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A computational aspect of the Lebesgue differentiation
theorem

NOOPUR PATHAK

Abstract: Given an L1 -computable function, f , we identify a canonical represen-
tative of the equivalence class of f , where f and g are equivalent if and only if∫
|f − g| is zero. Using this representative, we prove a modified version of the

Lebesgue Differentiation Theorem. Our theorem is stated in terms of Martin-Löf
random points in Euclidean space.
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1 Introduction

The Lebesgue Differentiation Theorem is a fundamental theorem in measure theory
which generalizes the fundamental theorem of calculus. The Lebesgue Differentiation
Theorem states that given f ∈ L1([0, 1]d),

f (x) = lim
Q↘x

∫
Q f

µ(Q)

for almost every x where Q is a cube in [0, 1]d containing x . In this paper, we
look at the theorem in the context of computability theory. A proof of the Lebesgue
Differentiation theorem can be found in the book of Wheeden-Zygmund [6] (p. 101-
109) and with some work we can modify this proof for L1 -computable functions which
are defined in Theorem 2.1. The final result we obtain will be a modified version of
the Lebesgue Differentiation Theorem and will hold for all x which are Martin-Löf
random. Due to the nature of Lebesgue integration, rather than working with actual
functions f , it will be more useful to work with canonical representatives of f based
on the equivalence relation

f ∼ g⇔ ||f − g||1 = 0.

In this paper, we will prove such a canonical representative exists, and is well defined.
Eventually, upon using some ideas from the original proof and creating some new
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2 Noopur Pathak

tests for randomness, we will prove Theorem 5.1. A useful reference on computable
analysis is given by Pour-El and Richards [4] and many of the ideas and terms in this
paper come from that book.

This paper is a revised version of a report completed for an undergraduate course on
Computability and Randomness. This course was taken in the MASS program at the
Pennsylvania State University in the Fall of 2007. The author thanks Stephen Simpson
for his guidance and support, without which this paper would not be possible.

The referee has pointed out a result of Demuth [2] which says approximately the
following: any computable function with bounded variation is differentiable at the
Martin-Löf random reals. Due to notational and other difficulties, we have not been
able to determine the exact content of Demuth’s result and to what extent it may overlap
with out results.

2 Some Notation and Definitions

The functions we consider in this paper will be real-valued and Lebesgue measurable
with measure µ on the unit cube [0, 1]d ⊂ Rd . Here d is a fixed positive integer. Our
short description of this will be f ∈ L1([0, 1]d). Our norm will be the L1 -norm which
is defined by

||f ||1 =
∫

[0,1]d
|f | =

∫
x∈[0,1]d

|f (x)| dµ(x).

Note that L1 functions have finite Lebesgue integral.

The following definition was provided by Pour-El and Richards [4].

Definition 2.1 A function f ∈ L1([0, 1]d) is called L1 -computable if there exists a
computable sequence of polynomials fn ∈ Q[x] such that for all n

||f − fn||1 <
1
2n

For future reference, note that we can easily find a computable sequence of rational
numbers (Dn), depending on fn , where Dn is an upper bound of the maximum gradient
of each fn , maxx{|∇fn(x)| : x ∈ [0, 1]d}

Definition 2.2 Let f be an L1 function and let Q denote a rational cube (that is, the
coordinates of the vertices of Q are rational). Given x, we consider those Q containing
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A computational aspect of the Lebesgue differentiation theorem 3

x with edges parallel to the coordinate axes. Then, the indefinite integral of f is said to
be differentiable at x if

lim
Q↘x

∫
Q f

µ(Q)

exists.

Lemma 2.3 Given a rational cube Q ⊆ [0, 1]d and an L1 -computable function f , we
can effectively find the computable real number

∫
Q f .

Proof To show that
∫

Q f exists and is computable we need to find a recursive sequence
of rational numbers, (cn) such that∣∣∣∣ cn −

∫
Q

f
∣∣∣∣ < 1

2n

for all n. By Theorem 2.1, there exists a computable sequence of polynomials with
rational coefficients, fn , such that

||f − fn||1 ≤
1
2n .

