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Signed-Bit Representations of Real Numbers
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Abstract: The signed-bit representation of real numbers is like the binary repre-
sentation, but in addition to 0 and 1 you can also use —1. It lends itself especially
well to the constructive (intuitionistic) theory of the real numbers. The first part of
the paper develops and studies the signed-bit equivalents of three common notions
of a real number: Dedekind cuts, Cauchy sequences, and regular sequences. This
theory is then applied to homomorphisms of Riesz spaces into R.
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1 Introduction

In [4], Coquand and Spitters studied the Stone-Yosida representation theorem for lattice
ordered vector spaces (Riesz spaces). They gave a constructive proof of this theorem
for separable, seminormed Riesz spaces which used Dependent Choice (DC). They
then asked whether DC is necessary and suggested a construction which would show
that it was. This question was answered in [10] and [8] along the lines they suggested.

In thinking about this question, we were led to representing real numbers in a tree-
like structure. This representation is a lot like the classical signed-bit representation,
a modification of the binary representation where —1 is allowed as well as 0 and 1.
The signed-bit representation is especially suitable to constructivism and computability
because you can show constructively (with DC) that every real number has a signed-bit
representation, but not that every real number has a binary representation.

The thrust of this paper (Section 2) is this signed-bit representation. In Sections 3
and 4, the representation is applied to various questions about real numbers and about
homomorphisms of Riesz spaces into R. The benefits of these applications include a
reformulation of the choice principles involved, a generalization from countable and
separable Riesz space to ones of arbitrary size, and a recasting of the issues in a form
more familiar to classical set theorists.
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2 Robert S. Lubarsky and Fred Richman

2 Signed-bit representations of real numbers

2.1 Three kinds of real numbers

We are interested in studying real numbers from a constructive point of view without
using countable choice principles. We consider three kinds of real numbers: Dedekind,
regular, and Cauchy (see also [5] and [9]). The latter two kinds are given by sequences
of rational numbers (see below). A real number, simpliciter, is a Dedekind real number,
that is, a real number is determined by a located Dedekind cut [3, Problem 2.6], [13,
p.- 170]. A located Dedekind cut can be defined as a nonempty proper open subset
L of the rational numbers Q such that for all pairs of rational numbers u < v, either
u € Lorv¢L.If ris the real number defined by L, then L = {u € Q : u < r}. The
Dedekind real numbers are exactly the things that can be approximated coherently by
rational numbers.

If r is any real number, then for each positive integer n there is a rational number u
such that |u — r| < 1/n. Using countable choice, we could construct a sequence g of
rational numbers so that |g, — r| < 1/n. Such a sequence ¢ is a regular sequence in
the sense that

1 1

Gm — qn| < — + -

m n
for all m and n. Note that a regular sequence is a Cauchy sequence, and we leave it
as an exercise to show that every Cauchy sequence converges to some real number.

Conversely, if a regular sequence g converges to the real number r, then |g, — r| < 1/n
for all n. Bishop [3] defines a real number to be a regular sequence of rational numbers.

Theorem 2.1 Let g be a sequence of rational numbers and p a sequence of positive
integers. Then the following two conditions are equivalent

(1) Foralli,j,ifm > p; and n > p;, then
1 1

|Qm_Qn|§f+T'
l J

(2) There is a real number r so that for all i, if m > u;, then
gm — 1| < 1/i.
Proof If 1 holds, then ¢ is a Cauchy sequence, hence converges to a real number r.
If m > p;, then
1 1
|gm — qn| <~ + =
o
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Signed-Bit Representations of Real Numbers 3

whenever n > p;. In particular, this inequality holds for arbitrarily large values of n
and j, so |g,, — r| < 1/i. Conversely, suppose 2 holds. Then

1 1
‘Qm_Qn’§ICIm_r’+’r_CIn|S?+7

forall m > p; and n > p;. O

We say that p is a modulus of convergence for ¢ if either of the equivalent conditions
in Theorem 2.1 hold.

If g is aregular sequence, then it has the modulus of convergence 1, = m. Conversely,
if 1 is a modulus of convergence for ¢, then the sequence ¢, is a regular sequence
converging to the limit r of g. So a real number r is the limit of a regular sequence
of rational numbers if and only if it is the limit of a sequence of rational numbers that
has a modulus of convergence. We call such a real number a regular real number.
Troelstra and van Dalen [13] define a Cauchy real number to be what we are calling
here a regular real number.

