
Journal of Logic & Analysis 9:5 (2017) 1–30
ISSN 1759-9008

1

Point-free characterisation of Bishop compact metric spaces

TATSUJI KAWAI

Abstract: We give a point-free characterisation of Bishop compact metric spaces in
terms of formal topology. We show that the notion of overt compact enumerably
completely regular formal topology is a point-free counterpart of that of Bishop
compact metric space. Specifically, a formal topology is isomorphic to an overt
compact enumerably completely regular formal topology if and only if it is
isomorphic to the image of a compact metric space under the localic completion of
metric spaces into formal topologies. The result is obtained in Bishop constructive
mathematics with the axiom of Dependent Choice.
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1 Introduction

Bishop [2] developed a large body of analysis constructively, but he did not develop
general topology beyond the theory of metric spaces. He found it difficult to find a
useful topological notion of compactness which is compatible with the corresponding
metric notion defined by completeness and totally boundedness. If the classical notion
of compactness by open cover were adopted, there would be no nontrivial examples of
compact spaces constructively. In fact, the main examples of compact metric spaces,
the unit interval and Cantor space, cannot be proved to be compact in the sense of open
cover without recourse to Fan theorem, which is constructively unacceptable.

The study of general topology in a constructive setting was initiated by Sambin [15],
when he introduced the notion of formal topology, a point-free approach to general
topology based on the impredicative theory of locale (Johnstone [11]). Formal topology
has been successful in constructivising many results of classical topology; however, the
connection between Bishop’s metric space and formal topology has been somewhat
neglected until recently. In particular, the notion of compactness in formal topology,
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which is defined by open cover, seems to conflict with the compactness of Bishop metric
space defined by completeness and totally boundedness.

Palmgren [14], in his pioneering work in connecting Bishop metric spaces and formal
topologies, extended the localic completion of generalised metric spaces due to Vic-
kers [17] into a full and faithful functor from the category of Bishop locally compact
metric spaces into that of locally compact formal topologies. The functor can be
restricted to the full subcategory of compact metric spaces and that of compact formal
topologies. Thus, the two seemingly conflicting notions of compactness are actually
compatible. Later, Spitters [16] and Coquand et al. [5] found a connection between the
compact subspaces of a Bishop locally compact metric space and the compact overt
subtopologies of its localic completion.

In this paper, building on these previous works, we characterise the image of compact
metric spaces under the Palmgren’s embedding (ie a full and faithful functor) in terms
of formal topology. Our result gives a purely point-free characterisation of Bishop
compact metric spaces, and it allows us to prove results about Bishop compact metric
spaces in a point-free way.

In our subsequent paper [12], we extend our point-free characterisation of compact
metric spaces to Bishop locally compact metric spaces.

The content of this paper is as follows. Section 2 and Section 3 are preliminaries.
In Section 2, we give background on formal topology. In Section 3, we review the
notion of localic completion by Vickers and Palmgren’s functorial embedding of the
category of locally compact metric spaces into that of formal topologies. In Section 4,
we show that the localic completion induces a bijection between the compact subspaces
of a locally compact metric space and the compact overt subtopologies of its localic
completion (Theorem 4.16). As a corollary, we obtain a preliminary characterisation of
formal topologies that are isomorphic to the image of some compact metric space under
the localic completion (Corollary 4.17). In Section 5, we show that the embedding
preserves countable products of inhabited compact metric spaces (Theorem 5.4). Finally,
in Section 6, we give a point-free characterisation of Bishop compact metric spaces
(Theorem 6.10).

We work constructively in the sense of Bishop [2], including the axiom of Dependent
Choice. However, the intended formal system underlying our work is Aczel’s con-
structive set theory CZF [1] extended with the Regular Extension Axiom (REA) and
Dependent Choice. Hence, when we say that an object A is a set, it means that A forms
a set in CZF, and when we say that A is a class, it means that A may not be a set but its
members can be specified by a formula of CZF.
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The axiom REA is needed to define the notion of inductively generated formal topology
(Section 2.3). However, the results on locally compact metric spaces, including the
main result in Section 6, do not require inductive generation of formal topologies, and
hence do not require REA (see Remark 3.7).

We recall that Dependent Choice is the following principle:

DC Given a set A, a total (set) relation R ⊆ A× A and a0 ∈ A, there exists a function
f : N→ A such that f (0) = a0 and f (n) R f (n + 1) for all n ∈ N.

2 Preliminaries

First, we fix some notations. Given a set S , Pow(S) denotes the class of subsets of
S . Constructively, Pow(S) is not a set unless S = ∅. Fin(S) denotes the set of finitely
enumerable subsets of S , where a set A is finitely enumerable if there exists a surjection
f : {0, . . . , n− 1} → A for some n ∈ N. For subsets U,V ⊆ S , we define

U GV def⇐⇒ (∃a ∈ S) a ∈ U ∩ V.

The set theoretic complement of a subset U ⊆ S is denoted by ¬U .

If r is a relation between sets X and S , we write r− for the inverse relation of r . The
direct image of a subset D ⊆ X under r is defined by r D = {a ∈ S | (∃x ∈ D) x r a}.
In particular, if U is a subset of S , its inverse image under r is r−U . For a singleton
{x} ⊆ X , we sometimes write r x for r {x}. Furthermore, we introduce the following
notation associated with a relation r :

r∗U def
= {x ∈ X | r {x} ⊆ U} .

If r− is the inverse relation of r , we write r−∗ for (r−)∗ .

2.1 Formal topologies

We recall the relevant facts about formal topology used in this paper. Our presentation
is based on the work by Fox [10], and it is compatible with that of Palmgren [14].

Definition 2.1 A formal topology is a triple S = (S, � ,≤) where (S,≤) is a preordered
set and � is a relation between S and Pow(S) such that

AU def
= {a ∈ S | a � U}

is a set for each U ⊆ S , and satisfies
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(Ref) U � U ,

(Tra) a � U & U � V =⇒ a � V ,

(Loc) a � U & a � V =⇒ a � U ↓ V ,

(Ext) a ≤ b =⇒ a � b

for all a, b ∈ S and U,V ⊆ S , where

U � V def⇐⇒ (∀a ∈ U) a � V,

U ↓ V def
= {c ∈ S | (∃a ∈ U) (∃b ∈ V) c ≤ a & c ≤ b} .

We write a ↓ U for {a} ↓ U , and U � a for U � {a}. The underlying set S is called
the base, and the relation � is call the cover on S .

It is well known that the class Sat(S) = {AU | U ∈ Pow(S)} forms a frame; it can be
identified with Pow(S) together with the equality

U =S V def⇐⇒ AU = AV.

Notation 1 Letters S,S ′, . . . denote formal topologies, whose underlying bases, co-
vers, and preorders are denoted by S, S′, . . . , � , � ′, . . . , and ≤,≤′, . . . , respectively.

Definition 2.2 Let S and S ′ be formal topologies. A relation r ⊆ S× S′ is a formal
topology map from S to S ′ if

(FTM1) S � r−S′ ,

(FTM2) r−{a} ↓ r−{b} � r−(a ↓′ b),

(FTM3) a � ′U =⇒ r−a � r−U

for all a, b ∈ S′ and U ⊆ S′ . The class of formal topology maps from S to S ′ is
equipped with the equality

r = s def⇐⇒
(
∀a ∈ S′

)
r−{a} =S s−{a}.

A point of a formal topology S is a formal topology map from the terminal formal
topology 1 = ({∗} ,∈,=) to S . An equivalent description is the following.

Definition 2.3 A subset α ⊆ S is a formal point of S if

(P1) S Gα ,

(P2) a, b ∈ α =⇒ α G(a ↓ b),

(P3) a ∈ α & a � U =⇒ α GU
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for all a, b ∈ S and U ⊆ S . The class of formal points of S is denoted by Pt(S).1

Formal topologies and formal topology maps form a category, which we denote by
FTop.

2.2 Overt formal topologies

We first recall the notion of formal closed subset, which can be seen as a point-free
analogue of a closed subset (cf Theorem 4.3). In locale theory, formal closed subsets
are known as the points of the lower powerlocales; see Vickers [19] for details.

Definition 2.4 A subset V ⊆ S of a formal topology S is formal closed if

a ∈ V & a � U =⇒ V GU

for all a ∈ S and U ⊆ S . The class of formal closed subsets of S is denoted by Red(S).

