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Ultrafilters maximal for finite embeddability

LORENZO LUPERI BAGLINI

Abstract: In this paper we study a notion of preorder that arises in combinatorial
number theory, namely the finite embeddability between sets of natural numbers,
and its generalization to ultrafilters, which is related to the algebraical and topolog-
ical structure of the Stone-Čech compactification of the discrete space of natural
numbers. In particular, we prove that there exist ultrafilters maximal for finite
embeddability, and we show that the set of such ultrafilters is the closure of the min-
imal bilateral ideal in the semigroup (βN,⊕), namely K(βN,⊕). By combining
this characterization with some known combinatorial properties of certain families
of sets we easily derive some combinatorial properties of ultrafilters in K(βN,⊕).
We also give an alternative proof of our main result based on nonstandard models
of arithmetic.
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1 Introduction

In this paper we study some properties of a notion of preorder that arises in combinatorial
number theory, the finite embeddability between sets of natural numbers. (See Di Nasso
[5] and Ruzsa [10], where this notion was implicitly used, and Blass and Di Nasso
[1], where many basic properties of this notion and its generalization to ultrafilters are
studied.) We recall its definition.

Definition 1.1 For A,B subsets of N, we say that A is finitely embeddable in B and
we write A ≤fe B if each finite subset F of A has a rightward translate n + F included
in B.

We use the standard notation n + F = F + n = {n + a | a ∈ F} and we use the standard
convention that N = {0, 1, 2, ...}. We also study the following generalization of ≤fe to
ultrafilters.
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2 L Luperi Baglini

Definition 1.2 For ultrafilters U ,V on N, we say that U is finitely embeddable in V
and we write U ≤fe V if, for each set B ∈ V , there is some A ∈ U such that A ≤fe B.

Many basic properties of these preorders are proved in Blass and Di Nasso [1] by using
standard and nonstandard techniques. In this present paper we use similar techniques
to study some different properties of these preorders and some easy applications to
combinatorial number theory. Our main result is that there exist ultrafilters maximal
for finite embeddability and that the set of such maximal ultrafilters is the closure
of the minimal bilateral ideal in (βN,⊕), namely K(βN,⊕). By combining this
characterization with some known combinatorial properties of certain families of sets
we easily deduce many combinatorial properties of ultrafilters in K(βN,⊕), eg that
for every ultrafilter U ∈ K(βN,⊕), for every A ∈ U , A has positive upper Banach
density, it contains arbitrarily long arithmetic progressions and it is piecewise syndetic1.
We will also show that there do not exist minimal sets in (Pℵ0(N),≤fe) nor there exist
minimum ultrafilters in (βN \ N,≤fe), where Pℵ0(N) is the set of infinite subsets of N
and βN \ N is the set of nonprincipal ultrafilters. These topics are studied in sections 2
and 3. In section 4 we reprove our main result by nonstandard methods; nevertheless,
this is the only section in which nonstandard methods are used, so the rest of the paper
is accessible also to readers unfamiliar with nonstandard methods.

We refer to Hindman and Strauss [6] for all the notions about combinatorics and
ultrafilters that we will use, to Chang and Keisler [3, §4.4] for the foundational
aspects of nonstandard analysis and to Davis [4] for all the nonstandard notions and
definitions. Finally, we refer the interested reader to Luperi Baglini [7, Chapter 4] for
other properties and characterizations of the finite embeddability.

Acknowledgements: The author has been supported by grant P25311-N25 of the
Austrian Science Fund FWF. The author would like to thank the anonymous referees
for their careful reading of the paper and for their detailed comments.

2 Some basic properties of finite embeddability between sets

Let n be a natural number. Throughout this section we will denote by P≥n(N) the
following set:

P≥n(N) = {A ⊆ N | |A| ≥ n};
1Let us note that many of these combinatorial properties of ultrafilters in K(βN,⊕) were

already known.
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Ultrafilters maximal for finite embeddability 3

similarly, we will denote by Pℵ0(N) the following set:

Pℵ0(N) = {A ⊆ N | |A| = ℵ0}.

Moreover, we will denote by ≡fe the equivalence relation such that for every A,B ⊆ N,

A ≡fe B⇔ A ≤fe B and B ≤fe A.

We will write A <fe B if A ≤fe B and A 6≡fe B.

