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Gordon’s Conjectures 1 and 2: Pontryagin–van Kampen
duality in the hyperfinite setting
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Abstract: Using the ideas of E. I. Gordon we present and further advance an
approach, based on nonstandard analysis, to simultaneous approximations of locally
compact abelian groups and their duals by (hyper)finite abelian groups, as well of
the Haar measures on them. Combining the techniques of nonstandard analysis
and the Fourier analytic methods of additive combinatorics we prove the first two
of the three Gordon’s Conjectures which were open since 1991 and are crucial both
in the formulations and proofs of the approximation theorems for LCA groups and
for the Fourier transform.
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0 Introduction

Locally compact abelian groups (briefly, LCA groups) and the Pontryagin–van Kampen
Duality Theorem provide a general background on which all the particular instances of
the (commutative) Fourier transform can be treated in a uniform way (see, eg, Hewitt
and Ross [24, 25], Loomis [30], and Rudin [42]). At the same time, the existence of
very fast algorithms for the Fourier transform of functions (n–dimensional vectors)
f : Zn → C and, more generally, of functions f : G → C defined on an arbitrary
finite abelian group G, calls for their systematic employment in approximating the
Fourier transforms on various functional spaces over general LCA groups. This is
indeed the case in many important particular cases, including the Fourier series of
periodic functions f : R → C with a fixed period T > 0, the Fourier transform of
functions f : R→ C and f : Rn → C, the semidiscrete Fourier transform of sequences
f : Z→ C, etc (see, eg, Epstein [11], Gröchenig [21], and Terras [45]).

The general situation requires us to elaborate the concepts and techniques of approxi-
mation of arbitrary LCA groups by finite abelian groups in the first step. In the second
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2 P Zlatoš

step it is necessary to be able to approximate simultaneously an LCA group G and its
dual group Ĝ by some finite abelian group G and its dual group Ĝ, respectively, in
such in a way that the pairing (xxx, γγγ) 7→ γγγ(xxx) on G× Ĝ is approximated by the pairing
(x, γ) 7→ γ(x) on G × Ĝ. Only then we have a chance to succeed with the third and
final step, ie to approximate the Fourier transform, say F : L1(G) → C0

(
Ĝ
)

, by the

discrete Fourier transform F : CG → CĜ .

In this paper we focus on the first two of the three steps mentioned above. The
approximation of the Fourier transform on various Banach spaces of functions defined
on general LCA groups will be studied in our subsequent paper [50].

This paper makes systematic use of nonstandard analysis (NSA), both as a rigorous
method as well as a source of insights, inspiration and intuitively appealing concepts.
In the remainder of this section, in which we review the main results of the paper, we
assume at least a brief acquaintance with some concepts and results of NSA, as well as
of the duality theory for LCA groups and of the Fourier transform. A more complete
presentation is given in the main body of the paper.

NSA will makes it possible to “compress” a whole system of increasingly refined finite
approximations “converging” to some LCA group G into a single nicely structured
object (G,G0,Gf), called a bounded monadic group, consisting of a hyperfinite abelian
group G with internal group operations, and its two external subgroups G0 ⊆ Gf ,
with G0 monadic and Gf galactic. Alternatively, and even more frequently, bounded
monadic groups will referred to as IMG group triplets (I for internal, M for monadic,
G for galactic). Intuitively, G0 is viewed as the subgroup of infinitesimals and Gf is
viewed as the subgroup of finite elements of G. In the simplest, but important, particular
case, G0 is the intersection and Gf is the union of countably many internal sets. Then
the quotient G[ = Gf/G0 , obtained by restricting to the finite elements and identifying
those of them which are indistinguishable, is called the observable trace of the triplet
(G,G0,Gf). For any x ∈ Gf the coset x[ = x + G0 ∈ G[ is called the observable trace
or monad of x. Our IMG triplets will additionally be condensing, which property is
equivalent to the condition that, for any internal sets A, B such that G0 ⊆ A ⊆ B ⊆ Gf ,
the quotient |B| / |A| is finite.

The equivalence relation of infinitesimal nearness or indistinguishability on G, given by

x ≈ y ⇔ x− y ∈ G0

induces in a fairly natural way a topology on the observable trace G[ , turning it into
a (Hausdorff) locally compact group. Conversely, every LCA group G is isomorphic
(as a topological group) to the observable trace G[ = Gf/G0 of some condensing
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Pontryagin–van Kampen duality in the hyperfinite setting 3

IMG group triplet (G,G0,Gf) with a hyperfinite abelian ambient group G. In standard
terms this means that every LCA group G can be “arbitrarily well” approximated by
finite abelian groups in a sense made precise by a definition introduced by Gordon
[17] (see Section 1.3, particularly Proposition 1.3.7, Theorem 1.3.10, and – mainly –
Corollary 1.3.11 for more details). For compact metrizable groups this approximability
concept coincides with that already studied by Alan Turing [46] in the late 1930s (see
the second remark following the proof of Proposition 1.3.7).

For an LCA group G, its dual group Ĝ = Homc(G,T) consists of all continuous
homomorphisms (characters) γγγ : G→ T, where T denotes the compact multiplicative
group of complex units. Then Ĝ, endowed with the componentwise multiplication and
the compact-open topology becomes an LCA group again. The Pontryagin–van Kampen

Duality Theorem states that the canonical mapping G→ ̂̂G, sending any xxx ∈ G to the
character x̂xx : Ĝ→ C of the dual group Ĝ, given by the pairing x̂xx(γγγ) = γγγ(xxx) on G× Ĝ,
is an isomorphism of topological groups (see, eg, Dikranjan and Stoyanov [9], Hewitt
and Ross [24], Morris [36], Pontryagin [38] or Rudin [42]).

For a finite abelian group G, its dual group Ĝ = Hom(G,T) consists of all homomor-
phisms γ : G→ T, and it is isomorphic (though not canonically) to G. The fact that

the canonical mapping G→ ̂̂G is an isomorphism of (discrete) abelian groups follows
immediately. For a hyperfinite abelian group G we denote by Ĝ = Hom(G, ∗T) the set
of all internal homomorphisms (characters) γ : G→ ∗T. According to the Transfer
Principle, Ĝ with the pointwise multiplication is a hyperfinite abelian group internally

(though not canonically) isomorphic to G, and the canonical mapping G → ̂̂G is an
internal group isomorphism.

Assuming that (G,G0,Gf) is a condensing IMG group triplet with a hyperfinite abelian
ambient group G, let us denote by G = G[ = Gf/G0 its observable trace. Then its dual
Ĝ is an LCA group, too, hence it is isomorphic to the observable trace H[ = Hf/H0

of some condensing IMG group triplet (H,H0,Hf) with a hyperfinite abelian ambient
group H . One can naturally expect that the triplet representing the dual group Ĝ can be
constructed from the original triplet (G,G0,Gf) in some canonical way. The starting
point is the natural requirement that H = Ĝ. Then the subsets

G�0 = {γ ∈ Ĝ : (∀ x ∈ G0)(γ(x) ≈ 1)}

G�f = {γ ∈ Ĝ : (∀ x ∈ Gf)(γ(x) ≈ 1)}

of the dual group Ĝ, called the infinitesimal annihilators of the subgroups G0 , Gf ,
respectively, are subgroups of Ĝ. It can be shown that

(
Ĝ,G�f ,G

�

0
)

is a condensing
IMG group triplet with a hyperfinite abelian ambient group Ĝ (see Proposition 2.2.2).
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4 P Zlatoš

The characters γ ∈ G�f are infinitesimally close to 1 on the whole subgroup Gf of
finite elements of G. They play the role of infinitesimal characters. As every γ ∈ Ĝ is
a group homomorphism, it belongs to G�0 if and only if it is S–continuous as a mapping
γ : G→ ∗T. The elements of G�0 play the role of finite characters.

The condensing IMG group triplet
(
Ĝ,G�f ,G

�

0
)

will be called the dual triplet of the
IMG group triplet (G,G0,Gf).

For an internal character γ ∈ G�0 , its observable trace γ[ can be considered as the
element G�f γ of the quotient G�0/G�f = Ĝ[ , as well as the observable trace γ[ of the
S–continuous mapping γ : G→ ∗T, ie

γ[
(
x[
)

= ◦γ(x)

for x ∈ Gf . That way γ[ : G[ → T is a continuous character of the LCA group G[ (see
Section 1.3). The assignment γ 7→ γ[ , depicted in the commutative diagram

G
IdGf←−−−− Gf

[

−−−−→ G[

γ

y yγ�Gf

yγ[
∗T −−−−→

Id∗T

∗T −−−−→
◦

T

is a group homomorphism G�0 → Ĝ[ . Its kernel is the subgroup G�f ⊆ G�0 of all
infinitesimal characters in Ĝ. Thus the assignment γ 7→ γ[ induces an injective
group homomorphism Ĝ[ → Ĝ[ from the observable trace Ĝ[ = G�0/G�f of the

dual triplet
(
Ĝ,G�f ,G

�

0
)

into the dual group Ĝ[ = Ĝf/G0 of the observable trace
G[ = Gf/G0 of the original triplet (G,G0,Gf). The canonical injective homomorphism
G�0/G�f → Ĝf/G0 justifies the identification of the “two observable traces” G�f γ and
γ[ . As proved by Gordon in [17] (see also [18]), the assignment G�f γ 7→ γ[ is an
isomorphism of the topological group Ĝ[ = G�0/G�f onto a closed subgroup of the

topological group Ĝ[ = Ĝf/G0 .

It is both tempting and natural to conjecture that the canonical mapping Ĝ[ → Ĝ[ is
also surjective, ie, that it is an isomorphism of topological groups. This is indeed the
first of Gordon’s Conjectures from [17] (see also [18, page 132]), which we will prove
as our Theorem 2.2.4.

Gordon’s Conjecture 1 Let (G,G0,Gf) be a condensing IMG group triplet with a
hyperfinite abelian ambient group G. Then the canonical mapping G�0/G�f → Ĝf/G0

is an isomorphism of topological groups.
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Pontryagin–van Kampen duality in the hyperfinite setting 5

The proof of this conjecture amounts just to show that every continuous character γγγ of
the LCA group G[ = Gf/G0 is of the form γγγ = γ[ for some internal S–continuous
character γ ∈ G�0 . We will reach this goal in a roundabout way by investigating the
dual triplet of the dual triplet of the original IMG group triplet (G,G0,Gf).

The second dual ̂̂G of the hyperfinite abelian group G can be naturally identified with
the original group G. Then the second dual of the original triplet (G,G0,Gf) is defined
as the condensing IMG triplet

(
G,G��0 ,G��f

)
. As we shall see in Sections 2.2 and 2.3,

Gordon’s Conjecture 1 is equivalent to the following statement, which we will prove as
our Theorem 2.2.5.

The Triplet Duality Theorem Let (G,G0,Gf) be a condensing IMG group triplet
with a hyperfinite abelian ambient group G. Then:

G��0 = G0 and G��f = Gf

In other words, the dual triplet
(
G,G��0 ,G��f

)
of the dual triplet

(
Ĝ,G�f ,G

�

0
)

equals
the original group triplet (G,G0,Gf).

The first equality G��0 = G0 , proved in Proposition 2.3.3, is crucial. The second
equality G��f = Gf follows from it and the fact that G��f = Gf + G��0 , proved as
Lemma 2.2.7. As proved by Gordon ([17, Theorem 3.2] and [18, Theorem 2.2.18]),
even the weaker equality G0 = G��0 ∩ Gf implies Gordon’s Conjecture 1.

Given a condensing IMG group triplet (G,G0,Gf) with a hyperfinite ambient group
G, a positive number d ∈ ∗R is called a normalizing multiplier or a normalizing
coefficient for (G,G0,Gf) if the number d |A| is finite and noninfinitesimal for some (or,
equivalently, for each) internal set A between G0 and Gf . In particular, for any internal
set A between G0 and Gf , d = 1/ |A| is a normalizing coefficient for (G,G0,Gf).

If d is any normalizing multiplier for (G,G0,Gf) then the Loeb measure λd induced
by the constant function d(x) = d on G is translation invariant. The measure mmmd

obtained by “pushing down” the Loeb measure λd is the Haar measure on the observable
trace G[ = Gf/G0 (see Proposition 1.3.6, as well as the final part of Section1.2 and
the references there). Thus in order to approximate the invariant integration on the
observable trace G[ by hyperfinite sums of internal functions G → ∗C, the inner
product on the space ∗CG has to be normalized by some normalizing multiplier d , ie

〈 f , g〉d = d
∑
x∈G

f (x) g(x)
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6 P Zlatoš

for f , g ∈ ∗CG . In particular, the Fourier transform of a function f ∈ ∗CG has to be
defined by

f̂ (γ) = 〈 f , γ〉d = d
∑
x∈G

f (x) γ(x)

for γ ∈ Ĝ. Then, in order to get the Fourier inversion formula and the Plancherel
identity, we need to normalize the inner product and the Fourier transform on the space
∗CĜ of all internal functions Ĝ→ ∗C by means of the coefficient d̂ = 1/d |G|.

In view of the canonical isomorphism of the observable trace Ĝ[ = G�0/G�f and the

dual group Ĝ[ = Ĝf/G0 , there naturally arises the question whether such a d̂ is indeed
a normalizing multiplier for the dual triplet

(
Ĝ,G�f ,G

�

0
)

. In that case (and only in that
case) the measure mmmd̂ , obtained by pushing down the Loeb measure λd̂ from Ĝ to the

observable trace Ĝ[ ∼= Ĝ[ , will be a Haar measure on Ĝ[ . The second of Gordon’s
conjectures, proved as our Theorem 2.3.4, states that the response to this question is
affirmative.

Gordon’s Conjecture 2 Let (G,G0,Gf) be a condensing IMG group triplet with
a hyperfinite abelian ambient group G. Then, for any internal set D such that
G0 ⊆ D ⊆ Gf , d = 1/|D| is a normalizing multiplier for (G,G0,Gf) and d̂ = |D|/|G|
is a normalizing multiplier for the dual triplet

(
Ĝ,G�f ,G

�

0
)

. More generally, if d is any
normalizing multiplier for (G,G0,Gf) then d̂ = (d |G|)−1 is a normalizing multiplier
for
(
Ĝ,G�f ,G

�

0
)

.

The methods of nonstandard analysis were applied for the first time in the study of
the Fourier series of functions T → C by Luxemburg [32]. His key idea consisted
in embedding the group of integers Z into the hyperfinite cyclic group Zn , where
n ∈ ∗NrN, and an infinitesimal approximation of the group of complex units T by the
hyperfinite subgroup {e2πik/n : k ∈ Zn} ∼= Zn of its nonstandard extension ∗T. The
first treatment of abstract (commutative) harmonic analysis by nonstandard methods
in full generality is due to Gordon. In a series of works culminating in [17, 18] he
elaborated a nonstandard approach to approximations of LCA groups by hyperfinite
abelian groups, formulated a version of Pontryagin–van Kampen duality for them
and developed an approach to the approximation of the classical Fourier-Plancherel
transform L2(G) → L2(Ĝ) by the discrete Fourier transform on the approximating
hyperfinite group. At the same time, he formulated three fairly fundamental conjectures
in [17] which remained open until 2012. In fact, Gordon accepted one not very essential
restriction: having worked in a nonstandard universe which was only assumed to be
ℵ1 –saturated, he was forced to deal just with triplets (G,G0,Gf) in which G0 and Gf
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Pontryagin–van Kampen duality in the hyperfinite setting 7

were the intersection and the union, respectively, of countably many internal sets. As a
consequence, the class of LCA groups G representable as observable traces G ∼= Gf/G0

of such triplets was reduced to the metrizable σ–compact ones.

Gordon even proved all his three conjectures for any such a triplet (G,G0,Gf) having
an internal subgroup K such that G0 ⊆ K ⊆ Gf . In standard terms this corresponds
to the situation that the LCA group G = Gf/G0 contains a compact open subgroup.
Then, using the fact that the fairly natural triplet representing the LCA group R (see
Example 1.3.8 (c)) satisfies these conjectures as well, and the structure theorem for
LCA groups – according to which every LCA group G is isomorphic to the product
H× Rn for some LCA group H containing a compact open subgroup and some n ∈ N
– he was able to prove that every (metrizable σ–compact) LCA group G is isomorphic
to the observable trace Gf/G0 of some condensing IMG group triplet with an abelian
hyperfinite ambient group G, satisfying all the three conjectures.

In the present paper we will recapitulate Gordon’s approach and some of his results,
introducing several conceptual and notational modifications, based partly on Ziman
and Zlatoš [47], and prove the first two of his conjectures for arbitrary condensing
IMG triplets (G,G0,Gf) with an abelian hyperfinite ambient group G. What’s of minor
importance, working in a “sufficiently saturated” nonstandard universe, our triplets
will represent all (Hausdorff) LCA groups (not just the metrizable σ–compact ones) as
their observable traces. Besides the techniques of nonstandard analysis and harmonic
analysis, the crucial role in our proofs will be played by the Fourier analytic methods
of additive combinatorics due mainly to Green and Ruzsa [20], and Tao and Vu [44]
(see Section 2.1). So in this respect we almost will not build on Gordon’s work at all;
in particular, our proofs will not rely upon the above mentioned structure theorem for
LCA groups. Finally, we will present some in standard terms formulated equivalents of
most of the mentioned nonstandard results. However, as we shall see, several of these
standard formulations (even in the metrizable σ–compact case) tend to become rather
complicated and lack the intuitive transparency of their nonstandard counterparts.
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by the grants no 1/0608/13 and 1/0333/17 of the Slovak Scientific Grant Agency VEGA.
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8 P Zlatoš

1 Nonstandard analysis

The reader is assumed to have some basic acquaintance with nonstandard analysis,
including the nonstandard approach to topology and continuity in terms of monads
and equivalence relations of infinitesimal nearness, and the Loeb measure construction.
Besides the original Robinson’s book [39], the standard general references include the
monographs by Albeverio, Fenstad, Høegh-Krohn and Lindstrøm [1], Arkeryd, Cutland
and Henson [4] (mainly the parts by Henson [23], Loeb [29] and Ross [41]), Davis [8],
and Goldblatt [14]. For Loeb measure also the survey by Cutland [7] can be consulted.
Additionally, we refer to Chang and Keisler [6] for the ultraproduct construction and its
use in constructing nonstandard extensions of first-order structures and superstructures.

1.1 General setting

Our exposition takes place in a nonstandard universe ∗V which is an elementary
extension of a superstructure V over some set of individuals containing at least all
(classical) complex numbers and the elements of the topological space or topological
group, as well as index sets, etc, dealt with.

In particular, every standard mathematical (first-order) structure A ∈ V is embedded
into its nonstandard extension ∗A ∈ ∗V via the mapping a 7→ ∗a : A→ ∗A such that,
for any formula Φ(x1, . . . , xn) in the language of A and elements a1, . . . , an ∈ A,
Φ(a1, . . . , an) is satisfied in A if and only if Φ(∗a1, . . . ,

∗an) is satisfied in ∗A (the
Transfer Principle). Whenever there threatens no confusion we tend to identify a ∈ A
with ∗a ∈ ∗A, and to denote the corresponding operations and relations in A and ∗A
by the same sign, dropping ∗ in the latter. Similarly, to a function f : A → B in V
there (functorially) corresponds a function ∗f : ∗A→ ∗B in ∗V, etc. The nonstandard
universe ∗V can be constructed as a certain ultrapower of the superstructure V with
respect to some properly chosen ultrafilter.

In particular, we have the structures of hypernatural numbers ∗N, hyperintegers ∗Z,
hyperrational numbers ∗Q, hyperreal numbers ∗R, and hypercomplex numbers ∗C
with the usual (and, possibly, some additional) operations and relations, extending the
structures of natural numbers N, integers Z, rational numbers Q, real numbers R, and
complex numbers C, respectively.

As the superstructure V is transitive, ie X ⊆ V for any set X ∈ V, the same is true for
∗V. The sets belonging to ∗V are called internal; other subsets of ∗V are called external.
Additionally, we assume that the nonstandard universe ∗V is either κ–saturated for
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Pontryagin–van Kampen duality in the hyperfinite setting 9

some uncountable cardinal κ or even polysaturated, ie κ–saturated for some κ bigger
than the cardinality of any set in the original (standard) universe V. However, for
the sake of generality, we do not specify the saturation degree κ explicitly. Instead
we use the term a set or a system of admissible size referring to (external) subsets
of the nonstandard universe with the (external) cardinality < κ, and assume that the
universe ∗V is sufficiently saturated, meaning that

⋂
S 6= ∅ for any system of internal

sets S ⊆ ∗V of admissible size with the finite intersection property. “Sufficiently
saturated” universes can be constructed as ultrapowers with respect to “sufficiently
good” ultrafilters (see Chang and Keisler [6]). For most applications, however, an
ℵ1 –saturated nonstandard universe (ie, κ = ℵ1 ) is sufficient; in that case a system of
admissible size is simply a countable one.

Internal sets A which can be put into a one-to-one correspondence via an internal
bijection with sets of the form {1, . . . , n} for some n ∈ ∗N are called hyperfinite; in
that case n = |A| is referred to as the number of elements of A. Hyperfinite sets (briefly,
HF sets) behave within the internal context much like finite sets, though for n ∈ ∗NrN
they are (externally) infinite.

Internal sets, particularly hyperfinite sets, are the simplest objects in the descriptive set-
theoretic hierarchy. Next to them in this hierarchy there are the galactic or Σ0

1(κ)–sets
and the monadic or Π0

1(κ)–sets, ie, unions and intersections, respectively, of collections
of internal sets of admissible size. From the formal point of view, it is these sets which
enable the techniques of Nonstandard Analysis based on saturation. In particular, if S
is any collection of admissible size with the finite intersection property consisting of
monadic sets X ⊆ ∗V then

⋂
S 6= ∅.

An example of a galactic set is the set N of all (standard) natural numbers, in other
words, the set of all finite elements of the internal set of all hypernatural numbers ∗N.
Then the infinite hypernatural numbers form the monadic set ∗N∞ = ∗Nr N.

Further typical and fairly important examples of monadic sets are the equivalence
relations of indistinguishability or infinitesimal nearness, arising in nonstandard models
of metric, uniform and (sufficiently regular) topological spaces, as well as the monads
(ie, cosets) of particular elements with respect to such equivalence relations.