Theorem 2.2 If r is a regular real number, then every sequence of rational numbers
converging to r has a modulus of convergence.

Proof Let g be a regular sequence of rational numbers converging to r. Let p
be a sequence of rational numbers converging to r. We need to find a modulus of
convergence u for the sequence p.

Given m we define i, as follows. Choose k so that |p, —r| < 1/6m for all n > k.
So, if n > k, we have

on = snl < lpw =1l + = gsnl < b5 < o
Let u,, < k be the smallest integer such that
|Pn — q3m| < L
" "= 2m
for n = py,...,k. Then u,, is the smallest integer for which the above inequality

holds for all n > p,,, so i, does not depend on the choice of k.

It remains to show that |p, — r| < 1/m for all n > p,,. But, if n > p,,, then
1 1

1
|Pn_r‘§|pn_‘I3m’+|Q3m_r|§ — + — < —
2m  3m T m
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4 Robert S. Lubarsky and Fred Richman

In particular, every sequence of rational numbers that converges to a rational number
has a modulus of convergence. Irrational numbers are also regular real numbers—in
fact, they have decimal expansions. By an irrational number we mean a real number
r such that |[r — g| > 0 for each rational number ¢. It follows that algebraic real
numbers, because they are either rational or irrational, are regular real numbers.

In the absence of countable choice, not every real number can be written as the limit
of a sequence of rational numbers, regular or otherwise. A real number r that can be
so written is called a Cauchy real number because it is the limit of a Cauchy sequence
of rational numbers. Not every Cauchy real number is a regular real number (see [9]).

2.2 The pseudotree

We want to consider the following infinite tree-like structure T, the ternary pseudotree:

The structure continues infinitely far in all directions (left, right, up, and down).
The nodes are dyadic intervals (k/2", (k + 2)/2") where k and n are integers. The
descendants of a node are its subintervals. For example, the bottom four nodes in the
figure could be the intervals (—1,0), (—1/2,1/2), (0, 1), and (1/2,3/2). The children
(immediate descendants) of the node (0, 1) are (0,1/2), (1/4,3/4), and (1/2,1).

The level of a node corresponds inversely to its radius. For instance, (0, 1) is on level
1 because it has a radius of 2~!. In general, the nodes on level / are those with radius
27/, and (hence) length 2!,

A path through T corresponds exactly to a signed-bit representation of a real number. !
Just as a number written in binary is a sequence of Os and 1s, indexed by Z, in which

' Apparently the first use of the ternary pseudotree for the signed-bit representation is in
[1]. There T is called the Stern-Brocot or Farey tree, even though we find enough difference
between each of those trees and T to warrant the use of a different name. For more on signed-bit
representations themselves, see [14].
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Signed-Bit Representations of Real Numbers 5

all entries below some index n are 0, a signed-bit number, also known as a signed-
binary or signed-digit number, is such a Z-indexed sequence of Os, 1s, and —1s. The
sequence a represents the number >, @;2". No number has a unique representation.
The corresponding path in T starts at the node of length 2”2 with midpoint 0. At
stage i the path goes left, middle, or right, depending on whether a; is —1, 0, or 1
respectively. Actually, the only paths generated in this way are those that start at some
node with midpoint 0. Those with no such start, or no start at all, would not correspond
to a signed-bit representation in the sense described here.

If I is a node, we denote the three children of I by A/, ul, and pl (left, middle, and
right). An extreme descendant of I is a node of the form A\ or p'I for some i.

2.3 Ideals in 7 and their real numbers

Given a real number r, let O, be {I € T | r € I}, the set of nodes in T that contain r.
Note that O, is closed downwards (under superset) and closed under join (intersection).
An o-ideal is a nonempty set O of nodes closed downwards and under join, such that
every node in O has a nonextreme descendant in O.

Theorem 2.3 The function r — O, is a bijection from the real numbers to the o-ideals.