We want to say that cn =
∫

Q fn . First we show that
∫

Q fn is rational for all n. To do this,
recall that a polynomial is just a sum of monomials and since the integral of a sum is
just the sum of integrals, we can just consider the integral of a monomial over Q. Note
that in the following calculation pl ≤ ql for all l and (q1, . . . , qd) and (p1, . . . , pd) are
diagonal vertices of Q.∫

Q
a · xk1

1 · xk2
2 · . . . · xkd

d =
∫ qd

pd

∫ qd−1

pd−1

. . .

∫ q1

p1

a · xk1
1 · xk2

2 · . . . · xkd
d

=
a(qk1+1

1 − pk1+1
1 )(qk2+1

2 − pk2+1
2 ) . . . (qkd+1

d − pkd+1
d )

(k1 + 1)(k2 + 1) . . . (kd + 1)

This is a rational number because by the definition of fn , a must be rational and
q1, p1, . . . , qd, pd are also rational because they are the coordinates of our rational cube
Q. Thus, we see that

∫
Q fn is rational for all n. Also, since (fn) is a recursive sequence,

(
∫

Q fn) is also a recursive sequence. We say this because
∫

Q fn can be re-written as the
integral over Q of the elements of the sequence (fn). Now that we have our recursive
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4 Noopur Pathak

sequence of rational numbers, we just need to show that (
∫

Q fn) converges to
∫

Q f at a
nice rate. ∣∣∣∣∫

Q
fn −

∫
Q

f
∣∣∣∣ ≤ ∫

Q
| fn − f |

≤
∫

[0,1]d
| fn − f |

≤ 1
2n

This proves that
∫

Q f exists and is computable.

We now define Σ0
1 sets.

Definition 2.4 A set S ⊆ Nk× [0, 1]d is called Σ0
1 if there exists a recursive predicate

R ⊆ Nk+1 × (Q ∩ [0, 1])2d such that

S ={〈m1, . . . ,mk, x1, . . . , xd〉 : (∃j ∈ N)(∃a1, b1, . . . , ad, bd ∈ Q)

(R(j,m1, . . . ,mk, a1, b1, . . . , ad, bd) ∧ a1 < x1 < b1 ∧ . . . ∧ ad < xd < bd)}.

Definition 2.5 A sequence of sets (Un) ⊆ [0, 1]d is called uniformly Σ0
1 if the predicate

S ⊆ N× [0, 1]d where
S(n, x) ≡ x ∈ Un

is Σ0
1

The next proposition provides a useful property of Σ0
1 sets.

Proposition 2.6 The class of Σ0
1 sets is closed under the existential number quantifier.

The next definition was first given by Martin-Löf [3].

Definition 2.7 A point x ∈ Rd is Martin-Löf random if x does not lie in the intersection
of any uniformly Σ0

1 sequence (Vk) such that µ(Vk) ≤ 1
2k for each k .

Another characterization of random points in Rd is given by Solovay’s Lemma, as
proven by Simpson [5]. The proof given by Simpson [5] is given for sets in the Cantor
space, but the proof applies here as well.
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A computational aspect of the Lebesgue differentiation theorem 5

Lemma 2.8 (Solovay’s Lemma) Suppose that (Vk) is a sequence of uniformly Σ0
1

sets in [0, 1]d such that
∞∑

k=1

µ(Vk) <∞.

Then for any random x ∈ [0, 1]d , x lies in only finitely many Vk .

Before we begin the proof of our modified Lebesgue Differentiation Theorem, we will
need a few concepts and results to help set up the proof of the theorem.

3 A canonical representative of f

Lemma 3.1 (Chebyshev Inequality) Given an L1 -computable function f , and ε > 0,
let

S(f , ε) = {x : |f (x)| > ε}.

Then

µ(S(f , ε)) ≤ ||f ||1
ε

.

Proof Consider ||f ||1 .

||f ||1 =
∫

[0,1]d
|f | ≥

∫
S(f ,ε)
|f | ≥

∫
S(f ,ε)

ε ≥ ε · µ(S(f , ε))

The result follows.

The next lemma is based on Proposition 4.1 found in a paper by Brown, Guisto and
Simpson [1].