Every function f : X → Y is considered to be equal to the set of ordered pairs
{(x, f (x)) : x ∈ X}. If R ⊆ X × Y is a relation then a function f is called a choice
function from R on a set A ⊆ dom R if A ⊆ dom f and f �A ⊆ R, ie, if (a, f (a)) ∈ R for
each a ∈ A. The following lemma describes an important class of relations admitting
internal choice functions.

Journal of Logic & Analysis 13:1 (2021)



10 P Zlatoš

Lemma 1.1.1 (The Internal Choice Lemma) Let X , Y be internal sets in a sufficiently
saturated nonstandard universe, and R ⊆ X× Y be a relation such that for every internal
set D ⊆ dom R the restriction R � D is a monadic set. Then for every galactic set
A ⊆ dom R there exists an internal choice function f from R on A.

Sketch of proof If A is internal then the monadic relation R�A can be written as the
intersection R �A =

⋂
i∈I Ri of admissibly many internal relations Ri ⊆ X × Y with

common domain A. Then, for any nonempty finite set J ⊆ I , we readily obtain an
internal choice function fJ on A from the relation

⋂
i∈J Ri , by applying the Transfer

Principle to the Axiom of Choice. (For hyperfinite A the Axiom of Choice is not even
needed at this point.) The existence of an internal choice function f from R on A
follows as a consequence of saturation.

If A is a galactic set then the desired conclusion follows from the internal case by
applying the saturation argument once again.

1.2 Bounded monadic spaces

For the notion of a uniform space and related notions like uniformity, entourage, uniform
continuity, etc, we refer the reader to the monograph by Engelking [10].

If (X,U ) is a uniform space then the relation of infinitesimal nearness or indistinguisha-
bility defined by

EU =
⋂

U∈U

∗U

is a monadic equivalence relation on the nonstandard extension ∗X of X (provided
the respective nonstandard universe is sufficiently saturated). Then the uniformity
U consists precisely of those subsets U of X × X satisfying EU ⊆ ∗U. Instead of
(xxx,yyy) ∈ EU we usually write xxx ≈U yyy or just xxx ≈ yyy for xxx,yyy ∈ ∗X.

An element yyy ∈ ∗X is called nearstandard if yyy ≈U xxx for some xxx ∈ X; the set of all
nearstandard elements of ∗X is denoted by Ns(∗X). If the original uniform space (X,U )
is Hausdorff (ie, if

⋂
U is the diagonal IdX ) then there is a well defined standard part

mapping Ns(∗X)→ X sending every yyy ∈ Ns(∗X) to its standard part styyy = ◦yyy which
is the unique element xxx ∈ X such that yyy ≈ xxx . Then the original uniform space (X,U)
can be reconstructed as the quotient X ∼= Ns(∗X)/≈ (see the proof of Proposition
1.2.2).

In view of the works by Luxemburg [31], Henson [22] and Goldbring [15, 16] we
accept as a fact that there is no canonical way how to define the finite elements in
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Pontryagin–van Kampen duality in the hyperfinite setting 11

the nonstandard extension of a uniform space. Instead of looking for their adequate
definition in terms of the uniform structure and standard elements we will treat the
equivalence relation of infinitesimal nearness or indistinguishability arising from the
uniformity on one hand, and the property of finiteness or accessibility on the other hand
as almost independent or just loosely related phenomena to which there correspond
different primitive concepts. Our basic nonstandard objects, by means of which we
will study (sufficiently regular) topological spaces, will be ordered triples of the form
(X,E,Xf) where X is an internal set, E is a monadic equivalence relation on X and Xf

is a galactic subset of X which is E–closed, ie, x ∈ Xf and (x, y) ∈ E imply y ∈ Xf , for
any x, y ∈ X . We will call them alternatively bounded monadic spaces or IMG spaces
like in Ziman and Zlatoš [47], or IMG triplets, indicating that we do not consider the
present terminology as definitive.

Intuitively, X is viewed as the underlying or ambient set of the triplet, E is the relation
of indistinguishability or infinitesimal nearness on X , and Xf is the set of elements of
X encompassed by some observational horizon. The elements of Xf will be briefly
referred to as the finite or accessible ones. To stress the role of the equivalence E we
will preferably write x ≈E y or just x ≈ y instead of (x, y) ∈ E , for x, y ∈ X , and call
the set

E[x] = {y ∈ X : y ≈ x}

of points indistinguishable from the point x ∈ X the E–monad or just the monad of
x. The E–closedness of Xf can be now expressed as the condition E[x] ⊆ Xf for any
x ∈ Xf . The quotient

Xf/E = Xf/≈ = {E[x] : x ∈ Xf}

is called the observable trace of the triplet (X,E,Xf).

The restricted quotient mapping Xf → Xf/E reminds of the standard part mapping
Ns(∗X) → X in nonstandard extensions of Hausdorff uniform spaces. In order to
underline this analogy (especially when viewing the monads as individual points and
forgetting about their “sethood”) we introduce the notation E[x] = x[ for the monad of
x ∈ X , and

A[ = {a[ : a ∈ A ∩ Xf}

for the observable trace of any set A ⊆ X . In particular, the observable trace
X[ = X[f = Xf/E of the triplet (X,E,Xf) should not be confused with the full quotient
X/E ⊇ X[ . Conversely, for any Y ⊆ X[ , we call the following set the pretrace of Y:

Y] = {x ∈ Xf : x[ ∈ Y}

Given an IMG triplet (X,E,Xf), it is an easy exercise in saturation to show that for each
internal relation R ⊇ E on X there is a symmetric internal relation S ⊇ E on X such
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that S ◦ S ⊆ R. Similarly, for any internal set A ⊆ Xf there is an internal set B ⊆ Xf

and a symmetric internal relation S ⊇ E on X such that S[A] ⊆ B. It follows that there
is a downward directed system R of reflexive and symmetric internal relations on X ,
and an upward directed system B of internal subsets of X , both of admissible size,
satisfying the following conditions:

(∀R ∈ R)(∃ S ∈ R)(S ◦ S ⊆ R) and E =
⋂
R

(∀A ∈ B)(∃B ∈ B)(∃ S ∈ R)(S[A] ⊆ B) and Xf =
⋃
B

Then R becomes a base of a uniformity UE on X (non-Hausdorff, unless E = IdX ).
Another base for this uniformity (though not necessarily of admissible size) is formed
by all the internal relations R on X such that E ⊆ R. A set Y ⊆ X is open in the
induced topology if and only if, for each y ∈ Y , there is an internal set A such that
E[y] ⊆ A ⊆ Y . In particular, Xf is an open subset of X . The closure of any set Y ⊆ X
is
⋂

R∈R R[Y]; for a monadic (in particular for an internal) Y this is equal to E[Y].

The observable traces

R[ = {
(
x[, y[

)
: (x, y) ∈ R ∩ (Xf × Xf)}

of internal relations R ∈ UE (or just R ∈ R) form a uniformity base on the observable
trace X[ = Xf/E , inducing a Hausdorff completely regular topology on it.

We are particularly interested in representing Hausdorff locally compact spaces as
observable traces of IMG triplets (X,E,Xf) with a hyperfinite ambient set X . To this
end we introduce some types of indices of internal sets A ⊆ X with respect to reflexive
and symmetric internal relations S ⊆ X × X :

(a) The covering index or entropy of A with respect to S , denoted by bA : Sc, is
the least n ∈ ∗N, such that A ⊆ S[F] for some hyperfinite sets F ⊆ X with n
elements, or the symbol ∞ if there is no such n.

(b) The inner covering index of A with respect to S , denoted by bA : Sci , is the least
n ∈ ∗N, such that A ⊆ S[F] for some hyperfinite sets F ⊆ A with n elements, or
the symbol ∞ if there is no such n.

(c) The independence index or the capacity of A with respect to S denoted by dA : Se,
is the biggest n ∈ ∗N such that there is an n–element set F ⊆ A satisfying
(x, y) /∈ S for any distinct x, y ∈ F , or the symbol ∞ if there is no biggest n with
that property.

Then we have the following obvious inequalities (cf Roe [40]):

dA : (S ◦ S)e ≤ bA : Sc ≤ bA : Sci ≤ dA : Se
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If G is an internal group then, instead of the symmetric and reflexive internal relation
S on G, we can take a symmetric internal subset S ⊆ G containing the unit element
1 ∈ G. The obvious modification of the above definitions and the last inequalities to
this situation is left to the reader.

In the following proposition the expression [A : S] denotes any of the indices bA : Sc,
bA : Sci or dA : Se. The above inequalities guarantee that the formulations of (ii) with
any particular choice for [A : S] are all equivalent.

Proposition 1.2.1 Let (X,E,Xf) be a bounded monadic space. Then the following
conditions are equivalent:

(i) All the internal subsets of Xf are relatively compact.
(ii) For any internal set A ⊆ Xf and every symmetric internal relation S ⊇ E on X

the index [A : S] is finite.
(iii) There is an external set P ⊆ Xf of admissible size such that x 6≈ y for any distinct

x, y ∈ P, and Xf ⊆ S[P] for every internal relation S ⊇ E .
(iv) For each n ∈ ∗N∞ there is a hyperfinite set H ⊆ X with at most n elements such

that Xf ⊆ E[H].
(v) For every infinite hyperfinite set H ⊆ Xf there are at least two distinct elements

x, y ∈ H such that x ≈ y.

Proof (i) ⇔ (ii) is plain, especially for the index bA : Sci .

(ii) ⇒ (iii) Let R and B be systems of admissible size consisting of internal symmetric
relations R ⊆ X × X and internal sets B ⊆ X , respectively, such that E =

⋂
R and

Xf =
⋃
B . Condition (ii) with the index bA : Sci implies that there is a system of finite

sets {FRB : R ∈ R, B ∈ B} such that

FRB ⊆ B ⊆ R[FRB]

for all R ∈ R, B ∈ B . Then the set Q =
⋃

R,B FRB ⊆ Xf is of admissible size and,
obviously, Xf ⊆ S[Q] for any internal relation S ⊇ E on X . Now, it suffices to take for
P any subset of Q containing exactly one point from every E–monad intersecting Q.

(iii)⇒ (iv) Let P be the set guaranteed by (ii) and n be an arbitrary infinite hypernatural
number. Then, for each finite set F ⊆ P, we have |F| ≤ n. By saturation, there is a
hyperfinite set H such that P ⊆ H ⊆ X and |H| ≤ n. It can be easily verified that
Xf ⊆ E[H].

(iv) ⇒ (v) Let H ⊆ Xf be any infinite hyperfinite set and n be an infinite hypernatural
number such that n < |H|. By (iv) there is a hyperfinite set J ⊆ X such that |J| ≤ n and
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Xf ⊆ E[J]. In particular, H ⊆ E[J]. As |J| < |H|, there is at least one element z ∈ J
such that the set H ∩ E[z] contains at least two distinct elements x , y. Then x ≈ y.

(v) ⇒ (ii) Assume that the independence index dA : Se is not finite for some internal
set A ⊆ Xf and an internal symmetric relation S ⊇ E . Then, by saturation, there is an
infinite hyperfinite set H ⊆ A such that x 6≈ y for any distinct x, y ∈ H , contradicting
(v).

Remark Let us turn the reader’s attention to the following two details. First, in order
to prove the implication (iii) ⇒ (iv) the set P just has to be of admissible size and
satisfy the condition Xf ⊆ S[P] for every internal relation S ⊇ E ; it is not necessary
that it consists of pairwise distinguishable points. Second, (v) could be strengthened to
the following Ramsey type statement: every infinite hyperfinite set H ⊆ Xf contains an
infinite hyperfinite subset H0 such that x ≈ y for any x, y ∈ H0 . Then the implication
(iv) ⇒ (v) could still be proved by picking an n ∈ ∗N∞ such that, say, n2 ≤ |H|.

The last condition (v) suggests calling the IMG triplets satisfying any (hence all) of
the above conditions condensing (cf Mlček and Zlatoš [34, 35] as well as Ziman
and Zlatoš [47]). Obviously, the observable trace of any condensing IMG space is
locally compact, and the compact subsets of X[ are exactly the observable traces A[ of
internal subsets A ⊆ Xf . However, it should be kept in mind that this is a considerably
stronger condition than just the local compactness of X[ . Nevertheless, we still have
the following representation theorem.

Proposition 1.2.2 Let X be a Hausdorff locally compact topological space. Then, in
every sufficiently saturated nonstandard universe, there is a condensing IMG triplet
(X,E,Xf) such that X is homeomorphic to the observable trace X[ . If desirable, one
can additionally arrange that the ambient space X be hyperfinite.

Proof Let U be some uniformity inducing the topology of X and κ be an uncountable
cardinal bigger than the minimal cardinality of some base of U as well as of some open
cover of X by relatively compact sets. Let us embed X into its nonstandard extension
∗X in some κ–saturated nonstandard universe and denote EU =

⋂
U∈U

∗U. It can be
easily verified that

(∗X,EU ,Ns(∗X)
)

is a condensing IMG space whose observable
trace (nonstandard hull) Ns(∗X)/EU is homeomorphic to X.

Let n be an arbitrary infinite hypernatural number and X = H ⊆ ∗X be the n–element
hyperfinite set guaranteed by (iv) of 1.2.1. Now, it suffices to put Xf = Ns(∗X) ∩ X ,
E = EU ∩ (X × X), and we get another condensing IMG triplet (X,E,Xf) with the
observable trace Xf/E ∼= Ns(∗X)/EU ∼= X and hyperfinite ambient space X .
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The crucial property of the internal inclusion mapping IdX : X → ∗X (under the
identification ∗xxx = xxx for xxx ∈ X) is namely that for each xxx ∈ X there is some x ∈ X such
that x ≈ xxx . More generally, given any hyperfinite set X , an internal mapping η : X → ∗X
is called a hyperfinite infinitesimal approximation, briefly an HFI approximation, of the
Hausdorff uniform space X if:

(∀xxx ∈ X)(∃ x ∈ X)(η(x) ≈ xxx)

It is called an injective HFI approximation if, additionally, η is an injective mapping.

The standard counterpart of this notion can be formulated in terms of finite approxi-
mations and rasters. A raster in a uniform space (X,U), briefly an X–raster, is a pair
(K,U) consisting of a compact set K ⊆ X and a symmetric entourage U ∈ U , such
that U[xxx] ⊆ K for some xxx ∈ K. Given an X–raster (K,U), a mapping η : X → X is
called a finite (K,U) approximation or just a (K,U) approximation of X if:

(∀xxx ∈ K)(∃ x ∈ X)
(
(η(x),xxx) ∈ U

)
If the map η is injective then it is called an injective (K,U) approximation.

A partially ordered set, briefly a poset (I,≤), is a set I with a reflexive, antisymmetric
and transitive binary relation ≤; if the relation ≤ is upward directed then (I,≤) is
called a directed poset. Obviously, the set of all X–rasters in a uniform space (X,U),
partially ordered by the relation

(K,U) ≤ (Q,V) ⇔ K ⊆ Q and V ⊆ U

is a directed poset.

Let (X,U ) be a Hausdorff uniform space and (I,≤) be a directed poset. Then a system
of mappings (ηi : Xi → X)i∈I is called an approximating system of the space (X,U)
provided each Xi is a finite set and, for any X–raster (K,U), there is i ∈ I such that
ηj : Xj → X is a (K,U) approximation of X for each j ∈ I , j ≥ i.

It can be easily seen that every Hausdorff locally compact uniform space (X,U) has
some approximating system (ηi : Xi → X)i∈I such that each Xi is a finite subset
of X and ηi : Xi → X is the inclusion mapping. Assuming κ–saturation for some
sufficiently big κ, we can find an ∗X–raster

(
K′,U′

)
, formed by a ∗compact set

K′ ⊆ ∗X and an entourage U′ ∈ ∗U , such that (K,U) ≤ (K′,U′) for all X–rasters
(K,U). Then there is i ∈ ∗I such that the hyperfinite set Xi ⊆ ∗X (together with the
inclusion map ηi : Xi → ∗X) is an internal

(
K′,U′

)
approximation of ∗X, hence an

HFI approximation of X. Putting X = Xi , E = EU ∩ (X × X), and Xf = Ns(∗X) ∩ X ,
we obtain a condensing IMG triplet (X,E,Xf) with a hyperfinite ambient space X and
observable trace X[ = Xf/E ∼= X. This gives another proof of Proposition 1.2.2.
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Given two IMG spaces (X,E,Xf), (Y,F, Yf), an internal mapping f : D→ Y is called
a triplet morphism if Xf ⊆ D ⊆ X , it preserves finiteness, ie f (x) ∈ Yf for all x ∈ Xf ,
and it is S–continuous on Xf , ie

x ≈E y ⇒ f (x) ≈F f (y)

whenever x, y ∈ Xf . In such a case we write f : (X,E,Xf)→ (Y,F, Yf). Note that every
triplet morphism f with domain D can be formally extended to an everywhere defined
triplet morphism f̃ : X → Y in an arbitrary way.

Every triplet morphism f : (X,E,Xf) → (Y,F,Yf) induces a continuous mapping
f [ : X[ → Y[ , called the observable trace of f , (correctly) defined by

f [
(
x[
)

= f (x)[

for x ∈ Xf . Two triplet morphisms f , g : (X,E,Xf)→ (Y,F, Yf) are called equivalent if
they have the same observable trace f [ = g[ . However, we can put

f ≈
Xf

g ⇔ (∀ x ∈ Xf)( f (x) ≈ g(x))

for any internal functions f : D1 → Y , g : D2 → Y such that Xf ⊆ D1 ∩ D2 . This
relation of infinitesimal nearness on finite elements is a monadic equivalence on any
set YD of all internal functions D → Y , where Xf ⊆ D. For two triplet morphisms
f , g : (X,E,Xf)→ (Y,F,Yf) we have

f ≈
Xf

g ⇔ f [ = g[

indicating a fundamental role of this indistinguishability equivalence. Let us remark,
without being precise, that for a condensing IMG space (X,E,Xf) the equivalence ≈

Xf

corresponds to the compact-open topology on the space C
(
X[,Y[

)
of all continuous

functions X[ → Y[ .

Another important feature of condensing IMG spaces is the lifting property. Given a
mapping fff : X[ → Y[ between the observable traces, an internal mapping f : D→ Y is
called a lifting of fff if Xf ⊆ D ⊆ X and

fff
(
x[
)

= f (x)[

for each x ∈ Xf . Notice that an internal mapping f : D→ Y , satisfying the last equality
is necessarily S–continuous on Xf and satisfies f [Xf] ⊆ Yf , hence, it is a triplet morphism
(X,E,Xf)→ (Y,F,Yf). Conversely, a triplet morphism f : (X,E,Xf)→ (Y,F,Yf) is
a lifting of fff if and only if fff = f [ is the observable trace of f . Then fff necessarily
is continuous, as well. Thus only continuous mappings between observable traces of
IMG triplets have S–continuous liftings on Xf . The point is that for a condensing IMG
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triplet (X,E,Xf) this necessary continuity condition is also sufficient for the existence
of liftings.

Proposition 1.2.3 Let (X,E,Xf), (Y,F,Yf) be two IMG spaces. If (X,E,Xf) is
condensing then a mapping fff : X[ → Y[ is continuous if and only if fff has an internal
S–continuous lifting on Xf .

Sketch of proof Let’s focus only on the nontrivial implication. Assume that fff is
continuous and denote by

fff ] = {(x, y) ∈ X × Y : fff
(
x[
)

= y[}

its pretrace considered as a set fff ] ⊆ Xf × Yf in the IMG space (X × Y,E × F,Xf × Yf).
It suffices to show that, for every internal set D ⊆ Xf , the restriction fff ] �D is monadic.
Then, by the Internal Choice Lemma 1.1.1, there is an internal choice function f from
fff ] on its domain Xf . Obviously, this f is an S–continuous lifting of fff .

At least, there is some (not necessarily internal) function ϕ : Xf → Y , such that
fff
(
x[
)

= ϕ(x)[ for each x ∈ Xf .

Let us fix some nonempty internal set D ⊆ Xf . Let further R, S be some systems of
admissible size consisting of symmetric internal relations on X , Y respectively, such
that E =

⋂
R, F =

⋂
S , and P ⊆ Xf be a set of admissible size, such that R[P] = Xf

for every R ∈ R, whose existence is guaranteed in Proposition 1.2.1 (iii). Denote by
ID the set of all ordered triples (S,R,A) such that S ∈ S , R ∈ R, A is a finite subset of
P subject to D ⊆ R[A], and(

x[, y[
)
∈ R[ ⇒

(
fff
(
x[
)
, fff
(
y[
))
∈ S[

for all x, y ∈ D. Obviously, ID is of admissible size. Moreover, D[ ⊆ X[ is compact,
hence fff is uniformly continuous on D[ . Therefore, for any S ∈ S there is an R ∈ R
and a finite A ⊆ P such that (S,R,A) ∈ ID . For any triple i = (S,R,A) ∈ ID we put:

Φi =
⋃
a∈A

(
D ∩ R[a]

)
× S
[
ϕ(a)

]
As A is finite, each Φi is an internal relation. Using the continuity of fff , the equality

fff ] �D =
⋂

i∈ID

Φi

can be checked in a routine way, resembling the standard proof of the Closed Graph
Theorem for a continuous function into a Hausdorff space.
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Corollary 1.2.4 Let (X,E,Xf), (Y,F,Yf) be condensing bounded monadic spaces
with homeomorphic observable traces X[ ∼= Y[ . Then there exist triplet morphisms
f : (X,E,Xf)→ (Y,F,Yf) and g : (Y,F,Yf)→ (X,E,Xf) such that

g( f (x)) ≈ x and f (g(y)) ≈ y

for all x ∈ Xf , y ∈ Yf .

Naturally, a triplet morphism f : (X,E,Xf) → (Y,F,Yf) to which there is a triplet
morphism g : (Y,F,Yf) → (X,E,Xf) satisfying the above condition will be called
a triplet isomorphism. Since it is clear that, for any pair of triplet isomorphisms
f : (X,E,Xf) → (Y,F,Yf), g : (Y,F,Yf) → (X,E,Xf) satisfying the conditions of
Corollary 1.2.4, their observable traces f [ : X[ → Y[ , g[ : Y[ → X[ form a pair of
mutually inverse homeomorphisms, the last corollary can be briefly restated as follows:
Condensing IMG triplets are isomorphic if and only if they have homeomorphic
observable traces.

