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Abstract: We present a Brouwerian example showing that the classical statement
‘Every Lipschitz mapping f : [0, 1] → [0, 1] has rectifiable graph’ is essentially
nonconstructive. We turn this Brouwerian example into an explicit recursive
example of a Lipschitz function on [0, 1] that is not rectifiable. Then we deal
with the connections, if any, between the properties of rectifiability and having a
variation. We show that the former property implies the latter, but the statement
‘Every continuous, real-valued function on [0, 1] that has a variation is rectifiable’
is essentially nonconstructive.
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1 Introduction

Consider a real-valued function f on a closed interval [a, b]. If P : a = x0 6 x1 6
· · · 6 xn = b is a partition of [a, b], then the corresponding polygonal approximation
to f has length

lf ,P ≡
n−1∑
i=1

√
(xi+1 − xi)2 + (f (xi+1)− f (xi))2.

We say that f

• has bounded length if there exists c > 0 such that lf ,P 6 c for each partition P
of [a, b];

• is rectifiable if its length,

sup {lf ,P : P is a partition of [a, b]} ,

exists;
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2 D. S. Bridges, M. Hendtlass and E. Palmgren

• is Lipschitz if there exists κ > 0 such that |f (x)− f (y)| 6 κ |x− y| for all
x, y ∈ [a, b].

Every Lipschitz function has bounded length: for with f , κ, and P as above,

lf ,P 6 (1 + κ)
n−1∑
i=1

(xi+1 − xi) = 1 + κ.

The classical least-upper-bound principle ensures that if f has bounded length, then it is
rectifiable. But in the constructive context of this paper, that principle implies the law
of excluded middle (LEM) and so is inadmissible. The constructive least-upper-bound
principle requires the additional hypothesis that the set S ⊂ R whose supremum is
sought must be not only inhabited and bounded above, but also upper-order-located, in
the sense that whenever α < β , either x 6 β for all x ∈ S or else there exists (we can
find) x ∈ S with α < x (see Bishop and Bridges [4, Page 37] or Bridges and Vı̂ţă [9,
Theorem 2.1.18]).

With the aid of Specker’s theorem [17] it is not hard to produce a recursive example of a
pointwise, but not uniformly continuous function f : [0, 1]→ R that has bounded length
but is not rectifiable. The motivation for this paper lies in the question: Is every Lipschitz
function f : [0, 1]→ R constructively rectifiable? Our first main result (Proposition 2)
gives a Brouwerian example showing that the rectifiability of all real-valued Lipschitz
functions—and hence of all real-valued, uniformly continuous ones—on [0, 1] implies
the essentially nonconstructive limited principle of omniscience:

LPO: For each binary sequence (an)n>1 , either an = 0 for all n or else
there exists n such that an = 1.

This leads to our second main result (Theorem 7), providing an explicit example of a
recursive Lipschitz function that has bounded length but is not rectifiable. The proof of
the latter depends on a lemma of interest in its own right (Lemma 5), which enables us
to pass from rectifiability over the whole interval [0, 1] to rectifiability over each of its
compact subintervals.

In the second part of the paper we consider the possibility of connecting rectifiability
with the property of having a variation (which, classically, reduces to that of bounded
variation). In particular, we show that rectifiable continuous functions on [0, 1] have a
variation, but the converse implies LPO (Corollary 9).

The constructive framework, BISH, of our work is that of Bishop [3, 4, 9] (see also
Troelstra and van Dalen [18]), in which the logic is intuitionistic and we adopt a
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mathematical foundation such as the set theories CZF (Aczel and Rathjen [1, 2])
and CMST (Bridges and Alps [6]), or Martin-Löf’s type theory (Martin-Löf [14, 15],
Nordström, Peterson and Smith [16]). One model (in a purely informal sense) or
interpretation of BISH is the recursive one, RUSS, which can be regarded as BISH
plus the Church-Markov-Turing thesis and, if desired, Markov’s principle of unbounded
search (see Kushner [12], Markov [13] or Bridges and Richman [8, Chapter 3]); that
model is the setting for Theorem 7.

Lipschitz curves need not be rectifiable

We begin our technical presentation with a lemma.

