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Abstract: We use the insights of Robinson’s nonstandard analysis as a powerful
tool to extend and simplify the construction of compactifications of regular spaces.
In particular, we deal with the Stone-Čech compactification and compactifications
formed from topological ends. For the nonstandard extension of a metric space,
the monad of a standard point x is the set of all points infinitesimally close to x .
Monads of standard points can also be defined for non-metric spaces. The new
points of a compactification are formed from equivalence classes of points that are
not in the monad of any standard point. Adjoining such points to the original point
set allows a better understanding of the relationship between the original space
and the set of compactifying points. Our results for end compactifications are
established for regular, connected and locally connected spaces. Simple examples
of end compactifications are the two point compactification of the real line and
the one point compactification of the complex plane. In general, one or more
ends form the “far” termination of a non-compact space, while any “hole” in the
space corresponds to an end that is “near”. Our results on ends extend previous
work initiated by Hans Freudenthal on ends understood as equivalence classes of
nested sequences of nonempty open sets with compact boundaries. We show, for
example, that a product of spaces with at least two non-compact factors has only
one end. A brief overview and introduction to nonstandard analysis begins the
discussion.
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1 Introduction

We use the insights of Robinson’s nonstandard analysis ([12], [10], also see next
section) to extend and simplify previous works in the literature on compactifications.
In this setting, the “monad” of a standard point x consists of points in the nonstandard
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extension of each standard open neighborhood of x; a “remote point” is one not in the
monad of any standard paint. A space has at least one remote point if and only if it
is not compact. A compactification of a regular space corresponds to an equivalence
relation on the set of remote points. The new points of a compactification are formed
from equivalence classes of remote points. The resulting compactification is a compact
space containing the original point set as a dense subset. The relative topology on that
subset is, in general, weaker than the original topology. Compactifications constructed
in the literature often employ a continuous map from the original space into a compact
space. Our general construction attaching points formed from equivalence classes of
remote points allows a better understanding of the relationship between the original
space and the set of compactifying points. For example, given a family of bounded
real-valued functions on the original space, one can call two remote points equivalent
if the nonstandard extension of each of the functions in the family has infinitesimal
variation on the two point set. This leads to such compactifications as the Stone-Čech
compactification, but constructed here for spaces that need only be regular. Examples
of non-compact spaces we will employ in what follows are not new examples of
topological spaces; they will, however, serve to illuminate our theory.

We will apply our results to the theory of compactifications formed from topological
ends. Well-known examples of end compactifications are the two point compactifi-
cation of the real line and the one point compactification of the complex plane. The
general notion of topological ends was introduced by Freudenthal in [3] to formalizes
the intuitive notion of a “hole” in a noncompact space. His work, using sequences,
was recently extended by the third author in [11] and then by the first and third author
in [7] using nested nets of connected open sets with compact boundaries such that the
intersection of their closures is empty. We have eliminated the special assumptions
of these previous papers so that our results apply to all regular, connected and locally
connected topological spaces. Moreover, the definition presented here extends the
notion of ends in those works in the sense that some spaces with intuitive “holes” fail
to have ends at the locations of the “holes”, but with the definition here they have ends
there and at no other locations.1 Among our other results is the fact that a product
space with two or more noncompact factors has only one end. Again, a simple example
is the complex plane.

In other literature, graph-theoretical ends introduced by Halin in [5] use equivalence
classes of rays at infinity; those ends are, in general, distinct from Freudenthal’s
ends. A discussion that compares the two approaches is presented in Diestel and

1Our results were presented in part at the 2012, Honolulu, Hawaii AMS meeting. The
authors are indebted to Tom Cuchta for helpful comments.
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Kühn [1]. The use of nonstandard analysis to form general compactifications has had
many contributors starting with the work of Abraham Robinson. In [13], Robinson
constructs the Stone-Čech compactification of a given topological group or ring, and
indeed, he considers arbitrary compactifications of such structures in the same light. In
his approach, the kernel, K , of a homomorphism defined on the nonstandard extension
of the given algebraic structure plays an essential role. As is well-known for universal
algebras, such a kernel K gives rise naturally to an equivalence relation, which, in fact,
is a congruence on the nonstandard extension of the given structure. Our approach
to compactifications of topological spaces, extending work of Salbany and Todorov
([14], [15]), will utilize equivalence relations on the nonstandard extension of a given
topological space, independent of any algebraic structure, thereby producing quite
general compactifications.