Corollary 1.2.5 Let X be a Hausdorff locally compact uniform space and (X,E,Xf)
be a condensing IMG space with a hyperfinite ambient set X and the observable trace
X[ homeomorphic to X. Then there is an HFI approximation η : X → ∗X which is a
triplet isomorphism η : (X,E,Xf)→

(∗X,EU ,Ns(∗X)
)

.

In the last part of this section we briefly recall the Loeb measure construction and the
construction of regular Borel measures on Hausdorff locally compact spaces by pushing
down Loeb measures.

Let X 6= ∅ be a hyperfinite set and d : X → ∗R be an internal function such that
d(x) ≥ 0 for each x ∈ X . Intuitively, d(x) is viewed as the “weight” of the point x.
Then d induces the internal (hyper)finitely additive measure νd : P(X)→ ∗R on the
internal Boolean algebra P(X) of all internal subsets of X , given by νd(A) =

∑
a∈A d(a)

for internal A ⊆ X . Putting

(◦νd)(A) =

{
◦(νd(A)) if νd(A) is finite

∞ otherwise

we get a finitely additive (non-negative) measure ◦νd : P(X)→ R ∪ {∞} which has
a unique extension to a σ–additive measure λd : P̃(X) → R ∪ {∞} defined on the
σ–algebra P̃(X) of all subsets of X generated by all monadic (or, equivalently, by all
galactic) subsets of X . (If κ = ℵ1 then P̃(X) is simply the σ–algebra generated by all
internal subsets of X .) Then λd is the Loeb measure induced by the internal function d
(cf Cutland [7], Landers and Rogge [27], Loeb [28], or Ross [41]).
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For the rest of this section, X denotes a Hausdorff locally compact space, represented as
(and identified with) the observable trace X ∼= X[ of a condensing IMG triplet (X,E,Xf)
with a hyperfinite ambient set X by means of an HFI approximation η : X → ∗X.
Assume that the nonnegative internal function d : X → ∗R satisfies additionally the
condition that νd(A) is finite for each internal set A ⊆ Xf . Then the set Xf belongs to
the algebra P̃(X) and the system

P̃(Xf) = {A ∈ P̃(X) : A ⊆ Xf}

is again a σ–algebra of subsets of Xf . Moreover, the pretrace Y] of every Borel
set Y ⊆ X belongs to P̃(Xf), hence the observable trace map [ : Xf → X = X[ is
measurable. Pushing down the Loeb measure along this map, ie putting

mmmd(Y) = λd
(
Y]
)

for Borel Y ⊆ X, we obtain a regular Borel measure mmmd on X (which, if desirable, can
be extended to a complete measure by the Carathéodory construction). The converse is
essentially due to Anderson [3] who proved it in case mmm is a probability measure on
X, which directly extends to the case that mmm(X) is finite. In the next proposition we
manage without this assumption.

Proposition 1.2.6 Every nonnegative regular Borel measure mmm on X has the form
mmm = mmmd for some internal function d : X → ∗R, such that d(x) ≥ 0 for each x ∈ X ,
and νd(A) is finite for each internal set A ⊆ Xf . Additionally, we can arrange that
d(x) > 0 for each x ∈ X .

Sketch of proof There is a ∗X—raster (K,U) where U ∈ ∗U is ∗open in ∗X × ∗X
and K ⊆ ∗X is a ∗compact set, such that U ⊆ EU , Ns(∗X) ⊆ K, and η is a (K,U)
approximation of ∗X. Since η has a hyperfinite range, there is an internal mapping
σ : ∗X→ X such that (η ◦ σ ◦ η)(x) = η(x) and

(
(η ◦ σ)(xxx),xxx

)
∈ U for x ∈ X , xxx ∈ K,

and each of the sets {xxx ∈ K : (η ◦ σ)(xxx) = η(x)} is ∗Borel in ∗X. We put

d(x) =


∗mmm
(
{xxx ∈ K : (η ◦ σ)(xxx) = η(x)}

)
|{y ∈ X : η(y) = η(x)}|

if η(x) ∈ U[K]

0 if η(x) /∈ U[K]

for x ∈ X .1 The verification that the internal mapping d has all the required properties
is left to the reader. Replacing each value d(x) by d(x) + ε, where ε is a positive
infinitesimal such that ε |X| ≈ 0, we can satisfy also the additional requirement.

1In fact, the values of d(x) for η(x) /∈ U[K] can be chosen arbitrarily without affecting the
resulting measure mmmd .
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1.3 Bounded monadic groups

A bounded monadic group is an ordered triple (G,G0,Gf) consisting of an internal
group G (which means that G is an internal set, endowed with internal operations of
group multiplication and taking inverses), a monadic subgroup G0 ⊆ G and a galactic
subgroup Gf ⊆ G, such that G0 C Gf (ie, G0 is a normal subgroup of Gf ). Intuitively,
G0 is viewed as the subgroup of infinitesimals and Gf is viewed as the subgroup of
finite elements in G. Bounded monadic groups will be alternatively referred to as IMG
group triplets (cf Ziman and Zlatoš [47]).

Every IMG group triplet gives rise to two IMG spaces: (G,El,Gf) and (G,Er,Gf),
where El , Er denote the left and the right equivalence relation on G corresponding to G0 ,
respectively. Though they may differ and induce different uniformities on the ambient
group G, they induce the same uniformity on Gf ; in other words, the bounded monadic
spaces (G,El,Gf), (G,Er,Gf) are isomorphic via the identity mapping IdG : G→ G.
The reason is that the left and the right uniformities on Gf are uniquely determined by
the equivalence relations El ∩ (Gf ×Gf) and Er ∩ (Gf ×Gf) on Gf , respectively, which
coincide because of the normality condition G0 C Gf .

The group Gf , as well as the observable trace G[ = Gf/G0 , endowed with the topologies
induced by the subgroup G0 , described in Section 1.2, become topological groups
and the observable trace map x 7→ x[ is a continuous surjective homomorphism of
topological groups Gf → G[ . (On the other hand, unless G0 C G, the topology on G
induced by G0 does not turn it into a topological group.)

Two paradigmatic examples of IMG group triplets arise from the nonstandard extensions
∗R and ∗C of the additive groups of the fields R and C of the real and complex
numbers, respectively. We denote by F ∗R ⊆ ∗R or F ∗C ⊆ ∗C the galactic subrings
of finite (bounded) hyperreal or hypercomplex numbers, and by I∗R ⊆ F ∗R or
I∗C ⊆ F ∗C the monadic ideals of infinitesimal hyperreal or hypercomplex numbers.
Then (∗R, I∗R,F ∗R) and (∗C, I∗C,F ∗C) are IMG group triplets with observable traces
F ∗R/I∗R and F ∗C/I∗C, isomorphic to the standard structures R and C, respectively,
even as topological fields. For x ∈ ∗R, x ≥ 0, we sometimes write x <∞ instead of
x ∈ F ∗R, and x ∼ ∞ instead of x ∈ ∗Rr F ∗R.

In any IMG group triplet (G,G0,Gf), the systems R and B from Section 1.2 can be
replaced by a single system Q of admissible size, directed both upward and downward,
consisting of symmetric internal subsets of G, such that:

(∀Q ∈ Q)(∃R, S ∈ Q)(R · R ⊆ Q & Q · Q ⊆ S)
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(∀Q,R ∈ Q)(∃ S ∈ Q)
(⋃

x∈R

xSx−1 ⊆ Q
)

G0 =
⋂
Q Gf =

⋃
Q

If G0 is the intersection and Gf is the union of countably many internal sets then we
can assume that Q = {Qn : n ∈ Z} and the symmetric internal sets Qn ⊆ G satisfy:

(∀ n ∈ Z)(Qn · Qn ⊆ Qn+1)

(∀ n ∈ N)
( ⋃

x∈Qn

x Q−n−1x−1 ⊆ Q−n

)
G0 =

⋂
n∈Z

Qn =
⋂
n∈N

Q−n Gf =
⋃
n∈Z

Qn =
⋃
n∈N

Qn

An internal function % : G → ∗R is called an internal gauge or just a gauge on the
internal group G if

%(x) = 0 ⇔ x = 1

%(x) = %
(
x−1)

%(xy) ≤ %(x) + %(y)

for all x, y,∈ G (%(x) ≥ 0 already follows). Obviously, if % is a gauge on G then
%
(
x−1y

)
is a left invariant and %

(
xy−1

)
is a right invariant metric on G. Conversely,

if d : G× G → G is an internal metric on G such that d
(
x−1, y−1

)
= d(x, y) for all

x, y ∈ G then %(x) = d(x, 1) is a gauge on G and d is left (right) invariant if and only if
d(x, y) = %

(
x−1y

)
(d(x, y) = %

(
xy−1

)
).

The set of all gauges on G is partially ordered by the relation

% ≤ σ ⇔ (∀ x ∈ G)(%(x) ≤ σ(x))

A set V of gauges on G is called bidirected if it is both downward and upward directed
with respect to the above partial order ≤.

Using a slightly modified Birkhoff-Kakutani style argument, one can prove the following
version of the metrization theorem for bounded monadic group triplets.

Proposition 1.3.1 Let (G,G0,Gf) be an IMG group triplet. If G0 is an intersection
and Gf is a union of countably many internal sets, then there is a gauge % : G→ ∗R
such that:

G0 = {x ∈ G : %(x) ≈ 0}
Gf = {x ∈ G : %(x) <∞}
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In general, there is a bidirected set V of admissible size of gauges on G, such that:

G0 = {x ∈ G : (∀ % ∈ V)(%(x) ≈ 0)}
Gf = {x ∈ G : (∃ % ∈ V)(%(x) <∞)}

Sketch of proof In the countable case we give just the formula for %; the fact that it
has all the required properties can be verified in a routine way.

There is a sequence (An)n∈Z of symmetric internal subsets of G such that

G0 =
⋂
n∈Z

An Gf =
⋃
n∈Z

An

and
An · An · An ⊆ An+1

for each n ∈ Z. By saturation, it can be extended to an internal sequence (An)−m≤n≤m

for some m ∈ ∗N∞ , such that A−m = {0}, Am = G, and the above inclusions hold for
all n such that −m ≤ n < m. Let us put

µ(x) = min {n : − m ≤ n ≤ m & x ∈ An}

and denote by
P(G) =

⋃
n∈∗N

Gn

the internal set of all hyperfinite internal progressions in G. For any progression
x = (x1, . . . , xn) ∈ P(G) we denote by |x| = n its length and put:

Π(x) =

n∏
i=1

xi and w(x) =

n∑
i=1

2µ(xi)

For the empty progression () = ∅ (ie, in case n = 0) this means that Π(∅) = 1 and
w(∅) = 0. Then, finally,

%(x) = ∗inf {w(x) : x ∈ P(G) & Π(x) = x}

is the desired internal gauge.

In the general case, let us invoke the system Q introduced in the beginning of this
section. For each S ∈ Q there is a sequence

(
AS

n
)

n∈Z of sets from Q such that AS
0 = S ,

G0 ⊆
⋂
n∈Z

AS
n

⋃
n∈Z

AS
n ⊆ Gf

and
AS

n · AS
n · AS

n ⊆ AS
n+1
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for each n. Let %S be the gauge constructed from (some hyperfinite extension of) this
sequence. Let us denote:

V0 =
{
%S : S ∈ Q

}
Then V0 obviously has all the properties required for V , except perhaps for the
bidirectedness. To fix this issue, we define

(%1 ∧ %2)(x) = ∗inf
{ |x|∑

i=1

min{%1(xi), %2(xi)} : x ∈ P(G) & Π(x) = x
}

(%1 ∨ %2)(x) = max{%1(x), %2(x)}
for any gauges %1 , %2 and x ∈ G. As easily seen, both %1 ∧ %2 , %1 ∨ %2 are gauges, and:

%1 ∧ %2 ≤ %1, %2 ≤ %1 ∨ %2

Taking for V the closure of V0 with respect to the operations ∧ and ∨, we are done.

Remark The last metrization theorem can be proved even for more general triplets
(G,G0,Gf), consisting of an internal group G, a monadic subgroup G0 and a galactic
subgroup Gf , such that G0 ⊆ Gf ⊆ G, without the assumption that G0 is normal
in Gf . Conversely, any single gauge %, as well as any downward directed set V of
admissible size of gauges on an internal group G gives rise to a monadic subgroup G0

and a galactic subgroup Gf , defined by the formulas from Proposition 1.3.1, such that
G0 ⊆ Gf ⊆ G. However, one cannot prove that G0 C Gf in general.

Topological groups G embeddable into observable traces G ∼= G[ of IMG group triplets
can be easily characterized.

Let G be a topological group and U be a symmetric neighborhood of the unit element
1 ∈ G. Then G is called U–locally uniform if the group multiplication in G restricted
to the set U × U is uniformly continuous in the left (or, equivalently, in the right)
uniformity on G (cf Goldbring [16]). G is locally uniform if it is U–locally uniform
for some U.

Obviously, any subgroup of a locally uniform topological group is itself locally uniform
(in the subgroup topology).

The easy proof of the following nonstandard formulation of U–local uniformity is left
to the reader.

Proposition 1.3.2 Let G be a topological group and U be a symmetric neighborhood
of the unit element 1 ∈ G. Denote by N the normalizer of the monad Mon(1) in ∗G.
Then G is U–locally uniform if and only if ∗U ⊆ N.
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Proposition 1.3.3 Let G be a Hausdorff topological group. Then G can be embedded
into the observable trace G[ = Gf/G0 of some bounded monadic group (G,G0,Gf) if
and only if G is locally uniform.

Proof Assume that G is isomorphic to the observable trace G[ of some IMG group
triplet (G,G0,Gf). Then, as G0 C Gf , we have

(∀ x1, x2, y2, y2 ∈ Gf)(x1 ≈ y1 & x2 ≈ y2 ⇒ x1x2 ≈ y1y2)

hence the multiplication in G is S–continuous on Gf ×Gf , yielding uniform continuity
of the multiplication in G on every set of the form U[ × U[ , where U is internal and
G0 ⊆ U ⊆ Gf . Since such sets U[ form a neighborhood base of 1 ∈ G, G is locally
uniform. If G is just embedded into the observable trace G[ then G is isomorphic to a
subgroup of a locally uniform group, hence it is locally uniform, as well.

Now, assume that G is locally uniform. Let κ be the least uncountable cardinal, such
that the topology of G has a base B of cardinality < κ, and ∗G be a nonstandard
extension of G in a κ–saturated nonstandard universe. Let U ∈ B be a symmetric
neighborhood of 1 ∈ G such that the group multiplication is uniformly continuous on
U×U. Denote by I ∗G the monad of the unit element 1 ∈ ∗G and by N its normalizer
in ∗G. Finally we put

S =
⋃
{∗B : B ∈ B & ∗B ⊆ N}

and denote by F ∗G = 〈S〉 the subgroup of ∗G generated by S. Then, obviously, F ∗G
is a union of admissibly many internal sets, and ∗U ⊆ F ∗G ⊆ N, which means that
I ∗G C F ∗G. The inclusion G ⊆ F ∗G follows from the fact that, for each aaa ∈ G, the
group operation is uniformly continuous on Uaaa × Uaaa, hence also on B × B where
B ∈ B is a neighborhood of aaa such that B ⊆ Uaaa.

Thus (∗G, I ∗G,F ∗G) is an IMG group triplet and the star map aaa 7→ ∗aaa induces an
embedding of G into its observable trace ∗G[ = F ∗G/ I ∗G.

For locally compact groups even more can be proved.

Proposition 1.3.4 Let G be a Hausdorff locally compact topological group. Then, in
a sufficiently saturated nonstandard universe, G is isomorphic to the observable trace
Ns(∗G)/Mon(1) of the condensing IMG group triplet

(∗G,Mon(1),Ns(∗G)
)

.

Sketch of proof It suffices to have the nonstandard universe κ–saturated where κ is
the least uncountable cardinal bigger than the cardinality of some neighborhood base of
1 ∈ G and such that G can be covered by the interiors of less than κ compact sets.
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We are mainly interested in condensing IMG group triplets (G,G0,Gf) with a hyperfinite
ambient group G. Condensing IMG triplets can be characterized using Proposition 1.2.1.
Below [A : B] denotes any of the indices bA : Bc, bA : Bci or dA : Be. The simple
proof of the following facts is left to the reader.

Proposition 1.3.5 (a) An IMG group triplet (G,G0,Gf) is condensing if and only if
for any symmetric internal sets A, B between G0 and Gf the index [A : B] is finite. If
G is hyperfinite then this is equivalent to

0 6≈ |A|
|B|

<∞

for any internal sets A, B between G0 and Gf .

(b) The observable trace G[ of a condensing group triplet (G,G0,Gf) is discrete if and
only if the subgroup G0 is internal; G[ is compact if and only if the subgroup Gf is
internal.

Obviously, both the bounded monadic groups (∗R, I∗R,F ∗R), (∗C, I∗C,F ∗C) are
condensing.

Given a condensing IMG group triplet (G,G0,Gf) with a hyperfinite ambient group
G, a positive number d ∈ ∗R, such that d |A| ∈ F ∗Rr I∗R for some (or, equivalently,
for each) internal set A between G0 and Gf , is called a normalizing multiplier or
normalizing coefficient for (G,G0,Gf). According to 1.3.5, if d is a normalizing
multiplier for (G,G0,Gf), and 0 < d′ ∈ ∗R then d′ is a normalizing multiplier if and
only if d/d′ ∈ F ∗R r I∗R. In particular, for any internal set A between G0 and Gf ,
d = 1/ |A| is a normalizing coefficient for (G,G0,Gf).

From the results of Section 1.2 it follows directly:

Proposition 1.3.6 Let (G,G0,Gf) be a condensing IMG group triplet with a hyperfinite
ambient group G and a normalizing multiplier d . Let λd denote the Loeb measure
induced by the constant function d(x) = d on G. Then the measure mmmd obtained by
pushing down the Loeb measure λd is both left and right invariant Haar measure on the
observable trace G[ = Gf/G0 .

If G is a locally compact topological group then any pair (K,U) consisting of a compact
set K ⊆ G and a symmetric neighborhood U ⊆ K of the unit 1 ∈ G is called a
G–raster. Notice that in such a case the neighborhood U is relatively compact, while
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K itself is a compact neighborhood of 1 in G. The system of all G–rasters, partially
ordered by the relation

(K,U) ≤ (Q,V) ⇔ K ⊆ Q and V ⊆ U

is a directed poset. If (K,U) ≤ (Q,V), we say that the raster (Q,V) extends the raster
(K,U). A system of G–rasters

(
(Ki,Ui)

)
i∈I , indexed by some index set I , is called

a raster base of G if it is cofinal in the system of all G–rasters, ie, for any G–raster
(K,U), there is a raster (Ki,Ui) in this system extending (K,U).

If G is discrete then it is enough to deal with its raster bases consisting just of pairs
(Ki, {1}), where Ki are finite sets whose union is G. Similarly, if G is compact then it
is enough to consider its raster bases formed by pairs (G,Ui) where the sets Ui form a
neighborhood base of 1 ∈ G.

Given a G–raster (K,U), a mapping η : G→ G is called a finite (K,U) approximation
or just a (K,U) approximation of G if G is a finite group, and η satisfies the following
two conditions:

(∀xxx ∈ K)(∃ x ∈ G)
(
η(x) ∈ Uxxx

)
(∀ x, y ∈ G)

(
η(x), η(y) ∈ K ⇒ η(x)η(y) ∈ Uη(xy)

)
A (K,U) approximation is called injective if η is an injective mapping; it is called strict
if η(1) = 1, η

(
x−1
)

= η(x)−1 for all x ∈ G, and the second of the above conditions
can be strengthened to:

(∀ x, y ∈ G)
(
η(x), η(y) ∈ K ⇒ η(xy) = η(x)η(y)

)
Notice that any (K,U) approximation η : G → G satisfies η(1) ∈ U if 1 ∈ η−1[K],
and η

(
x−1
)
∈ Uη(x)−1 if 1, x, x−1 ∈ η−1[K]. Similarly, the strengthened second

condition implies η(1) = 1 if 1 ∈ η−1[K], and η
(
x−1
)

= η(x)−1 if 1, x, x−1 ∈ η−1[K].
However, the convenient conditions η(1) = 1, η

(
x−1
)

= η(x)−1 alone can always be
assumed without loss of generality.

Obviously, if (K,U) is a G–raster and η : G→ G is a finite (K,U) approximation of
G then η is a (Q,V) approximation of G for any G–raster (Q,V) ≤ (K,U).

If (I,≤) is a directed poset then a system of mappings (ηi : Gi → G)i∈I , where each Gi

is a finite group, is called an approximating system of G if for every G–raster (K,U)
there is i ∈ I such that ηj : Gj → G is a (K,U) approximation of G for each j ∈ I ,
j ≥ i.

An internal mapping η : G→ ∗G is a hyperfinite infinitesimal approximation, briefly
an HFI approximation, of G, if G is a hyperfinite group and:

(∀xxx ∈ G)(∃ x ∈ G)
(
η(x) ≈ xxx

)
Journal of Logic & Analysis 13:1 (2021)



Pontryagin–van Kampen duality in the hyperfinite setting 27

(∀ x, y ∈ G)
(
η(x), η(y) ∈ Ns(∗G) ⇒ η(xy) ≈ η(x)η(y)

)
The notions of injective and strict HFI approximation, respectively, are defined in the
obvious way.

Every hyperfinite infinitesimal approximation η : G → ∗G of a Hausdorff locally
compact group G in a sufficiently saturated nonstandard universe gives rise to an IMG
group triplet (G,G0,Gf), where

G0 = η−1[Mon(1)
]

= {x ∈ G : η(x) ≈ 1}
Gf = η−1[Ns(∗G)

]
= {x ∈ G : η(x) ∈ Ns(∗G)}

then G is isomorphic to the observable trace G[ = Gf/G0 .

Proposition 1.3.7 Let G be a Hausdorff locally compact group. Then the following
conditions are equivalent:

(i) G is isomorphic to the observable trace G[ of some hyperfinite condensing IMG
group triplet (G,G0,Gf).

(ii) There is an HFI approximation η : G→ ∗G of G.
(iii) For every G–raster (K,U) there is a finite (K,U) approximation η : G→ G.
(iv) There is an approximating system (ηi : Gi → G)i∈I of G by finite groups Gi

over some directed poset (I,≤).

Proof (ii) ⇒ (i) was already proved, right before formulating the proposition.