Lemma 1 Let (an)n>1 be an increasing binary sequence with a1 = 0, and let b > 0.
Then there exists a Lipschitz function f : [0, b]→ [0, b] such that

(i) f (0) = f (b) = 0;

(ii) f has Lipschitz constant 2;

(iii) if f is rectifiable, then either an = 0 for all n or there exists n with an = 1; and

(iv) if f is differentiable at any point of [0, b], then either an = 0 for all n or there
exists n with an = 1.

Proof Define a sequence (fn)n>1 of continuous spike functions from [0, b] into [0, 1]
as follows. If an = 0 or an−1 = 1, set fn ≡ 0. If an = 1− an−1 , construct fn so that

- it is uniformly continuous on [0, b],

- for i ∈ {0, 1, . . . , 2n − 1, 2n}, fn(i2−nb) = 0,

fn
((

i +
1
2

)
2−nb

)
=

b
2n + 1

,

and fn is linear on each half of the interval [i2−nb, (i + 1)2−nb].

Note that if an = 0 for all n, then fn = 0; whereas if an = 1− an−1 , then the length of
the spiked path fn joining 0 to b is

> 2b
(

1
2n + 1

+
1

2n + 1
+ · · ·+ 1

2n + 1

)
︸ ︷︷ ︸

2n terms

=
2n+1b
2n + 1

>
8
5

b
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(the last inequality following because n > 2). Note also that if an = 1− an−1 , then the
absolute value of the slope of the spikes of fn is

(1)
f (2−n−1b)− f (0)

2−n−1b− 0
=

2n+1

b
× b

2n + 1
=

2n+1

2n + 1
.

which is less than 2 (and, incidentally, increases to the limit 2 as n→∞). Hence fn is
Lipschitz, with Lipschitz constant 2.

Since ||fn|| 6 2−nb for each n, the series
∑∞

n=1 ||fn|| converges, so
∑∞

n=1 fn converges
in norm to a uniformly continuous function f : [0, b] → R, with (as is clear) f (0) =
f (b) = 0. For each x ∈ [0, b], either f (x) > 0 or f (x) < 2; in the former case,
there exists exactly one n such that f (x) = fn(x), so ||f || 6 2. It then follows that f
is Lipschitz, with Lipschitz constant 2, and (see above) that the length of the curve
y = f (x) is > b.

Now suppose that the curve y = f (x) is rectifiable, with length s. Either s > b or else
s < 8b/5. In the first case we can find x ∈ [0, 1] with f (x) > 0, and hence n with
an = 1. In the second case we must have an = 0 for all n. Thus (iii) holds.

To deal with (iv), suppose, initially, that f is differentiable at the point k2−Nb, where
N ∈ N and 0 6 k 6 2N . We may further suppose that aN = 0. If there exists n > N
such that an = 1− an−1 , then f = fn and k2−Nb = (k2n−N)2−nb is a point where two
adjacent spikes of fn meet; whence f is not differentiable at k2−Nb, a contradiction.
Thus an = 0 for all n > N and therefore for all n. Now let x be any point of [0, b],
and suppose that f ′(x) exists. Either |f ′(x)| > 0 or |f ′(x)| < 1. In the first case there
exists h 6= 0 such that f (x + h) 6= f (x); so either f (x + h) 6= 0 or f (x) 6= 0. Taking, for
example, the case where f (x + h) 6= 0, compute ν such that

∑ν
n=1 fn(x + h) 6= 0. Then

there exists n 6 ν such that fn(x + h) 6= 0 and therefore an = 1. On the other hand, in
the case where |f ′(x)| < 1, if there exists n with an = 1− an−1 , then, in view of the
foregoing observation, x cannot lie on any open segment of a side of any spike of f ,
and so must be one of the three vertices of a spike. This is absurd, since we have just
proved that f is not differentiable at such a vertex. Hence in this case we must have
an = 0 for all n. This completes the proof of (iv).

Lemma 1 immediately provides us with two interesting Brouwerian counterexamples
for Lipschitz curves:

Proposition 2 The statement ‘Every real-valued Lipschitz function on [0, 1] is rectifi-
able’ implies LPO.
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Proposition 3 The statement ‘Every Lipschitz function on [0, 1] is differentiable at
some point’ implies LPO.

In this context, the following is worth noting.

Proposition 4 LPO implies that every sequentially continuous function f : [0, 1]→ R
with bounded length is rectifiable.