Note that every formal point of S is formal closed, ie Pt(S) ⊆ Red(S).

Definition 2.5 Let S be a formal topology. A positivity predicate on S is a formal
closed subset Pos ⊆ S that satisfies

(Pos) a � {x ∈ S | x = a & Pos(a)}

for all a ∈ S , where we write Pos(a) for a ∈ Pos. Note that

{x ∈ S | x = a & Pos(a)} = {a} ∩ Pos .

A formal topology is overt if it is equipped with a (necessarily unique) positivity
predicate.2

2.3 Inductively generated formal topologies

An axiom-set on a set S is a pair (I,C), where (I(a))a∈S is a family of sets indexed by
S , and C is a family (C(a, i))a∈S,i∈I(a) of subsets of S indexed by

∑
a∈S I(a).

1In CZF, the class of formal points of S is not a set in general.
2An overt formal topology is called an open formal topology in Fox [10]. In this paper, we

follow Spitters [16] for terminology.
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Theorem 2.6 (Coquand et al. [6]) Let (S,≤) be a preordered set, and let (I,C) be an
axiom set on S . Then, there exists a cover � I,C inductively generated by the following
rules:

a ∈ U
a � I,C U

(reflexivity),
a ≤ b b � I,C U

a � I,C U
(≤-left),

a ≤ b i ∈ I(b) a ↓ C(b, i) � I,C U
a � I,C U

(≤-infinity).

The relation � I,C is the least cover on S which satisfies (≤-left) and a � I,C C(a, i) for
each a ∈ S and i ∈ I(a), and � I,C is called the cover inductively generated by (I,C).

Moreover, suppose that a subset Pos ⊆ S is given which satisfies the conditions

(Spl1) a ≤ b & Pos(a) =⇒ Pos(b),

(Spl2) a ≤ b & Pos(a) =⇒ Pos G (a ↓ C(b, i))

for each a, b ∈ S and i ∈ I(b). Let � I′,C′ be the cover inductively generated by the
axiom-set (I′,C′) obtained from (I,C) by adding one axiom

a � I′,C′ Pos∩{a}

for each a ∈ S . Then, the formal topology S = (S, � I′,C′ ,≤) is overt with the
positivity Pos, and the cover � I′,C′ is the least cover on S which satisfies (≤-left) and
a � I′,C′ C(a, i) for each a ∈ S and i ∈ I(a), and for which Pos is a positivity predicate
on S .

A formal topology S = (S, � ,≤) is inductively generated if there exists an axiom-set
(I,C) on S which generates the cover � as in Theorem 2.6.

Remark 2.7 If r : S → S ′ is a formal topology map and S ′ is inductively generated
by an axiom-set (I,C) on S′ , then the condition (FTM3) is equivalent to the following
conditions under the condition (FTM2):

(FTM3a) a ≤′ b =⇒ r−a � r−b,

(FTM3b) r−a � r−C(a, i)

for all a, b ∈ S′ and i ∈ I(a).

If S is inductively generated by an axiom-set (I,C) on S , then a subset V ⊆ S is formal
closed if and only if V satisfies the conditions (Spl1) and (Spl2) in Theorem 2.6.
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Example 2.8 (The formal reals; Negri and Soravia [13], Coquand et al. [6]) Let Q
be the set of rationals. Define a preorder (SR,≤R) by

SR
def
= {( p, q) ∈ Q×Q | p < q} ,

( p, q) ≤R (r, s) def⇐⇒ r ≤ p & q ≤ s

for all ( p, q), (r, s) ∈ SR . The formal reals R = (SR, �R,≤R) is inductively
generated by an axiom-set on SR consisting of axioms

(R1) ( p, q) �R {(r, s) ∈ SR | p < r < s < q},

(R2) ( p, q) �R {( p, s), (r, q)} for each p < r < s < q.

It is well known that the formal points of R correspond to the Dedekind cuts.

2.4 Closed and weakly closed subtopologies

Definition 2.9 A subtopology of a formal topology S is a formal topology S ′ =

(S, � ′,≤) where � ′ is a cover on S and (S,≤) is the underlying preorder of S such
that AU ⊆ A′U for all U ⊆ S . If S ′ is a subtopology of S , we write S ′ v S .

Let r : S ′ → S be a formal topology map. The image of S ′ under r is a subtopology
Sr = (S, � r,≤) of S where

a � r U def⇐⇒ r−a � ′ r−U.

A formal topology map r : S ′ → S is an embedding if

a � ′ r−r−∗A′ {a}

for all a ∈ S′ . It can be shown that the domain of an embedding is isomorphic to its
image; see Fox [10, Section 3.5].

The following is well known. We omit a straightforward proof.

Lemma 2.10 Let S be an overt formal topology with a positivity Pos, and let
r : S → S ′ be a formal topology map. Then, the image Sr is overt with the positivity

r Pos =
{

a ∈ S′ | (∃b ∈ Pos) b r a
}
.

Definition 2.11 Each subset V ⊆ S of a formal topology S determines a subtopology
SS−V = (S, � S−V ,≤) whose cover is defined by

a � S−V U def⇐⇒ a � V ∪ U.
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A subtopology of S of the form SS−V is called the closed subtopology (determined by
V ). The closure of a subtopology S ′ of S is the closed subtopology SS−Z determined
by Z def

= {a ∈ S | a � ′ ∅}.

The closed subtopology SS−V is the largest subtopology S ′ of S which satisfies
V � ′ ∅. The closure of a subtopology S ′ is the smallest closed subtopology of S
containing S ′ . Note that V � W if and only if SS−W v SS−V .

Example 2.12 Let R be the formal reals (see Example 2.8). The formal unit interval
I[0, 1] is a closed subtopology of R determined by the subset (−∞, 0)∪ (1,∞) where

(−∞, 0) def
= {( p, q) ∈ SR | q = 0} ,

(1,∞) def
= {( p, q) ∈ SR | p = 1} .

Lemma 2.13 Let S ′ be an overt subtopology of S with a positivity Pos. Then, the
closure of S ′ in S is the closed subtopology SS−¬ Pos .

Proof Put Z = {a ∈ S | a � ′ ∅}. It suffices to show that ¬Pos = Z . Since Pos is a
positivity of S ′ , we have ¬Pos � ′ ∅, and thus ¬Pos ⊆ Z . Conversely, if a � ′ ∅ and
a ∈ Pos, then we have Pos G ∅, a contradiction. Hence Z ⊆ ¬Pos.

In particular, if S ′ is an overt closed subtopology of S with a positivity Pos, then we
have S ′ = SS−¬ Pos . In this case, we have

(2–1) a � ¬Pos∪
(
Pos∩{a}

)
.

Conversely, formal closed subsets of S that satisfy the property (2–1) characterise overt
closed subtopologies of S . This observation is due to one of the anonymous referees of
this paper.

Proposition 2.14 Let S be a formal topology. There exists an order preserving
bijection between overt closed subtopologies of S and formal closed subsets of S with
the property (2–1).

Proof We have seen that the positivity of an overt closed subtopology satisfies (2–1).

Conversely, let Pos be a formal closed subset of S with the property (2–1). Then, it
is easy to see that Pos is a formal closed subset of the closed subtopology SS−¬ Pos .
Then, the property (2–1) says that Pos is the positivity of SS−¬ Pos .
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Let Pos,Pos′ be formal closed subsets of S with the property (2–1). Clearly, Pos⊆Pos′

implies SS−¬ Pos v SS−¬ Pos′ . Conversely, if SS−¬ Pos v SS−¬ Pos′ , then we have
¬Pos′ � ¬Pos. Let a ∈ Pos. Since a � ¬Pos′ ∪

(
Pos′ ∩{a}

)
and Pos is formal

closed, we have either Pos G¬Pos′ or Pos′(a). In the former case, we obtain Pos G¬Pos,
a contradiction. Hence, Pos⊆Pos′ .

Proposition 2.15 Let S ′ be an overt closed subtopology of S with a positivity Pos.
Then, S ′ is the largest subtopology of S with the positivity Pos.

Proof Let S ′′ be an overt subtopology of S with the positivity Pos. By Lemma 2.13,
we have S ′′ v SS−¬ Pos . Since S ′ = SS−¬ Pos , we have S ′′ v S ′ .