Most recently, nonstandard analysis has been employed by Goldbring [4] to treat graph-
theoretical ends. His work does not deal with ends of a topological group, but ends
of a topologized graph, namely the Cayley graph of a given finite presentation of the
given group. There, the topology is defined by the graph theoretic properties, making
the resulting space a proper geodesic space (a metric space in which every closed ball
is compact and the distance between any two points is realized by an isometric path
from one point to the other). Of course, the graph theoretic properties are derived
naturally from properties of the given finitely presented group, but if the group G in
question is a topological group to begin with, then the end space of G, as considered
by Goldbring, is not the same space of “remainders” considered by Robinson. We
note that in defining his ends, Goldbring uses path-connectedness, whereas the ends
we construct in this work uses the more general notion of topological connectedness.
We also do not assume here that our underlying space is locally compact.

2 Background for Nonstandard Methods

In this section, we give a very brief introduction to the nonstandard methods used here.
The reader is invited to read Loeb and Wolff [10] for an extensive discussion. For
simplicity, we start with the complex plane C. Abraham Robinson [12] showed that
points can be adjoined to C to obtain a “space” ∗C with the following properties:

(1) Every sequence s, function f , and relation r extends to an object (denoted by ∗s,
∗f and ∗r , respectively) that is built from ∗C in a way analogous to its original
construction using C.

Journal of Logic & Analysis 6:7 (2014)
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(2) In particular, elements are adjoined to the set N of natural numbers. These new
elements are greater than every ordinary integer in terms of the extended ordering
∗ ≤ ; the augmented set is the set ∗N of nonstandard natural numbers.

(3) When working with ∗C, the extended objects are called standard objects, but
the adjoined points are called nonstandard numbers. Nonstandard numbers,
standard objects and members of standard objects are called internal objects.
Keisler [8] showed that any object that can be constructed using only internal
objects is again internal.

(4) Some objects are introduced that are not members of any standard object; these
are called external objects. An object constructed with essential reference to
standard objects is external. For example, the set of standard natural numbers is
external in ∗N. Therefore, an internal subset of ∗N cannot begin or end precisely
at the standard elements of ∗N.

(5) All statements true for the plane remain true when properly interpreted for ∗C.
The names of objects constructed from C are replaced with the names of the
extension of those objects, and the interpretation must refer only to internal
objects. This property is called the transfer principle. If a properly interpreted
statement is true for ∗C, then because it cannot be false, the original statement
is true for C. This property is called the downward transfer principle.

(6) Any initial segment of ∗N terminating in a standard or nonstandard, ie, infinite
natural number is called hyperfinite. Any internal set in internal one-to-one
correspondence with such an initial segment of ∗N is called hyperfinite. Hy-
perfinite sets have all of the formal properties of finite sets.

(7) All elements of any set S constructed from C are members of a hyperfinite
subset of ∗S . In general, this principle, with some cardinality conditions, is
referred to as saturation.

The metric on C extends to an internal function taking pairs of points in ∗C to the
extension of the nonnegative real numbers ∗R+ . The reciprocal of any element from
∗R+ that is larger than all standard natural numbers is a positive infinitesimal number;
0 is the only real infinitesimal. Given a point p ∈ C, the collection of all points in
∗C an infinitesimal distance from p forms the external set µ(p) called the monad of
p. The point p is called the standard part of each point in µ(p). A set A ⊆ C is
open if and only if for each p ∈ A, µ(p) ⊆ ∗A. On the other hand, µ(p) =

⋂
{∗U|U is

open, p ∈ U}. A similar approach to this treatment of C and ∗C yields nonstandard
extensions of metric spaces and also topological spaces, but for topological spaces, the
monad of a point p is just defined as the intersection of the extended open neighborhoods
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containing p. A subset S of a topological space is compact if and only if every point
in ∗S is nearstandard in ∗S , ie in the monad of a standard point of S .