Proof Let f : [0, 1]→ R be sequentially continuous and have bounded length, and let
(Pn)n>1 be an enumeration of the partitions of [0, 1] with rational endpoints. Given real
numbers α, β with α < β , and using countable choice, construct a binary sequence
(λn)n>1 such that if λn = 0, then lf ,Pn < β , and if λn = 1, then lf ,Pn > α . Applying
LPO, we see that either λn = 0 for all n or else there exists N such that λN = 1. In
the second case, lf > lf ,PN > α . In the first case, suppose that there exists a partition
P of [0, 1] such that lf ,P > β . Since f is sequentially continuous, we can find such
a partition P with rational endpoints. Then P = Pν for some ν , so lf ,Pν > β and
therefore λν = 1. This contradiction ensures that lf ,P 6 β for all partitions P of
[0, 1]. Since f has bounded length, its rectifiability now follows from the constructive
least-upper-bound principle.

In the next section we convert these Brouwerian examples into a full-blooded coun-
terexample in the recursive setting.

A recursive counterexample

To produce the promised recursive counterexample, we develop a general lemma, whose
proof is derived from that of the particular application to functions of bounded variation
(Bridges [5, Theorem 3]).

By a pseudoquasimetric on a set X we mean a mapping d : X × X → R such that for
all x , y, z in X ,

• d(x, y) > 0 and d(x, x) = 0;

• d(x, y) > d(x, z) + d(z, y).

A continuous pseudoquasimetric on a metric space (X, ρ) is a pseudoquasimetric that
is uniformly continuous as a mapping from X × X , taken with the product metric
induced by ρ, into R.

Journal of Logic & Analysis 8:4 (2016)



6 D. S. Bridges, M. Hendtlass and E. Palmgren

Lemma 5 Let I = [0, 1], and let d : I×I → R be a continuous pseudoquasimetric on I .
For each compact interval [a, b] ⊂ I and each partition P : a = x1 6 x2 6 · · · 6 xn = b
of [a, b], write ∑

d,P

≡
n−1∑
i=0

d(xi, xi+1).

Suppose that
s ≡ sup

{∑
d,P

: P is a partition of I
}

exists. Then for each compact subinterval J of I ,

sup
{∑

d,Q

: Q is a partition of J
}

exists.

Proof Fix a compact subinterval J ≡ [a, b] of [0, 1] with rational endpoints a, b. Let
0 < α < β , and ε = 1

3 (β − α). Since d is uniformly continuous, we can construct
a partition P : 0 = x0 < x1 < · · · < xN = 1 consisting of distinct rational points of
I such that

∑
d,P > s − ε. Since a and the xi are rational, there exists p such that

xp < a 6 xp+1 . Since d satisfies the triangle inequality, adding a to the partition
P does not decrease the value of

∑
d,P ; we may therefore assume that a = xm , and

likewise that b = xm+k , for some m and k . Letting

t ≡
m+k−1∑

i=m

d(xi, xi+1),

we have either t > α or t < α+ε. In the latter case, suppose that there exists a partition
a = y0 6 y1 6 · · · 6 yν = b such that

ν−1∑
j=0

d(yj, yj+1) > β − ε.

Set zi = xi if 0 6 i 6 m, zi = yi−m if m < i 6 m + ν , and zi = xi−ν+k if
m + ν < i 6 N + ν − k . Then

N+ν−k−1∑
i=1

d(zi, zi+1) =
N−1∑
i=0

d(xi, xi+1)− t +
ν−1∑
j=0

d(yj, yj+1)

> (s− ε)− (α+ ε) + (β − ε) = s + (β − α)− 3ε > s,

which contradicts the definition of s. It follows that if t < α+ ε, then
∑

d,Q < β for
each partition Q of [a, b]. We have therefore shown that either there exists a partition
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Q of J with
∑

d,Q > α or else
∑

d,Q < β for all partitions Q of J . Since α, β are
arbitrary positive numbers with α < β , the constructive least-upper-bound principle
now ensures that the desired supremum exists. Finally, the continuity of d enables us to
remove the restriction that a and b be rational.

Proposition 6 If f : [0; 1] → R is uniformly continuous and rectifiable, then the
restriction of f to any compact subinterval of [0, 1] is rectifiable.