(i) ⇒ (ii) Assume that (G,G0,Gf) is a hyperfinite condensing IMG group triplet and
ηηη : Gf/G0 → G is an isomorphism of topological groups. By Proposition 1.2.3, ηηη has
a lifting η : G→ ∗G. It is a routine to check that η is an HFI approximation of G.

(ii) ⇒ (iii) Let η : G→ ∗G be an HFI approximation of G. For any G–raster (K,U)
denote by Φ(K,U) the set of all finite (K,U) approximations φ : F → G of G. Then
η ∈ ∗Φ(K,U). By the Transfer Principle, Φ(K,U) 6= ∅.

(iii) ⇒ (iv) Denote by (I,≤) the directed poset set of all G–rasters ordered by the
extension relation. Let ηi : Gi → G be a finite (K,U) approximation of G for each
i = (K,U) ∈ I . Clearly, the mappings ηi form an approximating system of G.

(iv) ⇒ (ii) Let (ηi : Gi → G)i∈I be an approximating system of G over (I,≤). Let us
embed the situation into a κ–saturated nonstandard universe, where κ > ℵ0 and (I,≤)
has a cofinal subset of cardinality < κ. Then there is k ∈ ∗I such that i ≤ k for all
i ∈ I ; it follows that ηk : Gk → ∗G is an HFI approximation of G.
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Remarks (a) From the above proof it is clear that one can strengthen conditions (ii)–(iv)
of Proposition 1.3.7 by requiring injectivity of the corresponding approximation(s),
and the modified conditions will be equivalent, again. What is not clear is the way
one should modify condition (i) to make it equivalent with them. (Maybe even no
modification is needed at all.)

(b) Alternatively, the implication (iv) ⇒ (ii) can be proved using the ultraproduct con-
struction with respect to any ultrafilter D on the directed poset (I,≤) containing all the
sets of the form {j ∈ I : j ≥ i} for i ∈ I , applied to the system of finite approximations
(ηi : Gi → G)i∈I . More details can be found in Zlatoš [49, Proposition 1.5.8].

The following remark is even of more relevance.

Remark A notion of finite approximability equivalent, for compact metrizable groups,
to the above condition (iii) (strengthened in the sense of Remark (a) above) was
introduced and studied by Alan Turing [46] already in the late 1930s. In particular,
he proved that a compact connected Lie group is approximable by finite groups if and
only if it is abelian. Nevertheless, a reasonable characterization of locally compact
topological groups isomorphic to observable traces of condensing IMG group triplets
with a hyperfinite ambient group is still missing. According to Proposition 1.3.6,
every such a group is necessarily unimodular. On the other hand, as a consequence
of this theorem of Turing and Proposition 1.3.7, no noncommutative compact (hence
unimodular) connected Lie group, like, eg, SO(3), admits such a representation (see
also Gordon and Glebsky [12] and Gordon, Glebsky and Rubio [13]). Similarly, not
even all finitely generated discrete groups are approximable by finite groups in this
sense (cf Alekseev, Glebsky and Gordon [2], Gordon and Vershik [19]). Fortunately, as
we shall see later on, all locally compact abelian groups still behave well.

The following examples (a), (b), (c), as well as some special cases of (d) are essentially
taken from Gordon [18]; (b) in fact (without using the present terminology), can be
found already in Luxemburg [32].

Example 1.3.8 Let 1 ≤ n ∈ ∗N, and Zn = {−b n−1
2 c, . . . ,−1, 0, 1, . . . , d n−1

2 e} be
the (hyper)finite cyclic group of order n, represented as the set of absolutely smallest
remainders modulo n.

(a) If n ∈ N and 0 ≤ k < n/4 then the identity mapping Zn → Z is a strict injective(
K, {0}

)
approximation of the group Z, where K = {0,±1, . . . ,±k}.

If n ∈ ∗N∞ then the identity mapping Zn → ∗Z is a strict HFI approximation of Z.
The IMG group triplet arising form it has the form

(
Zn, {0},Z

)
.
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(b) If n ∈ N and r > π/n then the homomorphism a 7→ e2πia/n : Zn → T is a strict
injective (T,U) approximation of the group T, where U = {u ∈ T : |arg u| ≤ r}.

If n ∈ ∗N∞ then the internal homomorphism a 7→ e2πia/n : Zn → ∗T is a strict injective
HFI approximation of T. The corresponding IMG group triplet is (Zn,G0,Zn), where:

G0 = {a ∈ Zn : a/n ≈ 0}

(c) If n ∈ N, 0 ≤ k < n/4 ∈ N, and d and r > d/2 are positive real numbers then the
mapping a 7→ ad : Zn → R is a strict injective (K,U) approximation of the group R,
where K = [−kd, kd], U = [−r, r].

If n ∈ ∗N∞ , and d is a positive infinitesimal such that nd ∼ ∞ then the internal
mapping a 7→ ad : Zn → ∗R is a strict injective HFI approximation of R, inducing the
IMG group triplet (Zn,G0,Gf), where:

G0 = {a ∈ Zn : ad ≈ 0} Gf = {a ∈ Zn : |ad| <∞}

(d) Let G be any Hausdorff locally compact group (written multiplicatively) and
U ⊆ K ⊆ G be its compact open subgroups such that U is normal in K. Then the
quotient G = K/U is a finite group and any (necessarily injective) mapping η : G→ G
such that Uη(x) = x for each x ∈ G is an injective (K,U) approximation of G.

If G admits a raster base
(
(Ki,Ui)

)
i∈I consisting of compact open subgroups Ui C Ki

of G then there are ∗compact ∗open subgroups U C K of ∗G, such that U ⊆ Mon(1),
Ns(∗G) ⊆ K and the quotient G = K/U is a hyperfinite group. Any internal mapping
η : G→ ∗G such that Uη(x) = x for each x ∈ G is an injective HFI approximation of
G. The IMG group triplet (G,G0,Gf) obtained from η satisfies:

G0 =
⋂
i∈I

η−1[∗Ui] = {Uxxx : (∀ i ∈ I)(xxx ∈ Ui)}

Gf =
⋃
i∈I

η−1[∗Ki] = {Uxxx : (∃ i ∈ I)(xxx ∈ Ki)}

Both in the finite and in the hyperfinite case, η is not a strict approximation, unless it is
a genuine homomorphism.

Clearly, if η1 : G1 → G1 is a finite (K1,U1) approximation of G1 and η2 : G2 → G2 is
a finite (K2,U2) approximation of G2 then the mapping η1×η2 : G1×G2 → G1×G2

is a finite (K1 ×K2,U1 × U2) approximation of G1 ×G2 . Moreover, it is clear, that
η1 × η2 is strict or injective, respectively, once both the approximations η1 , η2 have
the respective property. Analogous observations apply to HFI approximations as well.
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Thus the items (a), (b) and (c) of the last example enable us to construct strict injective
approximating systems and strict injective HFI approximations for all elementary LCA
groups, ie for LCA groups of the form F × Zk × Tm × Rn where F is a finite abelian
group and k,m, n ∈ N.

Example 1.3.8(d) gives a direct hint how to construct both approximating systems and
HFI approximations of any LCA group G with a raster base

(
(Ki,Ui)

)
i∈I consisting of

pairs of subgroups Ui ⊆ Ki of G. The following LCA groups are included as special
cases:

1. the compact additive groups of τ –adic integers ∆τ , where τ = (τn)n∈N is any
increasing sequence of positive integers such that τn | τn+1 for each n

2. the additive LCA groups of τ –adic numbers Qτ , where τ = (τn)n∈Z is any
sequence of positive integers, such that τn < τn+1 , τn | τn+1 for n ≥ 0, and
τn < τn−1 , τn | τn−1 for n ≤ 0

3. torsion (discrete abelian) groups, as they are direct (inductive) limits of finite
abelian groups

4. profinite (compact abelian) groups, ie, inverse (projective) limits of finite abelian
groups2

In Gordon [18] also HFI approximations of τ –adic solenoids

Στ = (R×∆τ )/{(a, a) : a ∈ Z}

which do not fall within the scope of Example 1.3.8(d), are described.

Actually, any LCA group admits arbitrarily good finite approximations and, henceforth,
HFI approximations, too. The key ingredient of the proof of this fact is the following
structure theorem for compactly generated LCA groups (ie, LCA groups generated by
some compact subset). Its proof is relatively elementary (though certainly not trivial),
in particular, it does not rely on the Pontraygin–van Kampen Duality Theorem (cf
Pontryagin [38, Theorem 50], Hewitt and Ross [24, Theorem 9.6]).

Proposition 1.3.9 Let G be a compactly generated Hausdorff LCA group. Then every
compact neighborhood V of 0 in G contains a closed subgroup H of G such that the
quotient G/H is an elementary LCA group.

Theorem 1.3.10 (The Finite LCA Group Approximation Theorem) Let G be a
Hausdorff LCA group. Then, for any G–raster (K,U), there is a finite abelian group
G and an injective (K,U) approximation η : G → G of G, such that η(0) = 0 and

2Obviously, 1. is a special case of 4.
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η(−a) = −η(a) for each a ∈ G. Equivalently, G admits some approximating system
(ηi : Gi → G)i∈I by finite abelian groups, such that all the mappings ηi are injective
and preserve 0 and inverses.

Proof Let us pick a compact symmetric neighborhood V of 0 such that V + V ⊆ U.
According to the above Proposition 1.3.10, V contains a closed subgroup H such that the
quotient E = 〈K〉/H of the subgroup 〈K〉 of G generated by the compact set K is an
elementary LCA group. Denote by V′ and K′ the images of the sets V, K, respectively,
under the canonical projection ψ : 〈K〉 → E. Then V′ is a symmetric neighborhood
of 0 and K′ is a compact set in E. According to Example 1.3.8 and the comment
following it, there is a finite group G and a strict injective

(
K′,V′

)
approximation

ζ : G → E. Let σ : E → 〈K〉 be any (necessarily injective) mapping such that
σ(0) = 0, σ(−x) = −σ(x) and ψ(σ(x)) = x for x ∈ E. Then η = σ ◦ ζ : G→ G is an
injective mapping, satisfying η(0) = 0, and η(−a) = −η(a) for a ∈ G. Straightforward
arguments show that

K ⊆ K + H ⊆ η[G] + V + H ⊆ η[G] + U

and
η(a) + η(b)− η(a + b) ∈ H ⊆ V ⊆ U

for a, b ∈ G, whenever η(a), η(b), η(a+b) ∈ K+H. Hence, η is a (K,U) approximation
of G. The equivalence of the first and the second formulation is obvious in view of
Proposition 1.3.7.

Corollary 1.3.11 (The Hyperfinite LCA Group Approximation Theorem) Let G
be a Hausdorff LCA group. Then, in a sufficiently saturated nonstandard universe,
there is an internal hyperfinite abelian group G and an injective HFI approximation
η : G → ∗G of G, such that η(0) = 0 and η(−a) = −η(a) for a ∈ G. It follows
that G is isomorphic to the observable trace G[ = Gf/G0 of the IMG group triplet
(G,G0,Gf) with a hyperfinite abelian ambient group G, where G0 = η−1

[
Mon(0)

]
and

Gf = η−1
[
Ns(∗G)

]
.

2 Pontryagin–van Kampen duality in the hyperfinite setting

In this chapter we finally come to the central topic of our paper, which is the study
of condensing IMG group triplets with a hyperfinite abelian ambient group and their
relation to the Pontryagin–van Kampen Duality Theorem. In particular, we will prove
the first and the second of the three Gordon’s conjectures concerning them. However,
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we start with a technical section dealing mainly with the additive combinatorial structure
of some sets in finite abelian groups.

2.1 Fourier transforms, Bohr sets and spectral sets in finite abelian groups

In this section we establish some inclusions between certain types of subsets of finite
abelian groups and their dual groups, as well some estimates of their size. Later on, we
will apply them within the realm of hyperfinite abelian groups by means of the Transfer
Principle. To this end we will systematically employ the discrete Fourier transform as
our main tool. The results thus obtained will not depend on the normalizing coefficients
occurring in it. As a matter of convenience we choose d = 1/|G| and d̂ = 1.

In what follows G denotes a finite abelian group with the addition operation. The
operation on its dual group Ĝ is written as the multiplication. The set CG of all
functions G→ C becomes a unitary space endowed with the Hermitian inner product,
given as the expectation

〈 f , g〉G = E( f · g) = Ex∈G f (x) g(x) =
1
|G|
∑
x∈G

f (x) g(x)

for f , g ∈ CG , and the corresponding L2 –norm:

‖ f‖2 =
√
〈 f , f 〉G =

√
E
(

f · f
)

The dual group Ĝ = Hom(G,T), considered as a subset of CG , forms an orthonormal
basis of CG . Thus for the Fourier transform F : CG → CĜ

F( f )(γ) = f̂ (γ) = 〈 f , γ〉G = E( f · γ)

the Fourier inversion formula takes the form:

f =
∑
γ∈Ĝ

f̂ (γ) γ

The Hermitian inner product on CĜ

〈ϕ,ψ〉Ĝ =
∑
γ∈Ĝ

ϕ(γ)ψ(γ)

ensures the Plancherel identity:

〈 f , g〉G = 〈 f̂ , ĝ 〉Ĝ
The convolution on CG is also defined as the expectation:

( f ∗ g)(x) = Ey∈G f (x− y) g(y)
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For its Fourier transform we have:

f̂ ∗ g = f̂ · ĝ

Additionally, we will make use of the Lp –norms on CG and the `p –norms on CĜ

‖ f‖p =
(
E | f |p

)1/p
=
(
Ex∈G| f (x)|p

)1/p
=

(
1
|G|
∑
x∈G

| f (x)|p
)1/p

‖ϕ‖p =

(∑
χ∈Ĝ

|ϕ(χ)|p
)1/p

for 1 ≤ p <∞, as well as of the L∞–norm on CG and the `∞–norm on CĜ

‖ f‖∞ = max
x∈G
| f (x)| ‖ϕ‖∞ = max

χ∈Ĝ
|ϕ(χ)|

for f ∈ CG , ϕ ∈ CĜ .

Let us list some well known and/or obvious relations:

‖ f̂ ‖
2

= ‖ f‖2 ‖ f̂ ‖
∞
≤ ‖ f‖1

which are special cases of the Hausdorff-Young inequality

‖ f̂ ‖
q
≤ ‖ f‖p

for 1 ≤ p ≤ 2 and q being the dual exponent of p, ie, 1/p + 1/q = 1.

We denote by fa the shift of the function f : G→ C by the element a ∈ G, ie

fa(x) = f (x− a)

for x ∈ G. Then
f̂a (γ) = γ(a) f̂ (γ) and f̂ γ = γ̂ f

for γ ∈ Ĝ, as well as

f ∗ g = Ea∈G fa g(a) = Ea∈G f (a) ga

and
( f ∗ g)a = f ∗ ga = fa ∗ g

for f , g ∈ CG .

A norm N on the linear space CG is called translation invariant if N( fa) = N( f ) for all
f ∈ CG , a ∈ G. For any translation invariant norm N we have:

N( f ∗ g) ≤ N( f ) ‖g‖1
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A norm N on CG is called absolute if N( f ) ≤ N(g) for any functions f , g ∈ CG such
that | f (x)| ≤ |g(x)| for all x ∈ G. For any absolute norm N we have:

N( f g) ≤ N( f ) ‖g‖∞
As all the norms ‖ · ‖p are obviously translation invariant and absolute,

‖ f ∗ g‖p ≤ ‖ f‖p ‖g‖1 ‖ f g‖p ≤ ‖ f‖p ‖g‖∞
for f , g : G→ C, 1 ≤ p ≤ ∞. If f , g : G→ R are both nonnegative on G then even:

‖ f ∗ g‖1 = ‖ f‖1 ‖g‖1

For the characteristic function (indicator) 1A of a set A ⊆ G and 1 ≤ p <∞ we have:

‖1A‖p
p

= ‖1A‖2
2

= ‖1A‖1 =
|A|
|G|

If f : G→ C is even, ie f (−x) = f (x) for x ∈ G, then so is f̂ : Ĝ→ C and we have:

f̂ (γ) = Ex∈G f (x) Re γ(x) f (x) =
∑
γ∈Ĝ

f̂ (γ) Re γ(x)

The support of a function g : G→ C is defined as the set:

supp g = {x ∈ G : g(x) 6= 0}

The following estimate generalizes an inequality in Green and Ruzsa [20], which was
part of the proof there of Proposition 3.1, from indicators to arbitrary nonnegative
functions.

Lemma 2.1.1 Let f : G → R be nonnegative, and D ⊆ G be a nonempty set such
that supp( f ∗ f ) ⊆ D. Then: ∑

γ∈Ĝ

| f̂ (γ)|4 ≥
‖ f‖4

1

‖1D‖1

Proof By the Plancherel identity and the relation between the Fourier transform and
the convolution,∑

γ∈Ĝ

| f̂ (γ)|4 = 〈 f̂ 2, f̂ 2〉Ĝ = 〈 f ∗ f , f ∗ f 〉G = ‖ f ∗ f‖2
2

for any function f : G→ C. Using Cauchy-Schwartz inequality, the fact that f ∗ f is
supported on D, and the nonnegativity of f , we get:

‖ f ∗ f‖2
2
‖1D‖2

2
≥ |〈 f ∗ f , 1D〉G|2 = ‖ f ∗ f‖2

1
= ‖ f‖4

1

The claim follows immediately.
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For any subsets A ⊆ G, Γ ⊆ Ĝ and any α ∈ ∗R, 0 ≤ α ≤ π , we introduce the Bohr
sets (cf Tao and Vu [44]):

Bohrα(A) =
{
γ ∈ Ĝ: (∀ a ∈ A)

(
|arg γ(a)| ≤ α

)}
Bohrα(Γ ) =

{
a ∈ G : (∀ γ ∈ Γ )

(
|arg γ(a)| ≤ α

)}
Obviously,

Bohrα(A) =
{
γ ∈ Ĝ : (∀ a ∈ A)

(
|γ(a)− 1| ≤ 2 sin(α/2)

)}
=
{
γ ∈ Ĝ : (∀ a ∈ A)

(
Re γ(a) ≥ cosα

)}
and similarly for Bohrα(Γ ). We also have

Bohrβ(A) ⊆ Bohrα(A) and Bohrβ(Γ ) ⊆ Bohrα(Γ )

for 0 ≤ β ≤ α ≤ π . For any fixed α , the assignments A 7→ Bohrα(A), Γ 7→ Bohrα(Γ )
form a Galois connection, ie

A ⊆ Bohrα
(
Bohrα(A)

)
and Bohrα(B) ⊆ Bohrα(A)

whenever A ⊆ B ⊆ G and similarly for Γ ⊆ ∆ ⊆ Ĝ.

The spectral set or the spectrum of a function f : G→ C at the threshold t ∈ R is the
set:

Spect( f ) =
{
γ ∈ Ĝ : | f̂ (γ)| ≥ t ‖ f‖1

}
⊆ Ĝ

This is a slight generalization of a definition from Tao and Vu [44, §4.6] were spectral
sets of subsets A ⊆ G were defined by:

Spect(A) = Spect(1A) =
{
γ ∈ Ĝ : |1̂A(γ)| ≥ t ‖1A‖1

}
As | f̂ (γ)| ≤ ‖ f̂ ‖

∞
≤ ‖ f‖1 , Spect( f ) = ∅ whenever t > 1 and f is not identically 0;

similarly, Spect( f ) = Ĝ for t ≤ 0. Thus it makes sense to consider the spectral sets
just for the threshold values 0 ≤ t ≤ 1. Also the following implication is trivial:

s ≤ t ⇒ Spect( f ) ⊆ Specs( f )

Lemma 2.1.2 Let f : G→ R be an even nonnegative function, D ⊆ G be a nonempty
set such that supp f ⊆ D, and 0 ≤ α ≤ π/2. Then

Bohrα(D) ⊆ Spect( f )

whenever 0 ≤ t ≤ cosα .
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Proof Take any γ ∈ Bohrα(D). According to the assumptions on f , t and α we have

| f̂ (γ)| = |Ex∈G f (x) γ(x)| = |Ex∈G 1D(x) f (x) Re γ(x)|
≥ Ex∈G f (x) cosα = ‖ f‖1 cosα ≥ t ‖ f‖1

thus γ ∈ Spect( f ).

The following result generalizes an inclusion proved in Green and Ruzsa [20] during
the proof of Proposition 3.1, as well.

Proposition 2.1.3 Let f : G→ R be a nonnegative function, not identically equal to 0,
D ⊆ G be a nonempty set such that supp( f ∗ f ) ⊆ D, and 0 < α < π/2, 0 ≤ t ≤ 1.
Then

Bohrα
(
Spect( f )

)
⊆ D− D

whenever:

t ≤ ‖ f‖1

‖ f‖2 ‖1D‖2

·
√

cosα
1 + cosα

Proof Let f− denote the function given by f−(x) = f (−x); since f : G→ R, we have

f̂−(γ) = f̂ (γ) and | f̂ (γ)|2 = f̂ ∗ f−(γ). Then both the functions f ∗ f− , f ∗ f ∗ f− ∗ f−
are even, and:

supp( f ∗ f ∗ f− ∗ f−) ⊆ D− D

Let x ∈ Bohrα
(
Spect( f )

)
. It suffices to prove that ( f ∗ f ∗ f− ∗ f−)(x) > 0. Putting

Γ = Spect( f ), we have Re γ(x) ≥ cosα for γ ∈ Γ . By the Fourier inversion formula,
Lemma 2.1.1 and Plancherel identity we get:

( f ∗ f ∗ f− ∗ f−)(x) =
∑
γ∈Ĝ

| f̂ (γ)|4 γ(x)

=
∑
γ∈Γ
| f̂ (γ)|4 Re γ(x) +

∑
γ∈ĜrΓ

| f̂ (γ)|4 Re γ(x)

>
∑
γ∈Γ
| f̂ (γ)|4 cosα−

∑
γ∈ĜrΓ

| f̂ (γ)|4

=
∑
γ∈Ĝ

| f̂ (γ)|4 cosα−
∑

γ∈ĜrΓ

| f̂ (γ)|4(1 + cosα)

≥
‖ f‖4

1

‖1D‖1

cosα− max
γ∈ĜrΓ

| f̂ (γ)|2
∑
γ∈Ĝ

| f̂ (γ)|2(1 + cosα)
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≥
‖ f‖4

1

‖1D‖1

cosα− t2‖ f‖2
1
‖ f‖2

2
(1 + cosα)

= ‖ f‖2
1

( ‖ f‖2
1

‖1D‖2
2

cosα− t2‖ f‖2
2
(1 + cosα)

)
The strict inequality in the third line is due to the fact that for the trivial character
1G ∈ Γ we have Re 1G(x) = 1 > cosα , since α > 0. According to the assumption on
t , the expression in the last line is ≥ 0.