In our work with topological spaces, we will always assume that the nonstandard
extension is κ-saturated, where κ is greater than the cardinality of the topology (see
Loeb and Wolff [10, Definition 2.9.1]). We will work with what Robinson [12] called
the S-topology on such a nonstandard extension. It is the topology generated by the
set of nonstandard extensions of standard open sets. Important for our work here is
the theorem of Salbany and Todorov (see [14] and [15]) stating that the S-topology
is a compact topology on the nonstandard extension, whence the continuous image is
compact.

3 General Compactifications

Let (Z, T ) be a regular noncompact topological space. By regularity, we mean that
for each point p ∈ Z , the singleton {p} is a closed set and every open neighborhood
U of p contains a smaller open neighborhood V of p with closure V ⊆ U . If there
is a compact subset K0 of our original space where regularity fails on the interior of
K0 , then we assume that Z consists of the complement of the interior of K0 . It is well
known that compact subsets of Z are closed sets. We now fix a κ-saturated nonstandard
extension of (Z, T ), where κ is greater than the cardinality of the topology T .

3.1 Definition We call a point x ∈ ∗Z remote if x is not nearstandard, ie not in the
monad of any standard point of Z .

We assume that there is an equivalence relation on the set of remote points of ∗Z .
We write x ∼ y if x and y are remote and equivalent. The monads of points of Z
are equivalence classes in the nearstandard points of ∗Z . In general, the equivalence
classes are external.

3.2 Definition Let Y be the point set consisting of points of Z , called s-points,
together with all equivalence classes of remote points, where each equivalence class is
treated as a single point. We call such a point of Y an r-point. We supply ∗Z with the
S-topology. Let ϕ be the mapping from ∗Z onto Y that sends near-standard points to
their standard parts and remote points to their respective r-points. The neighborhood
filter base B(y) at an r-point y in Y consists of all sets of the form ϕ (∗U), where
U is a standard open subset of Z with nonstandard extension containing the entire
equivalence class corresponding to y (whence U 6= ∅). The neighborhood filter
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base B(x) at an s-point x in Y consists of all sets of the form ϕ (∗U), where U is a
standard open subset of Z with x ∈ U .

3.3 Proposition The neighborhood “filter base” B(p) at a point p ∈ Y is in fact a
filter base.

Proof Suppose U and V are two standard open subsets of Z such that ϕ (∗U) and
ϕ (∗V) are members of B(p). Set W := U ∩ V . If p is an s-point, then p ∈ W . If p is
an r-point, then ∗W contains the equivalence class corresponding to p. Moreover,

ϕ
(∗W) = ϕ

(∗ (U ∩ V)
)
= ϕ

(∗U ∩ ∗V) ⊆ ϕ (∗U) ∩ ϕ (∗V) .

As usual, a set O ⊆ Y is called “open” if for each point p ∈ O, there is an element
ϕ (∗U) ∈ B(p) with ϕ (∗U) ⊆ O. The collection of open sets forms a topology on Y .
That is, the collection is stable under the operations of taking finite intersections and
arbitrary unions. Every nonempty U ∈ T is an open neighborhood in Z of its points,
so ϕ (∗U) is an element of the neighborhood filter base for each of those s-points in Y .
Note that we have not yet made any claim about the interior with respect to Y of any
member of any neighborhood filter base.

3.4 Definition We let TY denote the topology on Y , ie the collection of open sets
generated by the neighborhood filter bases.

3.5 Proposition Let A be a nonempty subset of Z . If x ∈ Z is the standard part of
y ∈ ∗A, then x = ϕ (y) is a point in the T -closure of A. If x ∈ Z is a point in the
T -closure of A, then x is a point in the TY -closure of A. Moreover, ϕ (∗A) is contained
in the TY -closure of the point set A.