Lemma 3.2 Let f be L1 -computable. Then, there exists a uniformly Σ0
1 sequence of

sets Vk , k ∈ N such that µ(Vk) ≤ 1
2k−3 , and for all x /∈ Vk and n ≥ k we have

| fi(x)− f2n(x) | ≤ 1
2n

for all i ≥ 2n.
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6 Noopur Pathak

Proof Let fn and Dn be as in Theorem 2.1. Let Vk = {x|(∃n ≥ k)(∃i ≥ 2n)(|fi(x) −
f2n(x)| > 1

2n )}. We want to show that the Vk are Σ0
1 . Since fn is continuous for all n,

x ∈ Vk if and only if there exists a ball around x contained in Vk . For this reason, we
can rewrite Vk as follows,

x ∈ Vk ≡(∃n ≥ k)(∃i ≥ 2n)(∃m ∈ N)(∃a1, b1, . . . , ad, bd ∈ Q) such that

(a1 < x1 < b1, . . . , ad < xd < bd) ∧
(
| fi(a)− f2n(a) | > 1

2n +
1

2m

)
∧(

(Di + D2n) · |a− b| < 1
2m

)

Here n and i are natural numbers and a = 〈a1, . . . , ad〉 and b = 〈b1, . . . , bd〉. Define
the predicate R by:

R(i, a1, b1, . . . , ad, bd) =
(
| fi(a)− f2n(a) | > 1

2n +
1

2m

)
∧(

(Di + D2n) · |a− b| < 1
2m

)

is a recursive predicate, so by Theorem 2.4 and Theorem 2.5 and Theorem 2.6, we can
see that Vk is Σ0

1 and the sequence (Vk) is uniformly Σ0
1 .

Now, we need to look at the measure of Vk . Note that

Vk ⊆
∞⋃

n=k

S

( ∞∑
i=2n

|fi+1(x)− fi(x)|, 1
2n

)
.

Using the previous lemma, we can conclude the proof as follows:
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A computational aspect of the Lebesgue differentiation theorem 7

µ(Vk) ≤ µ

( ∞⋃
n=k

S

( ∞∑
i=2n

| fi+1(x)− fi(x) |, 1
2n

))

≤
∞∑

n=k

µ

(
S

( ∞∑
i=2n

| fi+1(x)− fi(x) |, 1
2n

))

=
∞∑

n=k

2n
∞∑

i=2n

||fi+1 − fi||1

≤
∞∑

n=k

2n
∞∑

i=2n

1
2i−1

≤
∞∑

n=k

2n

22n−2

=
∞∑

n=k

1
2n−2

=
1

2k−3

Thus we have our Vk and by the definition of Vk , for all x not in Vk and n ≥ k ,

| fi(x)− f2n(x) | ≤ 1
2n

for all i ≥ n

Lemma 3.3 Let f be L1 -computable. Then limn→∞ fn(x) exists for all random x.

Proof From the previous lemma, we can see that

∞∑
k=1

µ(Vk) <∞.

Since the sum is finite, we can use Solovay’s Lemma and say that any random x will
only be in finitely many Vk . So, for some large k and ∀n ≥ k , we can see that

| fi(x)− f2n(x) | ≤ 1
2n

for all i ≥ 2n. From this we can see that fn converges uniformly for x /∈ Vk , and the
limit exists.
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Definition 3.4 Let f ∈ L1([0, 1]d). We define f̂ (x) : [0, 1]d → R to be

f̂ (x) =
{

limn→∞ fn(x) if x is random
0 otherwise

By Theorem 3.3 limn→∞ fn(x) exists for all random x so we know our new function is
well-defined. We want to claim that f̂ is a canonical representation of the equivalence
class of f (f ∼ g⇔ ||f −g||1 = 0). The next two lemmas will prove that this is indeed
the case.

Lemma 3.5
∫

[0,1]d

∣∣∣ f − f̂
∣∣∣ dx = 0

Proof Let Eε =
{

x :
∣∣∣ f (x)− f̂ (x)

∣∣∣ > ε
}

and consider the set E0 . If this is a set of
measure zero, then the result follows. Suppose, however, that this is not the case. Then,
there exists some small ε > 0 such that µ{Eε} > ε. Now, by Theorem 3.2, for all
random x , there exists k large such that x /∈ Vk and for all n ≥ k , | fi(x)− f2n(x) | ≥ 1

2n

for all i ≥ k . By the definition of f̂ we can also say that
∣∣∣ f̂ (x)− f2n(x)

∣∣∣ ≥ 1
2n . So for

n such as the one above and x /∈ Vk ,

µ{x : | f (x)− f2n(x) | > ε− 1
2n } > µ

{
x :
∣∣∣ f̂ (x)− f (x)

∣∣∣− ∣∣∣ f̂ (x)− f2n(x)
∣∣∣ > ε− 1

2n

}
> µ

{
x :
∣∣∣ f̂ (x)− f (x)

∣∣∣− 1
2n > ε− 1

2n

}
= µ

{
x :
∣∣∣ f̂ (x)− f (x)

∣∣∣ > ε
}

> ε− 1
2n−3

By Theorem 3.1,

||f−f2n||1 ≥
(
ε− 1

2n

)
·µ
{

x : | f (x)− f2n(x) | > ε− 1
2n

}
>

(
ε− 1

2n

)(
ε− 1

2n−3

)
.