Remarks (a) It would be enough to have the above result for a single fixed value α .
The authors both in Green and Ruzsa [20] as well as in Tao and Vu [44] take α = π/3,
which, in our case, would result in the estimate:

t ≤ ‖ f‖1

‖ f‖2 ‖1D‖2

√
3

(b) It is worthwhile to notice that in the special case of f being the indicator of a
nonempty set A ⊆ G and D = A + A we have

‖ f‖1

‖ f‖2 ‖1D‖2

=
‖1A‖1

‖1A‖2 ‖1A+A‖2

=

√
|A|
|A + A|

=
1√
σ(A)

where σ(A) = |A + A| / |A| is the doubling constant of A.

We will need also some lower and upper bounds of the size of spectral sets of some
functions.

Proposition 2.1.4 Let f : G → R be a nonnegative function, not identically equal
to 0, D ⊆ G be a nonempty set such that supp( f ∗ f ) ⊆ D, and 0 < t ≤ 1. Then:

|G|
|D|
− t2 ‖ f‖2

2

‖ f‖2
1

≤ |Spect( f )| ≤ 1
t2

‖ f‖2
2

‖ f‖2
1

Proof Let us denote Γ = Spect( f ). According to Lemma 2.1.1 we have

‖ f‖4
1

‖1D‖1

≤
∑
γ∈Ĝ

| f̂ (γ)|4 =
∑
γ∈Γ
| f̂ (γ)|4 +

∑
γ∈ĜrΓ

| f̂ (γ)|4

≤ |Γ | ‖ f̂ ‖4
∞

+ t2‖ f‖2
1

∑
γ∈ĜrΓ

| f̂ (γ)|2

≤ |Γ | ‖ f‖4
1

+ t2‖ f‖2
1
‖ f‖2

2

using Plancherel formula to pass to the last line. This gives the lower bound.
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The upper bound readily follows from the following computation:

‖ f‖2
2

= ‖ f̂ ‖2
2

=
∑
γ∈Ĝ

| f̂ (γ)|2 ≥
∑
γ∈Γ
| f̂ (γ)|2 ≥ t2‖ f‖2

1
|Γ |

Remark Notice that the lower bound is relevant just in case

t <
‖ f‖1

‖ f‖2 ‖1D‖2

otherwise it is trivial. One of its consequences can be stated as

|supp( f ∗ f )| |Spect( f )|
|G|

≥ 1− t2 |supp( f ∗ f )|
|G|

‖ f‖2
2

‖ f‖2
1

≥ 1− t2 ‖ f‖2
2

‖ f‖2
1

in which form it can be regarded as a kind of the Uncertainty Principle, setting some
lower bound for the expression on the left. For f = 1A being the indicator of a nonempty
set A ⊆ G the first inequality gives

|A + A| |Spect(A)|
|G|

≥ 1− t2σ(A)

Let us close this technical section with a kind of the Smoothness-and-Decay Principle
indicating that spectral sets of functions continuous in some sense tend to avoid
discontinuous characters. We will devote a whole section to this topic in our next paper
[50].

Proposition 2.1.5 Let f : G→ C be not identically equal to 0 and C,D ⊆ G satisfy
supp f ∪ (supp f + C) ⊆ D 6= ∅. Let 0 < t ≤ 1, 0 < α < π and ε > 0 be real numbers.
Assume that

ε ≤ 2t
‖ f‖1

‖1D‖1

sin
α

2

and ‖ fa − f‖∞ ≤ ε for a ∈ C . Then Spect( f ) ⊆ Bohrα(C).

Proof If a ∈ C then supp( fa − f ) ⊆ (supp f + C) ∪ supp f ⊆ D, hence:

‖ f̂a − f̂ ‖
∞
≤ ‖ fa − f‖1 = Ex∈G| fa(x)− f (x)| ≤ ε ‖1D‖1

Now, take any γ ∈ Spect( f ) and assume that γ /∈ Bohrα(C). Then there is a ∈ C such
that |γ(a)− 1| > 2 sin(α/2). Thus we have

ε ‖1D‖1 ≥ ‖ f̂a − f̂ ‖
∞
≥ |f̂a (γ)− f̂ (γ)| = | γ(a)− 1| | f̂ (γ)| > 2t ‖ f‖1sin

α

2
contradicting the assumed upper bound for ε.
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A brief inspection of the proof yields the following modification of the last result.

Corollary 2.1.6 Let f : G→ C be not identically equal to 0, C ⊆ G, and 0 < t ≤ 1,
0 < α < π , ε > 0 be real numbers. Assume that ε ≤ 2t sin α

2 , and ‖ fa− f‖1 ≤ ε ‖ f‖
1

for a ∈ C . Then Spect( f ) ⊆ Bohrα(C).

2.2 The dual triplet

Throughout this and the next section, (G,G0,Gf) denotes a fixed but arbitrary condensing
IMG group triplet with a hyperfinite abelian ambient group G (tacitly assumed to be
externally infinite).3 We also fix a system Q of admissible size, directed both downward
and upward, consisting of symmetric internal sets such that G0 =

⋂
Q and Gf =

⋃
Q.

Let us denote by G = G[ = Gf/G0 the observable trace of the triplet. The LCA
group G gives rise to the dual group Ĝ of all continuous homomorphisms (characters)
γγγ : G → T, endowed with the compact-open topology. Then Ĝ, as an LCA group,
can itself be represented as the observable trace of some condensing IMG group triplet
(H,H0,Hf) with a hyperfinite abelian ambient group H . One can naturally expect that
at least one from among the triplets representing the dual group Ĝ can be constructed
from the original triplet (G,G0,Gf) in some canonical way.

Let Ĝ = Hom(G, ∗T) denote the set of all internal homomorphisms (characters)
γ : G→ ∗T; then Ĝ with the pointwise multiplication is a hyperfinite abelian group
internally isomorphic to G (though not in a canonical way). For any sets A ⊆ G,
Γ ⊆ Ĝ we define their infinitesimal annihilators by:

A� = {γ ∈ Ĝ : (∀ a ∈ A)(γ(a) ≈ 1)}
Γ� = {a ∈ G : (∀ γ ∈ Γ )(γ(a) ≈ 1)}

Obviously, A� is a subgroup of Ĝ and Γ� is a subgroup of G. For any A,B ⊆ G,
Γ,∆ ⊆ Ĝ we have

A ⊆ Γ� ⇔ Γ ⊆ A�

as well as

A ⊆ B ⇒ B� ⊆ A� and A ⊆ A��

Γ ⊆ ∆ ⇒ ∆� ⊆ Γ� and Γ ⊆ Γ��

3However, the reader should keep in mind that some of our accounts remain valid for general
internal abelian ambient group G , as well, or require just some minor modification.
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showing that the assignments A 7→ A� , Γ 7→ Γ� form a Galois connection.

We are particularly interested in the subgroups

G�0 = {γ ∈ Ĝ : (∀ x ∈ G0)(γ(x) ≈ 1)}

G�f = {γ ∈ Ĝ : (∀ x ∈ Gf)(γ(x) ≈ 1)}

of the dual group Ĝ. As every γ ∈ Ĝ is a group homomorphism, it belongs to G�0 if
and only if it is S–continuous as a mapping γ : G→ ∗T with respect to the monadic
equivalence El = Er on G and the usual equivalence of infinitesimal nearness ≈ on
∗T, inherited from the hypercomplex plane ∗C. The elements of G�0 play the role of
finite or accessible characters. The characters γ ∈ G�f are infinitesimally close to 1
on the whole subgroup Gf of finite elements of G, ie, in front of the horizon they are
indistinguishable from the trivial character 1G ∈ Ĝ. They play the role of infinitesimal
characters. However, this intuition calls for some justification.

Let us recall that the Bohr sets Bohrα(A), Bohrα(Γ ) for A ⊆ G, Γ ⊆ Ĝ and α ∈ ∗R,
0 ≤ α ≤ π , were introduced in Section 2.1.

For A ⊆ G and any subset T of the interval (0, π] ⊆ R, such that inf T = 0, we
obviously have:

A� =
⋂
α∈T

Bohrα(A)

The point is that for a subgroup A of G a single α suffices.

Lemma 2.2.1 Let α ∈ (0, 2π/3). If A is a subgroup of G then A� = Bohrα(A).

Proof As each γ ∈ Ĝ is a homomorphism, for a subgroup A ⊆ G and γ ∈ Bohrα(A),
the image γ[A] must be a subgroup of ∗T contained in the arc {c ∈ ∗T : |arg c| ≤ α}.
For α < 2π/3, however, the biggest subgroup of ∗T contained there is namely the
monad I∗T = {c ∈ ∗T : c ≈ 1} of 1 ∈ ∗T. Thus γ[A] ⊆ I∗T, hence Bohrα(A) ⊆ A� ,
while the reversed inclusion is trivial.

If A is an internal subgroup of G and 0 < α < 2π/3 then a similar argument shows
that both the sets coincide with the (strict) annihilator A⊥ of A; more precisely:

A� = Bohrα(A) = Bohr0(A) = {γ ∈ Ĝ : (∀ a ∈ A)(γ(a) = 1)} = A⊥

Proposition 2.2.2
(
Ĝ,G�f ,G

�

0
)

is a condensing IMG group triplet with a hyperfinite
abelian ambient group Ĝ.
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Proof Let us pick any (standard) α ∈ (0, 2π/3). As G0 , Gf are subgroups of G,
according to the last lemma we have:

G�0 = Bohrα(G0) = Bohrα
(⋂

Q
)

=
⋃

Q∈Q
Bohrα(Q)

G�f = Bohrα(Gf) = Bohrα
(⋃

Q
)

=
⋂

Q∈Q
Bohrα(Q)

While the last equation in the second line is trivial, the last equation in the first one
follows by a straightforward saturation argument. As all the sets Bohrα(Q) are internal,
G�0 is a galactic set and G�f is a monadic one. It remains to show that the IMG group
triplet

(
Ĝ,G�f ,G

�

0
)

is condensing.

To this end consider any symmetric internal sets Γ , ∆ such that G�f ⊆ Γ ⊆ ∆ ⊆ G�0 .
Then there are P,Q ∈ Q such that G0 ⊆ P ⊆ Q ⊆ Gf and:

G�f ⊆ Bohrα(Q) ⊆ Γ ⊆ ∆ ⊆ Bohrα/4(P) ⊆ G�0

Using an elementary combinatorial argument we will show that

d∆ : Γ e ≤ dBohrα/4(P) : Bohrα(Q)e ≤
⌈

4π
α

⌉bQ:Pc
<∞

where the upper integer part d4π/αe equals the covering index bT : Sc of the circle
T with respect to the arc S = {c ∈ T : |arg c| ≤ α/4}. Indeed, let k = bT : Sc and
q = bQ : Pc. Then there are k points c1, . . . , ck ∈ T and q points x1, . . . xq ∈ G such
that T ⊆

⋃k
i=1 Sci and Q ⊆

⋃q
j=1 P+xi . Let h : T→ {c1, . . . , ck} be any function such

that c ∈ S h(c) for c ∈ T. As there are only kq functions {x1, . . . , xq} → {c1, . . . , ck},
given more then kq functions in Bohrα/4(P), there are at least two, γ and χ, say, such
that (h ◦ γ)(xj) = (h ◦χ)(xj) for 1 ≤ j ≤ q. Let’s choose any x ∈ Q and j ≤ q such that
x ∈ P + xj . Then γ(x)γ(xj)−1, χ(x)χ(xj)−1 ∈ S and, as h(γ(xj)) = h(χ(xj)), we have:

γ(xj)χ(xj)−1 = γ(xj)h(γ(xj))−1h(χ(xj))χ(xj)−1 ∈ S2

Consequently,

γ(x)χ(x)−1 = γ(x)γ(xj)−1γ(xj)χ(xj)−1χ(xj)χ(x)−1 ∈ S4

ie γχ−1 ∈ Bohrα(Q). It follows that dBohrα/4(P) : Bohrα(Q)e ≤ kq .

The condensing IMG group triplet
(
Ĝ,G�f ,G

�

0
)

will be called the dual triplet of the
IMG group triplet (G,G0,Gf).

Journal of Logic & Analysis 13:1 (2021)



42 P Zlatoš

For an internal character γ ∈ G�0 there are potentially two interpretations of its
observable trace γ[ . First, it is simply the element G�f γ of the quotient G�0/G�f = Ĝ[ .
Second, γ[ is the observable trace of the S–continuous mapping γ : G→ ∗T, ie

γ[
(
x[
)

= ◦γ(x)

for x ∈ Gf . That way γ[ : G[ → T is a continuous character of the LCA group G[

(cf Section 1.3). The assignment γ 7→ γ[ , depicted in the commutative diagram

G
IdGf←−−−− Gf

[

−−−−→ G[

γ

y yγ�Gf

yγ[
∗T −−−−→

Id∗T

∗T −−−−→
◦

T

is a group homomorphism G�0 → Ĝ[ . Its kernel is the subgroup G�f ⊆ Ĝ of all
infinitesimal characters in Ĝ. Thus the assignment γ 7→ γ[ induces an injective
group homomorphism Ĝ[ → Ĝ[ from the observable trace Ĝ[ = G�0/G�f of the

dual triplet
(
Ĝ,G�f ,G

�

0
)

into the dual group Ĝ[ = Ĝf/G0 of the observable trace
G[ = Gf/G0 of the original triplet (G,G0,Gf). The canonical injective homomorphism
G�0/G�f → Ĝf/G0 justifies the identification of the “two observable traces” G�f γ and
γ[ . As proved by Gordon in [17] (see also [18]), even more is true.

Proposition 2.2.3 The canonical mapping G�f γ 7→ γ[ is an isomorphism of the
topological group Ĝ[ = G�0/G�f onto a closed subgroup of the topological group

Ĝ[ = Ĝf/G0 .

Proof Denote G = G[ and pick some α ∈ (0, 2π/3). On the one hand, the images of
the Bohr sets Bohrα(Q), where Q ∈ Q, under the quotient mapping G�0 → G�0/G�f
form a neighborhood base of the unit character in Ĝ[ . On the other hand, the Bohr sets

Bohrα
(
Q[
)

=
{
γγγ ∈ Ĝ :

(
∀xxx ∈ Q[

)(
|argγγγ(xxx)| ≤ α

)}
where Q ∈ Q, form a neighborhood base of the unit character in Ĝ. It follows that the
canonical injective group homomorphism G�0/G�f → Ĝ is also a homeomorphism of
G�0/G�f onto the subgroup {γ[ : γ ∈ G�0 } of Ĝ. As a continuous image of an LCA
(hence complete) topological group, it is necessarily closed.

It is both natural and tempting to conjecture that the canonical mapping Ĝ[ → Ĝ[ is
also surjective, ie that it is an isomorphism of topological groups. This is indeed the
first of Gordon’s Conjectures from Gordon [17] (see also [18, page 132]).
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Theorem 2.2.4 (Gordon’s Conjecture 1) Let (G,G0,Gf) be a condensing IMG group
triplet with a hyperfinite abelian ambient group G. Then the canonical homomorphism
G�0/G�f → Ĝf/G0 is an isomorphism of topological groups.

The proof of Gordon’s Conjecture 1, together with the following Triplet Duality
Theorem 2.2.5 which is equivalent to it, is the main result of the present paper. In
view of 2.2.3, it amounts just to show that every continuous character γγγ of the LCA
group G[ = Gf/G0 is indeed of the form γγγ = γ[ for some internal S–continuous
character γ ∈ G�0 . However, we will approach the proof of the above theorem indirectly,
by investigating the dual triplet of the dual triplet of the original IMG group triplet
(G,G0,Gf).

The second dual ̂̂G of the hyperfinite abelian group G can be naturally identified with
the original group G. Then the second dual of the original triplet (G,G0,Gf) is defined
as the condensing IMG triplet

(
G,G��0 ,G��f

)
.

Theorem 2.2.5 (The Triplet Duality Theorem) Let (G,G0,Gf) be a condensing IMG
group triplet with a hyperfinite abelian ambient group G. Then:

G��0 = G0 and G��f = Gf

In other words, the dual triplet
(
G,G��0 ,G��f

)
of the dual triplet

(
Ĝ,G�f ,G

�

0
)

equals
the original group triplet (G,G0,Gf).

The proof of Theorem 2.2.5 is postponed into the next section. At this place we
will just show how Gordon’s Conjecture 1, ie Theorem 2.2.4, can be derived from
Theorem 2.2.5. The proof of this implication relies on the following consequence of the
Pontryagin–van Kampen Duality Theorem.

Proposition 2.2.6 Let G be a Hausdorff LCA group and D be a subgroup of its dual
group Ĝ. Then D separates points in G if and only if it is dense in Ĝ.

Sketch of proof Ĝ obviously separates points in its dual group ̂̂G which, according
to the Duality Theorem, can be identified with G. Now, it can be easily seen that any
dense subgroup D ⊆ Ĝ separates points in G, as well.

Conversely, if D is not dense in Ĝ then its closure D is a proper closed subgroup of Ĝ.
As a consequence of the Duality Theorem (cf Morris [36, Corollary 1 to Theorem 21]),
there is a nontrivial character of Ĝ, ie, an element xxx ∈ G r {0} such that γγγ(xxx) = 1 for
all γγγ ∈ D. Therefore, neither D nor D separate points in G.
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Proof of 2.2.5 ⇒ 2.2.4 By Proposition 2.2.3, the observable trace Ĝ[ = G�0/G�f of
the dual triplet

(
Ĝ,G�f ,G

�

0
)

can be identified with the closed subgroup of the dual

group Ĝ[ formed by the observable traces γ[ of the internal characters γ ∈ G�0 .

Therefore, in order to show that Ĝ[ = Ĝ[ , it suffices to prove that Ĝ[ is dense in Ĝ[ . By
Proposition 2.2.6, to this end it is enough to show that Ĝ[ separates points in G[ . But
otherwise there would be an x ∈ Gf r G0 , such that γ(x) ≈ 1 for every γ ∈ G�0 . Then

x ∈ Gf ∩ G��0 = Gf ∩ G0 = G0

which is a contradiction.

Remark Notice that, in order to derive 2.2.4, just a weaker version of the first equality
in 2.2.5 would be sufficient, namely G0 = G��0 ∩Gf , which, of course, trivially follows
from G��0 = G0 and G0 ⊆ Gf . The second equality G��f = Gf is not needed to this
end. Moreover, it is already a consequence of the first one.

Lemma 2.2.7 Let (G,G0,Gf) be as above. Then:

G��f = Gf + G��0

Therefore, G��0 = G0 implies G��f = Gf .

Proof Let us denote (H,H0,Hf) =
(
Ĝ,G�f ,G

�

0
)

, the dual triplet of (G,G0,Gf).
According to the properties of Galois connections, three �’s reduce to one, hence the
group triplet (H,H0,Hf) satisfies the conditions

H��0 = H0 and H��f = Hf

so that the dual triplet of
(
Ĥ,H�f ,H

�

0
)

is indeed (H,H0,Hf) and the canonical mapping

H�0 /H�f → Ĥf/H0 is an isomorphism of topological groups.

Now, consider the canonical embedding G�0/G�f → Ĝf/G0 and apply the (external)
duality functor to it. Identifying the dual of the LCA group Ĝf/G0 with Gf/G0 and
the dual of the LCA group Hf/H0 = G�0/G�f with H�0 /H�f = G��f /G��0 , we obtain a
surjective continuous homomorphism

Gf/G0 → G��f /G��0

sending γ + G0 ∈ Gf/G0 to γ + G��0 ∈ G��f /G��0 . Its surjectivity simply means that
Gf , G��0 and G��f , as subgroups of G, satisfy G��f = Gf + G��0 .
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The following example shows that (a) the condition X�� = X is not automatically
satisfied for monadic or galactic subgroups X of hyperfinite abelian groups, and (b)
there are plenty of subgroups of hyperfinite abelian groups satisfying this condition
even without being monadic or galactic.

Example 2.2.8 An additive cut on ∗N is any nonempty subset C ⊆ ∗N, such that:

(∀ a ∈ ∗N)(∀ b ∈ C)(a ≤ b ⇒ a ∈ C)

(∀ a, b ∈ C)(a + b ∈ C)

Assume that C is an additive cut on ∗N, N ⊆ C , and n ∈ ∗Nr C .

(a) Let Z be any nontrivial finite abelian group, eg Z = Zd for some 2 ≤ d ∈ N. Let
G = Zn be the hyperfinite abelian group of all internal sequences z = (z1, . . . , zn) of
elements from Z . Denote

supp z = {k : 1 ≤ k ≤ n & zk 6= 0}

for z ∈ G, and put:
S(C) = {z ∈ G : |supp z| ∈ C}

As C 6= {0} and n /∈ C , as well as supp(−z) = supp z and supp(y+z) ⊆ supp y∪supp z
for any y, z ∈ G, S(C) is a nontrivial proper subgroup of G. Moreover, if C is a
monadic (galactic) set then so is S(C). On the other hand, all the internal subgroups

Gk = {z ∈ G : supp z ⊆ {k}} = {z ∈ G : (∀ i 6= k)(zi = 0)} ∼= Z

where 1 ≤ k ≤ n, satisfy Gk ⊆ S(C). Identifying the internal dual Ĝ with the
hyperfinite abelian group Ẑn in the obvious way, each character γ ∈ Ĝ is represented
as the ordered n–tuple γ = (γ1, . . . , γn), where γk ∈ Ẑ . Then

G�k = {γ ∈ Ĝ : γk = 1Z}

hence

S(C)� ⊆
n⋂

k=1

G�k = {1G}

and, finally, S(C)�� = G.

