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Axiomatics for the external numbers of nonstandard analysis
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Abstract: Neutrices are additive subgroups of a nonstandard model of the real
numbers. An external number is the algebraic sum of a nonstandard real number
and a neutrix. Due to the stability by some shifts, external numbers may be seen as
mathematical models for orders of magnitude. The algebraic properties of external
numbers gave rise to the so-called solids, which are extensions of ordered fields,
having a restricted distributivity law. However, necessary and sufficient conditions
can be given for distributivity to hold. In this article we develop an axiomatics
for the external numbers. The axioms are similar to, but mostly somewhat weaker
than the axioms for the real numbers and deal with algebraic rules, Dedekind
completeness and the Archimedean property. A structure satisfying these axioms is
called a complete arithmetical solid. We show that the external numbers form a
complete arithmetical solid, implying the consistency of the axioms presented. We
also show that the set of precise elements (elements with minimal magnitude) has a
built-in nonstandard model of the rationals. Indeed the set of precise elements is
situated between the nonstandard rationals and the nonstandard reals whereas the
set of non-precise numbers is completely determined.
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1 Introduction

Consider a nonstandard model of the real number system ∗R. A neutrix is an additive
convex subgroup of ∗R and an external number is the algebraic sum of a nonstandard
real number with a neutrix. In such a nonstandard framework there are many neutrices
such as �, the external set of all infinitesimals, and £, the external set of all limited
numbers, ie numbers bounded in absolute value by a standard number.

Typically external numbers are subsets of ∗R having neither infimum nor supremum,
being stable for some translations, additions and multiplications. As argued in Koudjeti
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and Van den Berg [20] and Dinis and Van den Berg [11], they are models of orders
of magnitude or transitions with imprecise boundaries of Sorites type (Dinis [9]).
With external numbers it is possible to work directly with imprecisions and errors
without recourse to upper bounds. They generate a calculus of propagation of errors
not unlike the calculus of real numbers, allowing for total order and even for a sort
of generalized Dedekind completeness property. Some applications in asymptotics,
singular perturbations, linear algebra and statistics are contained in [20], Justino and
Van den Berg [15] and Van den Berg [3], and the references mentioned in the latter
article. The term neutrix is borrowed from Van der Corput [7]. His neutrices are rings
of “neglectable functions”. The calculation rules satisfied by the external numbers
are significantly stronger than the functional asymptotic calculus of o’s and O’s de
Bruijn [5] and Van der Corput’s neutrices which for instance do not respect total order.

Algebraic properties of external numbers have been studied in Koudjeti [19], [20]
and [11]. Respecting total order, they are based on semigroup operations more than
group operations, a sort of “mellowed” version of the common rules of calculation
of real numbers. In Dinis and Van den Berg [12] it was shown that the set of cosets
of non-Archimedean ordered fields with respect to all possible convex subgroups for
addition has a similar algebraic structure. Such structures were called solids. Elements
of a solid are the sum of a precise element and a magnitude. The magnitudes act as
individualized neutral elements and correspond to the convex subgroups, and the precise
elements, ie elements with magnitude “zero”, to the elements of the underlying ordered
field. Solids are not completely distributive, but necessary and sufficient conditions can
be given for triples of elements to satisfy distributivity (Dinis and Van den Berg [10]).

In this article we extend the axiomatic laws of solids. The axioms added include
multiplicative properties of neutrices, a generalized Dedekind completeness property,
and an Archimedean property. The multiplicative axioms are inspired by the results
of [19] and [20] on neutrices which are idempotent for multiplication. The axioms
determine the product of idempotent neutrices, in fact of all neutrices, because it is
postulated that every neutrix is a multiple of an idempotent neutrix. In ZFC the structure
of real numbers R is characterized up to isomorphism in a second-order language, as
the unique Dedekind complete ordered field, or equivalently as the unique Archimedean
complete ordered field in which Cauchy sequences converge. However second-order
properties of nonstandard models of the reals are less obvious. Therefore we intend to
remain in a first-order language and so the generalized Dedekind completeness axiom
is stated in the form of a scheme. In order to deal with the Archimedean property
we assume some Peano-like axioms, including a scheme on induction. Due to this
Archimedean property models must include a copy of the nonstandard integers, hence
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of the nonstandard rationals, and due to the generalized Dedekind completeness it must
be possible to embed models in the nonstandard reals.

We prove consistency of the axiomatics in the setting of a nonstandard model ∗R,
which has the form of an adequate ultralimit for a bounded version of Nelson’s
syntactical Reduction Algorithm [23] to hold. Admissible models will be called
complete arithmetical solids. Up to isomorphism, once the magnitudes are specified the
set of non-precise numbers of a complete arithmetical solid is completely determined
as sums of a nonstandard rational and a magnitude. For the set of precise elements
of a model we give upper and lower bounds, in fact the precise elements are situated
between the nonstandard rationals and the nonstandard reals. As a result, complete
arithmetical solids come closer to a syntactical characterization of the external numbers
than the solids of [10] which can also be built on non-Archimedean ordered fields.

There have been various attempts to deal with the external algebraic and order structure
of the real line. Wattenberg [29] and Gonshor [14] developed a calculus of the lower
halflines of the nonstandard real line. However this gave rise to a less rich algebraic
structure, and also they do not consider completeness properties of Dedekind kind.
Keisler and Schmerl [18] consider two other completeness properties of the external
real line in a model-theoretic setting, Scott completeness and Bolzano-Weierstrass
completeness, without developing an algebraic calculus. From an axiomatic point of
view Scott completeness and Bolzano-Weierstrass completeness were reconsidered in
Kanovei and Reeken [16].

For sake of clarity and reference we start in Section 2 with an overview of all the axioms.

The axiom scheme on Generalized Dedekind completeness is discussed in Section 3. It is
stated in terms of precise numbers, but typically concerns halflines which are not precise,
ie stable under some shifts. For precise definable halflines Generalized Dedekind
completeness reduces to ordinary Dedekind completeness, ie halflines including the
extremum, and halflines with the extremum just beyond. When applied to halflines of a
solid (thus including non-precise numbers), three types of halflines occur, instead of
two; it is shown that they are mutually exclusive.

With Generalized Dedekind completeness one can define the minimal magnitude
including unity, denoted by £, and the maximal magnitude without unity, denoted
by �. Section 4 shows that their algebraic properties correspond to a large extent to
the properties of the limited numbers, respectively the infinitesimals in a nonstandard
model of the reals. However they are somewhat weaker, and it is not possible to decide
whether �£ = � or �£ = £. In Section 5 we choose the product of � and £ to be
�, in accordance with the fact that the product of an infinitesimal and limited real is
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infinitesimal. The axiom is stated in terms of the product of an idempotent magnitude
with unity and its maximal ideal. Ideals are defined by analogy to ideals of rings, and
the existence of maximal ideals follows from Generalized Dedekind completeness. An
axiom that says that an arbitrary magnitude is a multiple of an idempotent magnitude
enables to settle the product of any two neutrices.

In Section 6 we show relative consistency of our axiomatics with ZFC by the construction
of a model based on external subsets of an appropriate nonstandard model of the reals.

In Section 7 we show that, up to isomorphism, the precise elements of a model are
situated between the nonstandard rationals and the nonstandard reals. In a sense, it is
also possible to identify a notion of standard part, here called shadow. It is shown that
the set of shadows of the precise elements is situated between the set of shadows of
the nonstandard rationals and the set of shadows of the nonstandard reals. Finally we
investigate the relation between the standard structure and the nonstandard structure
of a complete arithmetical solid. More precisely, we show that the Leibniz rules hold
for the precise elements of a complete arithmetical solid, ie the precise elements are a
model of the axiomatics ZFL (Lutz [22] and Callot [6]), and that the “natural numbers”
in a solid are a model for the axiomatics given by Nelson in [24] here called REPT , but
with external induction restricted to the language {+, ·}. These “weak” nonstandard
axiomatics are not without interest. Indeed, in [6] Callot showed that a substantial part
of ordinary analysis can be carried out in ZFL and in [24] Nelson argued that REPT is
sufficient for advanced stochastics.

In this way, our axiomatic approach gives rise to an alternative way to build nonstandard
real numbers in which, unlike Nelson’s approaches [23], [24] the infinitesimals are
not postulated through a new undefined symbol, but by the existence of magnitudes.
It does not have the force of REPT but has the advantage of being able to deal with
some external sets. Indeed, complete arithmetical solids in a sense incorporate certain
external sets in the form of elements, in particular external sets relevant for calculatory
aspects. Our approach enters also in the tradition of the usual axiomatic presentation of
the real numbers by field axioms, an axiom on completeness, and possibly an axiom on
the Archimedean property.

2 The Axioms

The axioms will come in groups. The first group deals with algebraic properties. The
algebraic axioms consist of axioms for addition, axioms for multiplication, axioms for
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the order, axioms relating addition and multiplication, axioms of existence guaranteeing
among other things that models are richer than fields and axioms on the value of
products of magnitudes. Then we present an axiom scheme on a generalized Dedekind
completion and finally a group of axioms, including a scheme, on natural numbers and
the Archimedean property.

We will present the axioms in a first-order language. Addition, multiplication and order
will be presented in the language {+, ·,≤}, later on we add a unary predicate N to deal
with natural numbers. Neutrices are represented by magnitudes which are individualized
neutral elements. As such the individualized neutral elements are unique. The proof is
similar to the proof of the uniqueness of neutral elements in groups (see Dinis and Van
den Berg [11]). Often it is convenient to use the functional notation e(x) to indicate the
individualized neutral element of the element x. The individualized neutral elements
for multiplication (unities) are also unique and we may use the functional notation u(x).
With respect with the individualized neutral element the symmetrical element is also
unique. We may denote it by s(x) or −x in the case of addition and d(x) or 1/x in the
case of multiplication.

2.1 Algebraic axioms

Axioms for addition and multiplication are similar and gave rise to the notion of
assembly in [11]. An assembly is a completely regular semigroup (union of groups), in
which the magnitude operation is linear. A structure satisfying Axioms 2.1 - 2.29 was
called a solid in Dinis and Van den Berg [12].

1. Axioms for addition.

Axiom 2.1 ∀x∀y∀z(x + (y + z) = (x + y) + z)

Axiom 2.2 ∀x∀y(x + y = y + x)

Axiom 2.3 ∀x∃e (x + e = x ∧ ∀f (x + f = x→ e + f = e))

Axiom 2.4 ∀x∃s (x + s = e (x) ∧ e (s) = e (x))

Axiom 2.5 ∀x∀y (e (x + y) = e (x) ∨ e (x + y) = e (y))

It follows from Axioms 2.3 and 2.5 that e (x + y) = e (x) + e (y), ie the magnitude
operation is linear.
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2. Axioms for multiplication

Axiom 2.6 ∀x∀y∀z(x (yz) = (xy) z)

Axiom 2.7 ∀x∀y(xy = yx)

Axiom 2.8 ∀x 6= e (x)∃u (xu = x ∧ ∀v (xv = x→ uv = u))

Axiom 2.9 ∀x 6= e (x)∃d (xd = u (x) ∧ u (d) = u (x))

Axiom 2.10 ∀x 6= e (x)∀y 6= e (y) (u (xy) = u (x) ∨ u (xy) = u (y))

Again we have u (xy) = u (x) u (y).

3. Order axioms

Axioms 2.11-2.14 state that “≤” is a total order relation. Axiom 2.15 states that the
order relation is compatible with addition. The last two axioms state that the order
relation is compatible with the multiplication by positive elements. With respect with
classical order axioms, essentially the only new axiom is Axiom 2.16. This axiom states
that if an element is “small”, in the sense that it gets absorbed when added to a certain
magnitude, then it is also smaller than that magnitude in terms of the order.

Axiom 2.11 ∀x(x ≤ x)

Axiom 2.12 ∀x∀y(x ≤ y ∧ y ≤ x→ x = y)

Axiom 2.13 ∀x∀y∀z(x ≤ y ∧ y ≤ z→ x ≤ z)

Axiom 2.14 ∀x∀y(x ≤ y ∨ y ≤ x)

Axiom 2.15 ∀x∀y∀z (x ≤ y→ x + z ≤ y + z)

Axiom 2.16 ∀x∀y (y + e(x) = e(x)→ (y ≤ e(x) ∧ −y ≤ e(x)))

Axiom 2.17 ∀x∀y∀z ((e (x) < x ∧ y ≤ z)→ xy ≤ xz)

Axiom 2.18 ∀x∀y∀z ((e (y) ≤ y ≤ z)→ e (x) y ≤ e (x) z)

It follows from Axiom 2.16 that for magnitudes the order can be characterized in terms
of addition. Indeed, for all x, y one has e(x) ≤ e(y) if and only if e(x) + e(y) = e(y).
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4. Axioms concerning addition and multiplication

The first three axioms state properties of magnitudes. Axiom 2.19 states that the product
of an element and a magnitude is a magnitude. Axiom 2.20 gives the magnitude of the
product and Axiom 2.21 the magnitude of the individualized unity. Axiom 2.22 states
that the distributive law holds up to a magnitude. Due to this restriction one needs to
specify the symmetrical element of the product of two elements as done in Axiom 2.23.