Proof To prove that O, is an o-ideal, we must show that each node of O, has a
nonextreme descendant in O,. Suppose ((k — 1)/2",(k+ 1)/2") € O,, that is
k—1 k+1
on <r< on
Then there exists X’ and n’ such that
k—1 K -1 K+1 k+1
on < o <r< o < n
But this makes (X' —1)/ 2" (K +1) / 2"") a nonextreme descendant of ((k— 1) /2", (k+
1)/2") in O,. Indeed, for k'/2"" to be the midpoint of an extreme descendant, it must
be of the form

2k — 1+ 1) /2" or (2/(k+ 1) —1) /2"
sok =2"""(kF1)+1.But
T hk+ 1) —1>K >2" k= 1)+ 1

To see that the function is a bijection, let O be an o-ideal. Then O defines a set
of nonempty open intervals closed under finite intersection and containing arbitrarily
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6 Robert S. Lubarsky and Fred Richman

small intervals. So there is a unique real number r that is contained in all the closures
of intervals in O. But because each open interval J in O has a nonextreme descendant,
the number 7 is contained in J itself. To see that O = O,, suppose some dyadic open
interval J contains r. Then every sufficiently small dyadic interval that contains r is
contained in J. As O is a downset, J must be in O. O

We can also consider the closed interval correlates. For a real number r, let C, be
{I e T | r € I}, where I is the (topological) closure of /. The subset C, is not closed
under join, but it does satisfy the following closure conditions:

(1) Each node in C, has a child in C,.
(2) The nodes at each level in C, are adjacent, and there are at most three of them.
3) ~I¢C.=1€C,.

(4) If I'isanodein C,,then Ml ¢ C, = pl € C,, and pl ¢ C, = M\ € C,. (By
property 3, these are equivalent.)

) If pil € C, for all i, then [ is the leftmost member of three adjacent nodes
in the downset, and conversely. Same with p replaced by A and \leftmost" by
\rightmost".

(6) If two nodes of C, have a join in 7', then that join is in C,.

A c-ideal is a nonempty set of nodes satisfying the six conditions above.

Theorem 2.4 The function r — C, is a bijection from the real numbers to the c-ideals.

Proof We first show that C, is a c-downset. Clearly 1, 2, and 6 hold. Property 3 holds
because if J is a closed interval, then r € J if and only if —d (r,J) > 0. To see 4, note
that if » € J, but r ¢ \J, then r € pJ, and vice versa. For 5, note that if r € piJ for
all i, then r is the right endpoint of J.

Now suppose that C is a c-downset. We first show that the intersection of the intervals
J € Cisequal to {r} for some real number r. Since from 1 there are arbitrarily small
intervals in C, it suffices to check the finite intersection property. So let F' be a finite
set of nodes of C. If there is anode J in C above all these nodes, then J is contained in
I for all I € F, so the intersection is nonempty. Otherwise, by 6, there are two nodes
in F with no join in 7. By 2 this can only happen if there are three adjacent nodes in
C, in which case there is a dyadic rational in all the intervals corresponding to nodes
of 1.
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Signed-Bit Representations of Real Numbers 7

We want to show that C = C,. As r € J for every J € C, we have C C C,. We
must show that if r € J, then J € C. By 3 it suffices to assume J ¢ C and derive a
contradiction. There is some node I at the level of J that is in C. So I # J, by the
assumption, and also r € [. If the node I is not next to J, then r is the dyadic rational
which is the common endpoint of / and J . This contradicts 5: all the children of /
in C must lean toward J because they all contain r, so by 5 there are three adjacent
nodes in C. So [ and J are next to each other. Similarly, if /’s other neighbor K were
in C, then all of K’s children must lean toward J, contradicting 5. By the adjacency
of the nodes in C (property 2) I is the only node in C at that level. But that also can’t
happen: If A € C then I’s left neighbor is in C by downward closure, so A ¢ C.
Symmetrically, pI ¢ C. By 4, both pI and Al are in C, the final contradiction.

Since every c-downset is of the form C;, the function is onto. It’s one-to-one, because
if r # 1 then C, # Cp. O

If r is a real number, then the infinite paths in C, correspond exactly to the signed-bit
representations of r. Of course we may not be able to find any such path in the absence
of choice. With choice, property 1 guarantees that every node of C, is contained in
some infinite path. The midpoints of the nodes of an infinite path in C, form a sequence
which is exactly what Heyting [7] calls a canonical number-generator, so we see that
the latter is essentially a signed-digit representation.

Theorem 2.5 For each real number r, the following are equivalent:

(1) O, is countable
(2) O, contains an infinite path
(3) C, contains an infinite path

(4) ris aregular real number.

Proof 1) implies 2): Starting from any node in O,, taking the first child and first
parent in the counting of O, produces an infinite path.

2) implies 3): O, C C,.

3) implies 4): The midpoints of the intervals of any infinite path in C, form a regular
sequence converging to r.