Proof The first part is well-known and clear. If x ∈ Z is a point in the T -closure
of A, then any TY open set W that contains x contains a set ϕ (∗U) where U ∈ T
contains x . By definition, there is a point z ∈ U ∩ A. Since z ∈ ϕ (∗U) ∩ A ⊆ W ∩ A,
x is a point in the TY -closure of A. It now follows that any s-point in ϕ (∗A) is in
the TY -closure A. Suppose p is an r-point in ϕ (∗A). Let W ∈ TY contain p. By
definition, there is a V ∈ T with the equivalence class corresponding to p contained
in ∗V and ϕ (∗V) ⊆ W . Since p ∈ ϕ (∗A), there is a remote point y ∈ ∗A such that
y is in the equivalence class corresponding to p and ϕ(y) = p. By the choice of V ,
y ∈ ∗V . Since ∗V ∩ ∗A 6= ∅, it follows by downward transfer that V ∩ A contains
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a point x , whence x is in A and also in ϕ (∗V) ⊆ W . Thus every point in ϕ (∗A) is a
point of the TY -closure of A.

3.6 Example Let Z be the open unit disc. Let the remote points on the positive real-
axis be one equivalence class forming an r-point p, and let the remaining remote points
form a second equivalence class. Let U be the open disc from which the nonnegative
real-axis has been removed. Then p is a point in the TY -closure of U , but p is not an
element of ϕ (∗U).

3.7 Theorem The map ϕ is a continuous surjection from ∗Z onto Y , whence, Y is
compact. Moreover, the point set Z is dense in Y supplied with the TY -topology. In
general, the T -topology on Z is stronger than the relative TY -topology on Z .

Proof Fix p ∈ Y . Also fix W ∈ TY containing p, and a B(p) set ϕ (∗U) ⊆ W . If
p ∈ Z , then ϕ (∗U) is the ϕ-image of an S-open set ∗U containing the monad of p
in ∗Z . If p is an r-point of Y , then ϕ (∗U) ⊆ W is the ϕ-image of an S-open set ∗U
containing the equivalence class corresponding to p. It follows that ϕ is a continuous
map from ∗Z onto Y . As noted above, Salbany and Todorov [14] have shown that
the S-topology is a compact topology on ∗Z . It follows that the space (Y, TY ) is
compact. The neighborhood filter base for each point of Y consists of images under
ϕ of the nonstandard extensions of nonempty standard open sets, so the point set Z
is a dense subset of Y . Finally, given W ∈ TY , we must show that W ∩ Z ∈ T .
Let x be an s-point of W . There is a V ∈ T with x ∈ V and ϕ (∗V) ⊆ W , whence
V ⊆ ϕ (∗V) ∩ Z ⊆ W ∩ Z ; so W ∩ Z ∈ T .

3.8 Definition We say a subset A of ∗Z is not equivalence class splitting if for each
remote point y ∈ A, the equivalence class containing y is entirely contained in A.

3.9 Theorem Fix O ∈ T , and let AO be a set of remote points in ∗O such that AO

is not equivalence class splitting. Assume that O has the following properties with
respect to AO : 1) for each x ∈ O there is a Vx ∈ T with x ∈ Vx such that the T -closure
of Vx is contained in O and the remote points in ∗Vx are contained in AO . 2) For
each a ∈ AO , there is a Va ∈ T such that the T -closure of Va is contained in O,
every remote point in ∗Va is contained in AO , and the equivalence class containing
a is contained in ∗Va . Set W =

⋃
x∈O ϕ (∗Vx) ∪

⋃
a∈AO

ϕ (∗Va). Then W ∈ TY and
W ∩ Z = O. Moreover, for each x ∈ O, x ∈ W ⊆ ϕ (∗O) ∈ B(x), and for each
p = ϕ (a) for a ∈ AO , p ∈ W ⊆ ϕ (∗O) ∈ B(p). If each O ∈ T satisfies the above
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assumptions with respect to a corresponding set AO , then the T -topology on Z equals
the relative TY -topology on Z .

Proof The result follows from the regularity of T and the definition of openness for
TY .

3.10 Corollary Assume that O ∈ T has the property that for each x ∈ O there is a
Vx ∈ T with x ∈ Vx such that the T -closure of Vx is contained in O and ∗Vx is not
equivalence class splitting. Set W =

⋃
x∈O ϕ (∗Vx). Then W ∈ TY and W ∩ Z = O.

