

Journal of Logic & Analysis 8:2 (2016) 1–19 ISSN 1759-9008

PFA and complemented subspaces of ℓ_{∞}/c_0

ALAN DOW

Abstract: The Banach space ℓ_{∞}/c_0 is isomorphic to the linear space of continuous functions on \mathbb{N}^* with the supremum norm, $C(\mathbb{N}^*)$. Similarly, the canonical representation of the ℓ_{∞} sum of ℓ_{∞}/c_0 is the Banach space of continuous functions on the closure of any non-compact cozero subset of \mathbb{N}^* . It is important to determine if there is a continuous linear lifting of this Banach space to a complemented subset of $C(\mathbb{N}^*)$. We show that PFA implies there is no such lifting.

2010 Mathematics Subject Classification 54A25 (primary); 03E35 (secondary)

Keywords: Stone-Cech, PFA, Banach space

1 Introduction

Our paper is motivated by the question (Drewnowski and Roberts [3], Leonard and Whitfield [6]) of whether or not $C(\mathbb{N}^*)$ is primary. A Banach space X is primary if whenever X is written as the sum $A \oplus B$ of complemented subspaces, then one of A, B is isomorphic to X. Negrepontis [8, Corollary 3.2] showed that CH implies that the closure *Y* of a non-compact cozero subset of \mathbb{N}^* is a retract of \mathbb{N}^* , and, therefore, there is a norm bounded linear lifting of the Banach space C(Y) to a complemented subset of $C(\mathbb{N}^*)$. Later, Drewnowski and Roberts [3] established that the existence of such a lifting implied that $C(\mathbb{N}^*)$ is primary. It is already known to be consistent that there is no such lifting; an even stronger result was shown to hold in the Cohen model in Brech and Koszmider [1]. However there is still a good reason to investigate this question under the hypothesis of the proper forcing axiom. We still have no clear path to deciding if $C(\mathbb{N}^*)$ is primary in the Cohen model but Koszmider [9, p577] has identified a very compelling conjecture (as we choose to call it) that $C(\mathbb{N}^*)$ is not primary in certain forcing extensions of PFA. Establishing properties of $C(\mathbb{N}^*)$ in these extensions is very similar to working within PFA itself (see Veličković [14], Steprāns [12], and Dow and Shelah [2]). We present our work as progress towards confirming that conjecture. The paper Grzech [4] announced similar results and gave reference to a paper in preparation for details. But even now, a number of years later, the details of a proof have not appeared and there appear to be problems with the sketch described in [4, p306-307]; we say more on this in Remark 2.1 after establishing more notation. Our own proof takes quite a different approach. It is modeled on the methods developed in Farah [5] and Shelah and Steprāns [11].

2 PFA implies no lifting

Let $\{A_n : n \in \omega\}$ be a partition of \mathbb{N} into infinite sets. Let *Y* be the open subset $\bigcup_n A_n^*$ of \mathbb{N}^* . Consider the subspace $E = \{f \in C(\mathbb{N}^*) : f[Y] = \{0\}\}$. It is well-known (see Pearl [9, p574]) that there is a continuous lifting for $C(\overline{Y})$ if and only if the subspace *E* is complemented in the Banach space $(C(\mathbb{N}^*), \|\cdot\|_{\infty})$. We take as our definition of *E* being complemented that there is a projection *P* from $C(\mathbb{N}^*)$ to *E* (a bounded linear operator) satisfying that $P^2(f) = P(f) \in E$ for all $f \in C(\mathbb{N}^*)$. Of course the norm of *P* is defined as the supremum of $\{\|P(f)\|_{\infty} : \|f\|_{\infty} = 1\}$.

This then provides a complement to E and an operator T defined by T(f) = f - P(f)for $f \in C(\mathbb{N}^*)$ onto that complement. Again, it follows that T is bounded, linear, and satisfies that $T^2(f) = T(f)$. We may view T as a lifting of the functions from $C(\overline{Y})$ into $C(\mathbb{N}^*)$ since it follows that $T(f) \upharpoonright \overline{Y} = f \upharpoonright \overline{Y}$ for all $f \in C(\mathbb{N}^*)$. More precisely, for any $h \in C(\overline{Y})$, define H(h) to be T(f) where f is any $f \in C(\mathbb{N}^*)$ such that $h \subset f$. Then His a continuous linear embedding (in fact, lifting) of $C(\overline{Y})$ into $C(\mathbb{N}^*)$.

Theorem 1 (PFA) If $\{A_n : n \in \omega\}$ is a partition of \mathbb{N} into infinite sets, then the subspace $E = \{f \in C(\mathbb{N}^*) : f[\bigcup_n A_n^*] = \{0\}\}$ is not complemented. Equivalently, there is no operator T as described above.

We assume PFA for the remainder and that *T* is an operator as described in the paragraph immediately preceding the statement of the theorem. Following standard Stone-Cech compactification notation, the set of bounded (continuous) functions on \mathbb{N} is denoted as $C^*(\mathbb{N})$. We fix any lifting of *T* to all of $C^*(\mathbb{N})$ in the sense that for all bounded $f \in C(\mathbb{N}), T(f) \in C^*(\mathbb{N})$ is chosen so that $[T(f)]^*$ is equal to $T(f^*)$.

So, we note that, for all $f \in C^*(\mathbb{N})$, $(f - T(f)) \upharpoonright A_n \to 0$ for all *n*. Additionally, for $f \in C^*(\mathbb{N})$, we note that $||f^*||_{\infty} = 0$ (ie $f^* \equiv 0$) is equivalent to *f* converging to 0 on \mathbb{N} . We will say that two real-valued functions on \mathbb{N} asymptotically agree if their difference converges to 0. Also, when we refer to the norm of a member of $C^*(\mathbb{N})$ we mean the asymptotic norm or the norm of f^* .

The set $\{A_n : n \in \omega\}^{\perp}$ is the ideal of subsets of \mathbb{N} which are almost disjoint from each A_n . Let \mathcal{I} denote the larger (dense) ideal of sets that are almost disjoint from A_n for all

but finitely many *n*. As usual, \mathcal{I}^+ is the collection of sets which are not in this ideal. Note that a set $a \subset \mathbb{N}$ is in \mathcal{I}^+ if and only if the set $J_a = \{j : |a \cap A_j| = \omega\}$ is infinite. Unless mentioned otherwise, we will assume that $a \cap A_n$ is empty for $n \notin J_a$. Let $\mathcal{J} \subset \mathcal{I}^+$ denote the collection of those $a \in \mathcal{I}^+$ with the property that $J_{\mathbb{N}\setminus a} = \omega$. For any $a \in \mathcal{I}^+$, let 1_a denote the characteristic function. Therefore, for any $\rho \in C^*(\mathbb{N})$, $\rho \cdot 1_a$ is a function which is constantly 0 on $\mathbb{N} \setminus a$.

Remark 2.1 It is well-known that, in models of CH, a continuous linear lifting H of $C(\overline{\bigcup_n A_n^*})$ into $C(\mathbb{N}^*)$ need not have the property that $H(f) \cdot H(g) = 0$ whenever $f \cdot g = 0$. This is similar to the fact that it is nearly immediate that if H is a linear isomorphism between function spaces C(X) and C(Z), for X, Z compact and X zero-dimensional, and if H satisfies that $H(f) \cdot H(g) = 0$ whenever f and g are characteristic functions of disjoint clopen sets, then X and Z are homeomorphic. On the other hand, Miljutin[7] proved the surprising fact that $C(2^{\omega})$ is linearly isomorphic to C([0, 1]) (for example).

One quite incomplete step in the outline of the proof in Grzech [4] is connected to this aspect of linear isomorphisms. Conditions (2.5) and (2.6) on Page 307 of [4] seem to be essentially making this assumption about the isomorphism *H* discussed. For example, it is very hard to see how to fulfill property (2.6) without having shown that if $\chi_0 \cdot F = 0$, then $H(\chi_0) \cdot H(F) = 0$.

Comments on the proof: Many readers will know of Shelah's original method [10] for making an existing non-trivial automorphism of $\mathcal{P}(\mathbb{N})/fin$ non-extendable in a generic extension. An almost disjoint family $\{a_{\alpha} : \alpha \in \omega_1\}$ of infinite subsets of \mathbb{N} is constructed together with a family $\{b_{\alpha} : \alpha \in \omega_1\}$ of partitioners (ie $b_{\alpha} \subset a_{\alpha}$) in such a way that there is a ccc poset $\mathbb{P}_{\langle a_{\alpha}, b_{\alpha}: \alpha \in \omega_1 \rangle}$ which forces the existence of a uniformizing partition X satisfying that $X \cap a_{\alpha} =^{*} b_{\alpha}$ for each $\alpha \in \omega_{1}$ while preserving that there is no similar uniformizing Y for the family $\{\varphi(a_{\alpha}), \varphi(b_{\alpha}) : \alpha \in \omega_1\}$ (because it will contain a Hausdorff-Luzin type of gap). Clearly any possible value for $\varphi(X)$ must be such a uniformizing Y. The set-theoretic principle \diamond is used to help ensure that the poset is ccc. Our method in this paper is based on this approach. We intend to similarly choose a sequence of sets $\{a_{\alpha} : \alpha \in \omega_1\} \subset \mathcal{J}$ and replace choosing b_{α} (or rather $1_{b_{\alpha}}$) by choosing some $f_{\alpha} \in C^*(\mathbb{N})$ with support contained in a_{α} (ie $f_{\alpha} \cdot 1_{\mathbb{N} \setminus a_{\alpha}} = 0$) and again making these choices in such a way that we can force the existence of a uniformizing function f_{ω_1} in the sense that $f_{\omega_1} \cdot \mathbf{1}_{a_{\alpha}}$ asymptotically agrees with f_{α} for all $\alpha \in \omega_1$. However, the main new obstacle is that while $\varphi(b_\alpha)$ has no interaction with $\varphi(a_{\beta})$ for $\beta \neq \alpha$, as remarked above, this is very much not the case with $T(f_{\alpha}) \cdot T(1_{a_{\beta}})$. This makes it seemingly impossible to control for the possible existence of a function g which might take the value for $T(f_{\omega_1})$. That is, there is no expectation that $T(f_{\omega_1}) \cdot T(1_{a_\beta})$ should have any sort of clear relationship to $T(f_\beta) \cdot T(1_{a_\beta})$. To handle this we first prove (Lemma 2) the existence of "*T*-orthogonal pairs" a, c, subsets of \mathbb{N} , satisfying that $T(\rho \cdot 1_c) \cdot 1_a$ converges to 0 for all $\rho \in C^*(\mathbb{N})$. After proving the existence of such *T*-orthogonal pairs, we describe the construction of the poset $\mathbb{P}_{\langle f_\alpha, d_\alpha: \alpha \in \omega_1 \rangle}$ (where for other technical reasons $\langle d_\alpha : \alpha \in \omega_1 \rangle$ is a mod finite increasing sequence and the above mentioned a_α is contained in $d_{\alpha+1} \setminus d_\alpha$). While constructing this family, we also build in the construction of a suitable Hausdorff-Luzin type gap canonically coded by the family $\langle T(f_{\alpha+1}) : \alpha \in \omega_1 \rangle$ which will serve as the device for ensuring that no value for $T(f_{\omega_1})$ will exist. The paper finishes with the necessary lemmas to show that the construction can be carried out.