4) implies 1): Let J be some node in O,. Let J, be a counting of J’s siblings and
their descendants such that each node occurs infinitely often. Let ¢, be a sequence of
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8 Robert S. Lubarsky and Fred Richman

rational numbers so that |c,, — r| < 1/m. At stage i, let s; = J; if the closed interval
[ci — 1/i, ¢; + 1/i] is contained in J;, undefined otherwise. This gives a function s
from a detachable subset of N onto that part of O, at J’s level and beyond, so the latter
is countable by definition. It is easy to alter that counting to include their ancestors
too. m|

Note that the conditions in Theorem 2.5 are not equivalent to C,’s being countable:

Theorem 2.6 If C, is countable for all regular real numbers r, then for each binary
sequence «, there exists a binary sequence [3 such that «,, = 0 for all m if and only
if B, = 1 for some m.

Proof Let o be a binary sequence and set r = Y v, /2™. Let C, = {c1,¢2,¢3,...}.
Define G,, = 1 if ¢,, = (—1,0), and 3,, = 0 otherwise. Note a,, = 0 for all m if and
only if r = 0. If r = 0, then (—1,0) € C, so B, = 1 for some m. Conversely, if
(—=1,0) € C,, then r < 0, hence r = 0. O

The conclusion of Theorem 2.6 is a form of the weak Kripke schema [13, p. 241]. This
conclusion, together with MP (Markov’s Principle), implies LPO (the limited principle
of omniscience): any binary sequence « either contains a one or is all zeros. Indeed,
because the sequence a + (3 cannot be all zeros, by MP it must contain a nonzero
element oy, + G if o, = 1 than « contains a 1, and if §,, = 1 then « is all Os. Since
MP holds in the recursive interpretation of constructive mathematics, the conclusion
of Theorem 2.6 would imply the solvability of the halting problem. Hence in the
recursive interpretation the conditions of Theorem 2.5 are not equivalent to C,’s being
countable. It would be nice to have a clean characterization of those real numbers r
for which C, is countable.

For arbitrary Cauchy real numbers the situation is a bit more complicated. We say
that a subset S of T is a Cauchy subset if it is closed downwards, contains nodes from
arbitrarily high levels, and for all p there is a level / such that |j/2° — k/2'| < 277 for
all nodes (j/2°, (j+2)/2%) and (k/2', (k+2)/2") beyond [ in S. The first clause in that
definition says that S is a downset, the second that S is unbounded. The last says that
S converges: given p and [ as in the last clause, and (j/2°, (j + 2)/2°) with s > [, then
( + 1)/2¢ is within 277 + 27! of the limit of S. So a Cauchy subset is an unbounded,
convergent downset.

Examples of Cauchy subsets S of T are O, and C,. More generally, S might also
contain bounded branches or subsets that peter out at a certain point.
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Signed-Bit Representations of Real Numbers 9

It is not hard to see that O, C S, for the real number r to which S converges. Hence
O, is the intersection of all the Cauchy subsets converging to r. As for C,, say that
a subset S of T is unblocked if every node in S has a child in S. Both O, and C,
are unblocked. We can characterize C, as the biggest unblocked Cauchy subset that
converges to r.

Theorem 2.7 Any unblocked Cauchy subset of T that converges to r is contained in
C,. So C, is the union of all unblocked Cauchy subsets that converge to r.

Proof Let S be an unblocked subset that converges to r, let I € §. We must show
that r € 1. As S is unblocked, / has descendants — subsets — at every level beyond
I’s and these get arbitrarily close to r. Thus there are elements in [ that are arbitrarily
close to r. As I is closed, this means that r € I. ]

As for the Cauchy real numbers themselves:

Theorem 2.8 A real number r is a Cauchy real number if and only if O, is contained
in a countable Cauchy subset of T .

Proof Suppose r is a Cauchy real number, say the limit of the sequence of rational
numbers ¢,. Let J, = (k/2", (k + 2)/2") where k is the greatest integer such that
k/2" < ¢,. Then J, is a node at level n in T, and the sequence J, converges to r. Let
S be the downset generated by the terms in the sequence J,,. Conversely, suppose O,
is contained in a countable Cauchy subset S. Then S converges to r and if we let ¢,
be the midpoint of the first element of S at level n, then ¢, converges to r. |

3 Choice principles

We have looked at three kinds of real numbers: Dedekind real numbers, Cauchy real
numbers, and regular real numbers. It is easy to see that with Countable Choice we can
show that these are the same: we can build a Cauchy sequence from a Dedekind cut
by countably many choices of rationals, and we can build a modulus of convergence
for a Cauchy sequence, by making an appropriate countable sequence of choices of
integers. In fact, since the choices made are either of a rational number or an integer,
we need only make countably many choices from a countable set, an axiom variously
called AC-NN, ACg, and AC,,,. In fact, we can get by on even less:

Journal of Logic & Analysis 1:10 (2009)



10 Robert S. Lubarsky and Fred Richman

Theorem 3.1 The following choice principles are equivalent:

(1) AC,;: Given a sequence S, of nonempty subsets of {0, 1}, there exists a binary
sequence a, such that a, € S,,.