Constructively, there is another notion of closed subtopology, called weakly closed
subtopology. We only consider weakly closed subtopology which is also overt; see
Vickers [19] and Fox [10] for the treatments in formal topology, and Bunge and Funk
[3] for the corresponding notion in locale theory.

Definition 2.16 Let S ′ be an overt subtopology of S with a positivity Pos. Then, S ′
is weakly closed if S ′ is the largest overt subtopology of S with the positivity Pos.

Remark 2.17 The notion of overt weakly closed subtopology given in Definition 2.16
is stronger than the one given by Fox [10, Definition 3.5.13], although impredicatively
they are equivalent. However, our main examples of overt weakly closed subtopologies,
namely overt closed subtopologies, do satisfy the condition of Definition 2.16. Moreover,
if a formal topology S in Definition 2.16 is inductively generated, the two notions
coincide.

The following is immediate from Proposition 2.15.

Proposition 2.18 An overt closed subtopology is weakly closed.

Given an inductively generated formal topology S , there exists an order isomorphism
between the formal closed subsets of S and the overt weakly closed subtopologies of
S . In fact, by Remark 2.7 and the second half of Theorem 2.6, a formal closed subset
V ⊆ S determines an overt inductively generated subtopology S , which we denote by
SV . From the axioms of SV , it is easy to see that SV is the largest subtopology of S
with the positivity V . Hence SV is a weakly closed subtopology. It is straightforward
to show that this correspondence is an order isomorphism. Moreover, we have

Pt(SV ) = {α ∈ Pt(S) | α ⊆ V} .

Corollary 2.19 Let S be an inductively generated formal topology, and let S ′ v S be
an overt closed subtopology with a positivity Pos. Then S ′ = SPos = SS−¬ Pos .
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2.5 Regularity and compactness

Definition 2.20 Let S be a formal topology, and let a, b ∈ S . We say that a is well
covered by b, written a ≪ b, if S � a∗ ∪ {b} where a∗ def

= {b ∈ S | b ↓ a � ∅}.

A formal topology S is regular if there exists a function wc : S→ Pow(S) such that

(1) (∀b ∈ wc(a)) b ≪ a,

(2) a � wc(a)

for each a ∈ S . We often regard wc as a relation wc ⊆ S× S defined by

wc
def
= {(a, b) ∈ S× S | a ∈ wc(b)} .

For later use, we extend the relation ≪ to the subsets of S by U ≪ V def⇐⇒ S � U∗∪V
where U∗ def

=
⋂

a∈U a∗ . We have U′ � U ≪ V � V ′ =⇒ U′ ≪ V ′ . If r : S → S ′
is a formal topology map and U ≪′ V in S ′ , then r−U ≪ r−V in S .

A formal topology S is compact if

S � U =⇒ (∃U0 ∈ Fin(U)) S � U0

for all U ⊆ S .

The following are well known in locale theory; see Johnstone [11, Chapter III, Proposition
1.2]. The corresponding results in formal topology were obtained by Curi [9].

Proposition 2.21

(1) A subtopology of a regular formal topology is regular.

(2) A closed subtopology of a compact formal topology is compact.

(3) A compact subtopology of a regular formal topology is closed.

Definition 2.22 Let S be a formal topology, and let a, b ∈ S . We say that a is way
below b, denoted by a� b, if

b � U =⇒ (∃U0 ∈ Fin(U)) a � U0

for all U ⊆ S . A formal topology S is locally compact if there exists a function
wb : S→ Pow(S) such that

(1) (∀b ∈ wb(a)) b� a,

(2) a � wb(a)
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for each a ∈ S .

In compact regular formal topologies, the two relations ≪ and � coincides; see
Johnstone [11, Chapter VII, Section 3.5]. For the proof in formal topology, see Curi [7,
Proposition 2.9].

Proposition 2.23 Every compact regular formal topology is locally compact.

3 Localic completion of metric spaces

3.1 Localic completion

We recall the representation of complete metric spaces by formal topologies, called
localic completion, due to Vickers [17].

Definition 3.1 Let X = (X, ρ) be a metric space, and let Q>0 be the set of positive
rationals. Then, a pair (x, ε) ∈ X × Q>0 , denoted by b(x, ε), is called a formal ball.
We write MX for X × Q>0 , the set of formal balls of X . Define an order ≤X and a
transitive relation <X on MX by

b(x, δ) ≤X b( y, ε) def⇐⇒ ρ(x, y) + δ ≤ ε,

b(x, δ) <X b( y, ε) def⇐⇒ ρ(x, y) + δ < ε.

The localic completion of X is a formal topology M(X) = (MX, � X,≤X) inductively
generated by an axiom-set on MX consisting of the following axioms:

(M1) a � X {b ∈ MX | b <X a},

(M2) MX � X Cε for each ε ∈ Q>0 ,

where Cε
def
= {b(x, ε) ∈ MX | x ∈ X} is the set of formal balls with radius ε.

Note that for any metric space X , its localic completion M(X) is always overt. This
follows from the fact that for each axiom a � X U , the subset U is inhabited. The localic
completion of a metric space X is always regular, and we have a <X b =⇒ a ≪ b
for all a, b ∈ MX ; see Palmgren [14, Theorem 3.7].

For each metric space X = (X, ρ), there exists a bijection ϕ : Pt(M(X))→ X̃ between
the formal points of M(X) and the completion X̃ of X with Cauchy sequences. Then,
Pt(M(X)) is given the induced metric ρPt = ρ̃◦ (ϕ× ϕ), where ρ̃ is the metric on X̃ . In
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this way, Pt(M(X)) is metrically identified with the completion of X ; see Palmgren [14,
Theorem 2.4]. There exists a dense isometry iX : X → Pt(M(X)) given by

iX(x) def
= {b( y, ε) ∈ MX | ρ(x, y) < ε} ,

which is a metric isomorphism if and only if X is complete.

Each formal ball b(x, ε) is associated with an open ball

b(x, ε)∗
def
= B(x, ε) def

= {y ∈ X | ρ(x, y) < ε} .

Dually, each x ∈ X is associated with the set 3x of open neighbourhoods of x , namely

3x def
= {a ∈ MX | x ∈ a∗} .

Note that iX(x) = 3x . For any subset Y ⊆ X , we define 3Y def
=
⋃

y∈Y 3y.

Example 3.2 (Palmgren [14, Example 2.2]) The localic completion of the rationals
Q is the formal reals R. To see this, let d be the standard metric on Q given by
d( p, q) = |p − q|. Then, the set MQ of formal balls with the relations ≤Q and <Q
is isomorphic (in the obvious sense) to the underlying structure (SR,≤R, <R) of the
formal reals R, where <R is defined by (r, s) <R ( p, q) def⇐⇒ p < r & s < q. Then,
M(Q) is defined by the following axiom-set on SR :

(Q1) ( p, q) �Q {(r, s) ∈ SR | (r, s) <R ( p, q)},

(Q2) ( p, q) �Q Cε for each ε ∈ Q>0 .

Since the axioms (Q1) and (R1) are the same, it suffices to show that the axioms (Q2)
and (R2) are derivable in R and M(Q), respectively. First, assume (R2). Let ( p, q)
and ε ∈ Q>0 . Then, by (R2), we have

( p, q) �R {( p, ( p + 2q)/3), ((2p + q)/3, q)} .

By applying this process sufficiently many times to each element of the set on the
right hand side, we obtain U ∈ Fin(SR) such that ( p, q) �RU and s − r < ε for
each (r, s) ∈ U . Hence ( p, q) �R Cε . Conversely, assume (Q2), and let p, q, r, s ∈ Q
be such that p < r < s < q. Choose ε ∈ Q>0 such that ε < s − r . Then, by
(Loc), we have ( p, q) �Q Cε ↓ ( p, q) ≤R {( p, s), (r, q)}, so ( p, q) �Q {( p, s), (r, q)}
as required.

It follows from the above observation that, assuming Countable Choice, the formal
points of the formal reals R, the Dedekind cuts, is metrically isomorphic to the Cauchy
completion of Q, namely the Cauchy reals.
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The following is crucial to our main result.

Theorem 3.3 (Palmgren [14, Theorem 2.7]) Let X be a metric space, and let Y ⊆ X
be a dense subset of X . Then, M(Y) ∼=M(X).

