventually see that it is covered by the enumeration of open balls contained in U .

On the other hand, τ ′(x + B) is upper semi-computable layerwise in B, because the
set {t | x + B(t) ∈ Uc} is effectively open layerwise in B and uniformly in x (again
due to the fact that we can approximate B to arbitrary precision knowing a bound on
its randomness deficiency, and also due to the fact that Uc is effectively open) and the
infimum of a Σ0

1 set of reals is upper semi-computable.

As we have seen, the probability that τ < τ ′ is 0. Since τ (x + B) is lower semi-
computable layerwise in B uniformly in x and τ ′(x + B) is upper semi-computable
layerwise in B and uniformly in x , the distance τ ′(x + B) − τ (x + B) is upper semi-
computable layerwise in B and uniformly in x . Suppose for the sake of contradiction
that B is Martin-Löf random relative to x and τ ′(x + B) − τ (x + B) > q for some
positive rational q. Let d be the randomness deficiency of B. Then B belongs to
the class of functions f such that the x-deficiency of f is less or equal to d and
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τ ′(x + f )− τ (x + f ) ≥ q. This is a Π0,x
1 class (by layerwise upper semi-computability

of the difference τ ′ − τ ) of P-measure 0, thus B is not even Kurtz random relative
to x , a contradiction.

We have established that τ (x+B) = τ ′(x+B) for every B which is Martin-Löf random
relative to x . By the above, this means that the common value is both upper and lower
semi-computable layerwise in B and uniformly in x , thus computable layerwise in B
and uniformly in x .

Theorem 5.9 immediately follows from this last proposition. Indeed, as the function
(x,B) 7→ τ (x + B) is computable in x and layerwise in B, so is its composition with
the computable function φ, and by Theorem 1.2 (observing that φ, being continuous,
must be bounded on the compact set ∂U ) so is x 7→

∫
B φ(τ (x + B)) dP, which is what

we wanted to prove.
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