(2) AC,yp for all b: For any positive integer b and sequence S, of nonempty
subsets of {0,...,b— 1}, there exists a sequence a, € {0,...,b— 1} such
that a, € S,.

(3) Given a sequence S, of nonempty subsets of Z of uniformly bounded lengths
(diameters), there exists a sequence a, € Z such that a, € S, .

Proof To go from 1 to 2, we induct on b. Certainly 2 holds for b = 1. If b > 1,
let ¢ : {0,...,b} — {0,...,b— 1} be the retraction that takes b to b — 1. Let
T, = ©(S,). Then we apply induction to get a sequence f, € T,, and apply 1 to get a
sequence a, € <p_1 (tn).

The length of a subset S of Z is bounded by b if the difference of any two elements
of S is at most b. To go from 2 to 3, let b be a bound on the lengths of the S,,, and
look at the images of S, modulo b + 1 considered as subsets of {0,...,b}. So we
get a sequence a, € {0,...,b} so that each S, contains an element congruent to a,
modulo b 4 1. But that element of S, is unique.

Of course 3 implies 1. |

Clearly AC,,., implies the properties above. To refine the matter even more, let AC,
be the statement that there is a choice function for the sequence S,,, where each S, is a
bounded set of natural numbers, while perhaps not uniformly so. Then AC,,,, implies
AC,, <., which in turn implies AC,,,. The reason we are looking at this is:

Corollary 3.2 AC,, implies that every real number is regular.

Proof Let r be a real number. We will construct a sequence a, of rational numbers
such that |[r — a,| < 1/n. Tothisend, let S, = {m € Z : |r —m/n| < 1/n}. Then S,
is nonempty: since r is real, there is a rational ¢ within 1/2n of r, meaning that r is in
the open interval (g—1/2n, g+ 1/2n); the closed interval [¢—1/2n, g+ 1/2n] contains
either one or two fractions of the form m/n; and the numerator of any such fraction
will be in S,,. Also, S, is of length at most 2: suppose |r — j/n|,|r — k/n| < 1/n,
with j < k. From the first inequality, r € [(j — 1)/n,(j + 1)/n], and from the second
r € [(k —1)/n,(k + 1)/n]. Hence those intervals must overlap, and so k — 1 <j+ 1,
ork—j<2.
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Signed-Bit Representations of Real Numbers 11

Applying (the third version of) AC,,,, we get a sequence my,; a, = m,/n is as desired.
O

Presumably we could get by with something less than AC,,,, since it seems unlikely
that AC,, would follow from every Dedekind real number’s being a Cauchy real
number, every Cauchy real number’s being a regular real number, or anything similar.
On the other hand, some kind of choice is necessary, as those equivalences are not
theorems in IZF (see [9]). So exactly what choice principles are those statements
about the real numbers equivalent to? Well, they themselves could be taken as choice
principles. Moreover, it might well be that among all equivalent formulations, those
are the simplest, and so are the best formulations of some weak choice principles.
Still, it might be useful to have different formulations, and the versions in terms of the
pseudotree T follow immediately from the work of the previous section.

Corollary 3.3 Every real number is a Cauchy real number if and only if every o-ideal
of T is contained in a countable Cauchy subset of T .

Corollary 3.4 Every Cauchy real number is regular if and only if every countable
Cauchy subset of T contains an infinite path.

4 Riesz spaces

By a Riesz space we mean a lattice-ordered vector space V over the rational numbers.
We assume that V has a unit: a distinguished element 1 such thatif x € V, then x < nl
for some natural number n. If V is nontrivial, then g — g1 gives an embedding of the
rational numbers into V. We will identify a rational number ¢ with its image g1 in V
and write x < ¢ to mean that x < ¢’ for some rational number ¢’ < g.

For x € V,let xT = xV 0 and x~ = —x Vv 0. It follows that x = x* — x~. Also, let
|x| = x* +x~ > 0. We say that an element x € V is an infinitesimal if |x| < g1 for
every positive rational number ¢, and that V is archimedean if its only infinitesimal
element is zero. Note that R is an archimedean Riesz space.