In particular, the localic completion of a separable metric space is isomorphic to a
formal topology S with a countable base set S . For example, the localic completion of
the rationals Q and the reals R are isomorphic, ie R ∼=M(R) ∼=M(Q).

3.2 Functorial embedding

We review the relevant facts about the functorial embedding of locally compact metric
spaces into formal topologies established by Palmgren [14, Section 4 and Section 5].

Definition 3.4 (cf Bishop [2, Chapter 4]) A metric space X = (X, ρ) is totally
bounded if for each ε ∈ Q>0 , there exists Y = {x0, . . . , xn−1} ∈ Fin(X) such that for
any x ∈ X , there exists k < n such that ρ(x, xk) < ε. Such a set Y is called an ε-net. A
metric space is compact if it is complete and totally bounded.

A metric space X is locally compact if each open ball B(x, ε) is contained in a compact
subset of X . Thus, every compact metric space is locally compact. Every locally
compact metric space is complete.

A function f : X → Y between locally compact metric spaces (X, ρ) and (Y, d) is said
to be continuous if it is uniformly continuous on each open ball of X . If X is compact,
then a continuous function is just a uniformly continuous function. The locally compact
metric spaces and continuous functions form a category LComp.

Remark 3.5 Bishop [2] defined a metric space to be totally bounded if for each
ε ∈ Q>0 there exists an inhabited ε-net. Moreover, he required every locally compact
metric space to be inhabited. Following Spitters [16], we drop these requirements. The
results by Palmgren [14] on which our work depends still hold for our definitions.

The following three theorems play key roles in our main result.

Theorem 3.6 (Palmgren [14, Theorem 4.19]) If X is a locally compact metric space,
then M(X) is locally compact. In this case, a <X b =⇒ a� b for all a, b ∈ MX .

Remark 3.7 For a locally compact metric space X , the cover ofM(X) admits a direct
description in terms of the structure of X (see Palmgren [14, Theorem 4.17]). Hence,
our results about locally compact metric spaces do not require REA.
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Theorem 3.8 (Palmgren [14, Theorem 4.20]) If X is a complete metric space, then
M(X) is compact if and only if X is totally bounded.3

Theorem 3.9 (Palmgren [14, Theorem 5.8]) The localic completion extends to a full
and faithful functor M : LComp→ FTop.

Here, we used the same symbol for localic completions and the functorM : LComp→
FTop induced by them.

The functorM sends a continuous function f : X → Y in LComp to a formal topology
map M(f ) : M(X)→M(Y) defined by

aM ( f ) b def⇐⇒ (∃c <Y b) f [a∗] ⊆ c∗

for all a ∈ MX and b ∈ MY , where f [a∗] is the direct image of the subset a∗ under f .

Since M is full and faithful, M gives rise to an equivalence between LComp
and its image category, denoted by M(LComp). The objects of M(LComp) is
those of LComp (but denoted by M(X) for X ∈ LComp) and the morphisms are
formal topology maps between the localic completions of its domain and codomain.
The quasi-inverse of M, denoted by Pt : M(LComp) → LComp, sends an object
M(X) (with the underlying locally compact metric space (X, ρ)) to a Bishop locally
compact metric space Pt(M(X)) = (Pt(M(X)), ρPt), and Pt sends a formal topology
map r : M(X) → M(Y) to a continuous function (in the sense of Definition 3.4)
Pt(r) : Pt(M(X))→ Pt(M(Y)) defined by

Pt(r)(α) def
= rα = {b ∈ MY | (∃a ∈ α) a r b} .

For a locally compact metric space X , the function iX : X → Pt(M(X)) is an isomorphism
since X is complete. In fact, the family (iX : X → Pt(M(X)))X∈LComp forms one of the
natural isomorphisms of the equivalence (see Palmgren [14, Theorem 5.7]).

4 Compact overt subtopologies

The goal of this section is to show that, up to isomorphism, the localic completion
induces a bijection between the compact subspaces of a locally compact metric space X
and the compact overt subtopologies of M(X). The results in this section refine and
extend those of Spitters [16] and Coquand et al. [5].

We begin with the closed subsets of a metric space.
3Since every metric space can be seen as a dense subspace of its completion, the assumption

that X is complete is redundant.
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Definition 4.1 A subset Y of a metric space X is closed if for each x ∈ X , we have(
∀ε ∈ Q>0)B(x, ε) GY =⇒ x ∈ Y.

In terms of localic completion, Y is closed in X if and only if for any x ∈ X

3x⊆3Y =⇒ x ∈ Y.

The class of closed subsets of a metric space X is denoted by Cl(X).

The following generalises the result by Coquand et al. [5, Lemma 3.2], which can be
obtained by Lemma 4.2 and Proposition 2.18. The proof requires Dependent Choice.

Lemma 4.2 Let X = (X, ρ) be a metric space, and let Pos be a formal closed subset
of M(X). Then, for each a ∈ Pos, there exists α ∈ Pt(M(X)Pos) such that a ∈ α .

Proof Define a relation R⊆Pos×Pos by

b(x, ε) R b( y, δ) def⇐⇒ b( y, δ) <X b(x, ε) & δ ≤ ε/2.

We show that R is a total relation on Pos. Let a = b(x, ε) ∈ Pos. By (M1), (M2) and
(Loc), we have

a � X {b ∈ MX | b <X a} ↓ Cε/2.

Since Pos(a) and Pos is formal closed, there exists b ∈ Pos such that b <X a and
b ≤X c for some c ∈ Cε/2 . Clearly, we have a R b, and hence R is a total relation.

Let a0 ∈ Pos. By Dependent Choice, there exists a function f : N → Pos such that
f (0) = a0 and f (n) R f (n + 1) for all n ∈ N. Put

α
def
= {a ∈ MX | (∃n ∈ N) f (n) ≤X a} .

Then a0 ∈ α , and since Pos is upward closed, we have α⊆Pos. Moreover, it is easy
to show that α is a formal point of M(X). Therefore, α ∈ Pt(M(X)Pos).

Theorem 4.3 Let X = (X, ρ) be a complete metric space. Then, there exists a bijection
ϕ : Cl(X)→ Red(M(X)) between the closed subsets of X and the formal closed subsets
of M(X) defined by

ϕ(Y) def
= 3Y,

ϕ−1(Pos) def
= {x ∈ X | 3x ⊆ Pos} .

Journal of Logic & Analysis 9:5 (2017)



16 Tatsuji Kawai

Proof First, we show that for each Y ∈ Cl(X), the set 3Y is formal closed. Let
a ∈ MX and U ⊆ MX , and suppose that a � X U and a ∈ 3Y . Then, there exists y ∈ Y
such that a ∈ 3y. Since 3y ∈ Pt(M(X)), we have 3y GU , and hence 3Y GU . Thus
3Y is formal closed.

Next, we show that for each Pos ∈ Red(M(X)), the subset Y = {x ∈ X | 3x ⊆ Pos}
is closed. Let x ∈ X , and suppose that 3x ⊆ 3Y . Let a ∈ 3x. Then, a ∈ 3Y , so
there exists y ∈ Y such that a ∈ 3y. Hence, 3x ⊆ Pos, that is x ∈ Y . Therefore, Y is
a closed subset of X .

Lastly, we show that ϕ is a bijection. The inclusion Y ⊆ (ϕ−1 ◦ ϕ)(Y) is obvious. The
converse inclusion follows from the fact that Y is closed. Hence Y = (ϕ−1 ◦ ϕ)(Y).
Also, the inclusion (ϕ ◦ ϕ−1)(Pos) ⊆ Pos is clear. For the converse, let a ∈ Pos. By
Lemma 4.2, there exists α ∈ Pt(M(X)) such that a ∈ α ⊆ Pos. Since X is complete,
there exists x ∈ X such that 3x = α . Thus, a ∈ 3x and x ∈ ϕ−1(Pos). Hence
a ∈ (ϕ ◦ ϕ−1)(Pos), and therefore Pos ⊆ (ϕ ◦ ϕ−1)(Pos).

Note that for any metric space X and Pos ∈ Red(M(X)), we have

ϕ−1(Pos) = iX−1[Pt(M(X)Pos)].

Now we recall one of the most important notions in constructive topology.