Now, if we take a monadic additive cut A and a galactic additive cut B, such that
N ⊆ A ⊆ B ⊆ ∗N and n /∈ B, then S(A) is a proper subgroup of S(B) and

(
G, S(A), S(B)

)
is an (of course, non-condensing) IMG group triplet with a hyperfinite abelian ambient
group G = Zn and nontrivial observable trace S(B)/S(A). However, its first and
second dual triplets are

(
Ĝ, {1G}, {1G}

)
and (G,G,G), respectively; both have trivial

observable traces.
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(b) Denote A = C ∪ (−C) = {a ∈ ∗Z : |a| ∈ C}. Then A is a subgroup of the
hyperfinite cyclic group Z2n+1 = {0,±1, . . . ,±n} of remainders modulo 2n + 1. We
leave the reader to verify that A�� = A, regardless of any further properties of C .

2.3 The dual triplet continued: normalizing multipliers and the proofs
of Gordon’s Conjectures 1 and 2

Let us recall that (G,G0,Gf) still denotes some condensing IMG group triplet with a
hyperfinite abelian ambient group G. A normalizing multiplier of this triplet is any
positive hyperreal number d such that 0 6≈ d |A| <∞ for every (or, equivalently, for
some) internal set A between G0 and Gf . Then mmmd denotes the Haar measure on the
observable trace G[ = Gf/G0 , obtained by pushing down the Loeb measure λd from G
to G[ (see Sections 1.2 and 1.3). The Hermitian inner product, the Fourier transform,
the Lp –norms and the convolution on the space ∗CG of all internal functions G→ ∗C
are normalized by the normalizing coefficient d , ie

〈 f , g〉 = d
∑
x∈G

f (x) g(x)

F( f )(γ) = f̂ (γ) = 〈 f , γ〉 = d
∑
x∈G

f (x) γ(x)

‖ f‖p =

(
d
∑
x∈G

| f (x)|p
)1/p

( f ∗ g)(x) = d
∑
a∈G

f (x− a) g(a) = d
∑
a∈G

fa(x) g(a)

for f , g ∈ ∗CG , γ ∈ Ĝ, 1 ≤ p <∞, x ∈ G.

In the proof of the Triplet Duality Theorem 2.2.5 we will need the following preliminary
qualitative version of the Smoothness-and-Decay Principle.

Proposition 2.3.1 Let f : G → ∗C be an S–continuous internal function such that
supp f ⊆ Gf . Then f̂ (γ) ≈ 0 for each γ ∈ Ĝ r G�0 .

Proof We will proceed in a similar way as in the proof of Proposition 2.1.5.

By the S–continuity of f , fa(x) ≈ f (x) for each x ∈ G, whenever a ∈ G0 ; moreover
f (x) = fa(x) = 0 once x ∈ G r D for some (in fact for each) internal set D such that
supp f + G0 ⊆ D ⊆ Gf . Then

‖ f̂a − f̂ ‖
∞
≤ ‖ fa − f‖1 = d

∑
x∈D

| fa(x)− f (x)| ≤ d |D|max
x∈D
| fa(x)− f (x)| ≈ 0
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as d |D| < ∞. Now, for any γ ∈ Ĝ r G�0 there is some a ∈ G0 such that γ(a) 6≈ 1.
Then:

0 ≈ ‖ f̂a − f̂ ‖
∞

= max
χ∈Ĝ
|χ(a)− 1| | f̂ (χ)| ≥ |γ(a)− 1| | f̂ (γ)|

As γ(a)− 1 6≈ 0, the conclusion f̂ (γ) ≈ 0 follows immediately.

Corollary 2.3.2 Let f : G → ∗C be an S–continuous internal function such that
supp f ⊆ Gf and ‖ f‖1 6≈ 0. Assume that t ∈ ∗R and 0 < t ≤ 1, t 6≈ 0. Then
Spect( f ) ⊆ G�0 .

Remark Both Proposition 2.3.1 and its Corollary 2.3.2, are “soft” statements in the
sense of Tao’s blog which appeared in his book [43, §1.3, §1.5]. Their “hard” version
is Proposition 2.1.5 and its Corollary 2.1.6, providing us with the additional information
how one has to choose ε > 0 and the internal set C , such that G0 ⊆ C ⊆ Gf , in order to
get Spect( f ) ⊆ Bohrα(C) ⊆ G�0 . On the other hand, the last corollary is fully sufficient
for our purpose. We hope that at least some readers will appreciate the advantage of
nonstandard arguments, allowing one to dispense with lots of meticulous estimates and
“epsilontics”.

As made clear in Section 2.2, in order to finish the proof of the Triplet Duality
Theorem 2.2.5, as well as of Gordon’s Conjecture 1 (Theorem 2.2.4), it is enough to
prove the following:

Proposition 2.3.3 Let (G,G0,Gf) be a condensing IMG group triplet with hyperfinite
abelian ambient group G. Then:

G��0 = G0

Proof Since G0 ⊆ G��0 is obvious, it suffices to prove the opposite inclusion. Let V
be a set of internal gauges on G such that

G0 = {x ∈ G : (∀ % ∈ V)(%(x) ≈ 0)}

whose existence was established in Proposition 1.3.1. For any % ∈ V and a positive
r ∈ ∗R we denote by

B%(r) = {x ∈ G : %(x) ≤ r}

the internal closed ball of radius r , and define the internal function h%r : G→ ∗R by:

h%r(x) = max
{

1− %(x)
r
, 0
}
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Obviously, h%r is even, nonnegative, and supp h%r ⊆ B%(r). For 0 6≈ r <∞, both the
sets supp h%r and B%(r) are between G0 and Gf . Moreover, for r noninfinitesimal, h%r

is also S–continuous and ‖h%r‖1 ≥ d |B%(r/2)|/2 6≈ 0. By Corollary 2.3.2,

Spect(h%r) ⊆ G�0

for 0 < t ≤ 1, once t is noninfinitesimal, too. Further on, supp(h%r ∗ h%r) ⊆ B%(2r). In
order to apply Proposition 2.2.3 we need the estimate:

‖h%r‖1

‖h%r‖2 ‖1B%(2r)‖2

≥
1
2 |B%(r/2)|√
|B%(r)| |B%(2r)|

≥ |B%(r/2)|
2 |B%(2r)|

6≈ 0

Thus picking some standard positive α < π/2, there is a standard t > 0 with:

t ≤ ‖h%r‖1

‖h%r‖2 ‖1B%(2r)‖2

·
√

cosα
1 + cosα

For such α and t we have:

Bohrα
(
Spect(h%r)

)
⊆ B%(2r)− B%(2r) ⊆ B%(4r)

Consequently:

G��0 = Bohrα
(
G�0
)
⊆ Bohrα

(
Spect(h%r)

)
⊆ B%(4r)

As % and r were arbitrary, this is enough to establish the inclusion G��0 ⊆ G0 .

Remark In fact the subgroup Gf plays no role in the above statement nor in its proof.
The only thing we need to assume is the existence of an internal set A subject to
G0 ⊆ A ⊆ G such that |A|/|B| <∞ for each internal B such that G0 ⊆ B ⊆ A.

Having d as a normalizing multiplier for the triplet (G,G0,Gf), then, in order to get
the Fourier inversion formula and Plancherel identity, we need to normalize the inner
product, the Fourier transform, etc, on the space ∗CĜ of internal functions Ĝ→ ∗C,
defined on the internal dual group Ĝ, by means of the normalizing coefficient:

d̂ =
1

d |G|

In view of the canonical isomorphism of the observable trace Ĝ[ = G�0/G�f and the

dual group Ĝ[ , there naturally arises the question whether such a d̂ is a normalizing
multiplier for the dual triplet

(
Ĝ,G�f ,G

�

0
)

. In that case (and only in that case) the
measure mmmd̂ , obtained by pushing down the Loeb measure λd̂ from Ĝ to the observable

trace Ĝ[ ∼= Ĝ[ , will be a Haar measure on Ĝ[ . The second of Gordon’s conjectures,
whose proof is the second main result of this paper, states that the response to the above
question is affirmative.
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Theorem 2.3.4 (Gordon’s Conjecture 2) Let (G,G0,Gf) be a condensing IMG group
triplet with a hyperfinite abelian ambient group G. Then, for any internal set D such that
G0 ⊆ D ⊆ Gf , d = 1/|D| is a normalizing multiplier for (G,G0,Gf) and d̂ = |D|/|G|
is a normalizing multiplier for the dual triplet

(
Ĝ,G�f ,G

�

0
)

. More generally, if d is any
normalizing multiplier for (G,G0,Gf) then d̂ = (d |G|)−1 is a normalizing multiplier
for
(
Ĝ,G�f ,G

�

0
)

.

Proof Since, for any internal set D such that G0 ⊆ D ⊆ Gf , d = 1/ |D| is a
normalizing multiplier for the triplet (G,G0,Gf) and d1/d2 ∈ F ∗Rr I∗R for any its
normalizing multipliers d1 , d2 , it suffices to find a single couple of internal sets D
between G0 , Gf and Γ between G�f , G�0 , such that the quotient |D| |Γ | /|G| is neither
infinite nor infinitesimal.

Starting with any internal gauge % ∈ V , we have G0 ⊆ B%(r) ⊆ Gf whenever
0 < r ∈ R. Also, we can take arbitrary standard α and t subject to 0 < α < π/2,
0 < t ≤ cosα . Then the spectral set Γ = Spect(h%r) is internal and, by Lemma 2.1.2
and Corollary 2.3.2, it satisfies the inclusions:

G�f ⊆ Bohrα
(
B%(r)

)
⊆ Spect(h%r) ⊆ G�0

Denoting f = h%r , D = B%(2r), we have supp( f ∗ f ) ⊆ D ⊆ Gf , and multiplying the
inequalities in Proposition 2.1.4 by the factor ‖1D‖2

2
= |D|/|G| we get:

1− t2 ‖ f‖2
2
‖1D‖2

2

‖ f‖2
1

≤ |D| |Spect( f )|
|G|

≤ 1
t2

‖ f‖2
2
‖1D‖2

2

‖ f‖2
1

Since
‖ f‖2

2
‖1D‖2

2

‖ f‖2
1

≤ |B%(r)| |B%(2r)|(1
2 |B%(r/2)|

)2 <∞

the upper bound in the preceding inequality is finite for any standard t > 0. For the
same reason, it is possible to find a standard t , such that 0 < t ≤ cosα , and making the
lower bound positive and noninfinitesimal.

2.4 Some (mainly) standard equivalents: Hrushovski style theorems

In this section we list some direct standard consequences (in fact, equivalents) of
Theorem 2.2.4 and Proposition 2.3.3. The formulations of Theorems 2.4.2 and 2.4.3
below remind of the formulation of Hrushovski’s structure theorem [26, Theorem 1.1,
Corollaries 4.13 and 4.15] (see also Breuillard, Green and Tao [5, Theorem 6.18]). As
both the implications 2.2.4 ⇒ 2.4.1 and 2.3.3 ⇒ 2.4.3 can be proved using a similar
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way of argumentation, we give just the proof of the former (which is technically more
complicated), introducing an additional nonstandard equivalent formulated as Theorem
2.4.1.

As we will show within short, Gordon’s Conjecture 1 (Theorem 2.2.4) is equivalent to a
kind of almost-near or stability principle for characters of hyperfinite abelian groups.
The following notions are needed for the nonstandard formulation of this principle.

Let G be an internal abelian group and X be a (not necessarily internal) subset of G.
Two internal mappings f : C→ ∗T, g : D→ ∗T, defined on sets C,D ⊆ G, are said
to be infinitesimally close on a set X ⊆ C ∩ D if f (x) ≈ g(x) for all x ∈ X . We say that
g is almost homomorphic on a set X if X ⊆ D and, for all x, y ∈ X , x + y ∈ X implies:

g(x + y) ≈ g(x) g(y)

Theorem 2.4.1 Let (G,G0,Gf) be a condensing IMG group triplet with a hyperfinite
abelian ambient group G, and g : D→ ∗T be an internal mapping, where Gf ⊆ D ⊆ G.
If g is S–continuous and almost homomorphic on Gf then there exists an internal
S–continuous character γ : G→ ∗T, ie γ ∈ G�0 , such that g and γ are infinitesimally
close on Gf .

Due to saturation, any internal mapping g : D → ∗T, where Gf ⊆ D ⊆ G, which is
almost homomorphic on Gf , must be almost homomorphic on some symmetric internal
set C such that Gf ⊆ C ⊆ D. Similarly, if g and γ are infinitesimally close on Gf

then they must be infinitesimally close on some symmetric internal set between Gf

and D. At the same time, internal mappings g : D→ ∗T almost homomorphic on the
galaxy Gf share the following property with internal homomorphisms γ ∈ Ĝ: such
a g is S–continuous on Gf if and only if, given any (standard) α ∈ (0, 2π/3), there
is some internal set A between G0 and Gf such that |arg g(x)| ≤ α for all x ∈ A
(cf Lemma 2.2.1 and the beginning of the proof of Proposition 2.2.2).

The reformulation of Theorem 2.4.1 in standard terms is a highly uniform, but rather
cumbersome stability principle for characters of finite abelian groups. For the sake of
its formulation, as well as of the proof of the equivalence of Theorems 2.2.4, 2.4.1 and
2.4.2 (that way proving Theorems 2.4.1 and 2.4.2, as well), we have to introduce some
further notions.

Let G be an abelian group, and ε > 0 be a (standard) real. Two mappings f : C→ T,
g : D→ T, defined on subsets C,D ⊆ G, are said to be ε–close on the set X ⊆ C ∩ D
if ∣∣∣∣arg

f (x)
g(x)

∣∣∣∣ ≤ ε
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for all x ∈ X . We say that g is ε–homomorphic on the set X ⊆ D if for all x, y ∈ X the
condition x + y ∈ X implies: ∣∣∣∣arg

g(x) g(y)
g(x + y)

∣∣∣∣ ≤ ε
Finally, g is called a partial ε–homomorphism if it is ε–homomorphic on its domain D.

In what follows the expression [A : B] denotes any of the indices bA : Bc, bA : Bci ,
dA : Be, introduced in Section 1.2, or the quotient |A|/|B] (see also Proposition 1.3.5).

Theorem 2.4.2 Let α, ε ∈ (0, 2π/3), k ≥ 1 and (qj)∞j=1 be any sequence of reals
qj ≥ 1. Then there exist m ≥ 1, n ≥ k and δ > 0, depending just on α, ε, k and the
sequence (qj), such that the following holds:

Let G be a finite abelian group and 0 ∈ An ⊆ . . . ⊆ A1 ⊆ A0 ⊆ G be symmetric sets
such that

Aj + Aj ⊆ Aj−1 and [Aj−1 : Aj] ≤ qj

for 1 ≤ j ≤ n. Then, for every partial δ–homomorphism g : mA0 → T such that
|arg g(x)| ≤ α for x ∈ Ak , there exists a homomorphism γ : G→ T such that g and γ
are ε–close on A0 .

Proof of 2.2.4 ⇒ 2.4.2 Assume that 2.2.4 holds and 2.4.2 is not true. Then we can
fix some α , ε, k and a sequence (qj) witnessing a counterexample. Let (δn) be any
strictly decreasing sequence such that δn → 0. Then for all m = n ≥ k there exist a
finite abelian group Gn and symmetric sets 0 ∈ Ann ⊆ . . . ⊆ An1 ⊆ An0 ⊆ Gn such that

Anj + Anj ⊆ Anj−1 and [Anj−1 : Anj] ≤ qj

for 1 ≤ j ≤ n, as well as a partial δn –homomorphism gn : nAn0 → T such that
|arg gn(x)| ≤ α for x ∈ Ank . On the other hand, for every genuine homomorphism
γn : Gn → T, there is xn ∈ An0 such that:∣∣∣∣arg

γn(xn)
gn(xn)

∣∣∣∣ > ε

Let D be any nonprincipal ultrafilter on the set I = {n ∈ N : n ≥ k}. Then the
ultraproduct G =

∏
n∈I Gn/D of the finite groups Gn is a hyperfinite abelian group

(within the ℵ1 –saturated nonstandard universe obtained via the ultraproduct construction
modulo D). For each n ∈ I , n < j, we put Anj = {0} and take the ultraproduct
Aj =

∏
n∈I Anj/D considered as an internal subset of G. Finally, we put:

G0 =
⋂
j∈N

Aj Gf =
⋃
j∈N

jA0
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Then G0 , as an intersection of countably many internal sets, is a monadic subgroup
of G and Gf , as a union of countably many internal sets, is a galactic subgroup of G.
Obviously, G0 ⊆ Gf . By Łos’ Theorem, [Aj−1 : Aj] ≤ qj , as well as [jA0 : A1] ≤ qj

1
for each j ≥ 1. It follows easily that [V : U] < ∞ for any internal sets U , V such
that G0 ⊆ U ⊆ V ⊆ Gf , hence, by Proposition 1.3.5, (G,G0,Gf) is a condensing IMG
triplet with a hyperfinite abelian ambient group G.

Let us form the internal mapping g = (gn)n∈I/D . Then, for each n, g is a partial
δn –homomorphisms from the internal set

∏
n∈I nAn0/D ⊇ Gf to the ultrapower group

∗T = TI/D . Thus g is almost homomorphic on Gf and it maps the internal set
Ak =

∏
n Ank/D , satisfying G0 ⊆ Ak ⊆ Gf , into the arc {c ∈ ∗T : |arg c| ≤ α}. It

follows that g is S–continuous on Gf . Then the observable trace g[ = ◦(g �Gf) is a
continuous character of the LCA group G[ = Gf/G0 . By Theorem 2.2.4, there is an
internal character γ = (γn)/D ∈ G�0 such that g(x) ≈ γ(x) for each x ∈ Gf . On the
other hand, there is a set J ∈ D such that γn ∈ Ĝn for all n ∈ J . By our assumptions,
for each n ∈ J , there is xn ∈ An0 such that

∣∣arg
(
γn(xn)/gn(xn)

)∣∣ > ε. Let xn = 0 for
n ∈ I r J . Then, for x = (xn)/D ∈ A0 ⊆ Gf , we have g(x) 6≈ γ(x), a contradiction.

Remark Concerning m, n the result is purely existential, giving no upper bound
for them (though we can always have m = n). On the other hand, it seems rather
probable that even a more uniform version of Theorem 2.4.2 is true. We conjecture
that, similar to Mačaj and Zlatoš [33, Theorem 4.1], one can take any δ > 0, such that
δ < min{ε, π/2, 2π/3− α}, and choose m, n depending additionally on δ .

Proof of 2.4.2 ⇒ 2.4.1 Let (G,G0,Gf) be a condensing IMG group triplet with a
hyperfinite abelian ambient group G, D be an internal set such that Gf ⊆ D ⊆ G and
g : D→ ∗T be an internal mapping that is S–continuous and almost homomorphic on
Gf . We can also assume that g(0) = 1. Thus fixing a standard α ∈ (0, 2π/3), there is a
symmetric internal set V between G0 and Gf such that |arg g(x)| ≤ α for x ∈ V . Let
us choose, additionally, a β ∈ (α, 2π/3).

It suffices to show that, for each symmetric internal set A such that V + V ⊆ A ⊆ Gf ,
and each standard ε > 0, such that α+ ε ≤ β , there is γ ∈ Bohrβ(V) such that∣∣∣∣arg

g(x)
γ(x)

∣∣∣∣ ≤ ε
for all x ∈ A. Then, due to saturation, there is γ ∈ Bohrβ(V) ⊆ G�0 such that
γ(x) ≈ g(x) for all x ∈ Gf , ie, γ and g are infinitesimally close on Gf .

So let us fix some A, V , α , β and ε, satisfying the above assumptions. There is a
sequence of symmetric internal sets (Aj)j∈N such that A0 = A, A1 = V , Aj+1+Aj+1 ⊆ Aj
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and G0 ⊆ Aj for each j. Put qj = [Aj−1 : Aj] for 1 ≤ j ∈ N. Let m, n and δ be
the numbers guaranteed for α , ε, k = 1 and the sequence (qj) by Theorem 2.4.2.
By the Transfer Principle they have to work for the hyperfinite abelian group G and
the internal sets A0, . . . ,An as well. Since g is almost homomorphic on Gf , it is
δ–homomorphic on mA0 ⊆ Gf . It follows that there is an internal character γ ∈ Ĝ
such that

∣∣arg g(x)γ(x)−1
∣∣ ≤ ε for x ∈ A0 = A. Obviously, |arg γ(x)| ≤ α+ ε ≤ β for

x ∈ A1 = V , hence γ ∈ Bohrβ(V).

Let us close the cycle by proving that Theorem 2.4.1 implies Gordon’s Conjecture 1
(Theorem 2.2.4), ie the surjectivity of the canonical embedding Ĝ[ → Ĝ[ . In view of
Proposition 1.2.3, the proof of this implication is plain.

Proof of 2.4.1 ⇒ 2.2.4 Let (G,G0,Gf) be a condensing IMG group triplet with a
hyperfinite abelian ambient group G and G = Gf/G0 denote its observable trace.
Assume that γγγ : G→ T is a continuous character of G. By Proposition 1.2.3, there is
an internal mapping g : D→ ∗T such that Gf ⊆ D ⊆ G, g is S–continuous on Gf , and

γγγ
(
x[
)

= ◦g(x)

for all x ∈ Gf . Then

g(x + y) ≈ γγγ
(
(x + y)[

)
= γγγ

(
x[ + y[

)
= γγγ

(
x[
)
γγγ
(
y[
)
≈ g(x) g(y)

for all x, y ∈ Gf , ie, g is almost homomorphic on Gf . By 2.4.1, there is a γ ∈ G�0 such
that

γ(x) ≈ g(x) ≈ γγγ
(
x[
)

for each x ∈ Gf , ie, γ[ = γγγ .

A brief inspection of the above proofs is instructive. In order to derive Theorem 2.4.2
from Theorem 2.2.4 it suffices to assume that Gordon’s Conjecture 1 is true just for
condensing IMG group triplets (G,G0,Gf) with a hyperfinite G (in some ℵ1 –saturated
nonstandard universe), such that G0 is an intersection and Gf is a union of countably
many internal sets. This was indeed Gordon’s original formulation of his conjecture in
[17]. Conversely, in order to prove Theorem 2.4.1 ( from which Theorem 2.2.4 easily
follows by the virtue of Proposition 1.2.3) as a consequence of Theorem 2.4.2, it is
enough to suppose that the latter is true only for a single fixed α ∈ (0, 2π/3) and k = 1.