Let C_1 be the set of functions from \mathbb{N} into $\{-1, 0, 1\}$, and let C_1^+ denote the set of functions from \mathbb{N} into $\{0, 1\}$. For any function $\rho \in C_1$, let ρ^+, ρ^- be the unique members of C_1^+ such that $\rho = \rho^+ - \rho^-$ and $|\rho| = \rho^+ + \rho^-$.

Lemma 2 Given $a, c \in \mathcal{I}^+$, there are $a_1, c_1 \in \mathcal{I}^+$ such that $a_1 \subset a, J_{a_1} = J_a, c_1 \subset c$, and for all $\rho \in C^*(\mathbb{N})$, $(T(\rho \cdot 1_{a_1})) \cdot 1_{c_1}$ converges to 0.

Proof We may assume that $a \cap c$ is empty. Since we are assuming that T is a lifting, let us note that for all $\rho \in C_1$, there is a $B \in \{A_n : n \in \omega\}^{\perp}$ such that $T(\rho \cdot 1_a) \cdot 1_{\omega \setminus (a \cup B)}$ converges to 0. In particular then we have that $T(\rho \cdot 1_a) \cdot 1_{c \setminus B}$ converges to 0. This also implies that $T(\rho \cdot 1_a) \cdot 1_c$ is asymptotically equal to $T(\rho \cdot 1_a) \cdot 1_{c \setminus \bigcup_{i < n} A_i}$ for each $n \in \omega$.

Let \mathcal{L} denote the set of pairs (a_1, c_1) satisfying that $a_1 \subset a, c_1 \subset c, J_{a_1} = J_a$, and $c_1 \in \mathcal{I}^+$. For each $(a_1, c_1) \in \mathcal{L}$, let the real number L_{a_1,c_1} denote the least upper bound of the asymptotic norms of each member of the family $\{T(\rho \cdot 1_{a_1}) \cdot 1_{c_1} : \rho \in C_1\}$. Also let $L_{a_1,c_1}^{\downarrow} = \inf\{L_{a_2,c_2} : (a_2,c_2) \in \mathcal{L} \text{ and } a_2 \subset a_1, c_2 \subset c_1\}$.

Claim 1 There is a pair $(a_1, c_1) \in \mathcal{L}$ such that $L_{a_1,c_1} = L_{a_1,c_1}^{\downarrow}$.

Proof of Claim Let $(a_0, c_0) = (a, c)$ and recursively choose a pairwise descending sequence $\{(a_n, c_n) : n \in \omega\} \subset \mathcal{L}$ so that $L_{a_{n+1}, c_{n+1}} < L_{a_n, c_n}^{\downarrow} + \frac{1}{2^n}$. Notice that for each n, we have that $L_{a_n, c_n}^{\downarrow} \leq L_{a_{n+1}, c_{n+1}}^{\downarrow} \leq L_{a_{n+1}, c_{n+1}} \leq L_{a_n, c_n}$. Choose any set $a_{\omega} \subset \bigcup_{j \in J_a} A_j$ so that $J_{a_{\omega}} = J_a$ and for each $j \in J_a$, $a_{\omega} \cap A_j \subset a_j$ and for each n, $a_{\omega} \cap A_j \subset^* a_n$. Notice that $a_{\omega} \setminus a_n$ is finite for all n. Choose a strictly increasing sequence $\{i_n : n \in \omega\}$ so that for each n, $c_n \cap A_{i_n}$ is infinite. Set $c_{\omega} = \bigcup_{n \in \omega} c_n \cap A_{i_n}$. We have that $(a_{\omega}, c_{\omega}) \in \mathcal{L}$, and that $c_{\omega} \setminus c_n \subset \bigcup_{i < i_n} A_i$ for all n. Let ρ be any member of C_1 and let $n \in \omega$. We have that $\rho \cdot 1_{a_\omega}$ is mod finite equal to $(\rho \cdot 1_{a_\omega}) \cdot 1_{a_n}$. Therefore $T(\rho \cdot 1_{a_\omega})$ is asymptotically equal to $T((\rho \cdot 1_{a_\omega}) \cdot 1_{a_n})$. Since the asymptotic norm of $T(\rho \cdot 1_{a_n}) \cdot 1_{c_\omega}$ is less than or equal to that of $T(\rho \cdot 1_{a_n}) \cdot 1_{c_n}$, we have that the asymptotic norm of $T(\rho \cdot 1_{a_\omega}) \cdot 1_{c_\omega}$ is bounded above by each L_{a_n,c_n} . By similar reasoning, it follows that $L_{a_\omega,c_\omega}^{\downarrow}$ is bounded below by L_{a_n,c_n}^{\downarrow} for each n. This completes the proof of the claim.

Now that we have proven Claim 1, we may simply assume that $L = L_{a,c}$ is equal to L_{a_1,c_1} for all $(a_1,c_1) \in \mathcal{L}$.

Claim 2 Suppose that (a_1, c_1) and (a_2, c_2) are in \mathcal{L} and that $a_1 \cap a_2$ is finite. Suppose also that ρ_1, ρ_2 are in C_1 and that for some $b \subset c_1$ and some $\epsilon > 0$, the sequence $\{|T(\rho_1 \cdot 1_{a_1})(k)| : k \in b\}$ has no values below $L - \epsilon$. Then the asymptotic norm of the function $T(\rho_2 \cdot 1_{a_2}) \cdot 1_b$ is at most ϵ .

Proof of Claim Since $(a_1 \cup a_2, c_1)$ is in \mathcal{L} and a_1 and a_2 are disjoint, we have that each of $T(\rho_1 \cdot 1_{a_1} + \rho_2 \cdot 1_{a_2}) \cdot 1_{c_1}$ and $T(\rho_1 \cdot 1_{a_1} - \rho_2 \cdot 1_{a_2}) \cdot 1_{c_1}$ have norm at most L. We also have that each of $(T(\rho_1 \cdot 1_{a_1}) + T(\rho_2 \cdot 1_{a_2})) \cdot 1_b$ and $(T(\rho_1 \cdot 1_{a_1}) - T(\rho_2 \cdot 1_{a_2})) \cdot 1_b$ have norm at most L. The conclusion is then obvious.

The sets C_1 and C_1^+ will be given the usual finite agreement topologies.

Claim 3 For each $(a_1, c_1) \in \mathcal{L}$ and each $\epsilon > 0$, the set of $\rho \in C_1$ such that $T(\rho \cdot 1_{a_1}) \cdot 1_{c_1}$ has norm greater than $L - \epsilon$ is non-meager.

Proof of Claim Choose any $\epsilon > 0$ and assume that $\{U_n : n \in \omega\}$ is a descending family of dense open subsets of C_1 . There is a strictly increasing sequence $\{k_n : n \in \omega\} \subset \omega$ and functions $t_n : [k_n, k_{n+1}) \to \{0, 1\}$ with the property that, for all $s \in \{0, 1\}^{k_n}$, the basic clopen set $[s \cup t_n]$ is contained in U_n . We additionally require that $[k_n, k_{n+1}) \cap A_j$ is not empty for each $j \in J_a \cap n$. Let $a_2 = \bigcup_n [k_{2n}, k_{2n+1})$ and note that $a_3 = a \setminus a_2$ satisfies that $J_{a_3} = J_a$.

Let $\rho_2 \in C_1$ be any function such that $t_{2n} \subset \rho_2$ for all *n*. Observe that for all $\psi \in C_1$, the function $\rho_2 \cdot 1_{a_2} + \psi \cdot 1_{a_3}$ is in U_n for each *n*. Choose $B \in \{A_n : n \in \omega\}^{\perp}$ so that $T(\rho_2 \cdot 1_{a_2}) \cdot 1_{c_1 \setminus B}$ converges to 0. Choose $\psi \in C_1$ so that $T(\psi \cdot 1_{a_3}) \cdot 1_{c \setminus B}$ has norm greater than $L - \epsilon$. Finish the proof of the claim by observing that $T(\rho_2 \cdot 1_{a_2} + \psi \cdot 1_{a_3}) \cdot 1_{c_1 \setminus B}$ is asymptotically equal to $T(\psi \cdot 1_{a_3}) \cdot 1_{c \setminus B}$ and so has norm greater than $L - \epsilon$. \Box

Next we want to separate the contributions of ρ^+ and ρ^- to the norm of $T(\rho \cdot 1_{a_1}) \cdot 1_{c_1}$. Consider any $\rho \in C_1$ and $(a_1, c_1) \in \mathcal{L}$ and let L_ρ denote the norm of $T(\rho \cdot 1_{a_1}) \cdot 1_{c_1}$. Let $\mathcal{B}^+(\rho, a_1, c_1)$ denote the collection of infinite sets (if any) $b \subset c_1$ such that $T(\rho \cdot 1_{a_1}) \upharpoonright b$ converges to L_ρ . Similarly let $\mathcal{B}^-(\rho, a_1, c_1)$ denote the collection of infinite sets $b \subset c_1$ such that $T(\rho \cdot 1_{a_1}) \upharpoonright b$ converges to $-L_\rho$. We will identify four types of possible behavior. When $\mathcal{B}^+(\rho, a_1, c_1)$ is non-empty we will identify type 1 and type 2. The case when $\mathcal{B}^+(\rho, a_1, c_1)$ is empty will be categorized as type 3 or type 4. It will be completely symmetric in that if ρ is type 3 or type 4, then $-\rho$ will be type 1 or type 2 respectively.