Definition 4.4 A subset Y of a metric space X = (X, ρ) is located if for each x ∈ X the
distance ρ(x,Y) def

= inf {ρ(x, y) | y ∈ Y} exists as an extended Dedekind real number,
ie for each x ∈ X , the subset

Ux =
{

q ∈ Q>0 | (∃y ∈ Y) ρ(x, y) < q
}

satisfies

(4–1)
(
∀p, q ∈ Q>0) p < q =⇒ p ∈ ¬Ux ∨ q ∈ Ux.

Remark 4.5 In the usual definition of located subset [2, Chapter 4, Section 2], the
distance ρ(x, Y) is required to be a Dedekind real, ie the subset Ux is also required to be
inhabited. We opted to drop this condition in order to obtain a smoother correspondence
between the point-set and the point-free notions.

Lemma 4.6 A subset Y ⊆ X of a metric space X = (X, ρ) is located if and only if

(4–2) (∀a, b ∈ MX) a <X b =⇒ a ∈ ¬3Y ∨ b ∈ 3Y.
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Proof Suppose that Y is located. Let a, b ∈ MX such that a <X b, and write
a = b(x, ε) and b = b( y, δ). Choose γ ∈ Q>0 such that ρ(x, y) + ε+ γ < δ . Then,
either ε ∈ ¬Ux or ε+ γ ∈ Ux . In the former case, we have ¬[B(x, ε) G Y]. In the latter
case, we have B(x, ε+ γ) G Y , and hence B( y, δ) G Y . Therefore a ∈ ¬3Y or b ∈ 3Y .

Conversely, suppose that Y satisfies the condition (4–2). Let x ∈ X and let p, q ∈ Q>0

such that p < q. Then, b(x, p) <X b(x, q). Hence, b(x, p) ∈ ¬3Y or b(x, q) ∈ 3Y ,
that is, p ∈ ¬Ux or q ∈ Ux . Therefore, Y is located.

Definition 4.7 (Spitters [16, Definition 44]) Let M(X) be the localic completion of
a metric space X . A subset Pos ⊆ MX is called a located predicate on M(X) if Pos is
formal closed and satisfies

a <X b =⇒ a ∈ ¬Pos∨ b ∈ Pos

for all a, b ∈ MX . A subtopology S ′ of M(X) is located if there exists a (necessarily
unique) located predicate Pos on M(X) such that S ′ =M(X)Pos , where M(X)Pos is
the overt weakly closed subtopology of M(X) determined by Pos.

Spitters [16, Definition 44] defined a located subtopology of M(X) as a closed
subtopology M(X)M(X)−¬ Pos determined by some located predicate Pos on M(X).
However, the two definitions are equivalent.

Proposition 4.8 (Spitters [16, Proposition 51]) Let X be a metric space and Pos be a
located predicate on M(X). Then, M(X)M(X)−¬ Pos =M(X)Pos .

Proof By Proposition 2.14, it suffices to show that a � X ¬Pos∪
(
Pos∩{a}

)
for

each a ∈ MX . Let a ∈ MX , and let b <X a. Since Pos is located, either b ∈ ¬Pos
or Pos(a). Since b � X a, we have b � X ¬Pos∪

(
Pos∩{a}

)
. By (M1), we have

a � X ¬Pos∪
(
Pos∩{a}

)
.

For a metric space X , write LCl(X) for the class of closed located subsets of X and
LRed(M(X)) for the class of located predicates on M(X).

Theorem 4.9 Let X be a complete metric space. The bijection ϕ : Cl(X) →
Red(M(X)) in Theorem 4.3 restricts to a bijection ϕ : LCl(X)→ LRed(M(X)).

Proof For any Y ∈ LCl(X), the subset ϕ(Y) is located by Lemma 4.6.

Conversely, let Pos ∈ LRed(M(X)). Let a, b ∈ MX such that a <X b. Since
Pos is located, either a ∈ ¬Pos or b ∈ Pos, that is, either a ∈ ¬3ϕ−1(Pos) or
b ∈ 3ϕ−1(Pos). Thus, ϕ−1(Pos) is located by Lemma 4.6.
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Next, we define the notion of located subset for locally compact formal topologies.
Definition 4.10 below extends the corresponding notion for compact regular formal
topologies by Spitters [16, Definition 63], and it enjoys the similar characteristic property
(see Theorem 4.13).

Definition 4.10 Let S be a locally compact formal topology. A subset Pos ⊆ S is
called a located predicate on S if Pos is formal closed and satisfies

a� b =⇒ a ∈ ¬Pos∨ b ∈ Pos

for all a, b ∈ S . A subtopology S ′ of a locally compact formal topology S is located
if there exists a located predicate Pos on S such that S ′ = SS−¬ Pos , ie S ′ coincides
with the closed subtopology determined by ¬Pos.

Proposition 4.11 Let Pos ⊆ S be a formal closed subset of a locally compact formal
topology S , and let wb : S→ Pow(S) be a function which makes S locally compact.
Then, the following are equivalent:

(1) Pos is located;

(2) a ∈ wb(b) =⇒ a ∈ ¬Pos∨ b ∈ Pos for all a, b ∈ S;

(3) a � ¬Pos∪
(
Pos∩{a}

)
for all a ∈ S .

Proof (1) → (2): Immediate from the fact that a ∈ wb(b) =⇒ a� b.

(2) → (3): The proof is similar to that of Proposition 4.8. Note that a � wb(a).

(3) → (1): Assume (3). Let a, b ∈ S such that a� b. Since b � ¬Pos∪
(
Pos∩{b}

)
,

there exists U ∈ Fin(¬Pos∪
(
Pos∩{b}

)
) such that a � U . Either U ⊆ ¬Pos

or Pos(b). In the former case, Pos(a) implies Pos G¬Pos, a contradiction. Hence
a ∈ ¬Pos. Therefore Pos is located.

By Theorem 3.6 and the axiom (M1), Definition 4.10 is compatible with Definition 4.7.

Corollary 4.12 Let X be a locally compact metric space, and let Pos be a formal
closed subset of M(X). Then, Pos is located with respect to <X if and only if it is
located with respect to the way below relation �.

By Proposition 2.14 and Proposition 4.11, located subsets and overt closed subtopologies
are equivalent in locally compact formal topologies.
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Theorem 4.13 Let S be a locally compact formal topology. Then, there exists an
order preserving bijection Pos 7→ SS−¬ Pos between the located predicates on S and
the overt closed subtopologies of S .

When specialised to compact regular formal topologies, Theorem 4.13 yields the
following correspondence (cf Spitters [16, Theorem 74]).

Corollary 4.14 Let S be a compact regular formal topology. Then, there exists an
order preserving bijection between the compact overt subtopologies of S and the located
predicates on S .

Proof Immediate from Proposition 2.21, Proposition 2.23 and Theorem 4.13.

We specialise the bijection of Theorem 4.9 to the compact subsets of a locally compact
metric spaces. The following result is by Coquand et al. [5, Theorem 3.5]. We repeat
their proof for the convenience of the reader.

Lemma 4.15 Let X = (X, ρ) be a locally compact metric space. Let SPos be a
compact overt subtopology of M(X) with a positivity Pos. Then, Y = ϕ−1(Pos) =

{x ∈ X | 3x ⊆ Pos} is a compact subset of X .

Proof Let ε ∈ Q>0 . By (M2) and compactness of SPos , there exist x0, . . . , xn−1 ∈ X
such that MX � Pos {b(xi, ε/2) | i < n} ⊆ Pos. Let i < n. By Lemma 4.2, there exists
αi ∈ Pt(M(X)) such that b(xi, ε/2) ∈ αi ⊆ Pos, and since X is complete, there exists
yi ∈ X such that 3yi = αi . Put Yε = {yi | i < n}. Note that Yε is a subset of Y . Let
y ∈ Y . Since 3y ∈ Pt(M(X)Pos), there exists i < n such that b(xi, ε/2) ∈ 3y. Then,
ρ( yi, y) < ε. Hence, Yε is an ε-net, so Y is totally bounded. Since Y is closed and X
is complete, Y is also complete. Therefore, Y is metrically compact.

Theorem 4.16 Let X = (X, ρ) be a locally compact metric space. Then, up to
isomorphism, the localic completion induces a bijection between the compact subspaces
of X and the compact overt subtopologies of M(X).