Axiom 2.19 ∀x∀y∃z(e(x)y = e(z))

Axiom 2.20 ∀x∀y (e(xy) = e(x)y + e(y)x)

Axiom 2.21 ∀x 6= e(x) (e(u(x)) = e(x)d(x))

Axiom 2.22 ∀x∀y∀z (xy + xz = x (y + z) + e (x) y + e (x) z)

Axiom 2.23 ∀x∀y (−(xy) = (−x)y)

5. Axioms of existence

Axioms 2.24 gives the existence of a minimal magnitude which we will denote by 0.
Elements p such that e(p) = 0 are called precise. Axiom 2.25 gives the existence of a
minimal unity which we denote by 1. Axiom 2.26 states that there exists a maximal
magnitude M , in fact, when constructing a model it corresponds to its domain. Axiom
2.27 states that there exist magnitudes other than 0 and M , implying that the domain of
the model can no longer be a field. Axiom 2.28 states that any element is the sum of a
precise element and a magnitude. Axiom 2.29 states that two magnitudes are separated
by an element which is not a magnitude. Such an element is called zeroless. It follows
from the existence of zeroless elements that 1 6= 0, hence also that a solid must contain
a copy of Q.

Axiom 2.24 ∃m∀x (m + x = x)

Axiom 2.25 ∃u∀x (ux = x)

Axiom 2.26 ∃M∀x(e (x) + M = M)

Axiom 2.27 ∃x (e (x) 6= 0 ∧ e (x) 6= M)

Axiom 2.28 ∀x∃a (x = a + e (x) ∧ e (a) = 0)
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Axiom 2.29 ∀x∀y(x = e (x) ∧ y = e(y) ∧ x < y→ ∃z(z 6= e(z) ∧ x < z < y))

6. Axioms on the product of magnitudes

Next axiom needs some preparatory definitions. A magnitude e is idempotent if ee = e.
Let y be an idempotent magnitude such that 1 < y. An ideal z of y is a magnitude
such that z ≤ y and ∀p(e (p) = 0 ∧ 0 ≤ p < y→ pz ≤ z. An ideal x of y is maximal if
x < y and all ideals z such that x ≤ z ≤ y satisfy z = x or z = y.

In a semantic setting, the ideals defined above are elements and not sets, such as in the
usual algebraic interpretation of ideals of a ring. As will be shown, the two notions
of ideal are closely related. Maximal ideals happen to be idempotent. The existence
of maximal ideals in the setting of rings is equivalent to the Axiom of Choice. The
existence of maximal ideals in terms of magnitudes will be a consequence of Axiom
2.32 below.

By Axiom 2.19 the product of magnitudes is a magnitude. The value of the product
is obtained by relating them to idempotent magnitudes. Axiom 2.31 states that a
magnitude is the product of a precise element and an idempotent magnitude. As it turns
out, the value of all products of idempotent magnitudes is determined by Axiom 2.30.

Axiom 2.30 Let y be an idempotent magnitude such that 1 < y and x be the maximal
ideal of y. Then xy = x .

Axiom 2.31 ∀x(x = e (x)→ ∃p∃y(e(p) = 0 ∧ y = e(y) ∧ yy = y ∧ x = py))

2.2 Generalized Completeness axiom

The axiom on generalized Dedekind completeness comes in the form of a scheme, for a
definite class of formulas.

Let k be a natural number. Let Φ(x1, ..., xk) be a formula of the language {+, ·,≤} with
free variables x1, ..., xk . The formula Φ is called restricted if each quantifier ranges
over precise elements.

Axiom 2.32 states that a lower halfline defined by a restricted formula A(x) of a free
precise variable x has a lowest upper bound which is the sum of a precise element and a
magnitude e. This magnitude corresponds to the set of precise elements which leave the
halfline invariant under addition. We will extend the completeness property in Section
3 to halflines of non-precise elements. As will be shown this generates three types of
halflines instead of two.
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Axiom 2.32 (Generalized Dedekind completeness) Let A be a restricted formula
(possibly with non-precise parameters) allowing for a free precise variable x , and such
that

(1) ∃xA (x) ∧ ∀x∀y (A (x) ∧ y < x→ A (y)) .

Then one of the following holds:

(1) ∃σ∀x(A (x)↔ x ≤ σ)

(2) ∃τ∀x(A (x)↔ ∀t(t + e(τ ) = τ → x < t)

It will be shown that 1 and 2 are mutually exclusive, and that σ and τ are unique. They
are called the weak least upper bound of A and are denoted by zup A. Condition (1)
expresses the lower-halfline property. If A is an arbitrary non-empty property, one may
define A′ by

A′(x)↔ ∃y(e(y) = 0 ∧ x ≤ y ∧ A(y)).

Then A′ satisfies (1). We extend the notion of weak supremum by defining zup A =

zup A′ . Working with upper halflines one may define in a similar way a weak greatest
lower bound winf . It will be seen that both notions can be appropriately extended to
restricted formulas of a non-precise variable. We use this possibility in the following.

We define Φ(e), respectively Ψ(f ), by:

e + e = e ∧ e < 1

f + f = f ∧ 1 < f

Then we define:

(2)
� = zup Φ

£ = winf Ψ

So £ is the minimal magnitude greater than 1 and � is the maximal magnitude less
than 1. We will see in Section 4 that £ and � are idempotent and that � is the maximal
ideal of £ in the sense of Axiom 2.30. It results from this axiom that �£ = �.

2.3 Arithmetical axioms

The last group of axioms allows to distinguish between non-Archimedean ordered
structures and structures with a (nonstandard) archimedean property. We extend the
language with a symbol N which is an unary predicate allowing for a free precise
variable x. The symbol N is intended to represent the natural numbers. In this sense
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Axiom 2.33 states that there are no negative natural numbers, 0 is a natural number,
the successor of a natural number is a natural number, and that these are consecutive
indeed, ie between a natural number and its successor there is no other natural number.

Axiom 2.33 (Natural numbers)

∀x(x < 0→ ¬N(x)) ∧ N(0)

∧ ∀x(N(x)→ ∀y(x < y < x + 1→ ¬N(y)) ∧ N(x + 1))

It is clear that induction does not hold for all formulas. Indeed, 0 < £ and if x < £,
then x + 1 < £, but there are elements x such that £ < x . It is well-known that within
nonstandard analysis one can only apply induction to the so-called internal formulas
in the sense of [23]. This means in our context that all parameters must be natural
numbers and also that all references to non-precise elements such as £ and � must be
banned. To do so we allow induction in one precise variable, only for properties with
quantifications over precise variables and with natural numbers as possible parameters.

Axiom 2.34 (Induction) Let A be a property expressed with the symbols 0, 1,+, ·
and ≤, allowing for a free precise variable x and quantifications only over precise
variables with all its parameters y satisfying N(y). Then

(A(0) ∧ ∀x(N(x)→ (A(x)→ A(x + 1)))→ ∀x(N(x)→ A(x))).

In Section 7 it is shown that for a larger class of formulas induction holds over the
natural numbers less than £.

The last axiom states the Archimedean property for the natural numbers given by Axiom
2.33.

Axiom 2.35 (Archimedean property)

∀x∀y(0 < x < y < M → ∃z(N(z) ∧ zx > y))

A set S satisfying all the axioms given above will be called a complete arithmetical
solid.

3 Generalized Dedekind completeness

Dedekind completeness is the property that every Dedekind cut of the real numbers
is generated by a real number, corresponding to the intuition that the real line has no
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“gaps”. Axiom 2.32 gives a generalization of the Dedekind completeness property.
Because it is not excluded that some nonstandard models of the real line do have gaps
(Keisler and Schmerl [18]), it is written in the form of an axiom scheme in a first-order
language, ie without referring to subsets. The axiom scheme is stated for properties
of precise elements, defined by a restricted formula; in fact it can be extended to such
properties of non-precise elements. As we will see this generates three types of halflines
instead of two.

We will call a solid complete if it satisfies the Axioms 2.1-2.32. Let S be a complete
solid. Let A be a formula of the variable x . By a matter of convenience we identify A
with its interpretation in the set S . So x ∈ A is the interpretation of A (x) and x /∈ A the
interpretation of ¬A (x).

Definition 3.1 Let S be a complete solid and let ∅ 6= A,B ⊆ S . Then A is said to be a
lower halfline if x ∈ A and y < x imply that y ∈ A and B is said to be an upper halfline
if x ∈ B and x < y imply that y ∈ B. A lower halfline A is precise if there is no precise
positive d such that a + d ∈ A for all a ∈ A.

Remark If A 6= S is a lower halfline, then B = S\A 6= ∅ is an upper halfline and
vice-versa.

Theorem 3.2 If A is a lower halfline defined by a restricted formula in a complete
solid S , it has one of the following forms:

(1) ∃ρ∀x(x ∈ A↔ x ≤ ρ)

(2) ∃σ∀x(x ∈ A↔ x < σ)

(3) ∃τ∀x(x ∈ A↔ ∀t(t + e(τ ) = τ → x < t)

In order to prove Theorem 3.2 we will make Axiom 2.29 more operational, by showing
that two magnitudes can always be separated by a precise element. Also the elements t
of Axiom 2.32.2 and Theorem 3.2.3 may be taken precise. We prove also some other
properties on separation by a precise element.

Proposition 3.3 In Axiom 2.32.2 the elements t may be taken precise.

Proof Let t be such that t + e(τ ) = τ . Then t = p + e (t) with e (p) = 0. Because
e (t) ≤ e(τ ), one has p + e(τ ) = p + e (t) + e(τ ) = t + e(τ ) = τ .

Let x be precise. Suppose that x < t for all t such that t + e(τ ) = τ . Then it holds in
particular for t = p with p precise. Conversely, suppose that x < p, for all precise p
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such that τ = p + e (τ ). Let t be such that t + e(τ ) = τ . Then there exists a precise q
such that t = q + e (t). Then q + e(τ ) = τ . Hence x < q ≤ q + e (t) = t . This implies
that the two criteria are equivalent.

Proposition 3.4 In Theorem 3.2.3 the elements t may be taken precise.

The proof is analogous to the proof of Proposition 3.3.

Lemma 3.5 (Dinis and Van den Berg [10, Proposition 2.10]) Let A be an ordered
assembly and let x, y ∈ A. If x < e (x), then x < e(y).

Proof Assume x < e (x). We suppose towards a contradiction that e (y) ≤ x. Then
e (y) < e (x), so e (x) ≤ e (y)+e (x) ≤ e (x)+e (x) = e(x). Hence e (x) = e (y)+e (x) ≤
x + e (x) = x , a contradiction.

Lemma 3.6 Let S be a solid and let x, z ∈ S . If e (x) < z and z is zeroless, there is a
precise element t such that e (x) < t ≤ t + e (z) < z.

Proof Let z = p + e (z) with p precise. If z < e (z) then z < e (x) by Lemma 3.5,
a contradiction. Hence e (z) < z, meaning that p is positive, so 0 < p/2 < p. One
has e (z) < p/2. Indeed, if p/2 ≤ e (z) one would have p ≤ 2e (z) = e (z) which
is a contradiction. It follows that p/2 + e (z) < p ≤ p + e (z) = z. If e (x) ≤ e (z),
we are done. If e (z) < e (x), suppose that p/2 ≤ e(x). Then p ≤ 2e(x) = e(x) and
z = p+e(z) ≤ e(x)+e(x) = e(x), a contradiction. Hence e (x) < p/2 ≤ p/2+e (z).

Lemma 3.7 The element z in Axiom 2.29 may be supposed precise.

Proof Let z be zeroless and such that e (x) < z < e(y). By Lemma 3.6 there exists a
precise t such e (x) < t < z < e(y).

Lemma 3.8 Let S be a solid and x, y ∈ S be such that x < y. Then there exists a
precise element p such that x < p < y.

Proof Without restriction of generality we may assume that x = e(x). The case
y = e(y) follows from Lemma 3.7 and the case where y is zeroless follows from Lemma
3.6.

Lemma 3.9 Let S be a solid and x, y ∈ S be such that ∀t(e(t) = 0 ∧ t + e(y) =

y → x < t). Then there exists a precise element p such that x < p and ∀t(e(t) =

0 ∧ t + e(y) = y→ p < t).
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Proof Without restriction of generality we may assume that x = e(x). Then y is
zeroless. Let q be precise such that y = q + e(y). Put p = q/2. Then e(x) < p,
otherwise q ≤ 2e(x) = e(x), a contradiction. Also e(y) < p, otherwise q ≤ 2e(y) = e(y)
and y would not be zeroless. Let t be precise such that t + e(y) = y. Then e(y) < t ,
otherwise y would not be zeroless. Suppose t ≤ p. Then y = t + e(y) < t + t ≤ q, a
contradiction. Hence p < t .