Proof Take

d(x1, x2) ≡
√

(x1 − x2)2 + (f (x1)− f (x2))2 (x1, x2 ∈ [0, 1])

in Lemma 4.

Another application of Lemma 5 arises in connection with a uniformly continuous
function f : [0, 1] → R of bounded variation. For each partition P : 0 = x0 6 x1 6
· · · 6 xn = 1 define

v+f ,P ≡
n−1∑
i=0

max{0, f (xi+1)− f (xi)},

v−f ,P ≡ −
n−1∑
i=0

min{0, f (xi+1)− f (xi)},

vf ,P ≡
n−1∑
i=0

|f (xi+1)− f (xi)|.

Denote by T+
f [0, 1], T−f [0, 1], and Tf [0, 1] the respective suprema of these quantities

as P ranges over all partitions of [0, 1], when the supremum exists; note that if Tf [a, b]
exists, then we say that f has a variation and that Tf [a, b] is the variation of f on
[a, b]. Applying Lemma 5 with

d(x, y) ≡ max{0, f (x)− f (y)} (x, y ∈ [0, 1])

we see that if T+
f [0, 1] exists, then so does T+

f [a, b] whenever 0 6 a 6 b 6 1. Similar
properties obtain for T−f and Tf . In the case of Tf , we recover a special case of Theorem
3 of [5]: if f has a variation on [0, 1], then it has a variation on each compact subinterval
of [0, 1]. It is then straightforward to prove the additivity of the variation function:

Tf [0, 1] = Tf [0, c] + Tf [c, 1] (0 6 c 6 b)

This brings us to our recursive example.
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Theorem 7 RUSS ` There exists a Lipschitz mapping f : [0, 1]→ [0, 1] that is not
rectifiable.

Proof Let φ0, φ1, . . . be an effective enumeration of the computable partial functions
in NN , and for each n define an increasing binary sequence (an,k)k>1 such that if φn(n)
is computed in exactly K steps, then an,k = 0 for all k < K and an,k = 1 for all k > K .
For each positive integer n let

Jn ≡
[ 1

2n ,
1
2n +

1
3n

]
.

Using Lemma 1, construct a function gn : [0, 3−n]→ [0, 3−n] such that

- gn(0) = gn(3−n) = 0,

- gn has Lipschitz constant 2,

- if gn is rectifiable, then either an,k = 0 for each k or else there exists k such that
an,k = 1,

- if gn is differentiable at any point of [0, 3−n], then either an,k = 0 for each k or
else there exists k such that an,k = 1.

Now construct a uniformly continuous mapping fn : [0, 1]→ [0, 3−n] such that

• fn(x) = 0 if either 0 6 x 6 1
2n or 1

2n +
1
3n 6 x 6 1,

• fn(x) = gn
(
x− 1

2n

)
if 1

2n 6 x 6 1
2n +

1
3n ,

• and fn has Lipschitz constant 2.

The function F ≡
∑∞

n=0 fn is well defined and uniformly continuous on [0, 1], since∑∞
n=0 ||fn|| converges by comparison with

∑∞
n=0 3−2n . Moreover, since the supports of

the functions fn are pairwise apart, the restriction of F to Jn is fn , and F has Lipschitz
constant 2. Suppose that (the graph of) F is rectifiable. Then by Proposition 6, for each
n the restriction of F to Jn is rectifiable; whence gn is rectifiable, and therefore either
an,k = 0 for all k or else an,k = 1 for some k . It follows that the set

K ≡ {n ∈ N : φn(n) is defined}

is recursive, which is known to be false. Hence F is not rectifiable over [0, 1].

Note that if the function F constructed in the proof of Theorem 7 is differentiable at
any point of Jn , then so is gn , and we can decide whether n ∈ K . It follows that for
each n, F cannot be differentiable at any point of Jn . In light of this observation, if, in
the proof of Theorem 7, we replace Jn by

[
1
2n ,

1
2n +

2ε
3n

]
, then we obtain the following:

Journal of Logic & Analysis 8:4 (2016)
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Corollary 8 RUSS ` For each ε > 0 there exist a Lipschitz function f : [0, 1]→ [0, 1]
and a set J ⊂ [0, 1] such that

(i) f is not rectifiable;

(ii) J is a union of countably many disjoint closed intervals of total length ε;

(iii) f (x) = 0 for all x ∈ [0, 1] in the complement of J ; and

(iv) f is not differentiable at any point of J .