Although the field of scalars for a Riesz space is usually taken to be R rather than Q, the
latter choice results in a more general structure for the purpose of constructing homo-
morphisms into R, our ultimate interest. That’s because any Riesz Q-homomorphism
from a Riesz space over R into R is also an R-homomorphism.

Journal of Logic & Analysis 1:10 (2009)



12 Robert S. Lubarsky and Fred Richman

Theorem 4.1 Let V and W be Riesz spaces over R. If W is archimedean, then any
Riesz homomorphism from V to W over QQ is a homomorphism over R.

Proof Let f : V — W be a Riesz homomorphism over Q. Forx € V and r € R
we must show that f(rx) = rf(x). As x is the difference of two positive elements
of V, we may assume that x > 0, so f(x) > 0. Let p and g be arbitrary rational
numbers such that p < r < g. Then px < rx < gx so pf(x) < f(rx) < gf(x) and
pf(x) < rf(x) < gf(x). It follows that

P —@)f (x) < frx) — 1f(x) < (¢ — p)f ()
Because |¢ — p| can be arbitrarily small, and W is archimedean, this implies that

f(rx) = 1f(x). m

We cannot eliminate the condition that W be archimedean from this theorem because
of the following classical counterexample. Let V = R x R with the lexicographic
order. Note that we cannot find a constructive proof of the existence of the join of two
elementsin V. Let g : R — R be a linear transformation over Q and define f : V — V
by f(x,y) = (x,g(x) + ). Itis easy to see that f is a Riesz homomorphism over Q,
and that f is a homomorphism over R if and only if g is a linear transformation over
R.

The canonical example of an archimedean Riesz space is a space E of bounded real-
valued functions on a set X that contains the constant function 1. Evaluation at a point
of X is a Riesz homomorphism from E into R. The set of homomorphisms from a
Riesz space to R has a natural topology and is often called the spectrum of the Riesz
space [4, 6].

Conversely, any archimedean Riesz space V can be embedded as a subspace of the space
of real-valued continuous functions on its spectrum (the Stone-Yosida representation
theorem). The embedding of V takes a € V to the function a(o) = o(a). This is
why we are interested in homomorphisms of V into R. The standard proofs of the
Stone-Yosida theorem are not constructive as they rely heavily on both the law of
excluded middle and the axiom of choice.

Following [4], let U(a) = {q € Q | a < q}. The set U(a) is an upper cut in the
rational numbers, but need not be located, so might not correspond to a real number.
Still, U(a) has many of the characteristics of a real number (and so is sometimes called
an upper real number, for instance in [4]). For instance, for p rational, we will have
need of the predicates p < U(a), which means p < g for all g € U(a), and p < U(a),
which means that p < g < U(a) for some rational number g.

Journal of Logic & Analysis 1:10 (2009)



Signed-Bit Representations of Real Numbers 13

If U(a) is located, then it is the upper cut of a (Dedekind) real number sup(a). If U(a)
is located for every a € V, then sup(| - |) is a seminorm on V. This will be a norm
exactly when V is archimedean.

If 1 is the interval (p, q), then we let the string of symbols “a € I" denote the Riesz
space element (a — p) A (g — a). We will be working with the predicate Pos(a) =
“0 < U(a)", even if U(a) is not located. Note that if V is a function space, with 1 the
constant function with value 1, then classically Pos(a € I) exactly when a takes on a
value in 1.

We denote the set of functions from A to B by AB. If B is a partially ordered set, and
fi € AiB. then we set f1 < fr if A; C A and fi(a) < fo(a) forall a € Ay.

Definition 4.2 Let X be a set and  a set of functions from finite subsets of X to T .
(1) We say that x is well-formed, and that X is the domain of , if

o X = Ulex dom(I), and

e X is closed downwards.

(2) A well-formed x is extendible if, for alll € x, u € X, and n € N, there is a J
€ x extending I with u € dom(J) and level(J,,) > n.

(3) Let X be a subset of a Riesz space V. The signed-bit representation of X, with
notation Xr, is the subset of |Jy YT, as Y ranges over all finite subsets of X,
such thatI = (Iy),cy € X7 iffPos(/\yGYy €ly).