Proof of Theorem 3.2 Let A be a lower halfline defined by a restricted formula in a
complete solid S . We define Â by Â = {x ∈ A |e (x) = 0}. Then also Â is defined by
a restricted formula. By Axiom 2.32 and Proposition 3.3, either there exists α ∈ S such
that, whenever p is precise, one has p ∈ A if and only if p ≤ α , or there exists β such
that whenever p is precise, one has p ∈ A if and only if p < q for all precise q such
that q + e(β) = β .

As for the first case, we distinguish the subcases α ∈ A and α 6∈ A. Assume α ∈ A.
Let x ∈ A. Suppose α < x . By Lemma 3.8 there exists a precise element r ∈ A such
that α < r < x , a contradiction. Hence x ≤ α . Conversely, assume x ≤ α . Then x ∈ A
by the definition of lower halfline. Taking ρ = α we obtain x ∈ A if and only if x ≤ ρ.

Assume now that α 6∈ A. One proves as above that if x ∈ A then x ≤ α , in fact, x < α

because α 6∈ A. Conversely, assume x < α . By Lemma 3.8 there exists a precise
element r such that x < r < α . Then r ∈ Â ⊆ A. Hence x ∈ A. Taking σ = α we
obtain x ∈ A if and only if x < σ .

As for the second case, assume first that x ∈ A. Suppose that there exists a precise t
such that t < x and t + e(β) = β . We may write x = p + e (x) with p precise and
t < p. Now p < t because p ∈ Â, a contradiction. Hence x < t . Finally assume that
x < t for all precise t such that t + e(β) = β . By Lemma 3.9 there exists a precise p
such that x < p and p < t for all precise t such that t + e(β) = β . Then p ∈ Â ⊆ A,
hence x ∈ A because A is a lower halfline. Taking τ = β , we conclude that x ∈ A if
and only if ∀t(e(t) = 0 ∧ t + e(τ ) = τ → x < t). By Proposition 3.4 this is equivalent
to ∀t(t + e(τ ) = τ → x < t).

If A is a precise lower halfline the case 3.2.3 reduces to the case 3.2.2, so the Generalized
Dedekind completeness of Axiom 2.32 and Theorem 3.2 correspond to ordinary
Dedekind completeness.

Proposition 3.10 If A is precise, in the third case of the criterion in Theorem 3.2 the
element τ is precise. In fact the criterion is equivalent to

(3) ∃τ (e (τ ) = 0 ∧ ∀x(x ∈ A↔ x < τ ).

Journal of Logic & Analysis 9:7 (2017)



14 Bruno Dinis and Imme van den Berg

Proof Suppose that 0 < e (τ ). Let p be precise and such that 0 < p < e (τ ). Let x ∈ A.
If there exists t such that t + e(τ ) = τ and t ≤ x + p, then τ ≤ x + p + e(τ ) = x + e(τ ).
Note that x + e(τ ) ≤ t + e(τ ) = τ . Hence x + e(τ ) = τ , which means that x < x,
a contradiction. Hence x + p ∈ A, but this means that A is not precise, again a
contradiction. Hence e (τ ) = 0 and τ is precise. In addition, if t is such that
t + e(τ ) = τ , then t = τ

If the lower halfline A is not precise, the three cases may indeed occur and are mutually
exclusive. We will call the elements ρ, σ and τ weak least upper bounds, denoted
by zup A. Moreover, the elements ρ, σ and τ are unique and we write A = (−∞, ρ],
A = (−∞, σ) and A = (−∞, τ [[ respectively. In the first case the halfline is called
closed, and ρ may be called the maximum of A, written ρ ≡ max A. In the second
case the halfline is called open and σ is an ordinary least upper bound, which we may
call the supremum of A, written σ ≡ sup A. In the third case we call the halfline
strongly open (see also Van den Berg [4]) and τ the weak supremum of A. We
may define weak least upper bounds for any set A by defining zup A ≡ zup A where
A ≡ {x ∈ S | ∃a ∈ A(x ≤ a)}.

Theorem 3.11 With respect to Theorem 3.2 the elements ρ, σ and τ are unique, and
the cases 1 and 2, and the cases 1 and 3 are mutually exclusive. If A is a precise lower
halfline the third case reduces to the second case. If A is not precise the three cases are
mutually exclusive. Moreover, ρ ∈ A and σ, τ /∈ A.

Proof Clearly ρ ∈ A and σ /∈ A, because ρ ≤ ρ and σ 6< σ . Suppose towards a
contradiction that τ ∈ A. Then for all t such that t + e (τ ) = τ one has τ < t . Then
τ < t + e (τ ) = τ , a contradiction. Hence τ /∈ A.

To show that ρ is unique suppose that ρ′ is such that x ∈ A if and only if x ≤ ρ and if
and only if x ≤ ρ′ . Then ρ, ρ′ ∈ A, hence ρ ≤ ρ′ and ρ′ ≤ ρ. One concludes that ρ is
unique by Axiom 2.12.

To show that σ is unique suppose that σ′ is such that x ∈ A if and only if x < σ if and
only if x < σ′ . If σ < σ′ then σ ∈ A hence σ < σ which is absurd. If σ′ < σ then
similarly σ′ ∈ A and σ′ < σ′ , which is absurd. Hence σ = σ′ by Axiom 2.14.

In order to show that τ is unique, suppose that x ∈ A if and only if x < t for all
precise t with t + e(τ ) = τ , and also if and only if x < t′ for all precise t′ with
t′+ e(τ ′) = τ ′ . Assume that τ < τ ′ . We may suppose that τ = e (τ ). Suppose first that
τ ′ = e

(
τ ′
)

. Then by Lemma 3.6 there is a precise element p such that e (τ ) < p < τ ′ .
Then −p < t for all precise t such that t + e(τ ) = τ , otherwise p + t ≤ 0 ≤ e (τ ),
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so p ≤ −t + e (τ ) = − (t − e (τ )) = − (t + e (τ )) = −e (τ ) = e (τ ), which is a
contradiction. Hence −p ∈ A. On the other hand −p + e

(
τ ′
)

= −
(
p− e

(
τ ′
))

=

−
(
p + e

(
τ ′
))

= −e
(
τ ′
)

= e
(
τ ′
)

. Hence −p /∈ A, a contradiction. Secondly, we
suppose that τ ′ is zeroless. It follows from Lemma 3.6 that there exists a precise p
such that e (τ ) < p + e

(
τ ′
)
< τ ′ . By the second inequality p ∈ A and by the first

inequality p /∈ A, a contradiction. Hence τ ′ ≤ τ . Similarly one shows that τ ≤ τ ′ .
Hence τ = τ ′ .

We prove next that the cases 3.2.1 and 3.2.2 are mutually exclusive. If not, because
ρ ∈ A one has ρ < σ . By Lemma 3.6 there is a precise element s such that ρ < s < σ .
Then s /∈ A because ρ < s, and s ∈ A because s < σ , a contradiction. Hence the cases
3.2.1 and 3.2.2 are mutually exclusive.

We prove next that the cases 3.2.1 and 3.2.3 are mutually exclusive. If not, because
ρ ∈ A, for all t such that t + e (τ ) = τ one has ρ < t . By Lemma 3.9 there is a precise
p such that ρ < p and p < t for all t such that t + e (τ ) = τ . Then both p /∈ A and
p ∈ A, a contradiction.

Finally we relate the cases 3.2.2 and 3.2.3. By Proposition 3.10 they coincide if A is
precise. Assume that A is not precise. If σ < τ , we obtain a contradiction along the
lines of the previous case. Suppose τ < σ . By Lemma 3.8 there exists a precise q such
that τ < p < σ . Then both p /∈ A and p ∈ A, a contradiction. Hence σ = τ . Hence
the cases 3.2.2 and 3.2.3 are mutually exclusive.

As for upper halflines, the definition of weak greatest lower bounds winf is similar, but
not entirely analogous, to the definition of weak least upper bounds, according to the
three possibilities mentioned in the following theorem.

Theorem 3.12 Let S be a complete solid and B ⊆ S be an upper halfline defined by a
restricted formula. Then B has one of the following forms:

(1) ∃ρ∀y(y ∈ B↔ ρ ≤ y)

(2) ∃σ∀y(y ∈ B↔ σ < y)

(3) ∃τ∀y(y ∈ B↔ ∃t(t + e(τ ) = τ ∧ t ≤ y))

Proof The case B = S corresponds to 3.12.3. If B ⊂ S , define A = S\B. Then A is a
lower halfline defined by a restricted formula. Let ζ = zup(A). If ∀x (x ∈ A⇔ x ≤ ζ),
then ∀y (y ∈ B⇔ ζ < y). If ∀x (x ∈ A⇔ x < ζ), then ∀y (y ∈ B⇔ ζ ≤ y). Finally,
if ∀x(x ∈ A ⇔ ∀z(z + e (ζ) = ζ ⇒ x < z)), then ∀y(y ∈ B ⇔ ∃z(z + e (ζ) = ζ ∧ z
≤ y)).
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In the first case we call the upper halfline B closed with minimum ρ ≡ min B, in the
second case we call the upper halfline open with infimum σ ≡ inf B, and in the third
case we call the upper halfline strongly open with weak infimum τ ≡ winf B. We
may define greatest lower bounds for any set B by defining winf B ≡ winf B where
B ≡ {x ∈ S | ∃b ∈ B(b ≤ x)}. Note that the complement of a closed lower halfline
is open (if not empty), the complement of a open lower halfline is closed and the
complement of a non-precise strongly open lower halfline is again strongly open. As a
corollary to Theorem 3.11 we obtain the following criterion for upper halflines.

Corollary 3.13 Let S be a complete solid and B ⊆ S be an upper halfline defined by a
restricted formula. The elements ρ, σ and τ of Theorem 3.12 are unique and the cases
1 and 2, and the cases 1 and 3 are mutually exclusive. If B is a precise lower halfline,
it is strongly open if and only if it is closed. If B is not a precise lower halfline, the
properties of being open, closed or strongly open are mutually exclusive.

It is to be noted that also the case of the complete solid S itself enters in the above
classifications. Considered as a lower halfline it has a maximum in the form of the
maximal magnitude M , while M acts as a weak infimum, if S is considered as an upper
halfline.

Proposition 3.14 Let S be a complete solid and E be a set of magnitudes defined
by a restricted formula. Then zup E and winf E are magnitudes. In fact, zup E is a
maximum or a supremum and winf E is a minimum or an infimum.

Proof Let Z = zup E . If Z is a maximum it is clearly a magnitude. Assume that Z is
a supremum. If Z is zeroless, then Z/2 < Z . Then there must exist an element f such
that f + f = f and Z/2 < f < Z , otherwise Z/2 would already be an upper bound of
E . Hence Z < 2f = f , a contradiction. Hence Z is a magnitude.

We show that Z cannot be a weak supremum. If such, Z cannot be a magnitude,
otherwise every element in Z would be negative, in contradiction with the fact that
0 ≤ Z . Also Z cannot be zeroless. Indeed, then Z would be of the form t + e (Z) with t
precise and e (Z) < t . Then t/2 + e (Z) < Z . Then there must exist an element f such
that f + f = f and t/2 + e (Z) < f < Z , otherwise t/2 + e (Z) would already be an
upper bound of E . Hence Z = t + e (Z) < 2f = f < Z , a contradiction. We conclude
that Z is a maximum or a supremum.

The proof for winf E is similar.
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4 Limited numbers and infinitesimals

Notation Let S be a complete solid. With some abuse of language the winf of the
magnitudes larger than 1 is noted £, ie £≡winf{e ∈ S | e + e = e ∧ 1 < e} and the
zup of the magnitudes smaller than 1 is noted �, ie �≡ zup{e ∈ S|e + e = e∧ e < 1}.

Theorem 4.1 Within a complete solid the sets � and £ are magnitudes and satisfy

0 < � < 1 < £ < M.

Proof Let E = {e|e + e = e ∧ e < 1}. By Axiom 2.27 there exists e such that
e + e = e and 0 < e < M . If 1 < e then there is a precise element p such that
1 < e < p < M . Then 0 < 1/p < e/p < 1. If e < 1 then there is a precise element q
such that 0 < q < e. Then 0 < 1 < e/q < 1/q < M . Hence there exists a magnitude
between 0 and 1 and a magnitude between 1 and M . So 0 < � and £ < M .

By Proposition 3.14, � is a magnitude. If � is a maximum, clearly � < 1. Assume
� is a supremum. If 1 < �, there must exist an element e such that e + e = e and
1 < e < 1, a contradiction. We conclude that � < 1.

The proof that £ is a magnitude and 1 < £ is analogous, now using F = {e | e + e =

e ∧ 1 < e}.

Corollary 4.2 There are no magnitudes between the magnitudes � and £.