2 Rectifiability and finite variation

In this section we discuss the question: What, if any, is the connection between
rectifiability and having a variation? First we dash any hope of proving that the latter
property implies the former.

Proposition 9 For each binary sequence (an)n>1 there exists a function g : [0, 1]→ R
that has a variation but is rectifiable if and only if either an = 0 for all n or else there
exists n with an = 1.

Proof Given a binary sequence (an)n>1 , let f : [0, 1]→ R be the function constructed
in Lemma 1 above with b = 1, and define g : [0, 1]→ R by g(x) = f (x)/2 + x . Then
g is increasing: for if 0 6 x1 6 x2 6 1, then

g(x2)− g(x1) = (x2 − x1) + (f (x2)− f (x1))/2

> (x2 − x1)− |f (x2)− f (x1)|/2 > 0.

Since g is increasing, it has variation g(1)− g(0) = 1. Now, if an = 0 for all n, then
g(x) = x and lg =

√
2. On the other hand, if an = 1 for some n, then the slope of g on

the intervals
[
k2−n,

(
k + 1

2

)
2−n
]

is

1 +
1
2

2n+1

2n + 1
= 1 +

2n+1

2n+1 + 2
,

and the slope of g on the intervals
[(

k + 1
2

)
2−n, (k + 1) 2−n

]
is

1− 2n+1

2n+1 + 2
.

Thus the arc length of g over each
[
k2−n, (k + 1) 2−n

]
is

2−(n+1)

√1 +

(
1 +

2n+1

2n+1 + 2

)2

+

√
1 +

(
1− 2n+1

2n+1 + 2

)2
 ,
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10 D. S. Bridges, M. Hendtlass and E. Palmgren

and since there are 2n such intervals in question,

lg =
1
2

√
1 +

(
1 +

2n+1

2n+1 + 2

)2

+
1
2

√
1 +

(
1− 2n+1

2n+1 + 2

)2

>

√
34 +

√
10

6
.

Suppose that g is rectifiable. Then either lg < (
√

34 +
√

10)/6 or else lg >
√

2. In the
first case there can be no n with an = 1, so an = 0 for all n. In the second case, taking
a partition P of [0, 1] such that lg,P >

√
2, we can find x ∈ P such that g(x) 6= x . Let

N be such that
∑∞

n=N ||fn|| < |g(x) − x|, where (fn)n>1 is the sequence in Lemma 1
with f =

∑∞
n=1 fn . Then there exists n < N such that an = 1, for if not

|g(x)− x| = |f (x)| 6
∞∑

n=1

||fn|| =
∞∑

n=N

||fn|| < |g(x)− x|,

which is absurd.

Corollary 10 The statement ‘Every real-valued Lipschitz function f : [0, 1] → R
with a variation is rectifiable’ implies LPO.

Corollary 11 If the set of real-valued functions on [0, 1] that have a variation is closed
under addition, then LPO is derivable.

Proof With f , g, and (an)n>1 as in the proof of Proposition 9, both g and the identity
function id on [0, 1] have a variation, but if f = id + g has a variation, then either
an = 0 for all n or there exists n with an = 1.

In contrast to Corollary 11, we have:

Proposition 12 The set of real valued, rectifiable functions on [0, 1] is closed under
addition.

Proof This is a simple application of the triangle inequality.

Corollary 10 shows that we cannot prove constructively that every Lipschitz, let alone
every continuous, function f : [0, 1]→ R with a variation is rectifiable. Our final task
is to show that, in contrast, we can prove that every rectifiable continuous mapping
f : [0, 1]→ R has a variation. This will require some preliminaries.

Journal of Logic & Analysis 8:4 (2016)
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Lemma 13 Let a, b, c be nonnegative numbers. Then√
a2 + (b + c)2 −

√
a2 + b2 >

√
a2 + c2 − a.

Proof First take the case a = 1. Define

f (x) =
√

1 + (x + c)2 −
√

1 + x2 (x > 0).

Then (we omit the details) f ′ > 0, which ensures that

f (x) > f (0) =
√

1 + c2 − 1 (x > 0).