Let us focus on the case when $\mathcal{B}^+(\rho, a_1, c_1)$ is non-empty. We define $v(\rho, a_1, c_1)$ connected to $T(\rho^+ \cdot 1_{a_1})$. Define $v(\rho, a_1, c_1)$ to be the supremum of the norms of the family $\{T(\rho^+ \cdot 1_{a_1}) \cdot 1_b : b \in \mathcal{B}^+(\rho, a_1, c_1)\}$. Similarly define $w(\rho, a_1, c_1)$ to be the supremum of the norms of the family $\{T(\rho^- \cdot 1_{a_1}) \cdot 1_b : b \in \mathcal{B}^+(\rho, a_1, c_1)\}$. Notice that $L_{\rho} \leq v(\rho, a_1, c_1) + w(\rho, a_1, c_1)$, and so $\max(v(\rho, a_1, c_1), w(\rho, a_1, c_1)) \geq \frac{L_{\rho}}{2}$. We will categorize ρ as type 1 for (a_1, c_1) , when $v(\rho, a_1, c_1) \geq \frac{L_{\rho}}{2}$.

Clearly, for each $(a_1, c_1) \in \mathcal{L}$ and each $\epsilon > 0$, there is a non-meager set of ρ with $L_{\rho} > L - \epsilon$ of one of the four types for (a_1, c_1) . Let \mathcal{L}_i denote the set of $(a_1, c_1) \in \mathcal{L}$ for which, for each $\epsilon > 0$, there is a non-meager set of ρ with $L_{\rho} > L - \epsilon$ which is type *i* for (a_1, c_1) . By redefining (a, c) to be some member of \mathcal{L}_i , we may assume that for each $(a_1, c_1) \in \mathcal{L}$, there is an $(a_2, c_2) \in \mathcal{L}_i$ with $a_2 \subset a_1$ and $c_2 \subset c_1$. For the remainder of the proof we assume, by symmetry, that this is true of \mathcal{L}_1 .

This leads to the next claim, and the conclusion that $\mathcal{L}_1 = \mathcal{L}$.

Claim 4 For each $(a_1, c_1) \in \mathcal{L}_1$ and each $\epsilon > 0$, there is a non-meager set of $\rho \in C_1$ such that there are infinite disjoint *b*, *d* contained in c_1 so that

- (1) the set $T(\rho \cdot 1_{a_1})[b]$ only has values greater than $L \epsilon$,
- (2) the $T(\rho^+ \cdot 1_{a_1})[b]$ only has values greater than $\frac{L}{2} \epsilon$,
- (3) the set $T(-\rho \cdot 1_{a_1})[d]$ only has values greater than $L \epsilon$,
- (4) the set $T(\rho^- \cdot 1_{a_1})[d]$ only has values greater than $\frac{L}{2} \epsilon$.

Proof of Claim Choose any $\epsilon > 0$ and assume that $\{U_n : n \in \omega\}$ is a descending family of dense open subsets of C_1 . Choose a strictly increasing sequence $\{k_n : n \in \omega\} \subset \omega$ and functions $t_n : [k_n, k_{n+1}) \to \{-1, 0, 1\}$ so that, for all $s \in \{-1, 0, 1\}^{k_n}$, the basic clopen set $[s \cup t_n]$ is contained in U_n . We again require that $[k_n, k_{n+1}) \cap A_j \cap a_1$ is not empty for each $j \in J_a \cap n$. Let $a_2 = \bigcup_n [k_{2n}, k_{2n+1})$ and choose disjoint $a_3, a_4 \subset a_1 \setminus a_2$ so that $J_{a_3} = J_a$.

Let $\rho_2 \in C_1$ be any function such that $t_{2n} \subset \rho_2$ for all *n*. Observe that for all $\psi \in C_1$, the function $\rho_2 \cdot 1_{a_2} + \psi \cdot 1_{a_3 \cup a_4}$ is in U_n for each *n*. Choose $B_0 \in \{A_n : n \in \omega\}^{\perp}$ so that each of $T(\rho_2 \cdot 1_{a_2} \cdot 1_{a_1})$, $T(\rho_2^+ \cdot 1_{a_2} \cdot 1_{a_1})$, and $T(\rho_2^- \cdot 1_{a_2} \cdot 1_{a_1})$ converges to 0 on the set $c_1 \setminus B_0$. By shrinking a_3 we may suppose that there is some $c_3 \subset c_1 \setminus B_0$ so that $(a_3, c_3) \in \mathcal{L}_1$. Therefore we can choose $\psi_3 \in C_1$ and some $b \in \mathcal{B}^+(\psi_3, a_3, c_3)$ so that the function $T(\psi_3^+ \cdot 1_{a_3})$ only has values greater than $\frac{L}{2} - \frac{\epsilon}{4}$ on the set *b*.

Now choose $B_1 \in \{A_n : n \in \omega\}^{\perp}$ containing B_0 so that each of $T(\rho_2 \cdot 1_{a_2} \cdot 1_{a_1} + \psi_3 \cdot 1_{a_3}) \cdot 1_{c_1 \setminus B_1}$, $T((\rho_2 \cdot 1_{a_2} \cdot 1_{a_1} + \psi_3 \cdot 1_{a_3})^+) \cdot 1_{c_1 \setminus B_1}$, and $T((\rho_2 \cdot 1_{a_2} \cdot 1_{a_1} + \psi_3 \cdot 1_{a_3})^-) \cdot 1_{c_1 \setminus B_1}$ converges to 0.

Similarly, by shrinking a_4 , choose a function $\psi_4 \in C_1$ and an infinite set $d \subset c_1 \setminus B_1$ so that the image of d by $T(\psi_4 \cdot 1_{a_4})$ has no values below $L - \epsilon$, and the image of d by $T(\psi_4^+ \cdot 1_{a_4})$ has no values below $\frac{L}{2} - \epsilon$.

Now set $\rho = \rho_2 \cdot 1_{a_2} + \psi_3 \cdot 1_{a_3} - \psi_4 \cdot 1_{a_4}$ which is a member of the dense G_{δ} set $\bigcap_n U_n$. By the choice of B_1 and the linearity of T, we have that $T(\rho \cdot 1_{a_1}) = T(\rho_2 \cdot 1_{a_2} \cdot 1_{a_1} + \psi_3 \cdot 1_{a_3} - \psi_4 \cdot 1_{a_4})$ asymptotically agrees with $T(-\psi_4 \cdot 1_{a_4})$ on d. Similarly $T(\rho^- \cdot 1_{a_1})$ asymptotically agrees with $T(\psi_4 \cdot 1_{a_4})$ on d. This proves that items (3) and (4) of the claim hold.

By Claim 2, we have that each of $T(\psi_4 \cdot 1_{a_4})$ and $T(\psi_4^- \cdot 1_{a_4})$ converge to 0 along *b*. We also have that $T(\rho_2 \cdot 1_{a_2} \cdot 1_{a_1} + \psi_3 \cdot 1_{a_3})$ asymptotically agrees with $T(\psi_3 \cdot 1_{a_3})$ along *b*; and $T(\rho_2^+ \cdot 1_{a_2} \cdot 1_{a_1} + \psi_3^+ \cdot 1_{a_3})$ asymptotically agrees with $T(\psi_3^+ \cdot 1_{a_3})$ along *b*. Putting all this together we have that $T(\rho \cdot 1_{a_1})$ asymptotically agrees with $T(\psi_3 \cdot 1_{a_3})$ along *b*, and $T(\rho^+ \cdot 1_{a_1})$ asymptotically agrees with $T(\psi_3^+ \cdot 1_{a_3})$ along *b*. This verifies items (1) and (2) of the claim.

Now we are ready to apply OCA arguments to continue the proof. For each $j \in J_a$, choose any injection ψ_j from $2^{<\omega}$ into $a \cap A_j$. Also choose, for each $j \in J_c$, an injection σ_j of J_c into $A_j \cap c$. For each $r \in 2^{\omega}$, let a_r denote the set $a_r = \{\psi_j(r \upharpoonright \ell) : j < \ell \in \omega\}$.

Let \mathcal{X} denote the collection of functions of the form $\rho = \rho \cdot 1_{a_r}$ for some $r \in 2^{\omega}$, and $\rho \in C_1$ so that Claim 4 holds for some pair $b, d \subset c$.

For $\rho \in \mathcal{X}$, let

$$b_{\rho} = \{k \in c : T(\rho^+)(k) > .45L \text{ and } T(\rho)(k) > .9L\}$$

and

$$d_{\rho} = \{k \in c : T(\rho^{-})(k) > .45L \text{ and } T(\rho)(k) < -.9L\}.$$

We define an open relation K_0 on $[\mathcal{X}]^2$ as follows. A pair $(\rho_r, \rho_s) \in K_0$ providing

Journal of Logic & Analysis 8:2 (2016)

Alan Dow

- (1) $r \neq s$ are members of 2^{ω} ,
- (2) $\rho_r \cdot 1_{a_r} = \rho_r$,
- (3) $\rho_s \cdot \mathbf{1}_{a_s} = \rho_s$,
- (4) ρ_r and ρ_s agree on $a_r \cap a_s$,
- (5) there is a $k \in (b_{\rho_r} \cap d_{\rho_s}) \cup (b_{\rho_s} \cap d_{\rho_r})$.

Assume that $\{\rho_{\alpha} : \alpha \in \omega_1\} \subset C_1$ and $\{r_{\alpha} : \alpha \in \omega_1\} \subset 2^{\omega}$ are such that $[\{\rho_{\alpha} \cdot 1_{a_{r_{\alpha}}} : \alpha \in \omega_1\}]^2$ is contained in K_0 . For each α , let $a_{\alpha} = a_{r_{\alpha}}$ and assume, with no loss, that $\rho_{\alpha} = \rho_{\alpha} \cdot 1_{a_{\alpha}}$. For each α , let $b_{\alpha} = b_{\rho_{\alpha}}$ and $d_{\alpha} = d_{\rho_{\alpha}}$ Because of (5) the family $\{(b_{\alpha}, d_{\alpha}) : \alpha \in \omega_1\}$ forms a Luzin family and so there is no set $Y \subset \mathbb{N}$ and uncountable $\Gamma \subset \omega_1$ such that Y mod finite separates the family $\{b_{\alpha} : \alpha \in \Gamma\}$ from the family $\{d_{\alpha} : \alpha \in \Gamma\}$.