If each O ∈ T satisfies the above assumption, then the T -topology on Z equals the
relative TY -topology on Z .

3.11 Corollary If T is a locally compact topology on Z , then the T -topology on Z
equals the relative TY -topology on Z .

Proof For each O ∈ T , let AO = ∅, and for each x ∈ O, let Vx have compact
closure in O.

The next result has obvious consequences in terms of local connectivity of the space
(Y, TY ).

3.12 Corollary If O ∈ T is connected and each of the sets Vx , x ∈ O, is connected,
then W is connected.

Proof It is well-known that any set containing a connected set S and contained in the
closure S is connected. Therefore, the result follows from Proposition 3.5. One can
also use the following Proposition 3.13.

3.13 Proposition The nonstandard extension of a connected open subset of Z is
connected in the S-topology.

Proof Let W be an open subset of Z . Let Ũ and Ṽ be two nonempty S-open
subsets of ∗W . There are two collections U and V of open subsets of Z such that
Ũ =

⋃
S∈U

∗S and Ṽ =
⋃

T∈V
∗T . Let U =

⋃
S∈U S and V =

⋃
T∈V T . If there

is a point w ∈ W \ (U ∪ V), then w ∈ ∗W \
(

Ũ ∪ Ṽ
)

, so Ũ and Ṽ do not form a

disconnection of ∗W . If there is a point w ∈ U ∩ V , then w ∈ Ũ ∩ Ṽ , so Ũ and Ṽ do
not form a disconnection of ∗W . Therefore, if Ũ and Ṽ do form a disconnection of
∗W , then U and V form a disconnection of W .

Journal of Logic & Analysis 6:7 (2014)
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3.14 Theorem Let Q be a collection of bounded, continuous, real-valued functions
on Z . Call two remote points x and y of ∗Z equivalent if for each f ∈ Q, ∗f (x)− ∗f (y)
is infinitesimal. Let Y be the compactification for this equivalence relation. For each
r-point p in Y , and each f ∈ Q, set f (p) equal to the standard part of ∗f (x) for x in the
equivalence class corresponding to p. Then f gives a continuous extension of f from
the points of Z to Y . Moreover the set of extensions separates the r-points of Y .

Proof Let f denote the value of the extension of f ∈ Q at all points of Y . The fact
that the set of extensions separates the r-points of Y follows from the definition of the
equivalence classes. To establish the continuity of each f , we fix a and b in R, and
show that W :=

{
y ∈ Y : a < f (y) < b

}
∈ TY . Fix p ∈ W and c and d in R with

a < c < f (p) < d < b. Let U = {y ∈ Z : c < f (y) < d}. Then ϕ (∗U) ∈ B(p) and
ϕ (∗U) ⊆ W .

3.15 Remark The last theorem applied to the class of all bounded, continuous, real-
valued functions on Z gives an extension of the Stone-Čech compactification con-
struction to regular spaces that may not be completely regular. It is not necessary to
imbed Z in a product space to obtain the compactification. It is easy to see that for the
application of this construction to R. Arens’ example of a regular but not completely
regular space (see Degundji [2, page 154]), the T -topology is stronger than the relative
TY -topology.

Note that Theorem 3.14 can be extended to a family of functions each taking values in
a compact Hausdorff space.

4 End Compactifications

Now we assume that (Z, T ) is a regular, connected and locally connected, noncompact
topological space. If there is a compact subset K0 of our original space where regularity
or local connectivity fails on the interior of K0 , then we assume that Z consists of the
complement of the interior of K0 .

It is well known that each component W of the complement of a compact set is an open
set since if x ∈ W , then x has a connected open neighborhood that must be entirely
contained in W . Again, we fix a κ-saturated nonstandard extension of (Z, T ), where
κ is greater than the cardinality of the topology T .

4.1 Definition Two remote points x , y in ∗Z are equivalent, and we write x ∼ y if
there is an internally connected set A containing no nearstandard points with x ∈ A
and y ∈ A.
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Since the union of two connected sets containing a common point is connected, the
relation ∼ is an equivalence relation in the set of remote points. In general, the
equivalence classes are external.