It is immediate to see that the relation ≤fe on P(N) is reflexive and transitive but it
is not antisymmetric (eg, we have {2n | n ∈ N} ≡fe {2n + 1 | n ∈ N}). So ≤fe is a
partial preorder.

Di Nasso [5] points out that ≤fe has the following properties (for the relevant definitions,
see Hindman and Strauss [6]).

Proposition 2.1 [5, Propositions 4.1 and 4.2] Let A,B be sets of natural numbers.
Then:

(i) A is maximal with respect to ≤fe if and only if it is thick;

(ii) if A ≤fe B and A is piecewise syndetic then B is also piecewise syndetic;

(iii) if A ≤fe B and A contains a k-term arithmetic progression then also B contains
a k-term arithmetic progression;

(iv) if A ≤fe B then the upper Banach densities satisfy BD(A) ≤ BD(B);

(v) if A ≤fe B then A− A ⊆ B− B;

(vi) if A ≤fe B then
⋂

t∈G
(A− t) ≤fe

⋂
t∈G

(B− t) for every finite G ⊆ N.

We will use Proposition 2.1 to (re)prove some combinatorial properties of ultrafilters in
K(βN,⊕) in Section 3. Before that, we want to prove one more basic property of ≤fe ,
namely that for every set A there does not exist a set B such that A <fe B <fe A + 1.
To prove this result we need the following lemma.

Lemma 2.2 For every A,B ⊆ N the following two properties hold:

(i) if B �fe A and B ≤fe A + 1 then B ⊆ A + 1;

(ii) if A ≤fe B and A + 1 �fe B then A ⊆ B.

Journal of Logic & Analysis 6:6 (2014)



4 L Luperi Baglini

Proof We prove only (i), since (ii) can be proved similarly. Let F ⊆ B be a finite
subset of B such that n + F * A for every n ∈ N. In particular, for every finite H ⊆ B
such that F ⊆ H and for every n ∈ N we have that n + H * A. By hypothesis there
exists n ∈ N such that n + H ⊆ A + 1. If n ≥ 1 we have a contradiction, therefore it
must be n = 0, ie H ⊆ A + 1. Since this holds for every finite H ⊆ B (with F ⊆ H )
we deduce that B ⊆ A + 1.

Theorem 2.3 Let A,B ⊆ N. If A ≤fe B ≤fe A + 1 then A ≡fe B or A + 1 ≡fe B.

Proof If A = ∅ then A + 1 = ∅ so also B = ∅, therefore A ≡fe B. Let now A 6= ∅.
Let us suppose that A + 1 �fe B �fe A. Then, since A ≤fe B ≤fe A + 1, by Lemma 2.2
we deduce that A ⊆ B ⊆ A + 1, so A ⊆ A + 1. This is absurd since min A ∈ A \ (A + 1)
if A 6= ∅.

We now consider the problem of existence of minimal elements in various subsets
of P(N). Two immediate observations are that the empty set is the minimum in
(P(N),≤fe) and that {0} is the minimum in (P(N)≥1,≤fe). Moreover, if we identify
each natural number n with the singleton {n}, it is immediate to see that (N,≤) forms
an initial segment of (P≥1(N),≤fe) and that, more in general, the following easy result
holds.

Proposition 2.4 A set A is minimal in (P≥n(N),≤fe) if and only if 0 ∈ A and |A| = n.

The proof follows easily from the definitions. Let us note that, in particular, the
following facts follow:

(i) for every natural number m ≥ n − 1 there are
( m

n−1

)
inequivalent minimal

elements in (P≥n(N),≤fe) that are subsets of {0, ...,m};

(ii) if n ≥ 2 then (P≥n(N),≤fe) does not have a minimum element.

If we consider only infinite subsets of N the situation is different: there are no minimal
elements in (Pℵ0(N),≤fe), as we are now going to show.

Definition 2.5 Let A,B ⊆ N. We say that A is strongly non f.e. in B, and we write
A �S

fe B, if for every set C ⊆ A with |C| = 2 we have that C �fe B. If both A �S
fe B

and B �S
fe A we say that A,B are strongly mutually unembeddable, and we write

A 6≡S B.

Let us observe that, in the previous definition, we can equivalently substitute the
condition “|C| = 2” with “|C| ≥ 2”.