We consider the functions f^+, f^- where, for each k,

 $f^+(k) = \max\{\rho_{\alpha}^+(k) : \alpha \in \omega_1\} \text{ and } f^-(k) = \max\{\rho_{\alpha}^-(k) : \alpha \in \omega_1\}.$

Also let $f = f^+ - f^-$. Notice that $f \cdot 1_a = f$ and, for each $\alpha \in \omega_1$, $f \cdot 1_{a_\alpha} = \rho_\alpha$.

Claim 5 The limit of T(f) on b_{α} is at least .8L

Proof of Claim Assume that *b* is any infinite subset of b_{α} and assume that $T(f) \upharpoonright b$ converges to some L_b . By thinning *b* we may also assume that each of $T(\rho_{\alpha}) \upharpoonright b$ and $T(f \cdot 1_{a \setminus a_{\alpha}}) \upharpoonright b$ also converge. We know that $T(\rho_{\alpha}) \upharpoonright b$, converges to some value greater than or equal to .9*L*. By Claim 2, $T(f \cdot 1_{a \setminus a_{\alpha}}) \upharpoonright b$ must converge to values with absolute value less than or equal to .1*L*.

Similarly, we have

Claim 6 The limsup of T(f) on d_{α} is at most -.8L.

Now that we have that $Y = T(f)^{-1}(0, \infty)$ will mod finite separate the entire family $\{b_{\alpha} : \alpha \in \omega_1\}$ from $\{d_{\alpha} : \alpha \in \omega_1\}$, there is evidently no such uncountable K_0 -homogeneous set.

Therefore, by OCA, we deduce there is a countable family $\{\mathcal{Y}_n : n \in \omega\}$ which covers \mathcal{X} with the property that $[\mathcal{Y}_n]^2 \cap K_0$ is empty for all *n*. For each *n*, there is a countable Y_n which is a dense subset of \mathcal{Y}_n in the suitable metric topology inherited from \mathcal{X} .

Choose any selective ultrafilter \mathcal{U} on ω such that $J_c \in \mathcal{U}$. For each $U \in \mathcal{U}$, let $\sigma[U]$ denote the set $\{\sigma_i(k) : j, k \in U \cap J_c \text{ and } |U \cap k| > j\}$. The family $\{\sigma[U] : U \in \mathcal{U}\}$ is a

base for an ultrafilter on \mathbb{N} . It is the \mathcal{U} -limit of the sequence $\{\sigma_j(\mathcal{U}) : j \in J_c\}$. To see this, assume that $W \subset \mathbb{N}$ is such that $U_W = \{j \in J_c : \sigma_j^{-1}(W \cap A_j) = U_j \in \mathcal{U}\} \in \mathcal{U}$. Since \mathcal{U} is selective, there is a $U \in \mathcal{U}$ such that $U \subset U_W$ and, for each $j \in U$, $U \setminus \bigcap_{\ell < j} U_\ell$ has cardinality less than j. It follows that $\sigma[U] \subset W$.

Fix any countable elementary submodel with each of the above objects as elements. For $\eta \in \mathcal{X}$, let r_{η} denote the member of 2^{ω} such that $\eta \cdot 1_{a_{r_{\eta}}} = \eta$. We will choose an $r \in 2^{\omega}$ and then recursively define a $\rho \in C_1$ with $\rho \cdot 1_{a_r} = \rho$.

Let us consider any $s \in 2^{<\omega}$ and let $a^s = \{\psi_j(s \upharpoonright m) : j < m < |s|\}$ which is the maximal common initial segment of a_r for all $s \subset r \in 2^{\omega}$. Also fix any $\rho_s : a^s \to \{-1, 0, 1\}$. For any $n \in \omega$ and $s \subset t \in 2^{<\omega}$, define $\rho_{s,t} \supset \rho_s$ to be the function with domain a^t which has value 0 on $a^t \setminus a^s$. We will consider the two sets

$$W(\rho_s, n, t, 0) = \{k \in c : (\exists \eta \in \mathcal{Y}_n) \rho_{s,t} \subset \eta, t \subset r_\eta \text{ and } T(\eta)(k) > .9L\}$$

and

$$W(\rho_s, n, t, 1) = \{k \in c : (\exists \eta \in \mathcal{Y}_n) \rho_{s,t} \subset \eta, t \subset r_\eta \text{ and } T(\eta)(k) < -.9L\}.$$

There is a sequence $\{U_m : m \in \omega\} \subset \mathcal{U}$ such that for each such s, ρ_s, n, t , there is an m such that $\sigma[U_m]$ is either contained in, or disjoint from, $W(\rho_s, n, t, 0) \cap W(\rho_s, n, t, 1)$. Fix any $U \in \mathcal{U}$ which is mod finite contained in each U_m .

Choose any $r \in 2^{\omega}$ with the property that it does not contain any infinite chain of the form $E_{n,s,\rho_s} = \{t \in 2^{<\omega} : s \subset t, \text{ and } W(\rho_s, n, t, 0) \cap W(\rho_s, n, t, 1) \in \mathcal{U}\}$ where $s \in \{r \upharpoonright \ell : \ell \in \omega\}, n \in \omega, \text{ and } \rho_s : a^s \to \{-1, 0, 1\}$. In other words, if such an E_{n,s,ρ_s} is contained in r, then it is finite. Since there are only countably many such chains, there is such an r.

Consider the forcing \mathbb{P}_r consisting of finite approximations $\rho_s : a^s \to \{-1, 0, 1\}$ to a generic function $\rho : a_r \to \{-1, 0, 1\}$. Since $(a_r, \sigma[U]) \in \mathcal{L}_1$, whenever \mathcal{D} is a countable family of dense subsets of \mathbb{P}_r , there will be a non-meager set of \mathcal{D} -generic ρ that will satisfy that, not only is $\rho \in \mathcal{X}$, but also that b_ρ and d_ρ each hit $\sigma[U]$ in an infinite set.

Now for each integer *n*, define

 $D_n = \{\rho_{s,t} \in \mathbb{P}_r : \text{ either } t \notin E_{n,s,\rho_s} \text{ or } (\exists \overline{t} \in E_{n,s,\rho_s})(s \subset \overline{t} \perp t) \}.$

Fix any $\rho_s \in \mathbb{P}_r$. If E_{n,s,ρ_s} is a chain, there is an extension $s \subset t \subset r$ such that $t \notin E_{n,s,\rho_s}$. Therefore $\rho_{s,t} \in D_n$. Otherwise, there is an extension $\overline{t} \supset s$ such that $\overline{t} \not\subset r$ and $\overline{t} \in E_{n,s,\rho_s}$. Choose any $s \subset t \subset r$ such that $t \perp \overline{t}$. Then we have that $\rho_{s,t} \in D_n$. This shows that D_n is dense.

Now we assume that ρ is $\{D_n : n \in \omega\}$ -generic over \mathbb{P}_r and that $\rho \in \mathcal{X}$ and that each of b_ρ and d_ρ meet $\sigma[U]$ in an infinite set. Notice also that b_ρ and d_ρ necessarily meet each $c \cap A_j$ in a finite set. Therefore, $b_\rho \cap \sigma[U]$ and $d_\rho \cap \sigma[U]$ are mod finite contained in $\sigma[U_m]$ for each m. Consider any n and assume that $\rho \in \mathcal{Y}_n$. By the density of D_n , there is an $s \subset t \subset r$ such that $\rho_{s,t} \subset \rho$ and $\rho_{s,t} \in D_n$. Choose the $\overline{t} \perp t$ so that $\rho_{s,\overline{t}} \in E_{n,s,\rho_s}$. Since there is an m such that $\sigma[U_m] \subset W(\rho_s, n, \overline{t}, 0)$, there is a $k \in d_\rho \cap W(\rho_s, n, \overline{t}, 0)$. Choose $\eta \in \mathcal{Y}_n$ so that $\rho_{s,\overline{t}} \subset \eta$, $t \subset r_\eta$, and $T(\eta)(k) > .9L$. We have now produced $\rho, \eta \in \mathcal{Y}_n$ such that $\{\rho, \eta\} \in K_0$.

This completes the proof of the lemma.

Let us say that a set *a* is *T*-orthogonal to a set *c* if for all $\rho \in C_1$, $T(\rho \cdot 1_c) \cdot 1_a$ converges to 0. So far as we know, this is not a symmetric relation. Although it does follow from Lemma 2 that there are mutually *T*-orthogonal pairs, we do not know if there is such a choice with $c \in \mathcal{J}$ (as we will need), and so we are satisfied with the asymmetry.

Following a standard method of producing a proper poset for the application of PFA we pass to the CH extension obtained by forcing with $\omega_2^{<\omega_1}$. For any $h \in C_1$ and $d \in \mathcal{I}^+$, we define the poset $P_{h,d}$ to be the set of partial functions p from \mathbb{N} into $\{-1, 0, 1\}$ such that dom $(p) \subset^* d$ and $p \subset^* h$ (in the sense of only finitely many disagreements). For any $\alpha \leq \omega_1$ and sequence $\langle f_{\beta}, d_{\beta} : \beta < \alpha \rangle$ of such $f_{\beta} \in C_1$ and $d_{\beta} \in \mathcal{I}^+$, satisfying that for $\beta < \gamma < \alpha \ d_{\beta} \subset^* d_{\gamma}$ and $f_{\gamma} \cdot 1_{d_{\beta}} =^* f_{\beta} \cdot 1_{d_{\beta}}$, the poset $P_{\langle f_{\beta}, d_{\beta} : \beta < \alpha \rangle}$ is defined to be $\bigcup_{\beta < \alpha} P_{f_{\beta}, d_{\beta}}$ We can fix a \diamondsuit -sequence $\{S_{\alpha} : \alpha \in \omega_1\} \subset [\omega_1]^{\leq \omega}$ and fix an enumeration $\{H_{\alpha} : \alpha \in \omega_1\}$ of $H(\omega_1)$ (the hereditarily countable sets).