It is immediate that the signed-bit representation Xy is well-formed, with domain
X. The essence of the Coquand-Spitters construction is that, if U(a) is located for
all a € V, then V7 is also extendible. The way they use this is to build Riesz
homomorphisms of a separable Riesz space V into R (there called representations),
as follows. They take X to be a countable dense subset of V and let I be any starting
point in X7. Using DC, they then extend I to all levels and to include all of X, yielding
a homomorphism of X, which, by density, can be extended uniquely to all of V.

Definition 4.3 An o-ideal through X is an assignment of an o-ideal r, through T to
each x in the domain X of x such that, for all 1 = (I;),cy € IL,r,, I € x.

Theorem 4.4 There is a canonical bijection between Riesz homomorphisms of V into
R and o-ideals through V7.
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Proof By results of the section 2, an o-ideal can be considered to be a real number.
So both homomorphisms of V into R and o-ideals through V7 are assignments of real
numbers to the members of V. The coherence conditions on a Riesz homomorphism
correspond to the positivity predicate in the definition of the extendible set Vr.

The main technical lemma needed is that, if f is such a homomorphism, and f(a) > 0,
then Pos(a). So let g be such that f(a) > g > 0. Suppose r € U(a). Then r > a, and
r=f(r) > f(a) > g > 0, as desired.

In some detail, let f : V — R be a Riesz homomorphism. The induced o-ideal is
given by x — Oy. (Recall that O, is the o-ideal corresponding to r.) We must
show that this is through V7, which means that if I, € Op,) for each y in a finite set
Y then (ly)yey € V7. And that means Pos(/\yeyy € 1;). By the lemma, it suffices
to show that f(/\er y € I,) > 0. Because f is a homomorphism, the left-hand side
equals /\yeyf (y € Iy). The infinimum of a finite set of real numbers is positive if
and only if each of those reals is positive. So we need to show that I € Oy, implies
fy €l) > 0. Recall that I € O, iff r € I iff inf/ < r < supl. Also recall that
y € I is an abbreviation for y — inf/ A sup/ — y. So what we need to show is that
infl < f(y) < supl implies f(y — inf/ A supl —y) > 0. Again using that f is a
homomorphism, the latter assertion reduces to f(y) — inf/ > 0 and sup/ — f(y) > O,
which is exactly the hypothesis.

In the other direction, suppose that x — O,, is an o-ideal through V7. Let f(x) = r,.
We must show that f is a Riesz homomorphism: f(x + y) = f(x) + f(y),f(rx) =
rf(x),f(1) =1, and f(x Ay) = f(x) Af(y). We will prove the first statement, and leave
the others, all similar, to the reader.

Given € > 0, let 1/2" < ¢/4 and I, € O,,,I, € O,, have length 1/2". Then the
interval I + I, has length less than ¢/2. We claim that any / € O, has to have
a non-empty intersection with I + I,. To this end, let I € O, . Because we're
dealing with intervals with rational endpoints, we can assume that the intersection is
empty and come up with a contradiction. For the intersection to be empty, either
inf I > sup(l,) + sup(ly) or sup/ < inf(l,) + inf(,); we will consider the former
case only. Because the system O,, is an o-ideal through V7, we have that the triple
(Iy,Iy,I) is in Vr, i.e. Pos(x € I, ANy € I, Ax+y € I). Unpacking that Riesz
space element, we get Pos(x — inf(/,) A sup(ly) — x Ay — inf(Z,) A sup(ly) — y A (x +
y) —infI A sup! — (x + y)). That latter Riesz space element is less than or equal
to sup(ly) — x A sup(ly) —y A (x +y) — inf I, which, by the case hypothesis, is less
than or equal to sup(/y) — x A sup(ly) —y A (x +y) — (sup(Iy) + sup(ly)). This last
element is of the form e A f A (—e — f), which can be shown by elementary Riesz
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space considerations to be < 0, in other words not Pos(e A f A (—e — f)), which is the
desired contradiction.

Now pick an interval [ in O, of length less than ¢/2. This 7, which contains f(x+y),
overlaps I, + I, which contains f(x) +f(y), so f(x +y) is within € of f(x) +f(y). O

So by converting a real number to a substructure of the tree-like partial order T,
homomorphisms of V are converted to substructures of products of 7. Similar theorems
hold for other natural substructures of 7.

Definition 4.5 An o-ideal through x is countable if each r, is countable.

Theorem 4.6 There is a canonical bijection between Riesz homomorphisms of V into
the regular real numbers and countable o-ideals through Vr.

Definition 4.7 An o-ideal through Y is countably extendible if each r, is a subset of
a countable Cauchy subtree of T.