Journal of Logic & Analysis 6:6 (2014)



Ultrafilters maximal for finite embeddability 5

Proposition 2.6 Let X be an infinite subset of N. Then there are A,B ⊆ X , A,B
infinite, such that A ∩ B = ∅ and A 6≡S B.

Proof Let X = {xn | n ∈ N}, with xn < xn+1 for every n ∈ N. We set

a0 = x0, b0 = x1

and, recursively, we set

an+1 = min{x ∈ X | x > an + bn + 1}, bn+1 = min{x ∈ X | x > bn + an+1 + 1}.

Finally, we set A = {an | n ∈ N} and B = {bn | n ∈ N}. Clearly A ∩ B = ∅, and
both A,B are infinite subsets of X . Now we let an1 < an2 be any elements in A. Let us
suppose that there are bm1 < bm2 in B with an2−an1 = bm2−bm1 and let us assume that
bn2 > an2 (if the converse hold, we can just exchange the roles of an1 , an2 , bm1 , bm2 ).
By construction, since bm2 > an2 , we have bm2 − bm1 ≥ an2 + 1 > an2 , while
an2 − an1 ≤ an2 . So A 6≡S B.

Proposition 2.6 has a few easy consequences that we now prove.

Corollary 2.7 For every infinite set X ⊆ N there is an infinite set A ⊆ X such that
X �fe A.

Proof Let A,B be infinite subsets of X such that A 6≡S B. Then X cannot be finitely
embeddable in A and B; otherwise B ≤fe X ≤fe A, so B ≤fe A; a contradiction.

Corollary 2.8 For every infinite set X ⊆ N there is an infinite descending chain
X = X0 ⊃ X1 ⊃ X2... in Pℵ0(N) such that Xi+1 �fe Xi for every i ∈ N.

Proof The result follows immediately by Corollary 2.7.

Corollary 2.9 There are no minimal elements in (Pℵ0(N),≤fe).

Proof The result follows immediately by Corollary 2.8.
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6 L Luperi Baglini

3 Properties of finite embeddability between ultrafilters

In this section we want to prove some basic properties of (βN,≤fe), in particular an
analogue of Theorem 2.3 for ultrafilters, and to characterize the maximal ultrafilters
with respect to ≤fe . We fix some notations: we will denote by ≡fe the equivalence
relation such that, for every U ,V ultrafilters on N,

U ≡fe V ⇔ U ≤fe V and U ≤fe V.

3.1 Some basic properties of finite embeddability between ultrafilters

The first result that we prove is that Theorem 2.3 has an analogue in the setting of
ultrafilters.

Theorem 3.1 For every U ,V ∈ βN if U ≤fe V ≤fe U ⊕ 1 then U ≡fe V or U ⊕ 1 ≡fe

V .

Proof Let us suppose that U ⊕ 1 �fe V �fe U . In particular, U ⊕ 1 6= V , so there
exists A ∈ U such that A + 1 /∈ V . Since V �fe U there exists B ∈ U such that
K �fe B for every K ∈ V . In particular, K �fe A ∩ B for every K ∈ V .

Moreover, since (A ∩ B) + 1 ∈ U ⊕ 1 we derive that there exists C ∈ V such that
C ≤fe (A ∩ B) + 1. So we have that

C �fe (A ∩ B) and C ≤fe (A ∩ B) + 1;

by Lemma 2.2 we conclude that C ⊆ (A ∩ B) + 1. But C ∈ V , so (A ∩ B) + 1 ∈ V
and, since (A ∩ B) + 1 ⊆ A + 1, this entails that A + 1 ∈ V , which is absurd.

Another result that we want to prove is that (βN,≤fe) is not a total preorder.

Proposition 3.2 There are nonprincipal ultrafilters U ,V such that U is not finitely
embeddable in V and V is not finitely embeddable in U .

Proof Let A,B be strongly mutually unembeddable infinite sets (which existence
is a consequence of Proposition 2.6). Let U ,V be nonprincipal ultrafilters such that
A ∈ U ,B ∈ V and let us suppose that U ≤fe V . Let C ∈ U be such that C ≤fe B. Since
C ∈ U , A ∩ C is in U and it is infinite (since U is nonprincipal). So we have that
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Ultrafilters maximal for finite embeddability 7

• A ∩ C ≤fe B, since A ∩ C ⊆ C ;

• A ∩ C �fe B, since A 6≡S B.