Proof We will identify a compact subspace of X with a compact subset of X . We
define a bijection Φ and its inverse Φ−1 between the compact subsets of X and the
compact overt subtopologies of M(X) such that

Φ(Y) ∼=M(Y),

Φ−1(SPos) ∼= Pt(SPos)
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for any compact subset Y ⊆ X and for any compact overt subtopology SPos vM(X)
with a positivity predicate Pos.

First, given a compact subset Y ⊆ X , let iY : Y → X be the inclusion. Let Φ(Y) be the
image of M(Y) under the embedding M(iY ) : M(Y)→M(X). Note that M(iY ) is
defined by

aM(iY ) b def⇐⇒
(
∃b′ <X b

)
iY [a∗] ⊆ b′∗

for all a ∈ MY and b ∈ MX . Since M(Y) is compact overt, Φ(Y) is a compact overt
subtopology of M(X). Clearly, Φ(Y) ∼=M(Y).

Conversely, given a compact overt subtopology SPos of M(X) with a positivity Pos,
let Φ−1(SPos) = i−1

X [Pt(SPos)] = {x ∈ X | 3x ⊆ Pos}. By Lemma 4.15, Φ−1(SPos) is
a compact subset of X . Moreover, since X is complete, we have Φ−1(SPos) ∼= Pt(SPos).

To show that Φ and Φ−1 are inverse to each other, first, let Y ⊆ X be a compact subset
of X . Since M(Y) is compact overt with the positivity MY , Φ(Y) has a positivity
PosY =M(iY )MY = {a ∈ MX | (∃b ∈ MY ) bM(iY ) a} by Lemma 2.10. We show that
PosY = 3Y . Let a ∈ PosY . Then, there exists b ∈ MY such that bM(iY ) a. Clearly,
we have a ∈ 3Y . Conversely, let a = b(x, ε) ∈ 3Y . Then, there exists y ∈ Y such
that ρ(x, y) < ε. Choose δ ∈ Q>0 such that ρ(x, y) + δ < ε. Then, b( y, δ) <X a, so
b( y, δ)M(iY ) a. Hence, a ∈ PosY , and thus PosY = 3Y . Since Y is a closed subset
of X , we have (Φ−1 ◦ Φ)(Y) = {x ∈ X | 3x ⊆ 3Y} = Y .

Conversely, let SPos be a compact overt subtopology of M(X) with a positivity Pos.
Then, SPos is uniquely determined by the located predicate Pos. Moreover, (Φ ◦
Φ−1)(SPos) is uniquely determined by the positivity 3Φ−1(SPos). But 3Φ−1(SPos) =

(ϕ ◦ ϕ−1)(Pos) = Pos, where ϕ is the bijection described in Theorem 4.3. Hence
(Φ ◦ Φ−1)(SPos) = SPos .

Corollary 4.17 Let S be a formal topology. Then, the following are equivalent.

(1) S is isomorphic to the localic completion of some compact metric space.

(2) S is isomorphic to a compact overt subtopology of the localic completion of some
locally compact metric space.

Example 4.18 The formal unit interval I[0, 1] is isomorphic to the localic completion
of the unit interval [0, 1]. In fact, [0, 1] is a compact subspace of R, which is locally
compact. Hence, M([0, 1]) is isomorphic to a compact overt subtopology S of the
formal reals R with a positivity Pos defined by

Pos = 3[0, 1] = {( p, q) ∈ SR | 0 < q & p < 1} .
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Since S is located, S coincides with the closed subtopology determined by

¬Pos = {( p, q) ∈ SR | q ≤ 0 ∨ 1 ≤ p} =R (−∞, 0) ∪ (1,∞),

which is exactly the formal unit interval I[0, 1] (see Example 2.12).

5 Localic completion of products

We show that the functor M : LComp → FTop preserves countable products of
inhabited compact metric spaces.

We first recall the construction of a product of inductively generated formal topologies
from Vickers [18]. Let (Si)i∈I be a set-indexed family of inductively generated formal
topologies, each of the form Si = (Si, � i,≤i), and let Ii,Ci be the axiom-set which
generates Si . Define a preorder (SΠ,≤Π) on a set SΠ = Fin

(∑
i∈I Si

)
by

A ≤Π B def⇐⇒ (∀(i, b) ∈ B) (∃( j, a) ∈ A) i = j & a ≤i b.

The axiom-set on SΠ is defined by

(S1) SΠ �Π {{(i, a)} ∈ SΠ | a ∈ Si} for each i ∈ I ,

(S2) {(i, a), (i, b)} �Π {{(i, c)} ∈ SΠ | c ≤i a & c ≤i b},

(S3) {(i, a)} �Π {{(i, b)} ∈ SΠ | b ∈ Ci(a, k)} for each k ∈ Ii(a).

Let
∏

i∈I Si = (SΠ, �Π,≤Π) denote the formal topology inductively generated by the
above axiom-set. For each i ∈ I , the projection pi :

∏
i∈I Si → Si is defined by

A pi a def⇐⇒ A = {(i, a)}

for all A ∈ SΠ and a ∈ Si . Then, the family of projections
(
pi :

∏
i∈I Si → Si

)
i∈I is a

product of (Si)i∈I . Given a family (ri : S → Si)i∈I of formal topology maps, we have a
unique formal topology map r : S →

∏
i∈I Si which commutes with each projection.

The map r is defined by

a r A def⇐⇒ (∀(i, b) ∈ A) a � r−i {b}

for all a ∈ S and A ∈ SΠ .

Next, the product of a sequence (Xn, ρn)n∈N of metric spaces is a set theoretic product∏
n∈N Xn equipped with a metric ρ defined by

ρ ((xn)n∈N, ( yn)n∈N) def
=

∞∑
n=0

ρn(xn, yn)
2n+1 .
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Here, we are assuming that each metric ρn is bounded by 1 without loss of generality.
Then, the family of projections πn : X → Xn forms the product of the metric spaces.
A countable product of inhabited compact metric spaces is compact; see Bishop [2,
Chapter 4, Section 4, Proposition 6]. We write (xn) for the element (xn)n∈N of

∏
n∈N Xn .

Let (Xn, ρn)n∈N be a sequence of inhabited compact metric spaces, and let∏
n∈NM(Xn) = (SΠ, �Π,≤Π) be the product of the localic completions (M(Xn))n∈N .

Since M(Xn) is compact regular for each n ∈ N by Theorem 3.8, the product∏
n∈NM(Xn) is compact regular (see Cederquist and Coquand [4]).

Lemma 5.1 Let r : M(
∏

n∈N Xn) →
∏

n∈NM(Xn) be the unique formal topology
map determined by the sequence

(
M(πn) : M(

∏
n∈N Xn)→M(Xn)

)
n∈N of formal

topology maps. Then, r is an embedding.

Proof Write M(
∏

n∈N Xn) = (MX, � X,≤X), and write ri for the localic completion
M(πi) : M(

∏
n∈N Xn)→M(Xi) of the projection πi :

∏
n∈N Xn → Xi .

Let a = b((xn), ε) ∈ MX . We must show that a � X r−r−∗AX {a}. By (M1), we have

b((xn), ε) � X
{
b((xn), ε′) ∈ MX | ε′ < ε

}
.

Let ε′ < ε, and choose γ ∈ Q>0 such that ε′ + 3γ < ε. Choose a positive number
N ∈ N and γ′ ∈ Q>0 such that 2−N < γ′ < γ . By (M2) and (Loc), we have

b((xn), ε′) � X Cγ′/(2N+1N) ↓ b((xn), ε′).

Let b(( yn), θ) ∈ Cγ′/(2N+1N) ↓ b((xn), ε′). We show that b(( yn), θ) ∈ r−r−∗AX {a}.
Define an element A of SΠ by A = {(i, b( yi, γ/N)) | i < N}. Then, for each i < N ,
we have

πi [B(( yn), θ)] ⊆ B( yi, γ
′/N).

Thus, b(( yn), θ) ri b( yi, γ/N) for each i < N . Hence b(( yn), θ) r A. It remains to be
shown that r− {A} � X {a}. By (M2) and the definition of r , it suffices to show that

r−0 {b( y0, γ/N)} ↓ · · · ↓ r−N−1 {b( yN−1, γ/N)} ↓ Cγ � X a.