This is a contradiction because ||f − f2n||1 → 0 at n → ∞. It follows that our
assumption is incorrect and therefore, E0 has measure zero.

Lemma 3.6 Given two L1 -computable functions, f , g∫
[0,1]d
|f − g| = 0 iff f̂ = ĝ.
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A computational aspect of the Lebesgue differentiation theorem 9

Proof (⇐) Suppose f̂ = ĝ. Then, f (x) = g(x) for all x except for a set of measure
zero. The result follows.

(⇒) Suppose
∫

[0,1]d |f − g| = 0. Then,

||fn − gn||1 = ||fn − f + f − g + g− gn||1
≤ ||fn − f ||1 + ||f − g||1 + ||g− gn||1

≤ 2
2n

This is a useful fact that will be used a little later. First we look at another consequence
of our given assumption. ∫

[0,1]d
|f − g| =

∫
[0,1]d

random

|f − g|

=
∫

[0,1]d

∣∣∣̂f − ĝ
∣∣∣

This means that f̂ = ĝ except on a set of measure 0, E .

E =
{

x | f̂ 6= ĝ
}

=
{

x| lim
n→∞

(fn(x)− gn(x)) 6= 0
}
.

We would like to show that there cannot be any random x ∈ E . Let

Vk
n =

{
x : |fn(x)− gn(x)| > 1

2k

}
The sets Vk

n will be our test for randomness. Using sets similar to the ones used in the
proof of Theorem 3.2, we can show that for a fixed k the sequence (Vk

n) is uniformlyΣ0
1 .

We would now like to use Solovay’s Lemma. To do that, we need to show that the sum
of the measures of Vk

n over all n is finite. To do this, we will use Theorem 3.1 again.

µ
(
Vk

n
)

= µ

(
x : |fn(x)− gn(x)| > 1

2k

)
≤ 2k · ||fn − gn||1

≤ 2k

2n−1

For a fixed k this is a geometric series, so
∑∞

n=1

∣∣Vk
n

∣∣ < ∞. By Solovay’s Lemma,
for any fixed k , x can only be in finitely many Vk

n . Therefore for a random x ,
limn→∞ |fn(x) − gn(x)| ≤ 1

2k for all k meaning that limn→∞ |fn(x) − gn(x)| = 0. This
shows that there cannot be a random x in E. By the definition of f̂ and ĝ, there cannot
be a non-random x in E either. This means that E is empty, and f̂ = ĝ
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10 Noopur Pathak

From the last two lemmas, we can see that f̂ is a canonical representative of the
equivalence class of f . The next section provides some results necessary for the proof
of the main theorem.

4 Some Important Lemmas

First, will will prove the Lebesgue Differentiation theorem for continuous functions.

Proposition 4.1 Let f ∈ L1
(
Rd
)

be a continuous function. Then, the indefinite
integral of f is differentiable and its derivative is equal to f (x) for all x ∈ Rd .

Proof The proof is clear from the following calculations. If f is continuous at x and
Q is a rational cube containing x , then∣∣∣∣ 1

µ(Q)

∫
Q

f (y) dy− f (x)
∣∣∣∣ =

∣∣∣∣ 1
µ(Q)

∫
Q

[f (y)− f (x)] dy
∣∣∣∣

≤ 1
µ(Q)

∫
Q
|f (y)− f (x)| dy

≤ sup
y∈Q
|f (y)− f (x)|,

which tends to zero as Q shrinks to x .

Using this fact we develop the idea for the proof. By Theorem 2.1, we can approximate
our function f using continuous polynomials. Using this, we can approximate the
indefinite integral of f and create a test for randomness. To do all this, we will need a
few lemmas.