This is absurd, so U is not finitely embeddable in V . In the same way we can prove
that V is not finitely embeddable in U .

It is easy to show that if we identify each natural number n with the principal ultrafilter
Un = {A ∈ P(N) | n ∈ A} then (N,≤) is an initial segment in (βN,≤fe). In particular,
U0 is the minimum element in βN. One may wonder if there is a minimum element
in (βN \ N,≤fe); the answer is no. In the following proposition, by ΘX we mean the
clopen set

ΘX = {U ∈ βN | X ∈ U}.

Proposition 3.3 Let X be an infinite subset of N. Then there is not a minimum in
(ΘX \ N,≤fe).

Proof Let us suppose that such a minimum exists, and let U ∈ ΘX be the minimum.
Let A,B ⊆ X be mutually unembeddable subsets of X and let V1,V2 be nonprincipal
ultrafilters such that A ∈ V1 and B ∈ V2 (in particular, V1,V2 ∈ ΘX ). Since, by
hypothesis, U is the minimum, there are C1,C2 ∈ U such that C1 ≤fe A and C2 ≤fe B.
Let us consider C1∩C2 ∈ U . By construction, C1∩C2 is finitely embeddable in A and
in B. But this is absurd: in fact, let c1 < c2 be any two elements in C1∩C2 . Then there
exist n,m such that n+{c1, c2} = {a1, a2} ⊂ A and m+{c1, c2} = {b1, b2} ⊂ B, and
this cannot happen, because in this case we would have b2 − b1 = c2 − c1 = a2 − a1 ,
while A 6≡S B.

In particular, by taking X = N, we obtain the following result.

Corollary 3.4 There is not a minimum in (βN \ N,≤fe).

3.2 Maximal ultrafilters

To study maximal ultrafilters in (βN,≤fe) we need to recall three results that have been
proved in Blass and Di Nasso [1]. To do that we need to introduce the notion of upward
cone generated by an ultrafilter.
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8 L Luperi Baglini

Definition 3.5 For any U ∈ βN the upward cone generated by U is the set

C(U) = {V ∈ βN | U ≤fe V}.

The following are the results proved in Blass and Di Nasso [1] that we will need.

Theorem 3.6 ([1, Theorem 11]) Let U ,V be ultrafilters on N. Then U ≤fe V if and
only if V ∈ {U ⊕W | W ∈ βN}.

Corollary 3.7 ([1, Corollary 13]) The ordering ≤fe on ultrafilters on N is upward
directed.

Corollary 3.8 ([1, Corollary 14]) For any U ∈ βN, the upward cone C(U ) is a closed,
two-sided ideal in βN. It is the smallest closed right ideal containing U and therefore
it is also the smallest two-sided ideal containing U .

For completeness, even if we will not use this fact, we also recall that Corollary 3.7 can
be improved: in fact (as proved by Blass and Di Nasso in [1] and by Luperi Baglini in
[7]) for every U ,V ∈ βN we have

U ,V ≤fe U ⊕ V.

Let us note that from Theorem 3.6 it easily follows that the relation ≤fe is not an-
tisymmetric: in fact, if R is a minimal right ideal in (βN,⊕) and U ∈ R then
C(U) = C(U ⊕ 1), so U ≤fe U ⊕ 1 and U ⊕ 1 ≤fe U .

We want to prove that there exist maximum ultrafilters in (βN,≤fe). Due to Corollary
3.8, since (βN,≤fe) is upward directed then to prove that there are maximum ultrafilters
it is sufficient2 to prove that there are maximal elements. To prove the existence of
maximal elements we use Zorn’s Lemma. A technical lemma that we need is the
following.

Lemma 3.9 Let I be a totally ordered set. Then there is an ultrafilter V on I such that,
for every element i ∈ I , the set

Gi = {j ∈ I | j ≥ i}.

is included in V .
2Every maximal element in an upward directed preordered set (A,≤) is a maximum.
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Ultrafilters maximal for finite embeddability 9

Proof We simply observe that {Gi}i∈I is a filter and we recall that every filter can be
extended to an ultrafilter.