4.2 Definition We call the equivalence class containing a remote point x ∈ ∗Z the end
of Z represented by x . We call the compactification corresponding to the equivalence
relation ∼ the end compactification of Z . We call an open set O ∈ T non end-
splitting, or simply NES if ∗O is not equivalence class splitting with respect to the
equivalence classes forming ends.

4.3 Example Let Z be the closed square [0, 1]× [0, 1] in the x, y-plane, but remove
the open real interval (1/3, 2/3) from the bottom edge of the square. The topology
on Z is the topology inherited from the plane. There is only one end. It consists of
all points in the nonstandard extension of the square with positive but infinitesimal
y-coordinate and x-coordinate between 1/3 and 2/3 but not infinitesimally close to
either. The standard points

(
1/3, 0

)
and

(
2/3, 0

)
in Z cannot be separated from this

end nor from each other by disjoint open neighborhoods in Y . The topology T is
strictly stronger than the relative TY topology on Z . We also note that the net method
of Insall and Marciniak [7] does not work to define the end in Z .

It is well known that a regular space is locally compact if and only if every compact
subset is contained in an open set W with compact closure W .

4.4 Theorem Let K be a compact subset of Z . Assume there is an open set W ⊇ K
with compact closure W . Then all but a finite number of components of Z�K are
contained in the compact set W . It follows that if Z is locally compact, then the
complement of any compact subset of Z has only a finite number of components with
nonstandard extension containing remote points.

Proof Let A = ∂W . Then A is a closed subset of W , and is therefore compact. If
x ∈ K , then W is an open neighborhood of x contained in W , so x /∈ A. Therefore,
A ⊂ Z�K . Cover A with a finite number of connected open sets Sj ⊆ Z�K . Let U
be a component of Z \ K . If for some j, Sj ∩ U 6= ∅, then since U is a component,
Sj ⊆ U . It follows that there are only a finite number of such components U . Suppose
U is a component of Z \ K such that for each j, Sj ∩ U = ∅. Also suppose there is
a point p that is a point of closure of U�W . Then p /∈ W and p /∈ A, but p has a
connected open neighborhood that intersects U , so that neighborhood is contained in
U , and in particular, p ∈ U�W . Therefore, U�W is a closed subset of Z . It follows

Journal of Logic & Analysis 6:7 (2014)



Compactifications 11

that U�W = ∅, since Z is connected. It now follows that all but a finite number of
components of Z�K are contained in the compact set W , and thus have nonstandard
extensions with no remote points.

Next, we employ an example of a connected and locally connected space that is not
locally compact.

4.5 Example Let the point set Z be the countable collection of half open intervals
In = (0, 1] indexed by the natural numbers N together with a single point denoted by
0. A base for the neighborhood system of each point of each In is the usual open base
inherited from the real line. A typical element of the base for the neighborhood system
of 0 is given by a positive ε < 1; it is the set

Oε := {0} ∪
⋃
n∈N
{x ∈ In : x < ε} .

For each H ∈ ∗N�N, the non-infinitesimal points in IH form an end. These are the
only ends. The monad of 0 consists of 0 together with the set of infinitesimal points
in In for each n ∈ ∗N. Given a standard open neighborhood U of 0 in Z , ∗U has
nonempty intersection with every end. Therefore, to form a member of B(0), ϕ (∗U)
must contain the nonstandard interval IH for every unlimited H . It follows that the
end compactification of Z is not Hausdorff, but a Hausdorff quotient is obtainable by
mapping every end to 0. Note that the number of ends in the compactification depends
on the cardinality of ∗N in the selected nonstandard extension.

4.6 Proposition Suppose O ∈ T and p ∈ ∗∂O is in the monad of a standard point
of Z . Then p is actually in the monad of a standard point of ∂O. It follows that the
boundary ∂O of a nonempty open subset O of Z is compact if and only if every point
α ∈ ∗∂O is in the monad of a standard point of Z .