Now we define a sequence $\{d_{\beta}, f_{\beta}, \rho_{\beta}, a_{\beta}, \mathcal{D}_{\beta} : \beta \in \omega_1\}$ subject to the following inductive assumptions on α : for $\beta < \gamma < \alpha$,

- (1) $d_{\gamma} \in \mathcal{J}$,
- (2) $a_{\beta} \subset d_{\gamma}, a_{\beta} \in \mathcal{I}^+$, and $d_{\beta} \cup a_{\beta} \subset d_{\beta+1}$,
- (3) $f_{\beta}, f_{\gamma} \in C_1$ and $f_{\beta} = f_{\beta} \cdot 1_{d_{\beta}} =^* f_{\gamma} \cdot 1_{d_{\beta}}$,
- (4) $f_{\gamma} \cdot \mathbf{1}_{a_{\beta}} = \rho_{\beta}$,
- (5) for all $\rho \in C_1$, $T(\rho \cdot 1_{\mathbb{N} \setminus d_{\gamma}}) \cdot 1_{a_{\beta}}$ converges to 0,
- (6) \mathcal{D}_{β} is a countable family of predense subsets of $P_{f_{\beta},d_{\beta}}$,
- (7) $\mathcal{D}_{\beta} \subset \mathcal{D}_{\gamma}$,
- (8) if $D_{\gamma} = \{H_{\xi} : \xi \in S_{\gamma}\}$ is a predense subset of $P_{\langle f_{\beta}, d_{\beta} : \beta < \gamma \rangle}$, then $D_{\gamma} \in \mathcal{D}_{\gamma}$.

This construction using \diamond as in condition (8) will ensure that the poset $P_{\omega_1} = P_{\langle f_{\beta}, d_{\beta}: \beta < \omega_1 \rangle}$ is ccc. This is from Shelah's oracle chain condition method of Shelah [10, §IV]. We also work with a listing, $\{\dot{Y}_{\beta}: \beta < \omega_1\}$, of all nice P_{ω_1} -names of subsets of \mathbb{N} such that \dot{Y}_{β} is a $P_{f_{\gamma}, d_{\gamma}}$ -name (for any $\beta < \gamma$). And we add the inductive condition

(9) for $\beta < \gamma$, $P_{\langle f_{\xi}, d_{\xi}:\xi < \gamma \rangle}$ forces that \dot{Y}_{β} does not mod finite separate b_{γ} from e_{γ} , where $b_{\gamma} = \{k \in a_{\gamma} : T(f_{\gamma+1})(k) > \frac{2}{3}\}$ and $e_{\gamma} = \{k \in a_{\gamma} : T(f_{\gamma+1})(k) < \frac{1}{3}\}$.

After constructing a_{γ} and ρ_{γ} , we are able to preserve the property in item (9) by adding a specific countable family of dense sets to $\mathcal{D}_{\gamma+1}$.

The construction of this sequence will be explained in a series of lemmas. However before doing so, we indicate how this will prove the main theorem. After forcing with P_{ω_1} , we have that the family $\{b_{\gamma}, e_{\gamma} : \gamma \in \omega_1\}$ can not be σ -separated. This implies (Todorčević [13, Theorem 2] and Shelah and Steprāns [11, Lemma 2]) there is a proper poset Q which introduces an uncountable $\Gamma \subset \omega_1$ so that the family $\{b_{\gamma}, e_{\gamma} : \gamma \in \Gamma\}$ is a Luzin family (it is unsplit in any proper forcing extension). Now, we meet ω_1 many dense subsets of $\omega_2^{<\omega_1} * P_{\omega_1} * Q$ in order to decide on the generic function $f = f_{\omega_1}$ added by P_{ω_1} , and the Luzin gap $\{b_{\gamma}, e_{\gamma} : \gamma \in \Gamma\}$ as well as the basic properties of the family as detailed in items (1) - (6). Notice that (by the inclusion of ω_1 many dense subsets of P_{ω_1}) $f \cdot 1_{d_{\gamma}}$ is almost equal to f_{γ} . It follows then that T(f) can not exist. This is because $Y = T(f)^{-1}((\frac{1}{2}, \infty))$ is required to split the Luzin gap. To see this we have to show that $T(f) \cdot 1_{b_{\gamma}}$ has liminf greater than $\frac{1}{2}$, while $T(f) \cdot 1_{e_{\gamma}}$ has limsup less than $\frac{1}{2}$. We consider $T(f) \cdot 1_{a_{\gamma}}$ as asymptotically equal to $T(f \cdot 1_{d_{\gamma+1}}) \cdot 1_{a_{\gamma}} + T(f \cdot 1_{\mathbb{N}\setminus d_{\gamma+1}}) \cdot 1_{a_{\gamma}}$. Items (3) and (5) ensure that this is asymptotically equal to $T(f_{\gamma+1}) \cdot 1_{a_{\gamma}}$. Therefore, $Y \cap a_{\gamma}$ does separate b_{γ} and c_{γ} .

We construct, by induction on $\alpha \in \omega_1$, the sequences

$$\langle f_{\beta}, d_{\beta}, \mathcal{D}_{\beta} : \beta < \alpha \rangle \cup \langle \rho_{\beta}, a_{\beta} : \beta + 1 < \alpha \rangle$$

as per inductive items (1)-(9) above. We can start very simply with $d_0 = \emptyset$, f_0 the constant 0 function, and $\mathcal{D}_0 = \{\emptyset\}$.

If α is a limit ordinal, then the choices of f_{α}, d_{α} and \mathcal{D}_{α} are handled at the end in Lemma 6. Therefore, we can proceed by assuming that we have constructed the family

$$\langle f_{\beta}, d_{\beta}, \mathcal{D}_{\beta} : \beta \leq \alpha \rangle \cup \langle \rho_{\beta}, a_{\beta} : \beta + 1 \leq \alpha \rangle.$$

The choices for $f_{\alpha+1}, d_{\alpha+1}, \mathcal{D}_{\alpha+1}$ together with $a_{\alpha}, \rho_{\alpha}$ are established in Lemma 5. We will need preparatory lemmas leading up to it.

This next lemma is (essentially) statement (*1) of Shelah [10, IV §5, p134]. We sketch a proof for the reader's convenience.

Journal of Logic & Analysis 8:2 (2016)

Lemma 3 Assume that $h \in C_1$ and $d \in \mathcal{J}$ are such that $h \cdot 1_d = h$ and assume that $c \in \mathcal{I}^+$ is disjoint from d. If \mathcal{E} is a countable family of predense subsets of $P_{h,d}$, then there is an $a \subset c$ such that $J_a = J_{a \setminus c} = J_c$ so that for all $\rho \in C_1$ each $E \in \mathcal{E}$ is a predense subset of the poset $P_{h+\rho \cdot 1_a, d \cup a}$.

Moreover, given *c* and *a* as above let $d_1 = d \cup (c \setminus a)$. Then there is an h_1 such that $h_1 \cdot 1_{d_1} = h_1$, $h_1 \cdot 1_d = h \cdot 1_d$, and such that for all $\rho \in C_1$ with $\rho \cdot 1_a = \rho$, each $E \in \mathcal{E}$ is a predense subset of $P_{h_1+\rho,d_1\cup a}$.

Proof Let $\{p_{\ell} : \ell \in \omega\}$ enumerate all members finite functions from the poset $P_{h,d}$. Let $p_{\ell} \oplus h$ denote the function $p_{\ell} \cup h \upharpoonright (d \setminus \operatorname{dom}(p_{\ell}))$. Let $\{E_{\ell} : \ell \in \omega\}$ be a descending sequence of dense subsets of $P_{h,d}$ so that the downward closure of each $E \in \mathcal{E}$ contains one of them. Recursively define an increasing sequence $\langle n_k : k \in \omega \rangle$ of integers as follows. Let $n_0 = 0$ and given n_k ensure that n_{k+1} is large enough so that dom $(p_{\ell}) \subset n_{k+1}$ for all $\ell < n_k$ and that there is some $\ell_k < n_{k+1}$ so that dom (p_{ℓ_k}) is contained in $[n_k, n_{k+1}) \setminus d$, and, for all ℓ such that dom $(p_{\ell}) = n_k$, $p_{\ell_k} \cup (p_{\ell} \oplus h) \in E_k$. In addition, ensure that $c \cap A_j \cap [n_k, n_{k+1})$ is not empty for each $j \in J_c \cap n_k$.

Let $a = c \cap \bigcup \{ [n_{2k}, n_{2k+1}) : k \in \omega \}$. Note that $J_a = J_{c \setminus a} = J_c$. Let ρ be any member of C_1 and fix any $E \in \mathcal{E}$. We check that E is predense in $P_{h+\rho \cdot 1_a, d \cup a}$. To do so we consider any $q \in P_{h+\rho, d \cup a}$. By extending q we may assume that dom(q) contains $d \cup a$. Choose k large enough so that the downward closure of E in $P_{h,d}$ contains E_k , dom(q) $\subset d \cup a \cup n_{2k+1}$, and such that $q(j) = (h+\rho)(j)$ for all $n_{2k+1} < j \in d \cup a$. There is an ℓ such that $q \upharpoonright n_{2k+1}$ is contained in p_ℓ and dom(p_ℓ) = n_{2k+1} . By construction $p_{\ell_{2k+1}} \cup (p_\ell \oplus h)$ is in E_{2k} . Since $p_{\ell_{2k+1}} \cup (p_\ell \oplus h)$ is contained in $p_{\ell_{2k+1}} \cup q$, we have that q is compatible with a member of E.

Now assume that $d \cup c \in \mathcal{J}$ and choose $h_1 \in C_1$ so that $h_1 \cdot 1_d = h \cdot 1_d$ and so that $h \upharpoonright c = \bigcup \{ p_{\ell_k} \upharpoonright c : k \in \omega \}$. Also ensure that $h_1 \cdot 1_{\mathbb{N} \setminus d_1}$ is 0. The same argument as above shows that each $E \in \mathcal{E}$ is predense in P_{h_1,d_1} because $p_k \upharpoonright c \subset h_1$ for all k. \Box

Having chosen f_{α} , d_{α} , we are ready to choose a_{α} . First apply Lemma 2 to find $\tilde{a}_{\alpha} \in \mathcal{I}^+$ and disjoint $c_{\alpha} \subset \mathbb{N} \setminus d_{\alpha}$ so that \tilde{a}_{α} is *T*-orthogonal to c_{α} and so that $J_{c_{\alpha}} = \omega$. Next apply Lemma 3 (with $c = \tilde{a}_{\alpha}$) to choose any $a_{\alpha} \in \mathcal{I}^+$ contained in \tilde{a}_{α} and $h_{\alpha,0}$ so that $h_{\alpha,0} \cdot 1_{d_{\alpha}} = f_{\alpha}$, $h_{\alpha,0} \cdot 1_{a_{\alpha} \cup c_{\alpha}} = 0$ such that we are free to choose any $\rho_{\alpha} \in C_1$ with $\rho_{\alpha} = \rho_{\alpha} \cdot 1_{\tilde{a}_{\alpha}}$ so as to preserve that each member of the family \mathcal{D}_{α} is predense in the poset $P_{h_{\alpha,0} + \rho_{\alpha}, \mathbb{N} \setminus (a_{\alpha} \cup c_{\alpha})}$. Set $d_{\alpha,0} = \mathbb{N} \setminus (a_{\alpha} \cup c_{\alpha})$.