The key property of these ultrafilters is the following:

Proposition 3.10 Let I be a totally ordered set and let V be given as in Lemma 3.9.
Then for every A ∈ V and i ∈ I there exists j ∈ A such that i ≤ j.

We omit the straightforward proof.

In the next Theorem we use the notion of limit ultrafilter. We recall that, given an
ordered set I , an ultrafilter V on I and a family Ui of ultrafilters on N, the V -limit
of the family 〈Ui | i ∈ I〉 (denoted by V − lim

i∈I
Ui ) is the ultrafilter such that for every

A ⊆ N,

A ∈ V − lim
i∈I
Ui ⇔ {i ∈ I | A ∈ Ui} ∈ V.

Let us introduce the notion of ≤fe -chain.

Definition 3.11 Let (I, <) be an ordered set. We say that 〈Ui | i ∈ I〉 is a ≤fe -chain
in βN if for every i < j ∈ I we have Ui ≤fe Uj .

Theorem 3.12 Every ≤fe -chain 〈Ui | i ∈ I〉 has an ≤fe -upper bound U .

Proof Let V be an ultrafilter on I with the property expressed in Lemma 3.9. We
claim that the ultrafilter

U = V − lim
i∈I
Ui

is a ≤fe -upper bound for the ≤fe -chain 〈Ui | i ∈ I〉. We have to prove that Ui ≤fe U
for every index i. Let A be an element of U . By definition,

A ∈ U ⇔ IA = {i ∈ I | A ∈ Ui} ∈ V.

IA is a set in V so by Proposition 3.10 there exists an element j > i in IA . Therefore
A ∈ Uj and, since Ui ≤fe Uj , there exists an element B in Ui with B ≤fe A. Hence
Ui ≤fe U and the theorem is proved.
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10 L Luperi Baglini

Being an upward directed set with maximal elements, (βN,≤fe) contains maximum
ultrafilters. We denote by M the set of maximum ultrafilters. By definition, for every
ultrafilter U we have that

U ∈ M⇔ V ≤fe U for every V ∈ βN.

In particular, we can characterize M in terms of the ≤fe -cones.

Corollary 3.13 M =
⋂
U∈βN

C(U).

Proof We simply observe that M ⊆ C(U) for every ultrafilter U and that, if U is a
maximum ultrafilter, then C(U) =M.

We can now prove our main result.

Theorem 3.14 M = K(βN,⊕).

Proof Given any ultrafilter U , by Proposition 3.6 we know that C(U) is the minimal
closed bilateral ideal containing U . By Corollary 3.13 we know that M =

⋂
U∈βN

C(U)

so, in particular, being the intersection of a family of closed bilateral ideal M itself is a
closed bilateral ideal. So if U is any ultrafilter in K(βN,⊕), we know that:

(i) M⊆ C(U);

(ii) C(U) = K(βN,⊕).

Therefore M is a closed bilateral ideal included in K(βN,⊕), and the only such ideal
is K(βN,⊕) itself.

The previous result has a few interesting consequences.

Corollary 3.15 An ultrafilter U is a maximum in (βN,≤fe) if and only if every
element A of U is piecewise syndetic.

Proof This follows from a well known characterization of K(βN,⊕): an ultrafilter
U is in K(βN,⊕) if and only if every element A of U is piecewise syndetic (see, eg,
Hindman and Strauss [6]).
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We thank one of the anonymous referees for pointing out the following property of
piecewise syndetic sets.

Corollary 3.16 If A is piecewise syndetic then for every infinite B ⊆ N there exists
an infinite C ⊆ B such that C ≤fe A.

Proof Let U be a maximum ultrafilter such that A ∈ U and V be a nonprincipal
ultrafilter such that B ∈ V . Since U is a maximum there exists D ∈ V such that
D ≤fe A. The result follows by setting C = D ∩ B.

As mentioned in the introduction, the notion of finite embeddability is related to some
properties that arise in combinatorial number theory. A particularity of maximum
ultrafilters in (βN,≤fe) is that every set in a maximum ultrafilter satisfies many of these
combinatorial properties.

Definition 3.17 We say that a property P is ≤fe -upward invariant if the following
holds: for every A,B ⊆ N, if P(A) holds and A ≤fe B then P(B) holds.