Proposition 2.3.3, forming the essential part of the Triplet Duality Theorem 2.2.5, can
be restated in standard terms as follows:
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Theorem 2.4.3 Let α, β ∈ (0, 2π/3) and (qj)∞j=1 be any sequence of reals qj ≥ 1.
Then there exists n ∈ N, depending just on α , β and the sequence (qj), such that the
following holds:

Let G be a finite abelian group and 0 ∈ An ⊆ . . . ⊆ A1 ⊆ A0 ⊆ G be symmetric sets
such that

Aj + Aj ⊆ Aj−1 and [Aj−1 : Aj] ≤ qj

for 1 ≤ j ≤ n. Then Bohrβ(Bohrα(An)) ⊆ A0 .

Theorem 2.4.3 can be derived from Proposition 2.3.3 using the ultraproduct construction,
similarly as (and more easily than) the implication 2.2.4 ⇒ 2.4.2. To this end it would
be enough to assume that 2.3.3 is true just in case when G0 is an intersection of a
countable family of internal subsets of G, again. On the other hand, in order to derive
2.3.3 from 2.4.3, it would suffice to suppose that the latter is true for one fixed couple
α, β ∈ (0, 2π/3), only.

Remark Theorem 2.4.1 still holds for condensing IMG group triplets (G,G0,Gf) with
an arbitrary internal abelian ambient group G, and not just a hyperfinite one. Moreover,
most of the results of Sections 2.2 and 2.3 admit analogous generalizations. Similarly,
both Theorems 2.4.2 and 2.4.3 (and maybe even the strengthening of 2.4.2 mentioned
in the remark following the proof of 2.4.1 ⇒ 2.4.2) remain true when replacing “Let
G be a finite abelian group and 0 ∈ An ⊆ . . . ⊆ A1 ⊆ A0 ⊆ G be symmetric sets. . . ”
by “Let G be a Hausdorff LCA group and An ⊆ . . . ⊆ A1 ⊆ A0 be compact symmetric
neighborhoods of 0 in G. . . ” (without changing the rest) in their formulation.

In order to prove all that, it would be necessary (and sufficient) to deal with condensing
IMG triplets of the form (G,G0,Gf), where G is an arbitrary internal Hausdorff LCA
group, ie, a ∗ (Hausdorff LCA) group, and define their dual triplets

(
Ĝ,G�f ,G

�

0
)

, with Ĝ
denoting the internal dual group of G, as well as to generalize the results of Section 2.1
from finite abelian groups to arbitrary Hausdorff LCA groups. That, however, though
possible and — as we shall see in the next section — unavoidable to some extent, would
be at odds with the leading intentions of the present paper, namely to study the LCA
groups and the Fourier transform on functional spaces over them by means of their
approximations by (hyper)finite abelian groups and the discrete Fourier transform on
them.

That way generalized Theorem 2.4.3 can be schematically written as follows:

(∀α, β)(∀ q1, . . . , qj, . . . )(∃ n)(∀G)(∀A0,A1 . . . ,An)
[
(∀ j ≤ n)(. . . ) ⇒ . . .

]
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However, from the Pontryagin–van Kampen Duality Theorem it follows only:

(∀α, β)(∀ q1, . . . , qj, . . . )(∀G)(∀A0,A1 . . . ,Aj, . . . )
[
(∀ j)(. . . ) ⇒ (∃ n)(. . . )

]
In other words, such a generalization of 2.4.3 adds a considerable uniformness to the
above consequence of the Pontryagin–van Kampen Duality Theorem.

Analogous remarks could be made on behalf of the indicated generalizations of
Theorems 2.4.1 and 2.4.2 and their relation to some standardly formulated stability
results for characters of LCA groups with respect to the compact-open topology from
Mačaj and Zlatoš [33] and Zlatoš [48]. However, the big amount of technicalities
needed for their formulation and comparison would take us too far from the main lines
and goals of the present paper.

2.5 Simultaneous approximation of an LCA group and its dual

Now, we are going to apply the results of the previous sections to triplets arising
from HFI approximations of LCA groups. One can expect that an HFI approximation
η : G→ G of an LCA group G gives rise to an HFI approximation φ : Ĝ→ Ĝ of the
dual group Ĝ. This is true in some sense, however, in general, the connection between
these two approximations is not as straightforward as one wished. Some of the material
of this section is partly covered in the Introduction and §2.4 of Gordon’s book [18].

As we will be dealing with plenty of more or less canonical isomorphisms of topological
groups, first we have to make clear which of them we intend to exploit for identification
of the isomorphic objects, and which of them we still view as isomorphisms of different
objects.

Let G be a Hausdorff LCA group, viewed as a subgroup of its nonstandard extension
∗G. Let us denote:

I ∗G = Mon(0) and F ∗G = Ns(∗G)

Then
(∗G, I ∗G,F ∗G) is a condensing IMG group triplet with an internal abelian

ambient group ∗G. We identify the canonically isomorphic LCA groups G and the
observable trace F ∗G/I ∗G (nonstandard hull) of this triplet, as well as the standard part
map xxx 7→ ◦xxx : F ∗G→ G and the observable trace map xxx 7→ xxx[ : F ∗G→ F ∗G/I ∗G.

Similar, but less straightforward, identification applies also to the dual group Ĝ. More
specifically, due to the Transfer Principle, the nonstandard extension ∗Ĝ of the dual
group Ĝ coincides with the internal dual group ∗̂G of ∗G, consisting of all internal
∗continuous characters γγγ : ∗G→ ∗T. However, the elementary embedding Ĝ→ ∗Ĝ
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sends a character γγγ : G → T not literally to itself but to its nonstandard extension
∗γγγ : ∗G→ ∗T. Putting

I ∗Ĝ = Mon(1∗G) and F ∗Ĝ = Ns
(∗Ĝ)

one can easily realize that

I ∗Ĝ = F ∗G� = {γγγ ∈ ∗Ĝ : (∀xxx ∈ F ∗G)(γγγ(xxx) ≈ 1)}

F ∗Ĝ = I ∗G� = {γγγ ∈ ∗Ĝ : (∀xxx ∈ I ∗G)(γγγ(xxx) ≈ 1)}

so that the condensing IMG group triplet
(∗Ĝ, I ∗Ĝ,F ∗Ĝ) coincides with the dual

triplet
(
∗̂G,F ∗G�, I ∗G�

)
of (∗G, I ∗G,F ∗G). We identify the isomorphic LCA

groups Ĝ and F ∗Ĝ/I ∗Ĝ, as well as the standard part map γγγ 7→ ◦γγγ : F ∗Ĝ→ Ĝ and
the observable trace map γγγ 7→ γγγ[ : F ∗Ĝ→ F ∗Ĝ/I ∗Ĝ, again.

Now assume that η : G → ∗G is an HFI approximation of G by a hyperfinite
abelian group G and (G,G0,Gf) is the condensing IMG group triplet arising from this
approximation, ie:

G0 = η−1[I ∗G] and Gf = η−1[F ∗G]

Then η : (G,G0,Gf)→
(∗G, I ∗G,F ∗G) is a triplet isomorphism, and its observable

trace ηηη = η[ : Gf/G0 → F ∗G/I ∗G becomes an isomorphism between the two
representations of the original LCA group G as the observable trace G ∼= Gf/G0 and
the nonstandard hull G ∼= F ∗G/I ∗G.

Let us form also the dual triplet
(
Ĝ,G�f ,G

�

0
)

. Making use of the canonical isomorphism

G�0/G�f → Ĝf/G0 from Theorem 2.2.4 we identify the dual group Ĝf/G0 of the
observable trace G[ = Gf/G0 and the observable trace Ĝ[ = G�0/G�f of the dual triplet(
Ĝ,G�f ,G

�

0
)

.

Keeping in mind the just introduced identifications and applying the duality functor
to the isomorphism ηηη−1 : G → Gf/G0 of LCA groups, we obtain the isomorphism
φφφ : G�0/G�f → Ĝ between their duals, given by

φφφ(γγγ) = γγγ ◦ ηηη−1

for γγγ ∈ Ĝf/G0 = G�0/G�f .

By Corollary 1.2.4, any isomorphism φφφ : G�0/G�f → F ∗Ĝ/I ∗Ĝ between the two
representations of the dual group Ĝ ∼= G�0/G�f and Ĝ ∼= F ∗Ĝ/I ∗Ĝ is the observable
trace of some internal mapping φ : Ĝ→ ∗Ĝ. This is to say that φ :

(
Ĝ,G�f ,G

�

0
)
→(∗Ĝ, I ∗Ĝ,F ∗Ĝ) is a triplet isomorphism and

φφφ
(
γ[
)

= γ[ ◦ ηηη−1 = φ(γ)[
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for γ ∈ G�0 . Then φ necessarily is almost homomorphic on G�0 , and we have

G�f = φ−1[I ∗Ĝ] and G�0 = φ−1[F ∗Ĝ]
so that φ : Ĝ → ∗Ĝ is an HFI approximation of Ĝ and

(
Ĝ,G�f ,G

�

0
)

is the IMG
group triplet arising from this approximation. In the particular case of φφφ given by the
assignment γγγ 7→ γγγ ◦ ηηη−1 , as above, we finally have

(φγ)(η x) ≈
(
φφφγ[

)(
ηηη x[
)

=
(
γ[ ◦ ηηη−1)(ηηη x[

)
= γ[

(
x[
)
≈ γ(x)

for any x ∈ Gf , γ ∈ G�0 .

Remark Though this is not an essential point, in view of Corollary 1.3.11 we can
assume, for convenience’ sake, that the approximation η is injective and preserves 0
and inverses. Then there is some internal, necessarily surjective mapping η′ : ∗G→ G
such that η′ ◦ η = IdG , xxx ≈ (η ◦ η′)(xxx), for xxx ∈ F ∗G, and η′ preserves 0 and inverses,
as well. Now, it is natural to define the mapping φ by the assignment γ 7→ γ ◦ η′ , for
γ ∈ Ĝ. Such a φ would be injective and strictly preserving the pointwise multiplication
of functions (hence the trivial character 1G and pointwise inverses, too). Unfortunately,
this natural attempt does not work. The reason is that η , η′ , in spite of being almost
homomorphic on Gf , F ∗G, respectively, are not genuine homomorphisms, in general.
Hence the mapping γ ◦ η′ (though preserving 0 and inverses) would be just almost
homomorphic on F ∗G, again, and one cannot assure that γ ◦ η′ ∈ ∗Ĝ, for γ ∈ Ĝ.
Thus there seems to be no canonical way how to determine the HFI approximation
φ : Ĝ→ ∗Ĝ of Ĝ right away from the HFI approximation η : G→ ∗G of G.

On the other hand, for each γγγ ∈ Ĝ, the composition ∗γγγ ◦ η : G → ∗T is almost
homomorphic on Gf (in fact, it is an S–continuous lifting of γγγ ). By Theorem 2.2.4,
there is a genuine homomorphism γ ∈ G�0 ⊆ Ĝ such that γγγ = (∗γγγ ◦ η)[ = γ[ ; more
precisely,

(∗γγγ ◦ η)(x) ≈ γ(x)

for each x ∈ Gf . Though ∗γγγ ◦ η /∈ Ĝ, in general, we shall see in our following paper
[50] that it can be used directly instead of the genuine homomorphism γ ∈ G�0 in
approximation of the Fourier transform on G by means of the inner product on the
hyperfinite dimensional unitary space ∗CG .

Now assume that G and H are hyperfinite abelian groups, η : G → ∗G is an HFI
approximation of the Hausdorff LCA group G and φ : H → ∗Ĝ is an HFI approximation
of its dual group Ĝ. Let (G,G0,Gf) and (H,H0,Hf) be the condensing IMG triplets
arising from these approximations, ie:

G0 = η−1[I ∗G] Gf = η−1[F ∗G]
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H0 = φ−1[I ∗Ĝ] Hf = φ−1[F ∗Ĝ]
Following Gordon [18, page 148] we say that the approximations η and φ are dual to
each other or that they form an adjoint pair if H = Ĝ, H0 = G�f , Hf = G�0 , ie if the
triplet (H,H0,Hf) coincides with the dual triplet

(
Ĝ,G�f ,G

�

0
)

of (G,G0,Gf), and

(φγ)(η x) ≈ γ(x)

holds for all x ∈ Gf , γ ∈ Hf . Inspecting our accounts and making use of the notions
just introduced, we find that, in any sufficiently saturated nonstandard universe, we
have proved the following results.

Theorem 2.5.1 Let (G,G0,Gf) be an IMG group triplet with a hyperfinite abelian
ambient group G, arising from an HFI approximation η : G→ ∗G of the Hausdorff
LCA group G, and the isomorphism ηηη : Gf/G0 → G of LCA groups be the observable
trace of η . Let further φ : Ĝ→ ∗Ĝ be an HFI approximation of the dual LCA group
Ĝ such that its observable trace φφφ = φ[ : G�0/G�f → Ĝ is the dual isomorphism
corresponding to ηηη−1 : G→ Gf/G0 . Then the HFI approximations η and φ are dual
to each other.

Corollary 2.5.2 (The Adjoint Hyperfinite LCA Group Approximation Theorem) To
every HFI approximation η : G→ ∗G of a Hausdorff LCA group G by a hyperfinite
abelian group G there exists a dual HFI approximation φ : Ĝ→ ∗Ĝ of the dual LCA
group Ĝ by the dual hyperfinite abelian group Ĝ.

On the other hand, even if η is injective, our accounts, so far, are not sufficient to
establish the analogous property for φ.

It is worthwhile to realize that, in a sufficiently saturated nonstandard universe, the
conditions defining the notion of an adjoint pair of HFI approximations are redundant
to some extent. Here is a more detailed account of their relation.

Lemma 2.5.3 Let G be a hyperfinite abelian group, η : G → ∗G, φ : Ĝ → ∗Ĝ be
HFI approximations of the Hausdorff LCA groups G, Ĝ, respectively, and (G,G0,Gf),(
Ĝ,H0,Hf

)
be the condensing IMG triplets arising from these approximations, such

that
(φγ)(η x) ≈ γ(x)

for all x ∈ Gf , γ ∈ Hf . Then, as consequence, the following two conditions hold:

(a) The inclusions Hf ⊆ G�0 , Gf ⊆ H�0 , G0 ⊆ H�f , and H0 ⊆ G�f are satisfied.
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(b) Any two of the reversed inclusions G�0 ⊆ Hf , H�0 ⊆ Gf , H�f ⊆ G0 , and
G�f ⊆ H0 are equivalent.

Proof (a) In order to prove the first inclusion, take any γ ∈ Hf . As Hf = φ−1
[
F ∗Ĝ

]
and F ∗Ĝ = I ∗G� , we have (φγ)(xxx) ≈ 1 for each xxx ∈ I ∗G = Mon(0). Since
G0 = η−1[I ∗G], this implies (φγ)(η x) ≈ 1 for each x ∈ G0 . From G0 ⊆ Gf we
obtain

γ(x) ≈ (φγ)(η x) ≈ 1

hence γ ∈ G�0 . From Hf ⊆ G�0 we readily get G0 ⊆ G��0 ⊆ H�f . The third and the
forth inclusion now follow by the symmetry of the situation.

(b) For brevity’s sake let us number the inclusions consecutively from (i) to (iv). First
we prove (i) ⇒ (iv). Assume that G�0 ⊆ Hf and take any γ ∈ G�f ⊆ G�0 ⊆ Hf .
Then φ(γ) ∈ F ∗Ĝ = I ∗G� , ie, φ(γ) is S–continuous. As H0 = φ−1

[
I ∗Ĝ

]
and

I ∗Ĝ = F ∗G� , in order to establish that γ ∈ H0 , we are to show that (φγ)(xxx) ≈ 1 for
each xxx ∈ F ∗G = Ns(∗G). Since there is x ∈ Gf such that xxx ≈ η(x), we have indeed:

(φγ)(xxx) ≈ (φγ)(η x) ≈ γ(x) ≈ 1

(ii) ⇒ (iii) can be proved analogously by a symmetry argument.

Next we show (iv) ⇒ (ii). From G�f ⊆ H0 we get H�0 ⊆ G��f = Gf by the Triplet
Duality Theorem 2.2.5 (see also Lemma 2.2.7). By symmetry we have (iii) ⇒ (i) as
well, closing the circle of implications.

In other words, under the assumptions of the lemma, the HFI approximations η and φ
form an adjoint pair if and only if any (hence all) of the inclusions from (b) is true. We
are inclining to consider the first inclusion G�0 ⊆ Hf from (b) as intuitively the most
appealing and fundamental one. In “unzipped form” it states that, for all γ ∈ Ĝ,

(∀ x ∈ G0)
(
γ(x) ≈ 1

)
⇒ (∀xxx ∈ I ∗G)

(
(φγ)(xxx) ≈ 1

)
and, as γ(x) ≈ (φγ)(η x), it is equivalent to:(

∀xxx ∈ η[G0]
)(

(φγ)(xxx) ≈ 1
)
⇒ (∀xxx ∈ I ∗G)

(
(φγ)(xxx) ≈ 1

)
The remaining inclusions in (b) can be “unzipped” in a similar way.

The standard meaning of the above accounts and results can be formulated in terms of
adjoint pairs of finite approximations. The equivalence of both formulations could be
established by referring to Nelson’s translation algorithm [37]. However, this would
obscure some connections, so we offer a more detailed exposition.
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Let G be a Hausdorff LCA group and 0 < α < 2π/3. Then a G–raster (K,U) and a
Ĝ–raster (ΓΓΓ,ΩΩΩ) are called α–adjoint if

U ⊆ Bohrα(ΓΓΓ) and ΩΩΩ ⊆ Bohrα(K)

which means that |argγγγ(xxx)| ≤ α for any xxx ∈ U, γγγ ∈ ΓΓΓ, as well as for any xxx ∈ K,
γγγ ∈ ΩΩΩ. In particular, any compact neighborhoods K, ΓΓΓ of the neutral elements in G,
Ĝ, respectively, give rise to an α–adjoint pair of rasters (K,U), (ΓΓΓ,ΩΩΩ) when putting

U = Bohrα(ΓΓΓ) ∩K and ΩΩΩ = Bohrα(K) ∩ΓΓΓ

If G is a finite abelian group then a G–raster (K,U) and a Ĝ–raster (ΓΓΓ,ΩΩΩ) together
with a pair of mappings η : G → G, φ : Ĝ → Ĝ are said to form an α–adjoint
approximation scheme for the pair of groups G, Ĝ if η is a (K,U) approximation of
G, φ is a (ΓΓΓ,ΩΩΩ) approximation of Ĝ and the two rasters are α–adjoint.

A (K,U) approximation η : G→ G and a (ΓΓΓ,ΩΩΩ) approximation φ : Ĝ→ Ĝ are called
pairing preserving on the set K×ΓΓΓ if

(φγ)(ηx) = γ(x)

for any x ∈ η−1[K], γ ∈ φ−1[ΓΓΓ]. An α–adjoint approximation scheme is called
pairing preserving if the approximations η , φ are pairing preserving on K×ΓΓΓ.

Let further α > 0, ε ≥ 0 satisfy α + ε < 2π/3. Then we say that the (K,U)
approximation η : G → G and the (ΓΓΓ,ΩΩΩ) approximation φ : Ĝ → Ĝ are ε–pairing
preserving on the set K×ΓΓΓ if ∣∣∣∣arg

(φγ)(ηx)
γ(x)

∣∣∣∣ ≤ ε
for any x ∈ η−1[K], γ ∈ φ−1[ΓΓΓ]. An α–adjoint approximation scheme is called
ε–pairing preserving if the approximations η , φ are ε–pairing preserving on K×ΓΓΓ.
Formally, pairing preserving approximations can be considered as a 0-pairing preserving
ones. For technical reasons we introduce also a slight strengthening of this notion. Such
an α–adjoint approximation scheme is called ε–pairing preserving with reserve if the
approximations η , φ are ε–pairing preserving even on the set (K + U)× (ΓΓΓΩΩΩ).

The following inclusions form the standard analogue of part (a) of Lemma 2.5.3.

Lemma 2.5.4 Let G be a Hausdorff LCA group, G be a finite abelian group and
α > 0, ε ≥ 0 be such that α+ ε < 2π/3. If (K,U), (ΓΓΓ,ΩΩΩ) are rasters and η : G→ G,
φ : Ĝ→ Ĝ are mappings forming an α–adjoint ε–pairing preserving approximation
scheme of the pair G, Ĝ then

φ−1[ΓΓΓ] ⊆ Bohrα+ε
(
η−1[U]

)
η−1[K] ⊆ Bohrα+ε

(
φ−1[ΩΩΩ]

)
η−1[U] ⊆ Bohrα+ε

(
φ−1[ΓΓΓ]

)
φ−1[ΩΩΩ] ⊆ Bohrα+ε

(
η−1[K]

)
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Proof We will prove just the upper left inclusion; the lower left inclusion is equivalent
to it, while the inclusions in the right column follow from those in the left one by a
symmetry argument. We have to show that |arg γ(x)| ≤ α + ε for any x ∈ η−1[U],
γ ∈ φ−1[ΓΓΓ]. In that case we have

|arg γ(x)| ≤ |arg(φγ)(ηx)|+
∣∣∣∣arg

γ(x)
(φγ)(ηx)

∣∣∣∣ ≤ α+ ε

since η(x) ∈ U, φ(γ) ∈ ΓΓΓ and U ⊆ Bohrα(ΓΓΓ).

In order to take care of (the first two of) the four equivalent conditions formulated in
part (b) of Lemma 2.5.3, we need to introduce one more notion. Assume that (Q,V) is
a G–raster and (∆∆∆,ΥΥΥ) is a Ĝ–raster, given in advance. Let G and α be as above. We
say that an α–adjoint approximation scheme of the pair of groups G, Ĝ given by some
rasters (K,U), (ΓΓΓ,ΩΩΩ) and mappings η : G→ G, φ : Ĝ→ Ĝ is compatible with the
rasters (Q,V), (∆∆∆,ΥΥΥ) if (Q,V) ≤ (K,U), (∆∆∆,ΥΥΥ) ≤ (ΓΓΓ,ΩΩΩ), and

Bohrα
(
η−1[V]

)
⊆ φ−1[ΓΓΓ] Bohrα

(
φ−1[ΥΥΥ]

)
⊆ η−1[K]

Obviously, if some approximation scheme is α–adjoint, ε–pairing preserving and
compatible with a pair of rasters (Q,V), (∆∆∆,ΥΥΥ), then it is ε′–pairing preserving for any
ε′ ≥ ε and compatible with any pair of rasters

(
Q′,V′

)
≤ (Q,V),

(
∆∆∆′,ΥΥΥ′

)
≤ (∆∆∆,ΥΥΥ).