Let b((zn), δ) ∈ r−0 {b( y0, γ/N)} ↓ · · · ↓ r−N−1 {b( yN−1, γ/N)} ↓ Cγ . Then, we have
δ ≤ γ and ρi(zi, yi) < γ/N for all i < N . Thus

ρ((zn), (xn)) + δ ≤ ρ((zn), ( yn)) + ρ(( yn), (xn)) + γ

≤
∞∑

i=N

2−(i+1) +

N−1∑
i=0

ρi(zi, yi)/2i+1 + ρ(( yn), (xn)) + γ

≤ 3γ + ρ(( yn), (xn))

< 3γ + ρ(( yn), (xn)) + θ

< 3γ + ε′ < ε.
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Hence, b((zn), δ) <X b((xn), ε), and thus b((zn), δ) � X a, as required.

The image Sr ofM(
∏

n∈N Xn) under r is a compact overt subtopology of
∏

n∈NM(Xn)
with a positivity PosX = r MX .

Lemma 5.2 PosX is a positivity of
∏

n∈NM(Xn).

Proof Write
∏

n∈NM(Xn) = (SΠ, �Π,≤Π). We must show that A �Π PosX ∩{A}
for all A ∈ SΠ . Let A ∈ SΠ . By the axiom (S2), there exists a subset U ⊆ SΠ such that
A �Π U and each A′ ∈ U satisfies A′ ≤Π A and(

∀(n, a), (m, b) ∈ A′
)

n = m =⇒ a = b.

Let A′ ∈ U . We can write A′ as {(n0, a0), . . . , (nN−1, aN−1)} such that ni 6= nj for all
0 ≤ i < j < N . For each i < N , write ai = b(xi, εi).

Since each Xn is inhabited, we may choose a sequence (zn) ∈
∏

n∈N Xn by Countable
Choice. Define a sequence ( yn) ∈

∏
n∈N Xn by

yn =

{
xi if ni = n for some i < N,

zn otherwise.

Choose δ ∈ Q>0 such that δ < min
{
εi/2ni+1 | i < N

}
. Then, b(( yn), δ) rni b(xi, εi)

for each i < N , and thus b(( yn), δ) r A′ . Hence A′ ∈ PosX . Since PosX is upward closed,
we have A ∈ PosX . Hence A′ �Π PosX ∩{A}. Therefore A �Π PosX ∩{A}.

Lemma 5.3 The embedding r : M(
∏

n∈N Xn)→
∏

n∈NM(Xn) is an isomorphism.

Proof Since
∏

n∈NM(Xn) is regular, the image Sr is closed and overt by Proposition
2.21. Thus it is the largest subtopology of

∏
n∈NM(Xn) with positivity PosX by

Proposition 2.18. Hence Sr =
∏

n∈NM(Xn) by Lemma 5.2. Since r is an embedding
by Lemma 5.1, r is an isomorphism.

Theorem 5.4 The functor M : LComp → FTop preserves countable products of
inhabited compact metric spaces.
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6 The main result

We begin with the predicative notion of complete regularity introduced by Curi [7].

Definition 6.1 Let I denote the set {q ∈ Q | 0 ≤ q ≤ 1}. Given a formal topology S
and subsets U,V ⊆ S , a scale from U to V is a family

(
Uq
)

q∈I of subsets of S such that
U � U0 , U1 � V , and p < q =⇒ Up ≪ Uq for all p, q ∈ I. For subsets U,V ⊆ S ,
we say that U is really covered by V , written U≺≺≺V , if there is a scale from U to V .

Lemma 6.2 Let r : S ′ → S be a formal topology map, and let V ⊆ S . Then, r factors
through the inclusion SS−V → S if and only if r−V � ′ ∅.

Proof Let Sr denote the image of S ′ under r . Then

r factors through SS−V ⇐⇒ Sr v SS−V

⇐⇒ V � r ∅
⇐⇒ r−V � ′ ∅.

Let R be the formal reals (see Example 2.8). For each q ∈ Q, define

(q,∞) def
= {(r, s) ∈ SR | r = q} ,

(−∞, q) def
= {(r, s) ∈ SR | s = q} .

In the following proposition, I[0, 1] denotes the formal unit interval (see Example
2.12).

Proposition 6.3 (Johnstone [11, Chapter IV, Proposition 1.4]) Let S be a formal
topology, and let U,V ⊆ S . Then, the following are equivalent.

(1) U≺≺≺V .

(2) There exists a formal topology map r : S → R such that

(a) r−(0,∞) ↓ U � ∅,

(b) r−(−∞, 1) � V .

(3) There exists a formal topology map as in (2), but additionally factors through
I[0, 1].
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Proof (2) → (1): Let r : S → R be a formal topology map which satisfies (2a) and
(2b). Let U0 = U . For each q ∈ I∩Q>0 , define

Uq
def
= r−(−∞, q).

It is easy to show that p < q implies (−∞, p) ≪ (−∞, q), and thus p < q implies
r−(−∞, p) ≪ r−(−∞, q). Hence p < q =⇒ Up ≪ Uq for each p, q ∈ Q. Also, we
have U1 � V by (2b). Moreover, for any q ∈ I∩Q>0 , since SR �R(−∞, q)∪ (0,∞),
we have S � r−(−∞, q) ∪ r−(0,∞) � Uq ∪ U∗ by (2a), and hence U0 ≪ Uq .
Therefore, (Uq)q∈I is a scale from U to V .

(1) → (3): Let (Uq)q∈I be a scale from U to V . Extend (Uq)q∈I to (Uq)q∈Q by defining
Uq = ∅ if q < 0, and Uq = S if 1 < q. Then, we have p < q =⇒ Up ≪ Uq . Define
a relation r ⊆ S× SR by

a r ( p, q) def⇐⇒
(
∃( p′, q′) ∈ SR

)
p < p′ < q′ < q & a � U∗p′ ↓ Uq′ .

We show that r is a formal topology map (see Remark 2.7). The conditions (FTM1)
and (FTM3a) are easy to show. We check the other conditions:

(FTM2): Let ( p, q), (u, v) ∈ SR , and let a ∈ r−{( p, q)} ↓ r−{(u, v)}. Then, there
exist ( p′, q′), (u′, v′) ∈ SR such that p < p′ < q′ < q and a � U∗p′ ↓ Uq′ , and
u < u′ < v′ < v and a � U∗u′ ↓ Uv′ . Then

a � U∗p′ ↓ U∗u′ ↓ Uq′ ↓ Uv′ =S U∗max( p′,u′) ↓ Umin(q′,v′).

If max( p′, u′) < min(q′, v′), then we have a � r−(( p, q) ↓ (u, v)). Otherwise, we must
have a � ∅ because Up ↓ U∗q � U∗∗p ↓ U∗q � U∗∗q ↓ U∗q � ∅ whenever p ≤ q. Thus,
in either case, we have a � r−(( p, q) ↓ (u, v)).

(FTM3b): It suffices to show that r preserves (R1) and (R2). For (R2), let ( p, q), (u, v) ∈
SR such that p < u < v < q, and let a r ( p, q). Then, there is ( p′, q′) ∈ SR such that
p < p′ < q′ < q and a � U∗p′ ↓ Uq′ . If q′ < v or u < p′ , then we immediately have
a � r− {( p, v), (u, q)}. So suppose that p′ ≤ u < v ≤ q′ . Let u′, v′ ∈ Q such that
u < u′ < v′ < v. Then(
U∗p′ ↓ Uv′

)
∪
(
U∗u′ ↓ Uq′

)
=S

(
U∗p′ ∪ U∗u′

)
↓
(
U∗p′ ∪ Uq′

)
↓
(
Uv′ ∪ U∗u′

)
↓
(
Uv′ ∪ Uq′

)
=S

(
U∗p′ ∪ U∗u′

)
↓ S ↓ S ↓

(
Uv′ ∪ Uq′

)
=S U∗p′ ↓ Uq′ .

Thus,

a �
(
U∗p′ ↓ Uv′

)
∪
(
U∗u′ ↓ Uq′

)
� r− {( p, v)} ∪ r− {(u, q)} � r− {( p, v), (u, q)} .