We way that P is partition regular if the family SP = {A ⊆ N | P(A) holds} contains
an ultrafilter (ie, if for every finite partition N = A1 ∪ ... ∪ An there exists at least one
index i ≤ n such that Ai ∈ SP).

Clearly, the following properties are ≤fe -upward invariant:

(i) A is thick;

(ii) A is piecewise syndetic;

(iii) A contains arbitrarily long arithmetic progressions;

(iv) BD(A) > 0, where BD(A) is the upper Banach density of A.

In particular, properties (ii), (iii), (iv) are also partition regular: that (ii) is partition
regular was originally proved by T. Brown in [2], property (iii) is the content of Van der
Waerden’s Theorem (see [11]) and (iv) is due to the subadditivity of the upper Banach
density. We now want to show that these properties are important in relation to maximal
ultrafilters.

Proposition 3.18 Let P be a partition regular ≤fe -upward invariant property of sets.
Then for every piecewise syndetic set A P(A) holds.

Journal of Logic & Analysis 6:6 (2014)



12 L Luperi Baglini

Proof Let P be given, let SP = {B ⊆ N | P(B) holds} and let V ⊆ SP (such an
ultrafilter exists because P is partition regular). Let A be piecewise syndetic, and let
U be a maximum ultrafilter such that A ∈ U . Since U is a maximum, V ≤fe U . Let
B ∈ V be such that B ≤fe A. Since P is ≤fe -upward invariant and P(B) holds, we
deduce that P(A) holds.

For example, the results expressed in the following corollary can be seen also as a
consequence of Proposition 3.18 (and the known facts that “being AP-rich” and “having
positive upper Banach density” are partition regular properties).

Corollary 3.19 Let A ⊆ N be piecewise syndetic. Then:

(i) BD(A) > 0;

(ii) A contains arbitrarily long arithmetic progressions.

In the forthcoming paper [8] we show how similar arguments can be used to prove
combinatorial properties of other families of ultrafilters, eg, to prove that for every
ultrafilter U ∈ K(βN,�), for every A ∈ U , A contains arbitrarily long arithmetic
progression and it contains a solution to every partition regular homogeneous equation3.

4 A nonstandard proof of the main result

In this section we assume the reader to be familiar with the basics of nonstandard
analysis. In particular, we will use the notions of nonstandard extension of subsets of
N and the transfer principle. We refer to Chang and Keisler [3] and Davis [4] for an
introduction to the foundations of nonstandard analysis and to the nonstandard tools
that we are going to use.

Both in Blass and Di Nasso [1] and in Luperi Baglini [7] it has been shown that the
relation of finite embeddability between sets has a very nice characterization in terms of
nonstandard analysis, which allows to study some of its properties in a quite simple and
elegant way. We recall the characterization (in the following proposition, it is assumed

3An equation P(x1, ..., xn) = 0 is partition regular if and only if for every finite coloration
N = C1 ∪ ... ∪ Cn of N there exists an index i and monochromatic elements a1, ..., an ∈ Ci

such that P(a1, ..., an) = 0.
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Ultrafilters maximal for finite embeddability 13

for technical reasons that the nonstandard extension that we consider satisfies at least
the c+ -enlarging property4, where c is the cardinality of P(N)).

Proposition 4.1 ([1, Proposition 15]) Let A,B be subsets of N. The following two
conditions are equivalent:

(i) A is finitely embeddable in B;

(ii) there is a hypernatural number α in ∗N such that α+ A ⊆ ∗B.

We use Proposition 4.1 to reprove directly, with nonstandard methods, Theorem 3.14.

Nonstandard proof of Theorem 3.14 Let U ∈ K(βN,⊕), let A be a set in U , and
let V be an ultrafilter on N. Since A is piecewise syndetic there is a natural number n
such that

T =

n⋃
i=1

(A + i)

is thick. By transfer5 it follows that there are hypernatural numbers α ∈ ∗N and
η ∈ ∗N \ N such that the interval [α, α+ η] is included in ∗T . In particular, since η is
infinite, α+ N ⊆ ∗T .

For every i ≤ n we consider

Bi = {n ∈ N | α+ n ∈ ∗(A + i)}.

Since
⋃n

i=1 Bi = N, there is an index i such that Bi ∈ V . We claim that Bi ≤fe A. In
fact, by construction α+ Bi ⊆ ∗A + i, so

(α− i) + Bi ⊆ ∗A.