With this reduction, we have now guaranteed that with this choice of a_{α} and $d_{\alpha+1} = \mathbb{N} \setminus c_{\alpha}$, then for all $\gamma > \alpha$, so long as $f_{\gamma} \cdot 1_{d_{\alpha+1}} = f_{\alpha+1} - f_{\alpha+1} \cdot 1_{d_{\alpha+1}}$ (as in inductive

condition (3)) is satisfied, then $T(f_{\gamma}) \cdot 1_{a_{\alpha}}$ will be asymptotically equal to $T(f_{\alpha+1}) \cdot 1_{a_{\alpha}}$. The reason is that $T(f_{\gamma}) - T(f_{\alpha+1})$ will be asymptotically equal to $T(f_{\gamma} \cdot 1_{c_{\alpha}})$, and a_{α} is *T*-orthogonal to c_{α} .

The key property of the choice of ρ_{α} is the requirement on \dot{Y}_{β} for each $\beta < \alpha$. This next lemma shows how to handle one such β , then we extend to all countably many in the subsequent lemma.

Lemma 4 Let *a*, *d* be disjoint members of \mathcal{I}^+ and let $h \in C_1$ be such that $h \cdot 1_d = h$. Further suppose that \dot{Y} is a $P_{h,d}$ -name for a subset of \mathbb{N} and let p_0 be any member of $P_{h,d}$. Then there is a $\rho \in C_1$ such that, $p_0 \subset \rho$, $\rho \cdot 1_{d \cup a} =^* \rho$, and such that $\rho \upharpoonright (d \cup a)$ forces, with respect to the poset $P_{h+\rho \cdot 1_a, d \cup a}$, that \dot{Y} does not mod finite separate $a \cap T(\rho)^{-1}(\frac{2}{3}, \infty)$ and $a \cap T(\rho)^{-1}(-\infty, \frac{1}{3})$.

Proof Assume that \dot{Y} is such a name and that there is no such ρ . Fix any integer L, we will prove that T has norm exceeding L. We may obviously assume that a is disjoint from dom (p_0) and that dom $(p_0) \supset d$. We may assume that \dot{Y} is a simple name that is a subset of $\mathbb{N} \times P_{h,d}$ and, for a generic filter G, val $_G(\dot{Y}) = \{k : (\exists r \in G)(k, r) \in \dot{Y}\}$. Let $p_0^- \bar{0} \in C_1$ denote the extension of p_0 satisfying that $p_0^- \bar{0} \cdot 1_{\text{dom}(p_0)} = p_0^- \bar{0}$. By the properties of T we have that $T(p_0^- \bar{0})$ converges to 0 on $a \cap A_j$ for each $j \in J_a$. By removing a finite set from each $a \cap A_j$, we may assume that $T(p_0^- \bar{0})(k)$ has absolute value less than $\frac{1}{9}$ for all $k \in a$.

Fix, for each $j \in J_a$ an injection $\psi_j : 2^{<\omega} \to a \cap A_j$. Our plan is to choose $\rho \in C_1$ so that for all j, $x_{\rho,j} = \{s \in 2^{<\omega} : \rho(\psi_j(s)) \neq 0\}$ is a chain. Let $Q \subset P_{h,d}$ denote the set of those $p \in P_{h,d}$ with this same property, namely, that for all j, $x_{p,j} = \{s \in 2^{<\omega} : p(\psi_j(s)) \neq 0\}$ is a (possibly empty) chain. Let $x_{p,j}^+ = \{s \in x_{p,j} : p(\psi_j(s)) > \frac{7}{9}\}$ and $x_{p,j}^- = \{s \in x_{p,j} : p(\psi_j(s)) < \frac{2}{9}\}$. The ordering on Q, inherited from $P_{h,d}$, is that $r \leq_Q q$ providing $q \subseteq r$. We may consider \dot{Y} (equivalently $\dot{Y} \cap (\mathbb{N} \times Q)$) as a Q-name. Fix an enumeration $\{q_\ell : \ell \in \omega\}$ of $\{q \in Q : \operatorname{dom}(q) \cap a = \emptyset\}$.

For any $j \in J_a$, say that an element $q \in Q$ is *j*-decisive if for all $q \subset r$ in Q, $r \Vdash_Q \psi_j(t) \in \dot{Y}$ for all $t \in x_{r,j}^+ \setminus x_{q,j}$, and $r \Vdash_Q \psi_j(t) \notin \dot{Y}$ for all $t \in x_{r,j}^- \setminus x_{q,j}$.

Claim 7 For each $p_0 \subseteq p \in Q$ and $j \in J_a$ there is a $p \subseteq q$ in Q which is *j*-decisive.

If no such *q* exists, then, we recursively choose an \subset -increasing sequence $\{r_k : k \in \omega\} \subset Q$ with $p = r_0$ and dom $(r_k \setminus p) \subset a$ for all *k*. Also ensure that $\bigcup_k \text{dom}(r_k) = a$. The inductive hypothesis is that for each *k* and each $\ell < k$, if $q_\ell \cup r_k \in Q$, then either

there is ℓ' and a $t \in x_{r_{k+1},j}^+ \setminus x_{r_k,j}$ such that $q_{\ell'} \cup r_{k+1} \in Q$, $q_{\ell'} \cup r_{k+1} < q_{\ell} \cup r_k$, and $q_{\ell'} \cup r_{k+1} \Vdash \psi_j(t) \notin Y$, or a similar conclusion for some $t \in x_{r_{k+1},j}^- \setminus x_{r_k,j}$.

Upon completion of this recursion, set $\rho = \bigcup_k r_k$. We check that ρ is as required in the conclusion of the lemma. First of all, let us recall that ρ and $T(\rho)$ are asymptotically equivalent on $a \cap A_j$. So there is an k_0 such that $|\rho(\psi_j(t)) - T(\rho)(\psi_j(t))| < \frac{1}{9}$ for all $t \in \bigcup_k x_{r_k} \setminus x_{r_{k_0}}$.

Now let us assume that there is a $\bar{q} \in P_{\rho,d\cup a}$ extending $\rho \upharpoonright (d \cup a)$, and an $m \in \omega$ such that \bar{q} forces that \dot{Y} contains $(a \setminus m) \cap A_j \cap T(\rho)^{-1}(\frac{2}{3}, \infty)$ and is disjoint from $(a \setminus m) \cap A_j \cap T(\rho)^{-1}(-\infty, \frac{1}{3})$. By enlarging k_0 , we can assume that $\psi_j(t) > m$ for all $t \in \bigcup_k x_{r_k} \setminus x_{r_{k_0}}$. Therefore we have that \bar{q} forces that $\psi_j(t) \in \dot{Y}$ for all $t \in \bigcup_k x_{r_k}^+ \setminus x_{r_{k_0}}$, and that $\psi_j(t) \notin \dot{Y}$ for all $t \in \bigcup_k x_{r_k}^- \setminus x_{r_{k_0}}$.

Set $q = \bar{q} \upharpoonright (\mathbb{N} \setminus a)$ and notice that $q \in Q$ and so there is an ℓ with $q_{\ell} = q$. Choose any $k > \ell, k_0$. By symmetry, since q_{ℓ} is not *j*-decisive, we may assume there is $t \in x_{r_{k+1},j}^+ \setminus x_{r_k,j}$ and an ℓ' such that $q_{\ell'} \cup r_{k+1} \Vdash_Q \psi_j(t) \notin \dot{Y}$. However, since $\operatorname{dom}(\rho \setminus r_{k+1}) \subset a$, we have that $q_{\ell'} \cup \rho < \rho$ is in the poset $P_{\rho,d\cup a} = P_{h+\rho\cdot 1_a,d\cup a}$ and so, by the assumption on \bar{q} , forces that $\psi_j(t) \in \dot{Y}$. By our assumption on the name \dot{Y} , there is a condition $r \in P_{h,d}$ such that $(\psi_j(t), r) \in \dot{Y}$ and is such that $r \cup q_{\ell'} \cup \rho$ is an extension of $q_{\ell'} \cup \rho$. Of course then, $r \cup q_{\ell'} \cup r_{k+1}$ forces that $\psi_j(t) \in \dot{Y}$ which contradicts that $q_{\ell'} \cup r_{k+1} \Vdash_Q \psi_j(t) \notin \dot{Y}$.

Next we use the claim to show that L is not a bound on the norm of T. The key idea is that being *j*-decisive is decidable and so we can build suitably long ψ_j -chains in A_j and then branch away into 5L many incomparable extensions that share an element $\psi_j(t)$ forced to be in \dot{Y} .

Claim 8 There is a doubly-indexed set $\{g_i^k : i \le 5L, k \in \omega\} \subset Q$ and an increasing sequence $\{j_k : k \in \omega\} \subset J_a$ such that, for each k and $i \le 5L$

- (1) $p_0 \subset g_i^k \subset g_i^{k+1}$,
- (2) $\operatorname{dom}(g_i^k \setminus p_0) \subset a$,
- (3) for each $\ell < k$, there is an ℓ' such that $q_{\ell} \subset q_{\ell'}$ and $q_{\ell'} \cup g_i^{k+1}$ is j_k -decisive,
- (4) $g_i^{k+1} \upharpoonright (a \cap A_{j_k}) \subset g_{i+1}^{k+1} \upharpoonright (a \cap A_{j_k})$ for i < 5L,
- (5) there is a $t_k \in x^+_{g_{5L}^{k+1}, j_k} \cap x^+_{g_i^{k+2}, j_k} \setminus x_{g_i^{k+1}, j_k}$,
- (6) for all $j \in J_a \cap j_k$ and $i \neq \ell \leq 5L$, $x_{g_i^{k+2}, j} \cup x_{g_\ell^{k+2}, j}$ is not a chain.