Since 0 < � and £ < M , by Axiom 2.29 and Lemma 3.7 there are precise elements p
and q such that 0 < p < � and £ < q < M .

Below we show that � and £ are idempotent magnitudes for multiplication, ie �� = �
and ££ = £. Moreover �£ = � or �£ = £. Indeed, it follows from Axiom 2.19
that the product of two magnitudes e and f is a magnitude. In particular �£ is a
magnitude. By compatibility with the ordering,

(4) � ≤ �1 ≤ �£ ≤ 1£ = £.

To decide whether �£ = � or �£ = £, we need Axiom 2.30. In fact �£ = �,
which will be shown in Section 5. Next lemma states some basic properties of � and
£.

Lemma 4.3 Let 0 < p be precise. Then

(1) £ < p if and only if 1/p < �
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(2) � < p if and only if 1/p < £

(3) If p < � then
√

p < �
(4) If £ < p then £ <

√
p

(5) If � < p < £, then � < p2 < £

(6) � = sup{p|e (p) = 0 ∧£ < 1/p} and £ = inf{1/p|e (p) = 0 ∧ p < �}

Proof 1. Assume £ < p. Then £/p ≤ 1. Because £/p is a magnitude, we have
£/p < 1, so £/p ≤ �. Since 1/p < £/p we derive that 1/p < �. Assume now
that 1/p < �. Then 1 ≤ p�, in fact 1 < p�, because p� is a magnitude. So
£ ≤ p� < p · 1 = p. Hence £ < p if and only if 1/p < �.

2. Directly from Lemma 4.3.1.

3. Suppose that p < � and � <
√

p. Then �/√p < 1. Then �/√p ≤ �. Hence
p < � ≤ √p�, so

√
p < �, a contradiction. Hence

√
p < �.

4. Suppose that £ < p and
√

p < £. Then 1 < £/
√

p. Then £ ≤ £/
√

p. Hence√
p£ ≤ £ < p, so £ <

√
p, a contradiction. Hence £ <

√
p.

5. This part is a direct consequence of Lemma 4.3.3 and 4.3.4.

6. Let 0 < p be precise. Put �′ = sup {p|e (p) = 0 ∧£ < 1/p}. Suppose that
� < �′ . Then there exists a precise element q such that � < q < �′ . Then 1/q < £

by Lemma 4.3.2, while £ < 1/q by definition of �′ . Hence �′ ≤ �. Suppose now
that �′ < �. Then there exists a precise element r such that �′ < r < �. Then
1/r < £ by definition of �′ , while £ < 1/r by Lemma 4.3.1, a contradiction. Hence
� = �′ . The second part is proved in an analogous way.

Theorem 4.4 One has:

(1) �� = �
(2) ££ = £

Proof 1. Suppose �� < �. Then there is a precise element p such that �� < p < �.
By Lemma 4.3.3 one has

√
p < �. Then p =

√
p
√

p < ��, a contradiction. Hence
� ≤ ��. Because � < 1, also �� ≤ �. We conclude that �� = �.

2. Suppose £ < ££. Then there is a precise element p such that £ < p < ££. By
Lemma 4.3.4 one has £ <

√
p. Then ££ <

√
p
√

p = p, a contradiction. Hence
££ ≤ £. Because 1 < £, also £ ≤ ££. We conclude that ££ = £.
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5 Product of magnitudes

Let f and g be two magnitudes. Though the product fg is well-defined as a magnitude,
the value of this magnitude is not determined. For example, formula (4) and Corollary
4.2 show that �£ = � or �£ = £ but do not decide which equality holds. We will see
that Axiom 2.30 has as a consequence that �£ = �. In fact this axiom together with
Axiom 2.31 implies that the value of the product fg is determined for all magnitudes f
and g. Axiom 2.30 gives the value of the product of a magnitude which is idempotent
for multiplication with its so-called maximal ideal. Using an order argument, it will be
shown that the axiom determines the value of the product of all magnitudes which are
idempotent for multiplication. Axiom 2.31 states that every magnitude is a multiple of
an idempotent magnitude which is shown to be unique. This enables to determine all
products of magnitudes.

We recall first some definitions from Section 2.2.1.

Definition 5.1 A magnitude I is called idempotent if II = I .

Clearly 0 and M are idempotent magnitudes and by Theorem 4.4, also � and £. Note
that if e and f are idempotent then ef is also idempotent, because efef = eeff = ef .

Definition 5.2 Let e and I be magnitudes such that 1 < I , I is idempotent and e ≤ I .
If for all precise positive q such that q < I it holds that eq ≤ e we say that e is an ideal
of I . An ideal e of I is said to be maximal if e < I and for every ideal f of I such that
e ≤ f ≤ I one has e = f or f = I .

Every idempotent magnitude I such that 1 < I possesses an ideal. Indeed, 0 is an ideal
of I , for 0 is an idempotent magnitude and for all precise q such that q < I one has
0q = 0. If I < M , then I has nonzero ideals and the existence of a maximal ideal of I
will be a consequence of generalized Dedekind completeness.

Notation Unless otherwise said, we let J be an idempotent magnitude such that
1 < J < M and I = sup A, where A≡{1/ω |ω precise, J < |ω|}.

Theorem 5.3 The maximal ideal of M is equal to 0. If 1 < J < M , then 0 < I ≤ �
and I is the maximal ideal of J .

The first part of the theorem follows from the fact that x0 = 0 for all x ∈ S such that
x < M (Dinis and Van den Berg [10, Proposition 3.5]), and xM = M for all x ∈ S such
that x 6= 0. Observe that as a consequence 0M = M . To prove the remaining part we
start with some preparatory lemmas.
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Lemma 5.4 Let 0 < p be precise. Then

(1) If p < I then 2p < I .

(2) If p < I then
√

p < I .

(3) If 1 ≤ p < J then I < 1/p.

Proof Assume that p < I . Then p ∈ A. Hence J < 1/p. Then J < 1/2p because J
is a magnitude and J < 1/

√
p because J is idempotent. Hence 2p < I and

√
p < I .

This proves Lemma 5.4.1 and 5.4.2. Lemma 5.4.3 follows directly from the definition
of I .

Lemma 5.5 I < 1 is an idempotent magnitude.

Proof The fact that I < 1 follows from Lemma 5.4.3. It follows from Lemma 5.4.1
that I ≤ I + I . Suppose that I < I + I . Then there exists a precise element p such
that I < p < I + I . Then p = p/2 + p/2 < I by Lemma 5.4.1, a contradiction. Hence
I is a magnitude. To show that I is idempotent, observe that II ≤ I because I < 1.
Suppose II < I . Then there exists a precise element p such that II < p < I . Then
p =
√

p
√

p < II by Lemma 5.4.2, a contradiction. Hence I is idempotent.

Lemma 5.6 Let r, p be precise and such that 1 < p < J and r < I . Then rp < I .

Proof By the definition of I one has J < 1/r . Suppose that 1/ (rp) =
(
1/r
)
/p < J .

Then 1/r < pJ < JJ = J , a contradiction. Hence J < 1/ (rp) and rp < I , by the
definition of I .

Lemma 5.7 I is an ideal of J .

Proof It is enough to prove that Ip ≤ I for all precise p such that 1 < p < J . By
Lemma 5.6, Ip = sup {r | e (r) = 0 ∧ r < I} ·p = sup {pr | e (r) = 0 ∧ r < I} ≤ I .

Lemma 5.8 Let K be an ideal of J . Then K ≤ I or K = J .

Proof Assume that K is an ideal of J such that I < K . Then there exists a precise
p such that I < p < K . Then 1/p < J , so 1 = p · 1/p < K · 1/p ≤ K . Suppose
K < J . Then there exists a precise q such that K < q < J . Then q = 1 · q < Kq ≤ K ,
a contradiction. Hence K = J or K ≤ I .
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Proof of Theorem 5.3 Lemma 5.7 states that I is an ideal of J . By Lemma 5.8, every
ideal of J which is different from J is less than or equal to I . Hence I is the maximal
ideal of J . The fact that I ≤ � follows from Lemma 5.5.

We will now determine the value of the product of two magnitudes. Theorem 5.9 below
states that the product of idempotents is equal to one of the factors and Proposition 5.10
deals with the special case of the product of � and £. Proposition 5.11 states that,
for non-zero magnitudes, the idempotent magnitude given by Axiom 2.31 is unique.
Then the value of the product of magnitudes follows by applying Axiom 2.31 and
Theorem 5.9 and comes in the form of a linearization, otherwise said, the product of
two magnitudes is a multiple of one of them.

Theorem 5.9 Let e and f be idempotent magnitudes with e ≤ f . If f < 1, then
ef = e. If 1 < f we let I be the maximal ideal of f . Then ef = e if e ≤ I , and ef = f
if I < e.

Proof If e = f the property is obvious. If e < f < 1, we have ef = e, for
e = ee ≤ ef ≤ e · 1 = e. If 1 < e < f , we have ef = f , for f = 1 · f ≤ ef ≤ ff = f .
Finally, assume that e < 1 < f . Assume that e ≤ I . By the above we have eI = e.
Then by Axiom 2.30 one has ef = eIf = eI = e. Assume that I < e. Note that ef
is an ideal of f , for efq ≤ eff = ef for all precise q < f . Also I < e = ee ≤ ef ≤ f .
Hence ef = f .

Notice that by commutativity the product ef is also determined if f < e.

Proposition 5.10 The magnitude � is the maximal ideal of £. As a consequence
�£ = �.

Proof By Theorem 4.4.2 the magnitude £ is idempotent. It follows from Lemma
4.3.6 and Theorem 5.3 that � is the maximal ideal of £. Then �£ = � by Theorem
5.9.

Proposition 5.11 Let e be a nonzero magnitude and I be an idempotent magnitude
such that e = pI for some precise element p. Then I is unique.

Proof Let e be a magnitude. Suppose that there exist idempotent magnitudes I, J ∈ S
and precise elements p and q such that e = pI and e = qJ . Then pI = qJ . Because
e 6= 0 the elements p and q are non-zero. Then, noting that I and J are idempotent,

IJ = I
(

p
q

I
)

=
p
q

I = J

Journal of Logic & Analysis 9:7 (2017)



22 Bruno Dinis and Imme van den Berg

and

IJ =

(
q
p

J
)

J =
q
p

J = I.

We conclude that I = J .

Theorem 5.12 Let e and f be magnitudes. Then the value of ef is uniquely determined.
Moreover, there exists a positive precise p such that ef = pf or a positive precise q
such that ef = qe.

Proof Clearly ef = 0 if e = 0 or f = 0, and we may take q = 1 or p = 1 respectively.
Let e and f be non-zero magnitudes. By Axiom 2.31 there exist idempotent I and J
and precise p and q such that e = pI and f = qJ ; dealing with magnitudes they may
be supposed positive. Then ef = pqIJ . Now IJ = I or IJ = J by Theorem 5.9 and the
value of the product ef is uniquely determined by Proposition 5.11. Hence ef = pf or
ef = qe.

In the last part of this section we verify that the value of the product obtained from
Axiom 2.30 is consistent with the ordering (Theorem 5.14) and the notion of supremum
of Axiom 2.32 (Theorem 5.15).

Lemma 5.13 Let J > 1 be an idempotent magnitude and I be the maximal ideal of J .
Let p be a precise element.

(1) If p < I then pJ < I .

(2) If I < p then J ≤ pJ . Moreover, pJ = J if and only if I < p < J .

(3) If J < p then J < pI .

(4) If p < J then pI ≤ I . Moreover, pI = I if and only if I < p < J .

(5) There is no precise element p such that pI = J .

Proof 1. Assume that p < I . Then
√

p < I by Lemma 5.4.2. Then J < 1/
√

p.
Hence

pJ < p
1
√

p
=
√

p < I.

2. Assume that I < p. Then I < p2 by idempotency. If 1 ≤ p, clearly J ≤ pJ .
If p < 1, then p < J . Suppose that pJ < J . Because pJ is an ideal of J , one has
pJ ≤ I < p2 . Then J < p, a contradiction. Hence J ≤ pJ . Assume that I < p < J .
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Then pJ ≤ J2 = J . Hence pJ = J . For J < p we have J < p < pJ . Hence pJ = J if
and only if I < p < J .

3. Suppose that J < p. Then J <
√

p by idempotency. Then 1/
√

p < I , hence

J <
√

p = p
1
√

p
< pI.

4. Because I is an ideal of J we have pI ≤ I . Assume that I < p < J . Then
I = I2 ≤ pI . Hence pI = I . By Lemma 5.13.1 one has pI ≤ pJ < I for p < I . Hence
pI = I if and only if I < p < J .

5. Directly from Lemma 5.13.3 and 5.13.4.

Theorem 5.14 Let J > 1 be an idempotent magnitude and I be the maximal ideal of
J . Let p, q > 0 be precise.

(1) If p < I < q then pJ < IJ < qJ .

(2) If p < J < q then Ip ≤ IJ < Iq.