Proof Suppose p is a point in ∗∂O and p is in the monad of a standard point x ∈ Z .
Let U be any standard open neighborhood of x; then p ∈ ∗U . Since p ∈ ∗∂O, ∗U
contains points both inside and outside ∗O, so by downward transfer, U contains points
both inside and outside O. Therefore, x ∈ ∂O, whence p is nearstandard in ∗∂O. It
follows that if all points of ∗∂O are in monads of standard points of Z , then they are
in monads of standard points of ∂O, so ∂O is compact. Conversely, if ∂O is compact,
then every α ∈ ∗∂O is in the monad of a point of ∂O ⊆ Z .

4.7 Proposition If W is a component of the complement of a compact set K , then W
is non end-splitting.

Journal of Logic & Analysis 6:7 (2014)
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Proof Let x and y be equivalent remote points, and let A be an internally connected set
containing x and y but no nearstandard point. Then A is contained in the complement
of ∗K . Moreover, ∗W ∪ A is internally connected, so A ⊆ ∗W .

4.8 Proposition Suppose Z is locally compact. If x and y are non-equivalent remote
points in ∗Z , then there is a compact set K such that x and y are in the nonstandard
extensions of different components of Z \ K .

Proof Assume that for every compact set K , x and y are in the nonstandard extension
of the same component of Z \ K . Then by the assumption of local compactness and
saturation, there is a nonstandard compact set C containing all near-standard points
such that x and y are in the same component of ∗Z \ C . It follows that y ∼ x .

Since Z is connected, the only nonempty subset of Z with empty boundary is Z .
Clearly, Z is not end-splitting. In general, we have the following result for non-trivial
open subsets of Z .

4.9 Theorem A nonempty open set O & Z has a compact boundary if and only if O
is non end-splitting.

Proof Suppose ∂O is compact; then any point of ∗∂O is nearstandard in Z . Suppose
α ∈ ∗O is a remote point and S is an internal set containing α . If S is internally
connected and contains no nearstandard points, then S ∩ ∗∂O = ∅. Therefore, since
S is internally connected and has nonempty intersection with ∗O, S ∩ ∗

(
Z�O

)
= ∅,

whence all points of S are in ∗O. Thus the end containing α is contained in ∗O. It
follows that O is not end-splitting.

Now suppose O is a standard open set with a boundary that is not compact. It follows
from Proposition 4.6 that there is a remote point β in ∗∂O. We will show that O splits
the end represented by β . Since β is remote, for each standard point x ∈ Z , there is
a standard neighborhood U of x with β /∈ ∗U . It follows from regularity that there is
a smaller standard open set Vx with x ∈ Vx ⊂ Vx and β /∈ ∗Vx . By saturation, there
is a hyperfinite collection of internally open sets Vj such that the collection contains
∗Vx for each standard point x ∈ Z , and β is not in the internal closure of Vj for any
j. The complement of the union of these internal closures contains an internally open
and connected neighborhood U of β . Since β ∈ ∗∂O, U contains points both inside
and outside ∗O, so O splits the end represented by β .

Journal of Logic & Analysis 6:7 (2014)



Compactifications 13

4.10 Corollary Let {Uα}α∈Λ be a net of nonempty open subsets of Z with compact
boundary directed by downward inclusion and having empty intersection of the clo-
sures. If x is a remote point in

⋂
α∈Λ

∗Uα , then all points in the end represented by x
are in

⋂
α∈Λ

∗Uα .

In [7], the first and third authors defined ends of topological spaces in terms of nets
of open sets ordered by containment (with V ≥ U if V ⊆ U ); the open sets each
have nonempty boundary and the collection of open sets has empty intersection of the
closures. It is assumed in [7] that for any such net, each member U contains an open
subset with compact boundary. The previous corollary and the next result indicate the
relationship between the approach in [7] and the approach taken here using nonstandard
methods. In particular, when the above assumption is satisfied, the ends obtained in
[7] and the ends defined here are in one-to-one correspondence. Example 4.3 is of a
space where the assumption of [7] is not satisfied.