Next take the case a > 0. By the first case,

√
a2 + (b + c)2 −

√
a2 + b2 = a

√1 +

(
b
a
+

c
a

)2

−

√
1 +

(
b
a

)2


> a

(√
1 +

( c
a

)2
− 1

)
=
√

a2 + c2 − a.

Finally, if a > 0, then for each ε > 0 we have a + ε > 0, so√
(a + ε)2 + (b + c)2 −

√
(a + ε)2 + b2 >

√
(a + ε)2 + c2 − (a + ε).

Letting ε→ 0 completes the proof.

Lemma 14 Let 0 = x0 < x1 < · · · < xm = 1 and let ε0, ε1, . . . , εm−1 be nonnegative
numbers. Then

m−1∑
i=0

√
(xi+1 − xi)2 + ε2

i >

√√√√1 +

m−1∑
i=0

ε2
i .

Proof Denoting by ρ the Euclidean distance function on R2 , first note that√
(x1 − x0)2 + ε2

0 = ρ((x0, 0), (x1, ε0)),

and for i > 1,√
(xi+1 − xi)2 + ε2

i =
√

(xi+1 − xi)2 + ((εi−1 + εi)− εi−1)2

= ρ((xi, εi−1), (xi+1, εi−1 + εi)).

With ε−1 = 0, an induction now shows that for k < m,
k∑

i=0

√
(xi+1 − xi)2 + ε2

i =

k∑
i=0

ρ((xi, ε0 + · · ·+ εi−1), (xi+1, ε0 + · · ·+ εi)).

Journal of Logic & Analysis 8:4 (2016)



12 D. S. Bridges, M. Hendtlass and E. Palmgren

Thus
m−1∑
i=0

√
(xi+1 − xi)2 + ε2

i =

m−1∑
i=0

ρ((xi, ε0 + · · ·+ εi−1), (xi+1, ε0 + · · ·+ εi)),

which is at least the straight-line distance from (x0, ε−1) to (xm, ε0+ · · ·+εm−1). Hence
m−1∑
i=0

√
(xi+1 − xi)2 + ε2

i >
√

(xm − x0)2 + (ε0 + · · ·+ εm−1)2

=

√√√√1 +

(
m−1∑
i=0

εi

)2

Lemma 15 Let f : [0, 1]→ R be continuous. Let ε > 0, and let P,P′ be partitions
of [0, 1] such that P ⊂ P′ and vf ,P′ − vf ,P > ε. Then

lf ,P′ − lf ,P >
√

1 + ε2 − 1.

Proof To begin with, consider the case where

(i) P is the trivial partition {0, 1} and

(ii) P′ : 0 = x0 < x1 < · · · < xn = 1 is a strict partition with f (xi) 6= f (xj) whenever
0 6 i < j < n.

In view of (ii), the function s : n→ {−1, 1} given by

s(i) =


−1 if f (xi+1)− f (xi) < 0

1 if f (xi+1)− f (xi) > 0

is well defined. Construct a piecewise-linear function g : [0, 1]→ R such that g(0) = 0
and

g(xi) =
∑
j∈i

s(j)(f (xj+1)− f (xj)) (1 6 i 6 n).

Thus g(0) = 0 and

g(x1) = s(1)(f (x1)− f (x0)),

g(x2) = s(1)(f (x1)− f (x0)) + s(2)(f (x2)− f (x01),
...

g(1) =
n−1∑
j=0

s(j)(f (xj+1)− f (xj)).
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Note that if x ∈ [xj, xj+1] and y ∈ [xj+1, xj+2], then

g(y) = g(x) + s(j)(f (xj+2)− f (xj+1)) > g(x);

whence g is monotone and so has variation g(1)− g(0). Moreover, for each j,

(2) g(xj+1)− g(xj) = s(j)(f (xj+1)− f (xj))

and therefore the variation of g on [xj, xj+1] is |f (xj+1) − f (xj)|. Since the variation
function is additive, it follows that

vf ,P′ =

n−1∑
j=0

|f (xj+1)− f (xj)| = vg,P′ = g(1)− g(0).

It follows also from (2) that lf ,P′ = lg,P′ . Since adding points to a partition cannot
decrease the approximations to the length of the curves of f or g, we now see that

lf ,P′ = lg,P′ >
√

1 + (g(1)− g(0))2

=
√

1 + v2
f ,P′ >

√
1 + (vf ,P + ε)2

and hence, via Lemma 13, that

lf ,P′ − lf ,P >
√

1 + (vf ,P + ε)2 −
√

1 + v2
f ,P >

√
1 + ε2 − 1.