Proof 1. By Lemmas 5.13.1 and 5.13.2, pJ < I = IJ < J ≤ qJ .

2. By Lemmas 5.13.4 and 5.13.3, Ip ≤ I = IJ < J < Iq.

Theorem 5.15 Let I, J be idempotent magnitudes such that 1 < J and I is the maximal
ideal of J . Then:

(1) I = IJ = sup {pJ | e(p) = 0, |p| < I} = max {Iq | e(q) = 0, |q| < J}
(2) J = inf {pI | e(p) = 0, J < p} = min {qJ | e(q) = 0, I < q}

Proof 1. By Lemma 5.13.1, if p < I then pJ < I . Also 1 < J . Hence

I = sup {p | e(p) = 0, |p| < I} ≤ sup {pJ | e(p) = 0, |p| < I} ≤ I.

Hence IJ = sup {pJ | e(p) = 0, |p| < I}. Also Iq ≤ IJ for all precise q with |q| < J .
By Lemma 5.13.4 one has Iq = I = IJ for all precise q with I < |q| < J . Hence
IJ = max {Iq | e(q) = 0, |q| < J}.

2. By Lemma 5.13.3 we have J ≤ inf {pI | J < p}. In order to show that also
inf{pI | J < p} ≤ J, suppose towards a contradiction that J < inf {pI | J < p}. Then
there exists a precise element q such that J < q < inf {pI | J < p}. Since J < q, one
has inf {pI | J < p} ≤ qI . Then q < qI, which implies that 1 < I , a contradiction.
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One concludes that inf {pI | J < p} = J . By Lemma 5.13.3, inf {pI | J < p} is not a
minimum. By Proposition 3.14, inf {pI | J < p} is an infimum.

By Lemma 5.13.2 one has J ≤ pJ for I < p, and in particular pJ = J for all p with
I < p < J . Hence J = min {pJ | vI < p}.

Theorem 5.15 also states that we may obtain IJ = I by approximation from below,
but not by approximation from above. This shows that completion arguments are not
enough to determine the product of magnitudes.

6 On consistency

In this section we show that Axioms 2.1-2.35 are consistent by constructing a model
extending a particular nonstandard model of the real numbers. Indeed, we take a
sufficiently saturated nonstandard model ∗R of the real numbers which is elementary
equivalent to R. Within this model we consider cosets with respect to convex subgroups
which are definable by Σ1 or Π1 formulas. The resulting structure will be called E . As
we will see, all the axioms presented in Section 2 are valid in E .

In a previous article [11] we made an interpretation of most of the algebraic axioms
using the language of Nelson’s Internal Set Theory [23]. More precisely we used an
adapted version, formulated by Kanovei-Reeken [17], which permits to include external
sets. As it turns out, in this approach the collection of magnitudes is a proper class. To
avoid foundational problems, which may appear when we apply, say, asymptotics with
parameters or defining subclasses, we will consider here a semantic approach.

The axioms for a solid, ie Axioms 2.1-2.29, extend the axioms originally presented in
[11] and were shown to be consistent in Dinis and Van den Berg [12] by the construction
of a direct model in the language of ZFC . This was given in the form of a set of
cosets of a non-Archimedean field. Allowing for definable classes, it was shown in [11]
that the external numbers of Koudjeti [19] and Koudjeti and Van den Berg [20] satisfy
the axioms for addition and for multiplication, together with a modified form of the
distributivity axiom; this modified form was shown to be equivalent to Axiom 2.22 in
Dinis and Van den Berg [10]. The remaining algebraic axioms deal with multiplication
of magnitudes, and are in fact taken from calculation rules of the external numbers
observed in [19] and [20].
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6.1 Construction of the solid E

Let Zn =
⋃

k≤n Pk(R) and Z =
⋃

n∈N Zn be the superstructure of Robinson and
Zakon [26] (see also Stroyan and Luxemburg [28] and Goldblatt [13]). Let ∗Z be an
adequate ultralimit [23] of Z . If we interpret the elements of Z as standard, we will see
that bounded versions of the axioms I , S , and T of Nelson, as well as his Reduction
Algorithm hold in this structure. In particular, the Saturation Principle [25, Theorem 5]
holds. In the context of the superstructure this implies that if X ∈ Z and s : X → ∗R,
then s has always an internal extension s̃ : ∗X → ∗R.

Definition 6.1 We denote by N the set consisting of ∗R and of all convex subgroups
of ∗R of the form

⋃
x∈X

[−sx, sx] or
⋂

x∈X
[−sx, sx], where X ∈ Z and s : X → ∗R. We

call an element of N a neutrix.

Without restriction of generality we may suppose that X is ordered and s is increasing
in the case of unions and decreasing in the case of intersections.

Definition 6.2 Let A,B be neutrices. With some abuse of language we call the set
{a ∗+ b | a ∈ A ∧ b ∈ B} the Minkowski sum of A and B and the set {a ∗· b | a ∈
A ∧ b ∈ B} the Minkowski product of A and B. Usually we simply write A + B instead
of A ∗+ B and A · B instead of A ∗· B.

Definition 6.3 We define E = {a + A | a ∈ ∗R ∧ A ∈ N}. We call an element of E
an external number.

If α = a + A is an external number, it is tacitly understood that a ∈ ∗R and A ∈ N .
We write N (α) instead of A and call it the neutrix part of α . This functional notation
will be justified below.

Proposition 6.4 Let α = a + A be an external number.

(1) Let y ∈ α . Then α = y + A.

(2) Let α = b + B with b ∈ ∗R and B ∈ N . Then A = B.

Proof 1. We have that y−a ∈ α−α = A. Then y+A = y−a+a+A ⊆ a+A+A = α .
On the other hand, α = a + A = a− y + y + A ⊆ y + A + A = y + A. Hence α = y + A.

2. We have A = α− α = B.

Corollary 6.5 The neutrix part is a well-defined function from E to N .
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Obviously α = y + A for any element y ∈ α . The neutrix part of a given external
number is unique and functional. Next definition extends the Minkowski sum and
product of Definition 6.2 to external numbers. It is easy to see that the definition does
not depend on the choice of representatives.

Definition 6.6 Let α = a + A and β = b + B be two external numbers, the sum and
product of α and β are defined as follows:

α+ β = a + b + A + B

α · β = ab + aB + bA + AB

Let A,B be neutrices and (sx)x∈X ,
(
ty
)

y∈Y be families of elements of ∗R, with X, Y ∈ Z .
Because we are only considering convex subgroups of ∗R of the form

⋃
x∈X

[−sx, sx] or⋂
x∈X

[−sx, sx], we need to show that the sum and product operations do not increase
the complexity. With addition complexity does not increase because one always has
A + B = A or A + B = B. We now consider multiplication. There is clearly no increase
in complexity if both A and B are unions, or are intersections. Indeed⋃

x∈X
[−sx, sx] ·

⋃
y∈Y

[−ty, ty] =
⋃

(x,y)∈X×Y
[−sx, sx] [−ty, ty],

and ⋂
x∈X

[−sx, sx] ·
⋂

y∈Y
[−ty, ty] =

⋂
(x,y)∈X×Y

[−sx, sx] [−ty, ty].

In the following proposition we show that there is also no increase in complexity in the
case where A is of the form

⋃
x∈X

[−sx, sx] and B is of the form
⋂

y∈Y
[−ty, ty].

Proposition 6.7 Let X,Y ∈ Z . Let A =
⋃

x∈X
[−sx, sx] and B =

⋂
y∈Y

[−ty, ty]
be neutrices where (sx)x∈X ,

(
ty
)

y∈Y are families of elements of ∗R. Then AB =⋃
w∈W

[−uw, uw] or AB =
⋂

w∈W
[−uw, uw], where (uw)w∈W is a family of elements of

∗R with W = X or W = Y .

Proof To AB we associate the halfline C = ]−∞,AB]. This halfline is of the form⋃
x∈X

]−∞, ux] where u : X → ∗R is internal or of the form
⋂

y∈Y
] −∞, uy] where

u : Y → R∗ is internal (see Van den Berg [2, Theorem 4.33]). The proposition is a
direct consequence of this fact.

Definition 6.8 Let ≤∗ be the order relation on ∗R. Given α, β ∈ E , we write, with
some abuse of language, α ≤ β if and only if

(5) (∀x ∈ α)(∃y ∈ β)(x ≤∗ y).
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Let α ∈ E . Let Qα = {x ∈ E | x ≤ α}. Then α ≤ β if and only if Qα ⊆ Qβ .

Note that if α ∩ β = ∅, formula (5) is equivalent to (∀x ∈ α)(∀y ∈ β)(x <∗ y). Lemma
6.9 shows that two external numbers are always either disjoint or one contains the other
(see also Koudjeti [19, Proposition 3.2.15]).

Lemma 6.9 Let α and β be two external numbers. Then

α ∩ β = ∅ ∨ α ⊆ β ∨ β ⊆ α.

Proof Suppose that α ∩ β 6= ∅. Then there is x ∈ ∗R such that x ∈ α and x ∈ β .
Then we may write α = x + A and β = x + B. Hence β ⊆ α if max(A,B) = A, and
α ⊆ β if max(A,B) = B.

6.2 The solid E as a model for the axioms

In this section we show that the external numbers of the previous section are a model for
the axioms. We will work progressively, and start with the algebraic axioms of a solid.

Theorem 6.10 The structure (E ,+, ·,≤) satisfies Axioms 2.1-2.29.

In order to prove the theorem, we verify first that the axioms for addition and the axioms
for multiplication are satisfied. For the order axioms we will need to recapitulate in
a modified way some results from Koudjeti [19] and Koudjeti and Van den Berg [20].
Then we show that the axioms relating addition and multiplication are satisfied and
finally we show that the existence axioms are verified.

Proposition 6.11 The structure (E ,+, ·,≤) satisfies Axioms 2.1-2.10.

Proof The proof is essentially the same as the proof given in Dinis and Van den
Berg [11, Theorem 4.10].

Proposition 6.12 The structure (E ,+, ·,≤) satisfies Axioms 2.11-2.18.

Before proving the proposition, we recall a lemma from [20].

Lemma 6.13 Let A be a neutrix and let β and γ be external numbers such that β ≤ γ .
Then Aβ ⊆ Aγ .
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Proof Assume that β ≤ γ . Let x ∈ β and a ∈ A. There exists y ∈ γ such that x ≤ y.
Then |a| x ≤ |a| y ∈ Aγ . Hence Aβ ⊆ Aγ .

Proof of Proposition 6.12 Working with halflines, it is immediate to see that the order
relation is reflexive, transitive, antisymmetric and total. Then Axioms 2.11-2.14 are
satisfied.

In order to show that Axiom 2.15 is satisfied assume that α ≤ β . Let a ∈ α and c ∈ γ .
There exists b ∈ β such that a ≤ b. Hence a + c ≤ b + c ∈ β + γ and one concludes
that α + γ ≤ β + γ . As regards to Axiom 2.16, assume that α + N (β) = N (β),
ie a + A + B = B. Then a + A ⊆ B. Hence α ≤ N (β). We now turn to Axiom
2.17. Assume that N (α) ≤ α and β ≤ γ . If α = A, then Aβ ⊆ Aγ by Lemma 6.13,
so Aβ ≤ Aγ . If A < α and x ∈ α then 0 < x. Let y ∈ β . Because β ≤ γ there
exists z ∈ γ such that y ≤ z. Then xy ≤ xz. Hence αβ ≤ αγ . Finally, to prove that
Axiom 2.18 holds suppose that N (β) ≤ β and β ≤ γ . Let z ∈ Aβ . We may assume
that z is positive. Then there exist a′ ∈ A, b′ ∈ β such that z = a′b′ , moreover a′

may be supposed positive. Because b′ ∈ β there is c′ ∈ γ such that b′ ≤ c′ . Then
a′b′ ≤ a′c′ ∈ Aγ . Hence Aβ ⊆ Aγ , which implies that Aβ ≤ Aγ .

We turn now to the axioms which relate addition and multiplication. It was shown in
Dinis and Van den Berg [11] that distributivity holds for external numbers under certain
conditions. In Dinis and Van den Berg [10] equivalence was shown with Axiom 2.22.
Here we give a direct proof that Axiom 2.22 holds in E . We recall that for external
numbers, being convex sets, subdistributivity always holds in the sense of inclusion, ie

(6) α (β + γ) ⊆ αβ + αγ.

Theorem 6.14 Let α = a + A, β and γ be external numbers. Then

αβ + αγ = α (β + γ) + Aβ + Aγ.

Proof It is easy to see [11] that distributivity holds in the case that α = a is precise
and that (a + A) (β + γ) = a (β + γ) + A (β + γ). Then

α (β + γ) + Aβ + Aγ = (a + A) (β + γ) + Aβ + Aγ

= a (β + γ) + A (β + γ) + Aβ + Aγ

= aβ + aγ + A (β + γ) + Aβ + Aγ.