Theorem 4.8 There is a canonical bijection between Riesz homomorphisms of R into
the Cauchy real numbers and countably extendible o-ideals through V7.

The proofs here are the same as in theorem 4.4, with the additional observation that,
when transforming Riesz homomorphisms into o-ideals and vice versa, Cauchy reals
are taken to Cauchy reals and regular reals to regular reals.

Similar considerations apply to extending Riesz homomorphisms from dense subsets.
That is, suppose X is a dense subset of a Riesz space V. Then it makes no sense
in general to talk about a Riesz homomorphism of X, since X might not even be a
Riesz space. However, X7 contains the nearness information about V, so that an o-
ideal through X7 induces a homomorphism of V. In fact, these observations could be
combined with those above, so that X need be taken only as a Riesz generating subset
of a dense set, for instance as the members of a dense set between 0 and 1. Then an
o-ideal through X7 is canonically extendible to the generated Riesz space, which by
density could be extended to one through the whole Riesz space.

When extending homomorphisms this way, you no longer have a choice of what kind
of real numbers to use. That is, when dealing with only Riesz-space structure (addition,
scalar multiplication, and sup), the corresponding operations on real numbers never
take you outside of any given class of real numbers: the sum of two countable o-ideals
is again countable, as is any multiple or sup of such, and so on. However, the same no
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longer applies to limits when dealing with density. A limit or accumulation point may
not have any countable sequence approaching it, so it should be clear that attaching
a Cauchy sequence, even if regular, to dense many points in a neighborhood will not
necessarily yield a Cauchy sequence at the given point. Worse yet, even if we had that
every point in V were the limit of a countable sequence from X, there would still be
problems going from Cauchy sequences on X to ones on all of V: choosing a limiting
sequence, choosing a Cauchy sequence for each point in the sequence, etc. (For similar
issues in the simpler context of the real numbers alone, see [9].) So the best we really
can say is that any kind of o-ideal on X7 induces simply an o-ideal on Vr, i.e. a Riesz
homomorphism of V into the Dedekind real numbers.

These considerations lead to the following

Theorem 4.9 If every extendible x with X of cardinality « has an o-ideal, then every
seminormed Riesz space with a dense subset of cardinality « has a Riesz homomor-
phism into R.

By cardinality here, we mean simply the Cantorian theory of equinumerosity. So & is
simply a set, and a set X has cardinality  if it can be put into one-to-one correspondence
with k. The latter principle has the flavor of a restricted form of Martin’s Axiom, hence
the following definition.

Definition 4.10 Martin’s Axiom for o-ideals of cardinality r, written MA o.iq(), 15
the assertion that every extendible x with X of cardinality x has an o-ideal.

One possible benefit of the reformulation of the existence of such homomorphisms
as MA.iq«) 1s that it can help show that such homomorphisms do not exist. In [4],
Coquand and Spitters show, under DC, that every separable, seminormed V has a
Riesz homomorphism into R, essentially by showing MA (). Of course, they don’t
refer to signed-bit representations, and their definition of countable is broader than
“equinumerous with w”, as is standard in constructive analysis (see [3]). They then
ask whether DC is necessary. One way to approach that problem is to find a model in
which MA .4, fails in such a way that an equivalent Riesz space can be constructed
from this failure. In fact, this project was carried out. It was later simplified [8] to refer
not to 7 and its paths but more simply to R, which is better understood.

A limitation of the last theorem is that it is not a biconditional. Indeed, we could not
find any equivalence between well-formed sets, possibly with extra conditions, on the
one hand, and any kind of Riesz spaces on the other. In the current formulation, for
instance, having Riesz homomorphisms into R for every Riesz space might not be
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enough to get o-ideals through all extendible xs, because x might not correspond to a
Riesz space. Furthermore, there seems to be no elegant formulation of a well-formed x
coming from a Riesz space. One could consider instead all extendible x s, with domain
X, and extend X to a Riesz space V so that the signed-bit representation of X is exactly
X. The problem there is guaranteeing that V is seminormed, with again apparently
no nice way of identifying those xs for which the induced V is seminormed. One
could try to be more general, and eliminate the restriction of V being seminormed.
There are examples of function spaces that are not seminormed for which the signed-bit
representation is not extendible. You might then think to eliminate the requirement of
extendibility. But then there are problems representing faithfully partial information
about a Riesz space in a well-formed set. In the end, it remains unclear what an exact
correspondence here would be. It would be interesting to see such a theorem.
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