By Proposition 4.1, this entails that Bi ≤fe A, and this proves that V ≤fe U for every
ultrafilter V . Hence U is a maximum in (βN,≤fe), therefore K(βN,⊕) ⊆ M. But,
since the property of being piecewise syndetic is ≤fe -upward invariant, from Proposition
3.18 we also derive that M⊆ K(βN,⊕).

4We recall that a nonstandard extension ∗N of N has the c+ enlarging property if, for
every family F of subsets of N with the finite intersection property, the intersection

⋂
A∈F

∗A is

nonempty.
5Thick sets can be characterized by mean of nonstandard analysis as follows (see, eg, Luperi

Baglini [7]): a set T ⊆ N is thick if and only if ∗T contains an interval of infinite length.
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14 L Luperi Baglini

5 Questions

We conclude the paper with two open questions:

• Does there exist a minimal ultrafilter in βN \ N?

We conjecture that the answer is no. In fact, due to some (vague) similarities between
the finite embeddability and the Rudin-Keisler preorder on ultrafilters (see, eg, Rudin
[9]), one might guess that selective ultrafilters are minimal with respect to finite embed-
dability. To prove that this is not the case we recall the following characterization of
selective ultrafilters: an ultrafilter S on N is selective if and only if for every function
f : N→ N there exists A ∈ S such that f is constant or strictly increasing on A.

Proposition 5.1 If S is a non principal selective ultrafilter on N then S �fe S 	 1.

Proof Let

x0 = 0; x1 = 1; xn+1 = 2xn + 1.

Let f : N→ N be defined as follows:

f (x) = n⇔ xn ≤ x < xn+1.

Since f cannot be constant on any infinite set, there exists A ∈ S such that f is strictly
increasing on A. Let A = {an | n ∈ N}, where an < an+1 for every n ∈ N. Let
A = A1 ∪ A2 , where

A1 = {a2n | n ∈ N}; A2 = {a2n+1 | n ∈ N}.

Let us suppose that A1 ∈ S (the other case can be treated similarly). Let A1 = {a1,n |
n ∈ N}, where a1,n < a1,n+1 for every n ∈ N. Then, by construction, we have that

a1,n+1 − a1,n > x2n+2 − x2n+1 > x2n+1 ≥ a1,n − a1,n−1.

In particular, it follows that A �S
fe A− 1: in fact, let an, am ∈ A, n < m. Let us suppose

that there exist k, i, j ∈ N, i < j such that k + {an, am} = {ai − 1, aj − 1}. Then
am − an = aj − ai , and this by construction is possible if and only if an = ai and
am = aj . But then we would have k = −1, which is impossible.
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In particular, for every B ∈ S we have that B �fe A1 − 1: in fact if there exists such a
B then we would have that B ∩ A1 ≤fe A1 − 1 and this is impossible. So we have the
result.

In particular, since U 	 1 ≤fe U for U ∈ βN \ U0 , we deduce that selective ultrafilters
are not minimal in βN \ N. Still we do not know if there are any minimal ultrafilters.

• Is it possible to find any simple characterization of the property U �fe V and
V �fe U ?

From the proof of Proposition 3.2 it follows that if there exist infinite sets A 6≡S B with
A ∈ U and B ∈ V then U �fe V and V �fe U . And by the definitions it follows that if
U �fe V and V �fe U then there are A ∈ U , B ∈ V such that A �fe B and B �fe A. Is
it possible to improve this last result?

References

[1] A. Blass, M. Di Nasso, Finite Embeddability of sets and ultrafilters, submitted, arXiv
1405.2841.

[2] T. Brown, An interesting combinatorial method in the theory of locally finite semigroups,
Pacific J. Math. 36 (1971), 285–289, doi: 10.2140/pjm.1971.36.285.

[3] C. C. Chang, H. J. Keisler, Model theory (3rd ed.), North-Holland, Amsterdam (1990),
ISBN 0-444-88054-2.

[4] M. Davis, Applied Nonstandard Analysis, John Wiley & Sons (1977), ISBN 10:
0486442292.

[5] M. Di Nasso, Embeddability properties of difference sets, Integers, Volume 14 (2014),
A27.

[6] N. Hindman, D. Strauss, Algebra in the Stone-Čech Compactification (2nd edition), de
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