By formula (6) and because Aβ , Aγ and A(β + γ) are neutrices, one has that
Aβ + Aγ + A(β + γ) = Aβ + Aγ .

Hence α (β + γ) + Aβ + Aγ = aβ + aγ + Aβ + Aγ = αβ + αγ .
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Proposition 6.15 The structure (E ,+, ·,≤) satisfies Axioms 2.19-2.23.

Proof For Axioms 2.20, 2.21 and 2.23 we refer to [11, Propositions 4.15 and 4.17].
Axiom 2.22 holds by Theorem 6.14. We still must show that Axiom 2.19 is satisfied.
Let A ∈ N and β = b + B ∈ E . One has

A (b + B) = bA + AB = max(bA,AB).

Clearly bA ∈ N , and AB ∈ N follows from Proposition 6.7.

We consider now the group of axioms on existence. We prove first the existence of
representatives of the special elements m, u and M .

Proposition 6.16 The structure (E ,+, ·,≤) satisfies Axioms 2.24-2.26.

Proof The proposition follows by putting m = 0, M = ∗R.

Axiom 2.27 states the existence of magnitudes between the smallest element m and
the largest element M . With Generalized Dedekind completeness we defined a largest
magnitude � such that 0 < � < 1 and a smallest magnitude £ such that 1 < £ < M .
We will interpret � and £ in the following way, where we identify N with the standard
integers of ∗R.

Definition 6.17 We define Λ =
⋃

n∈N ]∗ − n, n[ and Θ =
⋂

n∈N ]∗ − 1/n, 1/n[.

Theorem 6.18 The external sets Θ and Λ are neutrices. One has 0 < Θ < 1 < Λ <
∗R. The interpretation of � is Θ and the interpretation of £ is Λ.

Proof Clearly Θ and Λ are neutrices. Because ∗R is a superstructure of R there exists
an infinitely large element ν in ∗R. Clearly ν /∈ Λ hence Λ 6= ∗R. Also 0 6= 1/ν ∈ Θ.
Obviously Θ < 1 < Λ, because 1 ∈ Λ and 1 /∈ Θ. Let L, I be the interpretations
of £ and � respectively. Then L, I must be neutrices. There does not exist a proper
convex subset of N closed under addition so there does not exist a neutrix A such that
1 < A < Λ. Also, there does not exist a neutrix B such that Θ < B < 1. Hence Λ ⊆ L
and I ⊆ Θ. Because Λ + Λ = Λ and 1 < Λ, by the definition of £ one has L ⊆ Λ.
Also, because Θ + Θ = Θ and Θ < 1, by the definition of � one has Θ ⊆ I . Hence
Λ = L and Θ = I .

Proposition 6.19 The structure (E ,+, ·,≤) satisfies Axioms 2.27-2.29.
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Proof By Theorem 6.18, Axiom 2.27 holds. Axiom 2.28 is trivially satisfied. Finally
we turn to Axiom 2.29. Let A,B ∈ N be such that A 6= B. We may assume without
loss of generality A  B. Then there is a nonstandard real number b such that b ∈ B
and b /∈ A. Furthermore, b may be supposed positive. We show that A < b < B.
Indeed, because B is a group and b is positive one has b < 2b ∈ B. Hence b < B.
Suppose that b ≤ A. Then there exists a ∈ A such that b ≤ a. Because 0 ∈ A and
a ∈ A, by convexity b ∈ A, a contradiction. Hence A < b.

Proof of Theorem 6.10 The theorem follows by combining Proposition 6.11, Propo-
sition 6.12, Proposition 6.15, Proposition 6.16 and Proposition 6.19.

The set E is not characterized by Axioms 2.1-2.29, for as showed in Dinis and Van den
Berg [12] the set of all cosets with respect to all convex subgroups for addition of a
non-Archimedean field is a model for these axioms. As we will see in the next section
all the algebraic axioms, ie Axioms 2.1-2.29 together with the axioms 2.30 and 2.31,
are still not sufficient for such a characterization.

We will now prove that the Generalized Completeness Axiom 2.32 holds in E . We deal
with this axiom before the axioms on multiplication of magnitudes, because Generalized
Completeness is needed to prove the existence of the maximal ideals of Axiom 2.30.

In Van den Berg [2, Theorem 4.34, Corollary 4.35] (see also Diener and Diener [8,
page 155]) a normal form for convex subsets of real numbers is stated. In the case
of a (external) lower halfline this normal form indicates that its upper boundary is
well-defined, in the form of a unique external number. The proof relies, in an essential
way, on Nelson’s Reduction Algorithm and on the Saturation Principle.

Let Z be the superstructure defined in the previous section. In order to prove that the
axiom on generalized completeness holds we interpret formulas from the language
{+, ·,≤} in the adequate ultralimit ∗Z and show that a bounded version of the Reduction
Algorithm as well as the Saturation Principle hold in this structure.

Definition 6.20 Let k be a natural number. Let Φ(x1, ..., xk) be a formula of ZFC with
free variables x1, ..., xk . The formula Φ is called bounded (relatively to Z ∪ ∗Z ) if all
quantifications take the form ∀x ∈ X or ∃x ∈ X , with X ∈ Z or X ∈ ∗Z .

Definition 6.21 Let k be a natural number. A bounded formula Φ(x1, ..., xk) is called
internal (with some abuse of language) if all its quantifications take the form ∀x ∈ X or
∃x ∈ X , with X ∈ ∗Z .
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Let Φ(x1, ..., xk) be a restricted formula of the language {+, ·,≤}, this means that
quantifications are only with respect to precise elements, see Subsection 2.2. We will
interpret Φ by a formula Φ̄ in the structure E by induction on the complexity of the
formula, and show that Φ̄ is bounded. Observe that a term t(x1, ..., xk) is the result
of a finite number of additions and multiplications of the variables x1, ..., xk . Each
variable xi with 1 ≤ i ≤ k is interpreted by an element, say, αi of E ; in particular, if
xi is precise, then αi ∈ ∗R. Then the interpretation t̄(α1, ..., αk) of t is the result of a
finite number of additions and multiplications of the elements α1, ..., αk . An atomic
formula is of the form t(x1, ..., xk) ≤ s(y1, ..., ym), where m is a natural number and s is
a term with variables (y1, ..., ym). Then its interpretation is of the form

(7) t̄(α1, ..., αk) ≤ s̄(β1, ..., βm),

with β1, ..., βm ∈ E . It follows from Definition 6.1 that the αi and βj are either unions
or intersections of families of intervals in ∗R indexed by elements of sets which are
elements of Z . Hence the inequality (7) is expressed by a bounded formula.

Clearly the negation of a bounded formula is a bounded formula, and the conjunction
of bounded formulas is a bounded formula. Since quantifiers in restricted formulas of
the language {+, ·,≤} range over precise elements, quantifiers in their interpretations
range over ∗R, hence yield bounded formulas.

We conclude that the interpretation Φ̄ of Φ is bounded.

We show now that Nelson’s Reduction Algorithm, properly adapted, transforms a
bounded formula into a bounded formula of the form ∀x ∈ X∃y ∈ Y I (x, y) , with
X,Y ∈ Z and I (x, y) internal. Nelson’s Reduction Algorithm uses three principles
Transfer (T) , Idealization (I) and modified Standardization

(
S′
)

.

By Nelson [23] the Transfer Axiom and the Idealization Axiom of IST , when relativized
to ∗Z , hold in ∗Z indeed. In our context the modified Standardization Axiom takes the
following form. Let Φ(x, y) be a bounded formula, this means that all quantifiers and
parameters range over some Zn . Let m, n ∈ N and X, Y such that X ⊆ Zm and Y ⊆ Zn .
Assume that ∀x ∈ Zm∃y ∈ Zn Φ(x, y). Then there must exist a function ỹ ∈ Z such that
∀x ∈ X Φ(x, ỹ (x)). This is true because if Φ is a formula of ZFC , by the Axiom of
Choice there exists ỹ : X→Y such that ∀x ∈ X Φ(x, ỹ(x)). Clearly ỹ ∈ Z . So

(
S′
)

also
holds in Z .

The bounded versions of the principles I, S, T stated above hold in Z∗ , ie applying any
of these principles to a bounded formula results in a bounded formula. By the reasoning
in the paragraph above this is clearly true for

(
S′
)

. We verify the property also for (T)
and (I). Let in the formulas below Φ always be a bounded formula. Then (T) becomes

∀y ∈ Y(∀x ∈ X Φ (x, y)↔ ∀x ∈ ∗X Φ (x, y)),
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where X,Y ∈ Z and Φ internal. Also (I) becomes

∀w ∈ ∗W
(
∀v ∈ Pfin (X)∃y ∈ ∗Y∀x ∈ v Φ (x, y,w)

↔∃y ∈ ∗Y∀x ∈ ∗X Φ (x, y,w)
)
,

where X,Y,W ∈ Z, Φ internal and Pfin (X) is the set of all finite subsets of X . Note
that Pfin (X) ∈ Z .

So we have the following theorem.

Theorem 6.22 Every bounded formula Φ is equivalent to a bounded formula of the
form ∀x ∈ X∃y ∈ Y I (x, y) , with X,Y ∈ Z and I (x, y) internal.

Because the Saturation Principle is true in bounded IST it also holds in ∗Z . We may
now apply Van den Berg [2, Theorem 4.34, Corollary 4.35] to show that Generalized
Dedekind completeness holds.

Theorem 6.23 Axiom 2.32 holds in E .

Proof The interpretation Ā (a) of A (x), with a ∈ ∗R, is a bounded formula. Hence
one can apply the Reduction Algorithm to Ā (a) to obtain an equivalent formula of the
form ∀u ∈ U∃v ∈ V B(u, v, a), with U,V ∈ Z and B internal. Since Ā (a) defines a
lower halfline, by [2, Thm 4.33] this formula can be reduced to a formula of the form
∃y ∈ Y C(y, a) or ∀y ∈ Y C(y, a), with Y ∈ Z and C internal. Then the result follows
by [2, Theorem 4.34, Corollary 4.35].

We show now that the two axioms on multiplication of magnitudes hold in the model
(E ,+, ·,≤). We recall that magnitudes are interpreted by convex groups. Next
proposition states that the interpretation of an idempotent magnitude larger than 1 is a
ring with unity, the interpretation of an ideal in a solid is an ideal in the algebraic sense
and that under these interpretations the product of an idempotent magnitude and its
maximal ideal is equal to this maximal ideal.

Proposition 6.24 Let S be a complete solid. Let J ∈ S be an idempotent magnitude
such that 1 < J . Let I be an ideal of J . In the model (E ,+, ·,≤), the interpretation J̄
of J is a ring and the interpretation Ī of I is an ideal of the ring J̄ . Moreover, if I is
maximal, then Ī = {1/x | x ∈ ∗R, J < |x|} ∪ {0} is maximal and ĪJ̄ = Ī .
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Proof The interpretation J̄ of J in E is an idempotent neutrix, which is clearly a ring.
An ideal in the sense of Definition 5.2 is a magnitude, so Ī is a neutrix. Because for all
y < J one has yI ≤ I , by the Minkowski definition of the product xz ∈ Ī for all x ∈ Ī
and z ∈ J̄ . This means that Ī is an ideal of J̄ in the sense of rings.

Assume now that I is maximal, then I = sup {1/ω |ω precise, J < |ω|} by Theorem
5.3. Let K ≡ {1/x | x ∈ ∗R, J̄ < |x|} ∪ {0}. We show that Ī = K . Suppose that there
exists y ∈ Ī\K . Then |1/y| < J̄ . Hence there exists u < I such that 1/u < J , in
contradiction with the definition of I . Hence Ī ⊆ K . Suppose that there exists z ∈ K\Ī .
Then 1/z < J̄ , ie 1/z ∈ J̄ , in contradiction with the definition of K . Hence K ⊆ Ī
and we conclude that Ī = K . Suppose the ring J̄ has an ideal L with Ī ⊂ L ⊂ J̄ .
Let x ∈ L\Ī, x < 1 be positive. Because Ī = K we may find y ∈ J̄\L such that
1/x < y. Then y2 ∈ J̄ . But xy2 /∈ L , since y < xy2 . So we have a contradiction. As a
consequence Ī is the maximal ideal of the ring J̄ .

As observed above, yz ∈ Ī for all y ∈ J̄ and z ∈ Ī . Again by the Minkowski definition
of the product, it holds that ĪJ̄ ⊆ Ī . Clearly Ī ⊆ Ī · 1 ⊆ ĪJ̄ . Hence ĪJ̄ = Ī .

Corollary 6.25 The structure (E ,+, ·,≤) satisfies Axiom 2.30.

In the syntactical setting of (bounded) IST Axiom 2.31 is verified using an argument
based on the logarithm and the exponential function (Koudjeti and Van den Berg [20,
Theorem 7.4.4]). It can be adapted without difficulty to our semantic setting.

Theorem 6.26 The structure (E ,+, ·,≤) satisfies Axiom 2.31.