Lemma 4.2 (Simple Vitali Lemma) Let E be a subset of [0, 1]d , and let K be a
collection of cubes Q in [0, 1]d covering E . Then there exists a positive constant β ,
depending only on d , and a finite number of disjoint cubes Q1, . . . ,QN in K such that

N∑
j=1

µ(Qj) ≥ β · µ(E)

A proof of the Simple Vitali Lemma is given by Wheedon and Zygmund [6] on page
102.
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Definition 4.3 Consider a function g : [0, 1]d → R that is integrable over every cube
Q ⊆ [0, 1]d . Let

g∗(x) = sup
{

1
µ(Q)

∫
Q
|g(y)|dy

}
,

where the supremum is taken over every cube Q with center x and edges parallel to the
coordinate axes. This function, g∗ is called the Hardy–Littlewood maximal function of
g.

This is a slightly modified version of the definition of the Hardy–Littlewood maximal
function.

Definition 4.4 Consider an L1 function g : [0, 1]d → R. We say g belongs to weak
L([0, 1]d) if there exists c independent of α such that

µ
{

x ∈ [0, 1]d : |g(x)| > α
}
≤ c
α

(α > 0).

Lemma 4.5 (Hardy–Littlewood) Given an L1 function f : [0, 1]d → R, f ∗ belongs
to weak L([0, 1]d). Moreover, there is a constant c independent of f and α such that

µ
{

x ∈ [0, 1]d : f ∗(x) > α
}
≤ c
α

∫
[0,1]d
|f | , α > 0

Proof Since the domain of f and f ∗ is [0, 1]d if we fix α > 0 we can say that the
measure of the set

E = {x : f ∗(x) > α}

is finite. If x ∈ E , there is a rational cube Qx containing x such that 1
µ(Qx)

∫
Qx
|f | > α ,

or

µ(Qx) <
1
α

∫
Qx

|f |.

The collection of such Qx covers E , so by Theorem 4.2, there exist β > 0 and
x1, . . . xN ∈ E such that Qx1 , . . . ,QxN are disjoint and µ(E) < 1

β

∑N
j=1 µ(Qxj). Putting

everything together, we get

µ(E) <
1
β

N∑
j=1

1
α

∫
Qxj

|f | = 1
βα

∫
⋃N

j=1 Qxj

|f | ≤ 1
βα

∫
[0,1]d
|f |.

This proves the Hardy–Littlewood Lemma.
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Definition 4.6 Given f ∈ L1 and ε > 0, let S∗(f , ε) be the union of all Q such that∫
Q |f |
µ(Q)

> ε.

Note that according to this definition, and the Hardy–Littlewood Lemma,

µ(S∗(f , ε)) ≤ c||f ||1
ε

.

Lemma 4.7 Let c be the constant from the Hardy–Littlewood Lemma and let f
be L1 -computable. Then, we can find sets V∗k which are uniformly Σ0

1 such that

µ(V∗k ) ≤ c
2k−1 and for all x /∈ V∗k and n ≥ k we have that∫

Q |f − f2n|
µ(Q)

≤ 1
2n

for all Q containing x .

Proof Let

V∗k =
∞⋃

n=k

S∗
(

f − f2n,
1
2n

)

Since the union of countable many uniformly Σ0
1 sets is Σ0

1 , we need to show that the
sequence

(
S∗
(
f − f2n,

1
2n

))
is uniformly Σ0

1 . Let

Rn(ε, a1, b1, . . . , ad, bd) =

∫ bd
ad
. . .
∫ b1

a1
f (x)

(a1 − b1) · . . . · (ad − bd)
> ε.

Then, we can write S∗
(
f − f2n,

1
2n

)
in the following way:

S∗
(

f − f2n,
1
2n

)
=
{

x : ∃a1, b1, . . . , ad, bd ∈ Q[0,1]|
(

R
(

1
2n , a1, b1, . . . , ad, bd

))
and a1 < x1 < b1, . . . , ad < xd < bd

}
This is a sequence of uniformly Σ0

1 sets by Theorem 2.5 which means that each V∗k is
Σ0

1 and the sequence (V∗k ) is uniformly Σ0
1 . Now we need to look at the measure of

Journal of Logic & Analysis 1:9 (2009)



A computational aspect of the Lebesgue differentiation theorem 13

V∗k . We will use the Hardy–Littlewood Lemma.