Hence r preserves (R2). It is also easy to see that r preserves (R1).
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Next, we show that r satisfies (2a) and (2b). The condition (2b) is immediate from the
fact that q < 1 implies Uq � V . As for the condition (2a), we have

r−(0,∞) ↓ U �

 ⋃
q∈Q>0

(
U∗0 ↓ Uq

) ↓ U0 =S
⋃

q∈Q>0

(
U∗0 ↓ Uq ↓ U0

)
� ∅.

Lastly, r factors through I[0, 1] by Lemma 6.2, since we have

r−((−∞, 0) ∪ (1,∞)) � r−(−∞, 0) ∪ r−(1,∞) � ∅

by the definition of
(
Uq
)

q∈Q outside I.

(3) → (2): Trivial.

Definition 6.4 Let S be a formal topology, and let U,V ⊆ S . A scale (Uq)q∈I from U
to V is finitary if Uq ∈ Fin(S) for all q ∈ I. For any U,V ⊆ S , the set of finitary scales
from U to V is denoted by ScFin(U,V). Explicitly, ScFin(U,V) is the following set:

{F ∈ I→ Fin(S) | U � F(0) & F(1) � V & (∀p, q ∈ I) p < q → F( p) ≪ F(q)} .

We write ScFin(a, b) for ScFin({a} , {b}).

The following is a special case of the interpolation property of way below relations.

Lemma 6.5 Let S be a compact regular formal topology. For any U,V ⊆ S such that
U ≪ V , there exists W ∈ Fin(S) such that U ≪ W ≪ V .

Proof See, eg Curi [8, Lemma 3.7].

From Lemma 6.5, the following proposition is intuitively clear. It is a special case of
Urysohn’s lemma for locale; see Johnstone [11, Chapter IV, Proposition 1.6]. The proof
requires Dependent Choice.

Proposition 6.6 Let S be a compact regular formal topology. Then, for any U,V ⊆ S
such that U ≪ V , there exists a finitary scale from U to V .

Proof See Curi [7, Proposition 2.4] where he gave a proof of a similar property for
normal formal topologies. His proof requires Relativised Dependent Choice, but for
compact regular formal topologies, Dependent Choice suffices. This is because we only
need to deal with finitary scales, and ScFin(U,V) is a set for each U,V ⊆ S .
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Proposition 6.6 motivates the following definition.

Definition 6.7 A formal topology S is compact enumerably completely regular if S
is compact and there exist functions wc : S → Pow(S) and sc ∈

∏
(a,b)∈wc ScFin(a, b)

such that wc satisfies the two conditions of regularity in Definition 2.20, and moreover,
the relation wc ⊆ S × S associated with wc is countable, ie there exists a surjection
f : N→ wc. The function sc is called a choice of scale for wc.

Remark 6.8 Curi [7] defined the notion of enumerably completely regular formal
topologies, which is obtained by omitting the compactness and the finiteness condition
on scales from Definition 6.7. Since our aim is to find a point-free characterisation of
Bishop compact metric spaces, we have put compactness and enumerable complete
regularity into one definition. See the pioneering work by Curi [7] and our subsequent
paper [12] for further properties of enumerably completely regular formal topologies.

Lemma 6.9 The localic completionM(X) of a compact metric space X is isomorphic
to an overt compact enumerably completely regular formal topology.

Proof Let X = (X, ρ) be a compact metric space, and let Y ⊆ X be a countable dense
subset of X . By Theorem 3.3, M(X) and M(Y) are isomorphic. Hence, without loss
of generality, we may assume that X is countable. Since MX =

⋃
ε∈Q>0 Cε, and the set

Cε is countable for each ε ∈ Q>0 , MX is countable. By (M1), we have

b(x, ε) � X {b(x, δ) ∈ MX | δ < ε}

for each b(x, ε) ∈ MX . Since a <X b implies a ≪ b for any a, b ∈ MX , we define a
function wc : MX → Pow(MX) by

wc(b(x, ε)) def
= {b(x, δ) ∈ MX | δ < ε} .

The set wc(b(x, ε)) is countable by the standard enumeration of the rational interval
(0, ε). Therefore, the relation wc is countable.

Moreover, for any b(x, δ) ∈ wc(b(x, ε)), we can choose an order preserving bijection
ϕ : I→ [δ, ε]∩Q. Then, the family ({b(x, ϕ(q))})q∈I is a finitary scale from {b(x, δ)}
to {b(x, ε)}. Thus, we can define a function sc ∈

∏
(a,b)∈wc ScFin(a, b) which assigns

to each (a, b) ∈ wc a finitary scale from {a} to {b} as described above.

Since X is compact, M(X) is compact by Theorem 3.8. Therefore, M(X) is an
overt compact enumerably completely regular formal topology with the function
wc : MX → Pow(MX) and the choice of scale sc ∈

∏
(a,b)∈wc ScFin(a, b) for wc.
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Finally, we can give a point-free characterisation of Bishop compact metric spaces.
Theorem 6.10 can be seen as a point-free version of Urysohn’s metrisation theorem for
overt compact enumerably completely regular formal topologies.

Theorem 6.10 Let S be a formal topology. Then, the following are equivalent.

(1) S is isomorphic to an overt compact enumerably completely regular formal
topology.

(2) S is isomorphic to a compact overt subtopology of
∏

n∈N I[0, 1].

(3) S is isomorphic to the localic completion of some compact metric space.

Proof (1) → (2): Without loss of generality, suppose that S is an overt compact
enumerably completely regular formal topology. Then, there exist wc : S→ Pow(S),
a choice of scale sc ∈

∏
(a,b)∈wc ScFin(a, b) for wc and a surjection f : N → wc, as

described in Definition 6.7. We write (an, bn) for f (n). Then, the composition sc ◦ f
assigns to each n ∈ N, a finitary scale (sc ◦ f )(n) from {an} to {bn}. By Proposition
6.3, each n ∈ N determines a formal topology map rn : S → I[0, 1] such that

r−n (0,∞) ↓ an � ∅,
r−n (−∞, 1) � bn.

Let r : S →
∏

n∈N I[0, 1] be the canonical formal topology map which commutes with
rn : S → I[0, 1] for each n ∈ N. We show that r is an embedding, ie a � r−r−∗A{a}
for each a ∈ S . Let a ∈ S and b ∈ wc(a). Then, there exists n ∈ N such that
f (n) = (b, a). Define

Sa
def
=
{

k ∈ N | rk
−(−∞, 1) � a

}
,

V def
=
⋃

k∈Sa

pk
−(−∞, 1),

where pk is the k th projection pk :
∏

n∈N I[0, 1] → I[0, 1]. Note that r−V =S⋃
k∈Sa

r−pk
−(−∞, 1) =S

⋃
k∈Sa

rk
−(−∞, 1) � a. Thus, V ⊆ r−∗A{a}. Since

S � rn
−(−∞, 1) ∪ rn

−(0,∞), we have

b �
(
rn
−(−∞, 1) ∪ rn

−(0,∞)
)
↓ b

�
(
rn
−(−∞, 1) ↓ b

)
∪
(
rn
−(0,∞) ↓ b

)
� rn

−(−∞, 1) ∪ ∅
� r−pn

−(−∞, 1) ⊆ r−V.

Hence, a � wc(a) � r−r−∗A{a} . Therefore, r is an embedding. Then, the conclusion
is immediate.
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(2) → (3): Suppose that S is isomorphic to a compact overt subtopology of∏
n∈N I[0, 1]. Since M([0, 1]) ∼= I[0, 1] by Example 4.18 and [0, 1] is an inha-

bited compact metric space, we have
∏

n∈N I[0, 1] ∼=M(
∏

n∈N[0, 1]) by Theorem 5.4.
Since

∏
n∈N[0, 1] is a compact metric space, S is isomorphic to the localic completion

of some compact metric space by Corollary 4.17.

(3) → (1): By Lemma 6.9.

Remark 6.11 It is straightforward to show that every compact overt subtopology of∏
n∈N I[0, 1] is overt compact enumerably completely regular without using any choice

principle. Hence, the equivalence (1) ↔ (2) and the implication (3) → (1) do not
depend on any choice principle.

However, the proof of the implication (2) → (3) contains essential use of Dependent
Choice. Specifically, Corollary 4.17 depends on Lemma 4.2, whose proof requires
Dependent Choice. This use of choice principles seems to be crucial.
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