Finally we prove that the axioms on the existence and behavior of natural numbers hold
in E .

Theorem 6.27 Let N be interpreted by ∗N, the set of non-negative nonstandard
integers of ∗R. Then Axioms 2.33-2.35 hold in E .

Proof We interpret the symbol + by the addition in E , the symbol · by the multipli-
cation in E and the symbol ≤ by the order relation in E . This corresponds with the
addition ∗+ , the multiplication ∗· and the order relation ≤∗ in ∗N. Then Axiom 2.33
holds because ∗N does not contain negative numbers, ∗0 ∈ ∗N and whenever n ∈ ∗N,
n + 1 ∈ ∗N, but y /∈ ∗N for any y ∈ ∗R with n < y < n + 1. Axiom 2.34 states that
induction is valid for each formula A with the symbols 0, 1, + and ·, and precise
variables which have the property N . Then its interpretation ∗A is a formula with
the symbols ∗0, ∗1, ∗+ and ∗·, with parameters interpreted by elements of ∗N, and
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quantifications ranging over ∗N. Because ∗N is a model of Peano Arithmetic, Axiom
2.34 indeed holds in E . As regards to Axiom 2.35, it follows from Lemma 3.8 that it is
enough to show that the axiom holds for precise elements. Let x, y ∈ ∗R be such that
0 < x < y < M . By construction, for all a ∈ ∗R there exists n ∈ ∗N such that a < n.
In particular there exists m ∈∗ N such that y/x < m. Hence y < mx, so Axiom 2.35
holds in E .

Theorem 6.28 The structure (E ,+, ·,≤) satisfies Axioms 2.1-2.35.

Proof Directly from Theorem 6.10, Theorem 6.23, Corollary 6.25, Theorem 6.26 and
Theorem 6.27.

Corollary 6.29 Axioms 2.1-2.35 are consistent with ZFC .

7 Complete arithmetical solids

Definition 7.1 A model E for Axioms 2.1-2.35 will be called a complete arithmetical
solid. The set of magnitudes of E will be denoted by NE . The set of precise numbers
of E will be denoted by PE . If there is no ambiguity we drop the subscript E and write
simply N , respectively P .

In the previous section we showed that the structure E given by Definition 6.3 is in fact
a complete arithmetical solid. This structure was based on the superstructure Z over the
set of real numbers R and on the nonstandard model ∗R of an ultralimit ∗Z of Z . Its set
of magnitudes was given in Definition 6.1 and its set of precise numbers was ∗R. Even
if a set of magnitudes is specified in the above way it is to be expected that the set of
precise numbers is not uniquely determined. Indeed, we would then have a first-order
characterization of the (nonstandard) set of real numbers, for the axioms of Section 2
are stated within first-order logic. However, we will show that the set of non-precise
numbers is completely determined. This will be a consequence of Theorem 7.8 which
states that if a set of magnitudes is specified in a complete arithmetical solid, the set of
non-precise numbers is completely determined as sums of nonstandard rationals and a
nonzero magnitude.

For the set of precise numbers we obtain lower and upper bounds. Indeed, Theorem 7.17
states that the set of precise numbers is necessarily a nonstandard ordered field situated
between the nonstandard rationals and the nonstandard reals; the field is Archimedean
for the corresponding set of nonstandard natural numbers. This is to be compared with
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the well-known theorem saying that an Archimedean ordered field lies between the
rationals and the reals. The “standard” structure related to this field is also situated
between rationals and reals.

It will be shown that the precise elements of a complete arithmetical solid satisfy the
axioms of ZFL (Lutz [22]). The theory ZFL (“Zermelo-Fraenkel-Leibniz”) is basically
a calculatory nonstandard axiomatics in which the Leibniz rules hold. In Callot [6] it is
shown that ZFL is sufficient to develop a nonstandard Calculus in terms of S-continuity,
S-differentiability and S-integrability. The axiomatics ZFL is weaker than Nelson’s
arithmetical axiomatics of Radically Elementary Probability Theory [24] due to the
lack of the axiom scheme of External Induction. This axiomatics is here called REPT .
In REPT the axiom scheme of External Induction holds for formulas on the language
{st,∈}. Nelson shows that it is possible to do advanced stochastics in REPT . We
show that in a complete arithmetical solid External Induction holds for formulas in the
language {st,+, ·}.

In Subsection 7.1 we show that the algebraic axioms alone are not sufficient to
characterize the external numbers by exhibiting a proper substructure ρE of E satisfying
all the algebraic axioms. This justifies the introduction of the arithmetical axioms.

In Subsection 7.2 we show that every complete arithmetical solid contains a copy of
a nonstandard model of Peano arithmetic. As a consequence, in our framework we
have a copy of the nonstandard rationals. By analogy to the construction of the reals
via Dedekind cuts we show in Subsection 7.3 that the precise numbers of a complete
arithmetical solid are situated between the nonstandard rationals and the nonstandard
reals. The proof that a complete arithmetical solid has two built-in models of the
rational numbers uses a notion of standard part, here called shadow, and is based on
the well-known construction of the standard reals as the quotient of the rationals by
the infinitesimals. As a consequence, a complete arithmetical solid E can only be
constructed in a nonstandard setting. In Subsection 7.4 we compare our axiomatics
with the nonstandard axiomatics ZFL and REPT .

The results in this section suggest that our axiomatic approach gives rise to an alternative
way to build nonstandard real numbers, sharing the algebraic spirit of Benci and Di
Nasso [1].

It is useful to identify magnitudes f of a solid S with the set Pf of its precise elements,
ie

(8) Pf ≡ {x ∈ S | e (x) = 0 ∧ |x| ≤ f} .

With some abuse of language the sets Pf will also be called magnitudes.
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Proposition 7.2 Let S be a solid. Let X be the set of all magnitudes in S and P (S)
be the set of all subsets of S . Let φ : X → P (S) be the map defined by φ (f ) = Pf ,
where Pf is given by (8). Then Pf is a convex subgroup of S for the addition and order
relation of S . The map φ is 1-1.

Proof It is clear that Pf is a convex subgroup of S for the addition and order relation
of S . To prove that φ is 1-1, assume that f , g ∈ X with f < g. Then there exists a
precise element p such that f < p < g. Then p ∈ Pg and p /∈ Pf . Hence Pf ⊂ Pg .

With some abuse of language, we identify £ with the set P£ and � with the set P� .
Elements of £ are called limited and elements of � are called infinitesimal.

7.1 The solid ρE

We show that the algebraic axioms alone are not sufficient for a characterization of
the external numbers. We do this by exhibiting a proper substructure ρE of E that
also satisfies all the algebraic axioms. In this way we also obtain that the symbols
�, respectively £ as defined in (2) may have an interpretation different from the
infinitesimals, respectively the limited numbers.

Indeed, let ρ ∈ ∗R, ρ > 0 be infinitely large. We define G =
⋃

n∈N
[−ρn, ρn] and

H =
⋂

n∈N
[−(1/ρ)n, (1/ρ)n]. Clearly G and H are idempotent. The field G/H ≡ ρR

was studied by Lightstone and Robinson in [21].

Definition 7.3 We define ρI as the set of all convex sets I ⊆ ∗R of the form⋃
n∈N

[−pn, pn] or
⋂

n∈N
[−1/pn, 1/pn], with pn > 0, and pn+1/pn increasing such that

p0 = 1, p1 ≥ ρ and pn+1/pn ≥ p1/n
n for all n ∈ N, n > 0. We let ρN be the set of all

neutrices of the form qI where q ∈ ∗R and I ∈ ρI , and ρE as the set of elements of E
of the form r + L where r ∈ ∗R and L ∈ ρN ∪ {0} ∪ {∗R}.

Proposition 7.4 The set ρI consists of idempotent neutrices, with minimal element
greater than 1 equal to G and maximal element less than 1 equal to H . Moreover, ρI
is closed under addition and multiplication and satisfies Axiom 2.30.

Proof Let J be of the form
⋃

n∈N
[−pn, pn] and I of the form

⋂
n∈N

[−1/pn, 1/pn], with

(pn)n∈N as given by Definition 7.3. Then pn+1/pn ≥ ρ for all n ∈ N, n > 0, which
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implies that both I and J are neutrices. Also p2
n ≤ p2n for all n ∈ N, n > 0, which

implies that both I and J are idempotent. The set ρI is closed under addition, because
its elements are neutrices. Then ρI is closed under multiplication by Theorem 5.9.
Because pn ≥ ρn for all n ∈ N, one has J ⊇ G and I ⊆ H . So G is the minimal
element of ρI greater than 1, and H is the maximal element of ρI . less than 1. Also
I = {1/x | x ∈ ∗R, J < |x|} ∪ {0}. Then Proposition 6.24 implies that I is the maximal
ideal of the ring J and that IJ = I . Hence ρI satisfies Axiom 2.30.

Proposition 7.5 The set ρE satisfies Axioms 2.1-2.31.

Proof All universal axioms hold because ρE is a substructure of E . Let α = a+A ∈ ρE ,
then −α = −a + A ∈ ρE , so Axiom 2.4 holds. If α is zeroless, one has A/a2 ∈ N ,
so 1/α = 1/a + A/a2 ∈ ρE . Hence Axiom 2.9 is verified. Let B ∈ ρN . Then
αB = aA + AB. Because ρN is closed under multiplication and addition and the
product of a hyperreal and a neutrix is a neutrix it follows that Axiom 2.19 is verified.
Axioms 2.24, 2.26 and 2.28 are satisfied by construction, with m = {0} and M = R∗ .
Because 1 = 1 + {0}, Axiom 2.25 is satisfied. Axiom 2.27 is satisfied because G ∈ ρE .
Let J,K ∈ ρN with J < K . Then J ⊂ K . Any positive precise element p ∈ K \ J
satisfies J < p < K. Hence, Axiom 2.29 is satisfied. Axiom 2.30 holds by Proposition
7.4. Finally, Axiom 2.31 holds by construction.

By Proposition 7.4, the symbol � can be interpreted by H , and the symbol £ can be
interpreted by G. Indeed, in ρE the set of neutrices less than 1 has a weak supremum,
in fact a maximum, in the form of H , while G is the weak infimum (minimum) of the
set of neutrices larger than 1.

To show whether the Generalized Dedekind completeness axiom holds in ρE , one
should establish that definable lower halflines in ρE have a weak supremum. This
would require a deeper study of polynomials of external numbers, which falls outside of
the scope of this article; observe that, due to the fact that distributivity does not hold in
full generality, the product of polynomials does not need to be a polynomial. However,
the introduction of natural numbers via the arithmetical axioms permits to distinguish
between E and ρE . Indeed, as will be shown below, the set E contains a copy of ∗N,
and induction holds in ∗N∩£, but not in ∗N∩G. For example, in ∗N∩G the domain of
function x 7→ 2x is closed under the successor function, but this function is not total.

7.2 On induction in complete arithmetical solids

The interpretation of N in a complete arithmetical solid will be denoted by ∗K . We
show that ∗K satisfies the axioms of Peano Arithmetic. Let A be a formula of the
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language of Peano Arithmetic which we denote by L = {0, 1,+ , •, s}. We may extend
the language L = {+, ·,≤} to a language L′ which includes the symbols m, u, Sc,
corresponding respectively to 0, 1, s. Indeed, let m be the neutral element for addition
as in Axiom 2.24. It is easy to see that it is unique and therefore definable. The same is
true for the neutral element for multiplication u of Axiom 2.25. Putting Sc(x) = x + u,
we obtain a definable successor function (functional relation) of one variable Sc. In
this way, the formula A has a 1-1 correspondence with a formula B′ in the extended
language L′ which may be seen as an abbreviation of a formula C′ of the original
language L . We let B be the relativization of B′ to N , and C be the relativization of C′

to N . Then within a complete arithmetical solid E the interpretations of A,B and C are
all the same.

Theorem 7.6 Let E be a complete arithmetical solid. Then ∗K satisfies the Peano
Axioms as formulated in the language L.