PFA and complemented subspaces of ℓ_{∞}/c_0

Proof of Claim 8 We begin with $g_i^0 = p_0$ for each $i \le 5L$ and $j_{-1} = 0$. Assume that we have selected j_{k-1} and $\{g_i^k : i \le 5L\}$ for some k. Set $\ell_0 = k$. Choose any $j_k > j_{k-1}$ in J_a so that dom $(g_i^k) \cap a \cap A_{j_k}$ is empty for all $i \le 5L$. Choose any extension \overline{g}_0^{k+1} of $g_0^k \cup (g_{5L}^k \upharpoonright (a \cap A_{j_{k-1}}))$ which is j_k -decisive. Suppose i < 5L and we have chosen \overline{g}_i^{k+1} and a value ℓ_{i+1} so that for each $\ell < \ell_i$ there is an $\ell' < \ell_{i+1}$ such that $q_\ell \subset q_{\ell'}$ and $q_{\ell'} \cup \overline{g}_i^{k+1}$ is j_k -decisive. Choose \overline{g}_{i+1}^{k+1} (in ℓ_{i+1} steps) to be any extension of $g_{i+1}^k \cup (g_{5L}^k \upharpoonright (a \cap A_{j_{k-1}})) \cup (\overline{g}_i^{k+1} \upharpoonright (a \cap A_{j_k}))$ so that there is an ℓ_{i+2} such that for all $\ell < \ell_{i+1}$, there is an $\ell' < \ell_{i+2}$ so that $q_\ell \subset q_{\ell'}$ and $q_{\ell'} \cup \overline{g}_{i+1}^{k+1}$ is j_k -decisive. When choosing \overline{g}_{5L}^{k+1} ensure also that there is $t_k \in x_{\overline{g}_{k-1}^{k+1} j_k}$ for each $i \le 5L$. Finally, choose g_i^{k+1} to be an extension of \overline{g}_i^{k+1} so that $g_i^{k+1} \upharpoonright (a \cap A_{j_k}) = \overline{g}_i^{k+1} \upharpoonright (a \cap A_{j_k})$ and in such a way that for all $j \in J_a \cap j_k$ and all distinct $\ell, i \le 5L$, $x_{g_i^{k+1} j} \cup x_{g_\ell^{k+1} j}$ is not a chain (this last step is a triviality).

Now, let us consider $g_i = \bigcup_{k \in \omega} g_i^k$ for each $i \leq 5L$. But also, by the additional properties of T, we can choose $a_1 \subset a$ so that for each $j \in J_a$, $a \cap A_j \setminus a_1$ is finite, and so that for all $i < \ell < 5L$, we have that $g_i \cdot g_\ell \cdot 1_{a_1}$ is constantly 0. Then we have that $T(g_i \cdot 1_{a_1})$ is asymptotically equal to $T(g_i \cdot 1_a)$ and $\sum_{i < 5L} g_i \cdot 1_{a_1}$ has norm at most 1. Also, $T(\sum_{i < 5L} g_i \cdot 1_{a_1})$ is asymptotically equal to $T(\Sigma_{i < 5L} g_i \cdot 1_a)$. By our assumption, we have that there is some q_ℓ which, for each $i \leq 5L$ has decided on the *m* and forces that for all $\sigma_j(t_k) > m$ which are in \dot{Y} , we must have that $T(g_i \cdot 1_a)(\sigma_j(t_k)) > \frac{1}{3}$.

But now if $q_{\bar{\ell}}$ is any extension of q_{ℓ} , then for each $k > \bar{\ell}$, there is a further extension $q_{\ell'}$ such that, for each i < 5L, $q_{\ell'} \cup g_{i,j_k}^{k+1}$ is j_k -decisive. That is, $q_{\ell'} \cup g_{i,j_k}^{k+1}$ forces that $\psi_{j_k}(t_k) \in \dot{Y}$. Therefore, it follows that $T(\sum_{i < 5L} g_i \cdot 1_{a_1})(\psi_{j_k}(t_k))$ is greater than $(5L)(\frac{2}{9})$ for infinitely many k. Which shows that the norm of T is greater than L.

Lemma 5 Given f_{α}, d_{α} and \mathcal{D}_{α} as in the inductive construction, there is an $a_{\alpha} \in \mathcal{I}^+$ which is disjoint from d_{α} , a pair $f_{\alpha+1}, d_{\alpha+1}$, and a countable family $\mathcal{D}_{\alpha+1}$ such that for each $\beta < \alpha$

- (1) $d_{\alpha} \cup a_{\alpha} \subset d_{\alpha+1}$,
- (2) $d_{\alpha+1} \in \mathcal{J}$,
- (3) $f_{\alpha+1} \cdot 1_{d_{\alpha}} = f_{\alpha}$, and $f_{\alpha+1} \cdot 1_{d_{\alpha+1}} = f_{\alpha+1}$,
- (4) a_{α} is *T*-orthogonal to $c_{\alpha} = \mathbb{N} \setminus d_{\alpha+1}$,
- (5) $\mathcal{D}_{\alpha} \subset \mathcal{D}_{\alpha+1}$ and each $D \in \mathcal{D}_{\alpha+1}$ is a predense subset of $P_{f_{\alpha+1},d_{\alpha+1}}$,
- (6) if G is any $\mathcal{D}_{\alpha+1}$ -generic filter on $P_{f_{\alpha+1},d_{\alpha+1}}$, then $\operatorname{val}_G(\dot{Y}_\beta)$ does not mod finite separate b_α and e_α .

Journal of Logic & Analysis 8:2 (2016)

Proof As discussed before the previous lemma, there are a_{α}, c_{α} and $h_{\alpha,0} \in C_1$ and $d_{\alpha,0} = \mathbb{N} \setminus (a_{\alpha} \cup c_{\alpha})$ so that

- (1) $d_{\alpha+1} = d_{\alpha,0} \cup a_{\alpha} \in \mathcal{J},$
- (2) $h_{\alpha,0} \cdot 1_{d_{\alpha}} = f_{\alpha}$, and $h_{\alpha,0} \cdot 1_{a_{\alpha} \cup c_{\alpha}} = 0$,
- (3) for any $\rho_{\alpha} \in C_1$ with $\rho_{\alpha} = \rho_{\alpha} \cdot 1_{a_{\alpha}}$, each $D \in \mathcal{D}_{\alpha}$ is predense in $P_{h_{\alpha,0} + \rho_{\alpha}, d_{\alpha,0}}$,
- (4) a_{α} is *T*-orthogonal to c_{α} .

We will recursively choose disjoint infinite subsets $a_{\alpha,n}$ of a_{α} and functions $\rho_{\alpha,n} = \rho_{\alpha} \cdot 1_{a_{\alpha,n}}$ so as to "handle" \dot{Y}_n . However, in doing so we have to take care when defining $a_{\alpha,n+1}$ to ensure that the full ρ_{α} will not change the fact that \dot{Y}_n was appropriately handled by $\rho_{\alpha} \upharpoonright a_{\alpha,n}$. Let us again note that regardless of our choice of ρ_{α} , each member of \mathcal{D}_{α} will be predense in $P_{h_{\alpha,0}+\rho_{\alpha},d_{\alpha+1}}$.

However, in order to make the first step general enough to handle all later steps, we may suppose we have some countable family $\mathcal{E}_{\alpha,0}$ of predense subsets of $P_{h_{\alpha,0},\mathbb{N}\setminus(a_{\alpha}\cup c_{\alpha})}$, that must be preserved. Fix any $p_0 \in P_{h_{\alpha,0},\mathbb{N}\setminus(a_{\alpha}\cup c_{\alpha})}$ and any \dot{Y}_{β_0} with $\beta_0 < \alpha$.

To begin, apply Lemma 2 to obtain disjoint subsets, $\tilde{a}_{\alpha,0}$ and $c_{\alpha,0}$, of a_{α} so that $\tilde{a}_{\alpha,0}$ is *T*-orthogonal to $c_{\alpha,0}$. These may be chosen so that each are in \mathcal{I}^+ and are disjoint from dom (p_0) . Apply Lemma 3 to choose $a_{\alpha,0} \subset \tilde{a}_{\alpha,0}$ and a function $h_{\alpha,1} \in C_1$ so that $h_{\alpha,1} \cdot 1_{d_{\alpha,0}} = h_{\alpha,0}$, $h_{\alpha,1} \cdot 1_{a_{\alpha,0} \cup c_{\alpha,0}} = 0$, and, for all $\rho \in C_1$ with $\rho \cdot 1_{a_{\alpha,0} \cup c_{\alpha,0}} = \rho$, we have that each member of $\mathcal{E}_{\alpha,0}$ is predense in $P_{h_{\alpha,1}+\rho,\mathbb{N}\setminus c_{\alpha}}$. Set $d_{\alpha,1} = d_{\alpha,0} \cup a_{\alpha} \setminus (a_{\alpha,0} \cup c_{\alpha,0})$.

This gives us the poset $P_{h_{\alpha,1},d_{\alpha,1}}$ and first we replace p_0 by the unique extension with domain $d_{\alpha,1}$ which agrees with $h_{\alpha,1}$ at all points not in dom (p_0) . Then we apply Lemma 4, and in this way we obtain $\rho_{\alpha,0} \in C_1$ with $\rho_{\alpha,0} \cdot 1_{a_{\alpha,0}} = \rho_{\alpha,0}$, so that $(p_0 + \rho_{\alpha,0}) \upharpoonright (d_{\alpha,1} \cup a_{\alpha,0})$ forces with respect to the poset $P_{h_{\alpha,1}+\rho_{\alpha,0},d_{\alpha,1}\cup a_{\alpha,0}}$, that \dot{Y}_{β_0} does not mod finite split $a_{\alpha,0} \cap T(h_{\alpha,1} + \rho_{\alpha,0})^{-1}(\frac{2}{3},\infty)$ and $a_{\alpha,0} \cap T(h_{\alpha,1} + \rho_{\alpha,0})^{-1}(-\infty,\frac{1}{3})$.