µ
(
V∗k
)
≤
∞∑

n=k

µ

(
S∗
(

f − f2n,
1
2n

))

≤
∞∑

n=k

c · 2n · ||f − f2n||1

≤
∞∑

n=k

c2n

22n

≤
∞∑

n=k

c
2n

=
c

2k−1

The result follows.

There is one last lemma we need before we can prove the main result.

Lemma 4.8 Let f be L1 -computable and let Dn and fn be as in Theorem 2.1. Then
for all k , n ≥ k and all x /∈ Vk ∪ V∗k ,∣∣∣∣∣ f̂ (x)−

∫
Q f

µ(Q)

∣∣∣∣∣ ≤ 1
2n−1 + D2n · (diameter of Q)

for all rational cubes Q containing x . Here the sequence of Vk is from Theorem 3.2
and the sequence of V∗k is from Theorem 4.7.

Proof Since Dn is an upper bound of the maximum gradient of each fn , max{|∇fn| :
x ∈ [0, 1]d}, we can use the Mean Value Theorem to say,∣∣∣∣∣ f2n(x)−

∫
Q f2n

µ(Q)

∣∣∣∣∣ ≤ D2n · (diameter of Q)

for all rational Q containing x . By Theorem 3.2 we have that∣∣∣ f̂ (x)− f2n(x)
∣∣∣ ≤ 1

2n

and by Theorem 4.7, ∫
Q |f − f2n|
µ(Q)

≤ 1
2n

Journal of Logic & Analysis 1:9 (2009)
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for all n ≥ k and x /∈ Vk ∪ V∗k . Combining these two, we get that∣∣∣∣∣̂f (x)−
∫

Q f

µ(Q)

∣∣∣∣∣ =

∣∣∣∣∣̂f (x)− f2n(x) + f2n(x)−
∫

Q f2n

µ(Q)
+

∫
Q f2n

µ(Q)
−
∫

Q f

µ(Q)

∣∣∣∣∣
≤
∣∣∣ f̂ (x)− f2n(x)

∣∣∣+

∣∣∣∣∣
∫

Q f2n

µ(Q)
−
∫

Q f

µ(Q)

∣∣∣∣∣+

∣∣∣∣∣f2n(x)−
∫

Q f2n

µ(Q)

∣∣∣∣∣
≤ 1

2n +
1
2n + D2n · (diameter of Q)

≤ 1
2n−1 + D2n · (diameter of Q)

5 Main Result

Theorem 5.1 Let f be an L1 -computable function. Let f̂ be the canonical represen-
tation of f as defined in Theorem 3.4. Then for all random x ,

f̂ (x) = lim
Q↘x

∫
Q f

µ(Q)

for Q containing x .

Proof Let fn and Dn be as in Theorem 2.1. Vk from Theorem 3.2 and V∗k from
Theorem 4.7 form Martin-Löf tests. So, for a random x , there exists a large k such
that x /∈ Vk ∪ V∗k . We want to show that for all ε > 0 ∃ δ > 0 such that∣∣∣∣∣̂f (x)−

∫
Q |f |
µ(Q)

∣∣∣∣∣ < ε

whenever the diameter of Q is less than δ . Choose n large so that 1
2n−1 <

ε
2 and let

δ = ε
2D2n

. Then, when the diameter of Q is less than δ ,∣∣∣∣∣̂f (x)−
∫

Q |f |
µ(Q)

∣∣∣∣∣ < 1
2n−1 +

ε

2
< ε.

Journal of Logic & Analysis 1:9 (2009)



A computational aspect of the Lebesgue differentiation theorem 15

6 Closing Remarks

By only dealing with L1 -computable functions, our theorem seems at first to be less
general than the original Lebesgue Differentiation Theorem. However, if we consider
relativization, it can be seen that the statement proved in this paper is stronger. Any L1

function is computable relative to some oracle and using this we can prove a relativized
version of Theorem 5.1 pertaining to any function and provide a very specific set of
measure zero, outside of which the Lebesgue Differentiation Theorem always holds.

In Theorem 5.1 we have proved that the Lebesgue Differentiation Theorem holds at x
provided that x is a Martin-Löf random point in a Euclidean space. The natural question
arises, is the converse true? That is, if we have that the Lebesgue Differentiation
Theorem holds at x for all L1 -computable functions, is x necessarily random? This is
an important question as the converse holding would give an alternative characterization
of random points in Euclidean space.
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