4.11 Proposition Let {Uα}α∈Λ be a net of nonempty connected open subsets of Z
with compact boundary directed by downward inclusion and having empty intersection
of the closures. Let x and y be remote points in

⋂
α∈Λ

∗Uα . Then y is in the end
represented by x , whence this is the same as the end determined by the method of [7]
using the net {Uα}α∈Λ .

Proof By saturation, there is an internally connected open set V containing both x
and y such that V ⊂

⋂
α∈Λ

∗Uα . If z is a standard point of ∗Z , then for some Uα ,
z ∈ Z \ Uα , whence no point of V is in the monad of z. Since no point of V is
nearstandard, x and y are equivalent.

4.12 Example Let Z be the complex plane from which the rational numbers have been
removed from the real interval (0, 1). It follows that nonstandard rational numbers
strictly between 0 and 1 are not elements of ∗Z . Clearly, Z is not locally compact.
As is true for the complex plane with no points removed, nonstandard points outside
the extension of every standard bounded set are remote and form a single end. If γ
is an irrational number between 0 and 1, then points that have not been removed in
the monad of γ are mapped by ϕ onto γ . Points in the nonstandard extension of the
complex plane in the monad of a removed rational number q ∈ (0, 1) are remote and
form a single end. Open discs in Z that are symmetric about the real-axis and intersect
that axis in a set with irrational minimum and maximum values are NES. The resulting
end compactification is homeomorphic with the extended complex plane. This use of
nonstandard methods sharpens the analysis of this example in [7].
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5 Product Spaces

It is well known that the projection of an open set in a product space onto a factor
of that space is an open subset of that factor. Fix a product space

∏
α∈I

Xα . Given p

in
∏
α∈I

Xα , let pα denote the projection of p onto Xα . Let st (I) denote the standard

indices in ∗I . For each α ∈ st (I), let µα(pα) be the monad of pα in Xa . The monad
of p in the product space is the product∏

α∈st(I)

µα(pa)×
∏

α∈∗I� st(I)

Xα.

It follows that a point p in the nonstandard extension of a product is remote if and only
if the projection pα is remote for at least one α ∈ st (I).

Assume that for every α ∈ I , Xα is connected and locally connected. Fix an index
β ∈ I and a subset A of Xβ . Let U and V be a pair of nonempty open sets in the
product space. The projections of U and V on each factor must be nonempty. Assume
U and V form a disconnection of A×

∏
α6=β

Xα . Since U ∪ V must cover A×
∏
α 6=β

Xα ,

for each α 6= β the projections of U and V on the connected set Xα have a nonempty
intersection. Moreover, the projections form a disconnection of A on Xβ . It follows
that A×

∏
α 6=β

Xα is connected if and only if A is a connected subset of Xβ .

5.1 Theorem Suppose in the above setting Xα is compact for each α 6= β and Xβ is
not compact. Then the number of ends for

∏
α∈I

Xα is the number of ends for Xβ .

Proof The result follows from the fact that a point p in the nonstandard extension
of the product is remote if and only if pβ is remote. Moreover, an internal set in the
nonstandard extension of the product is connected and contains no nearstandard points
if and only if this is true for its projection onto ∗Xβ .

5.2 Theorem A product space
∏
α∈I

Xα formed from spaces that are connected and

locally connected such that at least two of those spaces are not compact has only one
end.

Proof Given a remote point pβ in ∗Xβ where β ∈ st (I), the product {pβ}× ∗
∏
α 6=β

Xα

is internally connected and contains no nearstandard point. Similarly, given a remote
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point pγ in ∗Xγ where γ ∈ st (I) and γ 6= β , the product {pγ}× ∗
∏
α 6=γ

Xα is internally

connected and contains no nearstandard point. These two connected sets have points
in common, namely those with projection pβ on ∗Xβ and projection pγ on ∗Xγ .
Therefore, in terms of the equivalence relation for ends, all points of {pβ}×∗

∏
α 6=β

Xα are

equivalent to all points of {pγ}× ∗
∏
α 6=γ

Xα . Moreover, as noted above, a point is remote

in ∗
∏
α∈I

Xα if and only if the projection pβ is remote for at least one β ∈ st (I).

5.3 Remark Work that remains in our research on end compactifications includes
application to box products and to proximity spaces.
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