Let us note that for all $\rho \in C_1$, $T(\rho \cdot 1_{c_{\alpha,0}}) \cdot 1_{a_{\alpha,0}}$ converges to 0. There is a countable set $\mathcal{E}_{\alpha,1} \supset \mathcal{E}_{\alpha,0}$ of predense subsets of $P_{h_{\alpha,1}+\rho_{\alpha,0},d_{\alpha,1}\cup a_{\alpha,0}}$ with the property that so long as a filter *G* with $h_{\alpha,0} + \rho_{\alpha,0} \in G$ meets each element of $\mathcal{E}_{\alpha,1}$, it will ensure that $\operatorname{val}_G(\dot{Y}_{\beta_0})$ does not split $a_{\alpha,0} \cap T(h_{\alpha,1} + \rho_{\alpha,0})^{-1}(\frac{2}{3}, \infty)$ and $a_{\alpha,0} \cap T(h_{\alpha,1} + \rho_{\alpha,0})^{-1}(-\infty, \frac{1}{3})$.

We continue by choosing any $p_1 \in P_{h_{\alpha,1}+\rho_{\alpha,0},d_{\alpha,1}\cup a_{\alpha,0}}$ and any $\beta_1 < \alpha$. We will select $\tilde{a}_{\alpha,1}$, $c_{\alpha,1}$, $a_{\alpha,1}$ as subsets of $c_{\alpha,0}$ as we did with $\tilde{a}_{\alpha,0}$, $c_{\alpha,0}$, $a_{\alpha,0}$. We set $d_{\alpha,2} = \mathbb{N} \setminus (a_{\alpha,1} \cup c_{\alpha,1})$ and $h_{\alpha,2}$ as above so that $h_{\alpha,2} \cdot 1_{d_{\alpha,0}\cup a_{\alpha,0}} = (h_{\alpha,1} + \rho_{\alpha,0}) \cdot 1_{d_{\alpha,0}\cup a_{\alpha,0}}$.

The recursion continues for ω -many steps and we define $f_{\alpha+1}$ to be the unique function satisfying that $f_{\alpha+1} \cdot 1_{d_{\alpha}\cup a_{\alpha}} = f_{\alpha+1}$ and $f_{\alpha+1} \cdot 1_{d_{\alpha,\ell}\cup a_{\alpha,\ell}} = h_{\alpha,\ell} + \rho_{\alpha,\ell}$ for all $\ell \in \omega$.

In this recursion, it is easily arranged that $\bigcup_{\ell} (d_{\alpha,\ell} \cup a_{\alpha,\ell}) = d_{\alpha} \cup a_{\alpha} = d_{\alpha+1}$ and let $\rho_{\alpha} = f_{\alpha+1} \cdot 1_{a_{\alpha}}$. Additionally, it is easily arranged that for each *n* and each pair $p \in P_{h_{\alpha,n},d_{\alpha,n}}, \beta < \alpha$, there is an $\ell \ge n$ such that at stage ℓ we are considering $p_{\ell} = p$ and $\beta_{\ell} = \beta$.

Choose any $q \in P_{f_{\alpha+1},d_{\alpha+1}}$ and $\beta \in \alpha$. Choose any $k \in \omega$ so that the finite set of places where q might disagree with $f_{\alpha+1}$ is contained in $d_{\alpha,k}$. Let $p = q \upharpoonright d_{\alpha,k}$ and choose $\ell > k$ so that at stage ℓ of this construction, we were considering p and \dot{Y}_{β} . This means that at stage ℓ , we were working with $q \upharpoonright d_{\alpha,\ell+1}$ and we arranged that $q \upharpoonright (d_{\alpha,\ell+1} \cup a_{\alpha,\ell})$ forced over the poset $P_{h_{\alpha,\ell+1}+\rho_{\alpha,\ell},d_{\alpha,\ell+1}}$ that \dot{Y}_{β} did not mod finite split $a_{\alpha,\ell} \cap T(h_{\alpha,\ell+1})^{-1}(\frac{2}{3},\infty)$ and $a_{\alpha,\ell} \cap T(h_{\alpha,\ell+1})^{-1}(-\infty,\frac{1}{3})$. We set $\mathcal{E}_{\alpha,\ell+1}$ to be a countable family of predense sets that will ensure this continues to hold, and at stage $\ell + 1$, we ensured that for all $\rho \in C_1$ such that $\rho \cdot 1_{a_{\alpha,\ell+1}\cup c_{\alpha,\ell+1}} = \rho$, each member of $\mathcal{E}_{\alpha,\ell+1}$ is predense in $P_{h_{\alpha,\ell+1}+\rho,\mathbb{N}\setminus c_{\alpha}}$. Define $\mathcal{D}_{\alpha+1}$ to be any countable collection of predense subsets of $P_{f_{\alpha+1},d_{\alpha+1}}$ which contains \mathcal{D}_{α} and $\bigcup_{\ell} \mathcal{E}_{\alpha,\ell+1}$. Since $T(f_{\alpha+1}) \cdot 1_{a_{\alpha,\ell}}$ is asymptotically equal to $T(h_{\alpha,\ell+1}) \cdot 1_{a_{\alpha,\ell}}$, we have completed the proof of the lemma.

Lemma 6 Assume that $\{d_n : n \in \omega\}$ is an increasing family of members of \mathcal{J} and that $\{h_n : n \in \omega\} \subset C_1$ has the property that, for each n, $h_{n+1} \cdot 1_{d_n} = h_n$. Then, for any countable family \mathcal{E} of predense subsets of the poset $\bigcup_n P_{h_n,d_n}$, there is a pair $h \in C_1$ and $d \in \mathcal{J}$ such that $\bigcup_n P_{h_n,d_n} \subset P_{h,d}$ and each $E \in \mathcal{E}$ is predense in $P_{h,d}$.

Proof Similar to Lemma 3. First to choose *d* we define $d \cap A_n$ for each *n*. Choose $d \cap A_n$ so that

- (1) $A_n \cap d_m \subset d$ for each m < n,
- (2) $(A_n \cap d_m) \setminus d$ is finite for all m,
- (3) $A_n \setminus d$ is infinite.

Naturally we have ensured that $d \in \mathcal{J}$ and that $d_m \setminus d$ is contained in $\bigcup_{n \le n} A_n \cap d_m \setminus d$, and so is finite. We will define h so that $h \cdot 1_d = h$ and so that $h \cdot 1_{d_n \cap d} = h_n \cdot 1_{d_n \cap d}$ for each n. However, in order to ensure that each $E \in \mathcal{E}$ is still predense in $P_{h,d}$, we will recursively shrink d while preserving that $d_n \setminus d$ is finite for all n. By recursion on kwe will choose a finite set L_k disjoint from d_k , and will redefine d to be $d \setminus \bigcup_n L_n$. Let $\{p_k, E_k : k \in \omega\}$ be an enumeration of all pairs from $\bigcup_n P_{h_n,d_n}$ and \mathcal{E} .

Suppose we have chosen L_k and we consider the pair p_k, E_k . Choose n_{k+1} large enough so that there is an $e \in E_k$ compatible with p_k and so that both e and p_k are in P_{h_n,d_n} for some $n < n_{k+1}$. In addition, assume that dom $(p_k) \setminus d_n$ is contained in $\bigcup_{i < n_{k+1}} A_i$.

Choose a finite set $L_{k+1} \subset d_{n_{k+1}} \setminus d_k$ so that $\{\ell : (e \cup p_k)(\ell) \neq h_{n_{k+1}}(\ell)\}$ is contained in $d_k \cup L_{k+1}$. It follows that we will have that p_k and e will be compatible in $P_{h,d}$. \Box

3 Acknowledgements

The author acknowledges support provided by NSF grant DMS-0103985.

References

- [1] Christina Brech and Piotr Koszmider, ℓ_{∞} -sums and the Banach space ℓ_{∞}/c_0 , Fund. Math. **224** (2014), no. 2, 175–185; doi: 10.4064/fm224-2-3
- [2] Alan Dow and Saharon Shelah, More on tie-points and homeomorphism in N^{*}, Fund. Math. 203 (2009), no. 3, 191–210; doi: 10.4064/fm203-3-1
- [3] Lech Drewnowski and James W. Roberts, On the primariness of the Banach space l_{∞}/C_0 , Proc. Amer. Math. Soc. **112** (1991), no. 4, 949–957; doi: 10.2307/2048638
- [4] Magdalena Grzech, Set theoretical aspects of the Banach space l_{∞}/c_0 , Ann. Pure Appl. Logic **126** (2004), no. 1-3, 301–308, Provinces of logic determined; doi: 10.1016/j.apal.2003.11.023
- [5] Ilijas Farah, Analytic quotients: theory of liftings for quotients over analytic ideals on the integers, Mem. Amer. Math. Soc. 148 (2000), no. 702, xvi+177; doi: 10.1090/memo/0702
- [6] I. E. Leonard and J. H. M. Whitfield, *A classical Banach space:* l_{∞}/c_0 , Rocky Mountain J. Math. **13** (1983), no. 3, 531–539; doi: 10.1216/RMJ-1983-13-3-531
- [7] A. A. Miljutin, Isomorphism of the spaces of continuous functions over compact sets of the cardinality of the continuum, Teor. Funkciĭ Funkcional. Anal. i Priložen. Vyp. 2 (1966), 150–156. (1 foldout).
- [8] S. Negrepontis, *The Stone space of the saturated Boolean algebras*, Trans. Amer. Math. Soc. **141** (1969), 515–527; doi: 10.1090/S0002-9947-1969-0248057-2
- [9] Elliott Pearl (ed.), Open problems in topology. II, Elsevier B. V., Amsterdam, 2007.
- [10] Saharon Shelah, *Proper forcing*, Lecture Notes in Mathematics, vol. 940, Springer-Verlag, Berlin, 1982; doi: 10.1007/978-3-662-21543-2
- Saharon Shelah and Juris Steprāns, *PFA implies all automorphisms are trivial*, Proc. Amer. Math. Soc. **104** (1988), no. 4, 1220–1225; doi: 10.1090/S0002-9939-1988-0935111-X
- [12] Juris Steprāns, The autohomeomorphism group of the Čech-Stone compactification of the integers, Trans. Amer. Math. Soc. 355 (2003), no. 10, 4223–4240 (electronic); doi: 10.1090/S0002-9947-03-03329-4

- [13] Stevo Todorčević, Analytic gaps, Fund. Math. 150 (1996), no. 1, 55–66.
- [14] Boban Veličković, OCA and automorphisms of P(ω)/fin, Topology Appl. 49 (1993),
 no. 1, 1–13; doi: 10.1016/0166-8641(93)90127-Y

Department of Mathematics, UNC-Charlotte, 9201 University City Blvd., Charlotte, NC 28223 adow@uncc.edu

http://math.uncc.edu/~adow

Received: 10 July 2015 Revised: 16 August 2016