We now weaken the assumption (i) by taking P as a strict partition 0 < ξ1 < ξ2 <

· · · < ξm = 1. For each i let

Pi = {xi, xi+1},P′i = {xj : ξi 6 xj 6 ξi+1}, and gi = f |[ξi,ξi+1] .

Note that Pi ⊂ P′i , that

vf ,P′ − vf ,P =
m−1∑
i=0

(vf ,P′
i
− vf ,Pi),

and that

lf ,P′ − lf ,P =

m−1∑
i=0

(lf ,P′
i
− lf ,Pi),

For 0 6 i < m let
εi = vf ,P′

i
− vf ,Pi > 0.

Note that since the variation function is additive,

(3)
m−1∑
i=0

εi =

m−1∑
i=0

vf ,P′
i
−

m−1∑
i=0

vf ,Pi = vf ,P′ − vf ,P > ε.
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Now, by the first part of the proof,

lf ,P′
i
− lf ,Pi >

√
(xi+1 − xi)2 + v2

f ,P′
i
−
√

(xi+1 − xi)2 + v2
f ,Pi

=
√

(xi+1 − xi)2 + (vf ,Pi + εi)2 −
√

(xi+1 − xi)2 + v2
f ,Pi

>
√

(xi+1 − xi)2 + ε2
i − (xi+1 − xi).

Since length is additive, we obtain

lf (P′)− lf (P) =
m−1∑
i=0

(lf ,P′
i
− lf ,Pi)

>
m−1∑
i=0

(√
(xi+1 − xi)2 + ε2

i − (xi+1 − xi)
)

=

m−1∑
i=0

√
(xi+1 − xi)2 + ε2

i −
m−1∑
i=0

(xi+1 − xi)

=
m−1∑
i=0

√
(xi+1 − xi)2 + ε2

i − 1

>

√√√√1 +

(
m−1∑
i=0

εi

)2

− 1,

the last step coming from Lemma 14. Taken with (3), this leads us to the desired
conclusion in the case under consideration. To complete the proof in the general case,
we need only use a simple continuity argument.

Theorem 16 If f : [0, 1]→ R is continuous and rectifiable, then it has a variation.

Proof Let
S ≡ {vf ,P : P is a partition of [0, 1]}.

Given real numbers α, β with α < β , let ε = α+β
2 and let P be a partition of [0, 1]

such that
lf − lf ,P <

√
1 + ε2 − 1.

Either vf ,P > α or vf ,P < (β − α)/2. In the latter case, consider any partition P′ of
[0, 1]. By Lemma 15,

vf ,P∪P′ 6 vf ,P + ε < β.
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It follows from the constructive least-upper-bound principle that the variation of f on
[0, 1] exists.

3 Concluding remarks

In view of Lemma 1, we might ask for Brouwerian counterexamples to such statements
as these:

- Every real-valued function on [0, 1] whose derivative exists at each point is
rectifiable.

- Every real-valued Lipschitz function on [0, 1] that is differentiable almost
everywhere is rectifiable.

There can be no Brouwerian counterexamples for these two statements, since each
of them is provable in INT. If f : [0; 1] → R is differentiable everywhere, then
intuitionistically its derivative f ′ is not just continuous, but uniformly continuous, so
we can rectify the graph of f by the usual calculus formula for arc length. On the
other hand, if f has Lipschitz constant c > 0 and is pointwise differentiable almost
everywhere, then |f ′(x)| 6 c at any point x where f is differentiable. A theorem of van
Rootselaar (see Heyting [11, page 79] or Bridges and Demuth [7, Theorem 6]) shows
that f ′ is intuitionistically measurable, whence by Bishop and Bridges [4, Theorem
(7.11), page 263] it is integrable. We can then show that the supremum of the set{

n−1∑
i=0

√
(xi+1 − xi)2 + (f (xi+1)− f (xi))2 : P is a partition of [0, 1]

}
exists and equals ∫ 1

0
(1 + f ′2)1/2dx.

It is possible that there is a recursive example of a real-valued Lipschitz function on
[0, 1] that is differentiable almost everywhere but not rectifiable; but we do not know of
one.
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