Theorem 2.5.5 (The Adjoint Hyperfinite Approximation Scheme Theorem) Let G
be a Hausdorff LCA group. Then for every G–raster (Q,V), every Ĝ–raster (∆∆∆,ΥΥΥ)
and all α, ε > 0 such that α + ε < 2π/3, there exists an α–adjoint approximation
scheme of the pair of groups G, Ĝ given by some rasters (K,U), (ΓΓΓ,ΩΩΩ), a finite abelian
group G and mappings η : G→ G, φ : Ĝ→ Ĝ, which is ε–pairing preserving with
reserve and compatible with the rasters (Q,V), (∆∆∆,ΥΥΥ). One can arrange, additionally,
that at least one of the approximations η , φ is injective.

Proof According to Corollaries 1.3.11 and 2.5.2, (in a sufficiently saturated nonstandard
universe) there is a hyperfinite abelian group G and an adjoint pair of HFI approximations
ζ : G → ∗G, ψ : Ĝ → ∗Ĝ. Denote by (G,G0,Gf),

(
Ĝ,H0,Hf

)
the corresponding

IMG group triplets arising from ζ , ψ , respectively. Let (Q,V), (∆∆∆,ΥΥΥ), and α , ε satisfy
the assumptions of the theorem. Then, for any G–raster (K,U) and any Ĝ–raster (ΓΓΓ,ΩΩΩ),
which are α–adjoint, (∗K, ∗U) (∗ΓΓΓ, ∗ΩΩΩ), together with ζ and ψ , form an α–adjoint
approximation scheme of the pair of groups ∗G, ∗Ĝ which is ε–pairing preserving
with reserve. By saturation, there are an internal ∗G–raster

(
K′,U′

)
and an internal

∗Ĝ–raster
(
ΓΓΓ′,ΩΩΩ′

)
such that

U′ ⊆ I ∗G ⊆ F ∗G ⊆ K′ and ΩΩΩ′ ⊆ I ∗Ĝ ⊆ F ∗Ĝ ⊆ ΓΓΓ′
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still forming, together with ζ , ψ , an α–adjoint ε–pairing preserving with reserve
approximation scheme for the pair of groups ∗G, ∗Ĝ, Then (∗Q, ∗V) ≤

(
K′,U′

)
and

(∗∆∆∆, ∗ΥΥΥ) ≤
(
ΓΓΓ′,ΩΩΩ′

)
. At the same time,

Bohrα
(
ζ−1[∗V]

)
⊆ G�0 = Hf = ψ−1[F ∗Ĝ] ⊆ ψ−1[ΓΓΓ′]

Bohrα
(
ψ−1[∗ΥΥΥ]

)
⊆ H�0 = Gf = ζ−1[F ∗G] ⊆ ζ−1[K′]

showing that the internal approximation scheme of the pair ∗G, ∗Ĝ, given by
(
K′,U′

)
,(

ΓΓΓ′,ΩΩΩ′
)

and G, ζ , ψ , is compatible with the rasters (∗Q, ∗V), (∗∆∆∆, ∗ΥΥΥ). According
to the Transfer Principle, there is some α–adjoint ε–pairing preserving with reserve
approximation scheme of the pair G, Ĝ, given by some rasters (K,U) ≥ (Q,V),
(ΓΓΓ,ΩΩΩ) ≥ (∆∆∆,ΥΥΥ), a finite abelian group G and mappings η : G → G, φ : Ĝ → Ĝ,
compatible with the original rasters (Q,V), (∆∆∆,ΥΥΥ).

If at least one of the starting HFI approximations ζ , ψ is injective then one can guarantee
the same property for the corresponding finite approximation η , φ, respectively, as
well.

The Adjoint Hyperfinite Approximation Scheme Theorem 2.5.5 can be alternatively
formulated in terms of convergent systems of adjoint approximation schemes (cf Propo-
sition 1.3.7).

Let G be an LCA group, 0 < α < 2π/3 and (I,≤) be a directed poset. Assume
that, for each i ∈ I , there are a G–raster (Ki,Ui), a Ĝ–raster (ΓΓΓi,ΩΩΩi), a finite abelian
group Gi and a pair of mappings ηi : Gi → G, φi : Ĝi → Ĝ forming an α–adjoint
approximation scheme for the pair G, Ĝ. We say that this system is convergent if for
every G–raster (Q,V), every Ĝ–raster (∆∆∆,ΥΥΥ) and each ε ∈ (0, 2π/3− α), there is
i ∈ I such that the approximation scheme given by the rasters (Kj,Uj), (ΓΓΓj,ΩΩΩj), and
the mappings ηj : Gj → G, φj : Ĝj → Ĝ is ε–pairing preserving and compatible with
the rasters (Q,V), (∆∆∆,ΥΥΥ), for any j ≥ i.

It is clear that in such a case the systems
(
(Ki,Ui)

)
i∈I ,

(
(ΓΓΓi,ΩΩΩi)

)
i∈I are raster bases of

the LCA groups G, Ĝ, respectively, while (ηi)i∈I is an approximating system of G and
(φi)i∈I is an approximating system of its dual group Ĝ.

The following result slightly generalizes and gives more precision to Theorem 3 stated
without proof in the introduction to Gordon [18].

Theorem 2.5.6 Let G be a Hausdorff LCA group and 0 < α < 2π/3. Then the pair
of groups G, Ĝ admits a convergent system of α–adjoint approximation schemes.
One can additionally arrange that at least one of the approximating systems (ηi), (φi)
consists entirely of injective maps.
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Proof Let
(
(Qi,Vi)

)
i∈I ,

(
(∆∆∆i,ΥΥΥi)

)
i∈I be some raster bases of the LCA groups G, Ĝ,

respectively, ordered in such a way that

i ≤ j ⇔ (Qi,Vi) ≤ (Qj,Vj) and (∆∆∆i,ΥΥΥi) ≤ (∆∆∆j,ΥΥΥj)

and (εn)n∈N be a decreasing sequence of positive numbers εn < 2π/3−α converging to 0.
According to Theorem 2.5.5, for each i ∈ I and n ∈ N, there is an εn –pairing preserving
α–adjoint approximation scheme given by a G–raster (Kin,Uin), a Ĝ–raster (ΓΓΓin,ΩΩΩin),
a finite abelian group Gin and approximating maps ηin : Gin → G, φin : Ĝin → Ĝ,
compatible with the rasters (Qi,Vi), (∆∆∆i,ΥΥΥi). It can be easily seen that, for all j ≥ i,
m ≥ n, the approximation scheme given by the rasters (Kjm,Ujm), (ΓΓΓjm,ΩΩΩjm) and the
approximating maps ηjm : Gjm → G, φjm : Ĝjm → Ĝ is εn –pairing preserving and
compatible with (Qi,Vi), (∆∆∆i,ΥΥΥi), as well. Thus

(
(ΓΓΓin,ΩΩΩin)

)
,
(
(ΓΓΓin,ΩΩΩin)

)
, and (ηin),

(φin) form a convergent system of α–adjoint approximation schemes for the pair of
groups G, Ĝ over the directed poset (I × N,≤) ordered by the relation (i, n) ≤ (j,m)
if and only if i ≤ j and n ≤ m. The supplement on injectivity follows from the last
sentence of Theorem 2.5.5.

Remarks (a) If G is metrizable and σ–compact then the same is true for Ĝ. In such
a case the original raster bases can be indexed by the set I = N, as well, and the double
indexing of the α–adjoint approximation schemes forming the resulting convergent
system can be avoided.

(b) Similar to the proof of the implication (iv) ⇒ (ii) in Proposition 1.3.7 (see also
the subsequent remark (c)), one can obtain an adjoint pair of HFI approximations
η : G → ∗G, φ : Ĝ → ∗Ĝ from the convergent system of α–adjoint approximation
schemes, whose existence was established in Theorem 2.5.6, by referring to the sufficient
saturation of the nonstandard universe or via the ultraproduct construction applied to
the approximating systems (ηi : Gi → G)i∈I ,

(
φi : Ĝi → Ĝ

)
i∈I . The interested reader

is referred to Zlatoš [49, Proposition 2.5.5, Theorem 2.5.6].

(c) The above form of Theorems 2.5.5 and 2.5.6 is not the only possible one which can
be derived from Corollary 2.5.2. One could, eg, formulate the notion of compatibility
with a given pair of rasters by taking care of the other two (or of all the) inclusions from
Lemma 2.5.3 (b). Similarly, in Theorem 2.5.6, it is not necessary to keep the parameter
α fixed; it would be possible to require that α > 0 becomes “arbitrarily small”, and
even guarantee that α = ε. Another example of an alternative variation can be found in
Zlatoš [49, Theorems 2.5.8, 2.5.9].

The “HFI parts” of the following three examples are due to Gordon [18]; we are
adding the standard counterparts mainly in order to illustrate the α–adjointness and
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the ε–pairing preservation phenomena. In these fairly important cases, some of the
previously mentioned conditions will be satisfied automatically, in an even stricter form
than required by the definitions.

In the first example, building on items (a) and (b) of Example 1.3.8, we construct
certain pairs of adjoint approximations of the group T and its dual group T̂ ∼= Z, where
γ(xxx) = xxxγ for xxx ∈ T, γ ∈ Z. Similarly, the (hyper)finite cyclic group Zn is identified
with its dual group Ẑn via the pairing γ(a) = e2πiaγ/n , for a, γ ∈ Zn . Let us recall that
Zn is still represented as the group of absolutely smallest remainders modulo n.

Example 2.5.7 If n ∈ ∗N∞ then the internal homomorphism η : Zn → ∗T, η(a) =

e2πia/n , and the inclusion map φ : Zn → ∗Z give rise to the mutually dual IMG group
triplets (Zn,G0,Zn),

(
Zn, {0},Z

)
, with normalizing multipliers d = n−1 , d̂ = 1,

respectively, where:
G0 =

{
a ∈ Zn :

a
n
≈ 0
}

= Z�

For a, γ ∈ Zn we even have

(φγ)(η a) =
(

e
2πia

n

)γ
= e

2πiaγ
n = γ(a)

showing that η , φ strictly preserve the pairing on the mutually dual groups T, Z.

Passing to the standard situation, let n, k ∈ N and 0 < r ≤ α < 2π/3 be such that
nr > π and 1 ≤ k < n/4. We put:

U = {xxx ∈ T : |argxxx| ≤ r} Γ = {γ ∈ Z : |γ| ≤ k}

Then we have Bohrα(T) = {0} and

Bohrα(Γ ) =
{

xxx ∈ T : |argxxx| ≤ α

k

}
hence the T–raster (T,U) and the Z–raster

(
Γ, {0}

)
are α–adjoint if and only if

rk ≤ α . The (T,U) approximation η : Zn → T and the
(
Γ, {0}

)
approximation

φ : Zn → Z (both given as in the HFI case) still satisfy (φγ)(η a) = γ(a) for a, γ ∈ Zn ,
so that they are even pairing preserving on T× Γ .

Assume that (T,V) is a G–raster and
(
∆, {0}

)
is a Z–raster given in advance, where:

V = {xxx ∈ T : |argxxx| ≤ s} ∆ = {γ ∈ Z : |γ| ≤ m}

Then (T,V) ≤ (T,U) if and only if r ≤ s, and similarly,
(
∆, {0}

)
≤
(
Γ, {0}

)
if and

only if m ≤ k . A simple computation shows that

Bohrα
(
η−1[V]

)
=
{
γ ∈ Zn : |γ| ≤ α

s

}
and φ−1[Γ ] = {γ ∈ Zn : |γ| ≤ k}
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while Bohrα
(
φ−1[0]

)
= Zn = η−1[T]. Thus the approximation scheme given by the

rasters (T,U),
(
Γ, {0}

)
and mappings η : Zn → T, φ : Zn → Z is compatible with

the rasters (T,V),
(
∆, {0}

)
if and only if bα/sc ≤ k . All the needed conditions can

be guaranteed by taking k and n big and r small enough.

In the next example we describe a pair of adjoint approximations for the self-dual group
R, building on item (c) of Example 1.3.8. More precisely, R is identified with its dual
group R̂ via the pairing γγγ(xxx) = eixxxγγγ , for xxx, γγγ ∈ R. The passage to differently scaled
pairings γγγ(xxx) = e2πixxxγγγ/T , with any T > 0, is straightforward.

Example 2.5.8 Let n ∈ ∗N∞ , and d, d′ be positive infinitesimals such that both the
hyperreal numbers nd , nd′ are infinite. Then the internal mappings η : Zn → ∗R,
η(a) = ad , and φ : Zn → ∗R, φ(γ) = γd′ , are HFI approximations of the group R,
inducing IMG group triplets (Zn,G0,Gf), (Zn,H0,Hf), where

G0 = {a ∈ Zn : ad ≈ 0} Gf = {a ∈ Zn : |a| d <∞}
H0 = {γ ∈ Zn : γd′ ≈ 0} Hf = {γ ∈ Zn : |γ| d′ <∞}

with normalizing multipliers d , d′ , respectively. One can easily verify that these triplets
are mutually dual if and only if ndd′ ∈ F ∗Rr I∗R. For any a, γ ∈ Zn we have

(φγ)(η a) = eiaγdd′ γ(a) = e
2πiaγ

n

and the two expressions are infinitesimally close for all a ∈ Gf , γ ∈ Hf if and only if:

ndd′ ≈ 2π

Hence this condition is equivalent to the adjointness of the HFI approximations η , φ.
Then the normalizing coefficient d̂ = 1/nd , dual to d , is a normalizing multiplier for
the triplet (Zn,H0,Hf), as well. Under the particular choice

d′ = 2πd̂ =
2π
nd

we even have (φγ)(η a) = γ(a) for all a, γ ∈ Zn .

The corresponding standard situation is described in terms of some n, k,m ∈ N
and positive d, d′, r, ρ, α, ε ∈ R, such that 1 ≤ k,m < n/4, α + ε < 2π/3, and
d/2 < r ≤ kd , d′/2 < ρ ≤ md′ . We put

U = [−r, r] K = [−kd, kd]

ΩΩΩ = [−ρ, ρ] ΓΓΓ =
[
−md′,md′

]
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while the approximating mappings η : Zn → R, φ : Zn → R are given by the same
formulas as in the HFI case. Then

Bohrα(K) =
[
− α

kd
,
α

kd

]
and Bohrα(ΓΓΓ) =

[
− α

md′
,
α

md′

]
thus the R–rasters (K,U), (ΓΓΓ,ΩΩΩ) are α–adjoint if and only if both r · md′ ≤ α and
ρ · kd ≤ α . The reversed proportionality of the lengths r and md′ , as well as that of ρ
and kd is worth noticing.

For any a, γ ∈ Zn we have:∣∣∣∣arg
(φγ)(η a)
γ(a)

∣∣∣∣ = |aγ| dd′
∣∣∣∣1− 2π

ndd′

∣∣∣∣
This expression is ≤ ε for all a ∈ η−1[K], γ ∈ φ−1[ΓΓΓ] if and only if:

kmdd′
∣∣∣∣1− 2π

ndd′

∣∣∣∣ ≤ ε
Putting d′ = 2π/nd , we can even achieve that (φγ)(η a) = γ(a) for all a, γ ∈ Zn .

Assume that (Q,V), (∆∆∆,ΥΥΥ) are two R–rasters given in advance, where V = [−s, s] and
ΥΥΥ = [−σ, σ]. By choosing r , ρ small and k , m big enough we can always guarantee
that (Q,V) ≤ (K,U) and (∆∆∆,ΥΥΥ) ≤ (ΓΓΓ,ΩΩΩ), thus in particular we need not care about a
more detailed description of Q and ∆∆∆.

One can easily verify that:

Bohrα
(
η−1[V]

)
=
{
γ ∈ Zn : |γ| ≤ ndα

2πs

}
φ−1[ΓΓΓ] = {γ ∈ Zn : |γ| ≤ m}

Bohrα
(
φ−1[ΥΥΥ]

)
=
{

a ∈ Zn : |a| ≤ nd′α
2πσ

}
η−1[K] = {a ∈ Zn : |a| ≤ k}

Hence the inclusions Bohrα
(
η−1[V]

)
⊆ φ−1

[
ΓΓΓ
]

and Bohrα
(
η−1[ΩΩΩ]

)
⊆ φ−1

[
K
]

are
equivalent to the inequalities⌊

ndα
2πs

⌋
≤ m and

⌊
nd′α
2πσ

⌋
≤ k

respectively. In particular, if ndd′ = 2π , they reduce to bα/sd′c ≤ m and bα/σdc ≤ k .

Now, it is routine to check that, for any α > 0, ε ≥ 0, subject to α+ ε < 2π/3, one
can always construct an α–adjoint ε–pairing preserving approximation scheme for
the selfdual group R of the form just described, compatible with arbitrary R–rasters
(Q,V), (∆∆∆,ΥΥΥ) given in advance, simply by choosing the parameters n, k , m, r , ρ and
d , d′ properly.
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In the final example we construct adjoint approximations to those from item (d) of
Example 1.3.8.

Example 2.5.9 Let G be a Hausdorff LCA group with a raster base
(
(Ki,Ui)

)
i∈I

consisting of compact open subgroups Ui ⊆ Ki of G. As Bohrα(X) coincides with the
annihilator X⊥ = Bohr0(X) for α ∈ (0, 2π/3) and any subgroup X ⊆ G, the system((

U⊥i ,K⊥i
))

i∈I forms a raster base of the dual group Ĝ consisting of compact open
subgroups, again. Picking i ∈ I and putting U = Ui , K = Ki and ΩΩΩ = K⊥ , ΓΓΓ = U⊥ ,
it is obvious that the pairs (K,U), (ΓΓΓ,ΩΩΩ) are α–adjoint for each α ∈ (0, 2π/3). The
quotients G = K/U and ΓΓΓ/ΩΩΩ are finite abelian groups and the latter can be canonically
identified with the dual group Ĝ. Any right inverse map η : G → K ⊆ G to the
canonical projection ζ : K→ K/U is a (K,U) approximation of G, and similarly, any
right inverse map φ : Ĝ→ ΓΓΓ ⊆ Ĝ to the canonical projection ξ : ΓΓΓ→ ΓΓΓ/ΩΩΩ is a (ΓΓΓ,ΩΩΩ)
approximation of Ĝ. Then one can easily verify by a straightforward computation that,
for any a ∈ G, γ ∈ Ĝ:

(φγ)(η a) = γ(a)

Finally, the equalities

Ĝ = Bohrα
(
η−1[U]

)
= φ−1[ΓΓΓ] G = Bohrα

(
φ−1[ΩΩΩ]

)
= η−1[K]

show that the approximation scheme given by the α–adjoint rasters (K,U), (ΓΓΓ,ΩΩΩ) and
the mappings η , φ is compatible with these very rasters, hence it is a pairing preserving
α–adjoint approximation scheme for the pair G, Ĝ.

If U ⊆ K are ∗compact ∗open subgroups of ∗G, such that U ⊆ I ∗G, F ∗G ⊆ K
then ΩΩΩ = K� = K⊥ , ΓΓΓ = U� = U⊥ are ∗compact ∗open subgroups of ∗Ĝ, such
that ΩΩΩ ⊆ I ∗Ĝ, F ∗Ĝ ⊆ ΓΓΓ. The quotients G = K/U, Ĝ = ΓΓΓ/ΩΩΩ are mutually dual
hyperfinite abelian groups. The HFI approximations η : G → ∗G, φ : Ĝ → ∗Ĝ can
be constructed in essentially the same way as in the standard situation above. The
corresponding IMG group triplets (G,G0,Gf),

(
Ĝ,H0,Hf

)
, where

G0 = η−1[I ∗G] Gf = η−1[F ∗G]

H0 = φ−1[I ∗Ĝ] Hf = φ−1[F ∗Ĝ]
are mutually dual, as well. For any internal subgroup X of G, such that I ∗G ⊆ X ⊆
F ∗G, d = [X : U]−1 and d̂ = (|G| d)−1 = [K : X]−1 can serve as adjoint normalizing
multipliers for the triplets (G,G0,Gf) and

(
Ĝ,H0,Hf

)
, respectively. The equality

(φγ)(η a) = γ(a) holds even for all a ∈ G, γ ∈ Ĝ, while (φγ)(η a) ≈ γ(a) for a ∈ Gf ,
γ ∈ Hf would be enough to establish the adjointness of η , φ.
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In Gordon [18], pairs of adjoint HFI approximations for τ –adic solenoids Στ and their
dual groups of τ –adic rationals

Q(τ ) =
⋃
n∈N

( 1
τn

)
Z =

{ a
τn

: a ∈ Z & n ∈ N
}

are also described. These, as well as the corresponding finite approximations, can be
constructed combining some ideas from Examples 2.5.7–2.5.9.

In view of the supplements on injectivity after Corollary 2.5.2 and in Theorems 2.5.5
and 2.5.6, as well as of the last three examples, it is natural to formulate the following
conjecture. We prefer to state it in the more concise nonstandard form. The standard
translation can be readily obtained from Theorem 2.5.5.

Conjecture Let G be a Hausdorff LCA group. Then there exists a hyperfinite abelian
group G and injective mappings η : G→ ∗G, φ : Ĝ→ ∗Ĝ forming an adjoint pair of
HFI approximations of the mutually dual groups G, Ĝ, respectively.

Let us conclude by a brief discussion of the roles of standard and nonstandard methods
in the proof of the Adjoint Approximation Scheme Theorem 2.5.5. Our starting point
was the proof of the existence of arbitrarily good (standard) finite approximations for
any single LCA group G (Theorem 1.3.10) from which we derived the existence of
(nonstandard) hyperfinite approximations of G by means of the Transfer Principle
(Corollary 1.3.11). Next we proved another nonstandard result, namely the existence
of an adjoint approximation to any HFI approximation of G (Theorem 2.5.1 and
Corollary 2.5.2). Both in their formulation and proof the (inherently nonstandard)
Gordon’s Conjecture 1 (Theorem 2.2.4) and the Triplet Duality Theorem 2.2.5 were
crucial. Finally we turned back, deriving the existence of an arbitrarily precise pairing
preserving adjoint pair of (standard) finite approximations of the mutually dual groups G,
Ĝ (Theorem 2.5.5) from the nonstandard Corollary 2.5.2, using the Transfer Principle
in the “opposite direction”.
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