Proof Observe that all elements of ∗K are precise because the predicate N only
applies to precise variables. With some abuse of language let 0 be the neutral element
of E , 1 be the unity of E , + the addition on E and · the multiplication on E . We
may interpret Sc by the function σ : ∗K →∗K given by σ (k) = k + 1. As observed
above 0 is the interpretation of 0, 1 is the interpretation of 1, + is the interpretation
of +, · is the interpretation of • and σ is the interpretation of s. By Axiom 2.33,
0 ∈ ∗K and 1 ∈ ∗K . Also by Axiom 2.33 the function σ is well-defined because
if k ∈ ∗K then k + 1 ∈ ∗K , and all elements of ∗K are non-negative. Because 1
is precise, from σ (k) = σ

(
k′
)

we derive that k = k′ for all k, k′ ∈ ∗K , hence σ is
1-1. By Axiom 2.24 one has k + 0 = k for all k ∈ ∗K . By associativity it holds that
k +σ

(
k′
)

= k +
(
k′ + 1

)
=
(
k + k′

)
+ 1 = σ

(
k + k′

)
for all k, k′ ∈ ∗K . By Dinis and

Van den Berg [10, Proposition 3.5] one has that k.0 = 0 for all k ∈ E . It follows from
the fact that distributivity holds for precise elements that k.σ

(
k′
)

= k
(
k′ + 1

)
= kk′+k ,

for all k, k′ ∈ ∗K . Let A (x) be a property of the language of Peano Arithmetic allowing
for a free variable x such that A (0) holds and for all x if A (x) then A (s (x)). As argued
before A corresponds to a formula B of the language L , relativized to N , which has the
same interpretation I in E . Then I is a subset of ∗K such that 0 ∈ I and whenever k ∈ I
one has k + 1 ∈ I . Now ∀x(N(x)→ B(x)) by Axiom 2.34. Because the interpretation
of N is ∗K it follows that I = ∗K . Hence A (x) holds for all x ∈ ∗K , ie induction holds
for the formula A. We conclude that ∗K is a model for Peano Arithmetic.

By Theorem 7.6, induction in ∗K holds for formulas of L′ with only precise variables,
all relativized to N . The set of limited elements of ∗K will be denoted by K . We show
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below that K is also a model of Peano Arithmetic, with induction being valid for all
formulas A (x) of L′ allowing for a free precise variable x and quantifications only over
precise variables, possibly with (non precise) parameters. The two types of induction
may be compared with Internal Induction and External Induction of IST , the first valid
for internal formulas, ie formulas in the language {∈}, and the second valid also for
external formulas, ie formulas in the language {∈, st}.

Theorem 7.7 Let E be a complete arithmetical solid. Then K satisfies the Peano
Axioms with induction over formulas A (x) allowing for a free precise variable x and
quantifications only over precise variables expressed with the symbols +, · possibly
with (non precise) parameters. In fact ∗K is an end extension of K .

Proof By construction £ contains 0 and 1. Because it is an idempotent magnitude it
is closed under addition and multiplication. The successor function may be interpreted
by the function s : K → K given by s (k) = k + 1. Then the Peano Axioms, except
induction, are proved along the lines of Theorem 7.6. Let A (x) be a property in the
language L′ allowing for a free precise variable x and quantifications only over precise
variables, possibly with (non precise) parameters, such that A (0) holds, and for all x,
if A (x) then A (x + 1). Then A is interpreted by a set Ā with 0 ∈ Ā and whenever
k ∈ Ā one has k + 1 ∈ Ā. We prove that K ⊆Ā, ie induction over K holds for the
formula A. Let B = {x|e (x) = 0 ∧ ∃a ∈ Ā (0 ≤ x ≤ a)}. Let γ = c + C = zup B.
Then 0 ≤ γ and we may assume that 0 ≤ c. Because Ā is closed under addition by 1 it
is impossible that C ⊆ �, hence £ ⊆ C . Assume γ is a supremum. Then c + C ⊆ B.
Hence K = ∗K ∩ £ ⊆ ∗K ∩ [0, c + £) ⊆ ∗K ∩ [0, c + C) = Ā. Assume γ is not a
supremum. Then B = [0, c + C[[ with 0 < c + C . We have c/2 < c + C by Lemma
3.6. Suppose that c/2 ∈ £. Then c ∈ £. Hence B ⊂ £. We conclude that C ⊆ �, a
contradiction. Hence K = ∗K ∩ £ ⊆ ∗K ∩

[
0, c/2

]
⊆ ∗K ∩ B = Ā. It follows that

induction over K holds for the formula A. Hence K is a model for Peano Arithmetic.
By construction ∗K is an end extension of K .

Given a complete arithmetical solid E , we denote by ∗Q the set of rational numbers
constructed in the usual way from ∗K and by Q ⊂ ∗Q the set of rational numbers
constructed from K .

7.3 Precise and non-precise elements of a complete arithmetical solid

We start by showing that the non-precise elements of a complete arithmetical solid are
characterized by sums of rationals and magnitudes.
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Theorem 7.8 Let E be a complete arithmetical solid and Ẽ be the set of non-precise
elements of E .

(1) For all p ∈ P and N ∈ N ,N 6= 0 there exists q ∈ ∗Q such that p + N = q + N .

(2) Ẽ = {q + N | q ∈ ∗Q∧ N ∈ N \ {0}}.

Proof 1. Let ξ ∈ Ẽ . Then there exists p ∈ P and N ∈ N such that ξ = p + N .
Let 0 < b < N . Then ∗Q∩£ ∩ [ p, p + b] 6= ∅. Let q ∈ ∗Q∩£ ∩ [ p, p + b]. Then
q + N = p + N .

2. This is a consequence of Theorem 7.8.1.

By the previous theorem, the set of magnitudes of a complete arithmetical solid E
determines the set of non-precise elements. However, the nonstandard rationals ∗Q
give only a lower bound for the precise elements. We will show below that an upper
bound is given by nonstandard reals. Also, Theorem 7.8 allows to define standard
precise numbers. To see this we need to introduce some definitions and notation.

Definition 7.9 Let x ∈ E be precise and limited. Then x +� is called the K-shadow
of x . The K-shadow of a subset D of precise elements of E is the set of K-shadows of
all limited elements of D. We denote the K-shadow of Q by Q, the K-shadow of ∗Q
by F and the K-shadow of P by P.

Definition 7.10 Let K be a model of Peano Arithmetic. An ordered field F ⊇ K is
K -Archimedean if for all a, b ∈ F, a, b > 0 there is k ∈ K such that ka > b. A K -real
field is an ordered field which is K -Archimedean and such that every precise lower
halfline has a least upper bound.

If K = N or K = N, we may suppress the prefix in the above notions, for they
correspond to common notions. Observe that a N-real field is isomorphic to R and that
the N-shadow of a limited real number is in 1-1 correspondence with the usual shadow
◦x of x , more commonly called standard part (Diener and Diener [8]).

The proof that P is contained in a copy of the nonstandard reals uses the construction
based on lower halflines given by Theorem 7.12. As regards the K -shadow of P , we
have P = F by Theorem 7.8. Also, Q ⊆ P. For K = N we have Q =Q, and P itself
is a real field. Indeed P is isomorphic to the quotient of ∗Q by the infinitesimals, which
is isomorphic to R. In general, the set F turns out to be a K-Archimedean ordered
field, see Theorem 7.15 below. It is not necessarily a K-real field, for it may not be
Dedekind complete, since in principle the Dedekind property holds only for definable
cuts. Then by Theorem 7.12 it can be extended to a K-real field.
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Definition 7.11 Let K be a model of Peano Arithmetic and F be a K -
Archimedean ordered field. Similarly to Definition 3.1, a lower halfline A is pre-
cise if there is no positive d such that a + d ∈ A for all a ∈ A. We define RF as the set
of precise lower halflines of elements of F without maximal element. For f ∈ F we
define H (f ) = {x ∈ F | x < f}. We put ∗R =R Q∗ and R=RF .

Clearly a precise lower halfline A is strictly contained in F and for all k ∈ K there exist
a ∈ A and c ∈ F\A such that c− a < 1/k .

The proof of the construction of a K -real field from a K -Archimedean ordered field
follows roughly the lines of the usual construction of the reals as Dedekind cuts of the
rationals.

Theorem 7.12 Let K be a model of Peano Arithmetic and F be a K -
Archimedean ordered field. Then RF is a K -real field. The mapping H is an
isomorphism of the field F onto a subfield H (F) ⊆ RF .

Proof As for the definition of addition, multiplication and order, the verification of
their first-order properties and the fact that RF contains a copy of F via the mapping H ,
one may follow the lines of a textbook proof of the construction of the real numbers
from the rationals using cuts, see for instance Rudin [27]. By construction RF is
Archimedean for K . We show that the least upper bound property is satisfied for precise
halflines. Let A ⊂ RF be a precise lower halfline. Let

b =
⋃
a∈A

a.

Let x ∈ b and y ∈ F such that y < x . Then there exists a ∈ A such that x ∈ a. Because
a is a lower halfline of F one has y ∈ a. Hence y ∈ b. We conclude that b is a lower
halfline of F . Also, since a does not have a maximal element, there exists z ∈ a such
that x < z. Then z ∈ b with x < z, and we see that b does not have a maximal element.
We show that b is precise. If not, there exists a positive d ∈ F such that z + d ∈ b
whenever z ∈ b. Because A is precise there exist a ∈ A and c /∈ A such that c− a = d .
There exist elements x, x′ ∈ F such that x′ − x < d with x ∈ a and x′ /∈ a. Also there
exist elements y, y′ ∈ F such that y′ − y < d with y ∈ c and y′ /∈ c. Note that y′ /∈ b
because y′ /∈ c and c /∈ A. On the other hand y− x′ < d = c− a and

y′ − x = (y′ − y) + (y− x′) + (x′ − x) < 3d.

Now x ∈ b, so x + 3d ∈ b. Then y′ ∈ b because b is a lower halfline, a contradiction.
Hence b is precise and we conclude that b ∈ F .
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Finally we show that b is the least upper bound of A. Let a ∈ A. Then a ≤ b because
x ∈ b whenever x ∈ F and x ∈ a. Suppose that b′ < b. Then there exists x ∈ b such
that x /∈ b′ . Then x ∈ a for some a ∈ A. Then b′ < a, hence b′ is not an upper bound
of A.

Theorem 7.13 Let K be a model of Peano Arithmetic and F be a K -
Archimedean ordered field. Let Q be the set of rational numbers corresponding
to K . Then Q may be embedded in F and there is a isomorphism between RQ and RF .

Proof It is obvious that Q may be embedded in F . To see that RQ and RF are
isomorphic, define φ : RF → RQ by φ(A) = A∩Q. To see that φ is 1-1, let A,B ∈ RF

with A 6= B; we may suppose that A ⊂ B. Then there exists y ∈ B such that x < y
for all x ∈ A. Because B does not have a maximal element there exists z ∈ B with
y < z, and because F is K -Archimedean there exists q ∈ Q such that y < q < z.
Then q ∈ φ(B)\φ(A). Hence φ(A) 6= φ(B). To see that φ is onto, let B ∈ RQ . Put
A = {x ∈ F | ∃q ∈ B, x < q}. Then A is a lower halfline of F without a maximal
element, otherwise there would exist q ∈ B with x < q; then q ∈ F , because B does
not have a maximal element. Clearly A ∩ Q = B. Hence φ(A) = B. It is also obvious
that φ is respects the algebraic operations and the order. We conclude that there is a
isomorphism between RQ and RF .

As a consequence we obtain that P is contained in the ∗K-real field RP , and can be
embedded in R∗Q .

Corollary 7.14 Let E be a complete arithmetical solid. Then RP is a ∗K-real field
and the mapping H is an isomorphism of the field P onto a subfield H (P) ⊆ ∗R.

We will now prove that P is a K-Archimedean ordered field situated between Q and a
K-real field R. This will be a consequence of next theorem which states that F is a
K-Archimedean ordered field.

Theorem 7.15 Let E be a complete arithmetical solid. The set F is a K-Archimedean
ordered field.

Proof Let x = p + �, y = q + � ∈ F. Then |p| , |q| ∈ ∗Q∩£. Hence x + y =

p + q +� ∈ F and xy = (p +�) (q +�) = pq + p�+q�+�� = pq +� ∈ F, by
Lemma 5.13.4 and Theorem 4.4.1. Because F is a substructure of E both addition and
multiplication are commutative and associative in F. Then F is an abelian group for
addition with neutral element � and inverse −p +� because p +�+ (−p +�) = �.
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By Lemma 5.13.4 one has p� ≤ �, so (1/p)� ≤ � by Lemma 4.3.2. Then
(1 +�) (p +�) = p +�+ p� = p +� and, using Theorem 4.4.1

(p +�)
(

1
p

+�
)

= 1 + p�+
1
p
�+�� = 1 +�.

Then F\ {�} is also an abelian group for multiplication with neutral element 1 +�
and inverse 1/p +� for the element p +�. To prove distributivity, let x = p +�, y =

q +�, z = r +� ∈ F. By Axiom 2.22 we have xy + xz = x (y + z) + e (x) y + e (x) z.
Now e (x) y + e (x) z = � (q +�) +� (r +�) = �. Also

x (y + z) = (p +�) (q +�+ r +�) = (p +�) (q + r +�)

= p (q + r) + p�+ (q + r)�+��
= p (q + r) +�.

Then xy + xz = x (y + z) +� = x (y + z).

Hence distributivity holds, so F is a field. Because F is a substructure of E the order
axioms are valid and we conclude that F is indeed an ordered field. By construction F

is Archimedean for K .

Knowing that P = F is K-Archimedean ordered field, we obtain a corollary to Theorem
7.12.

Corollary 7.16 Let E be a complete arithmetical solid. Then R is a K-real field and
the mapping H is an isomorphism of the field P onto a subfield H (P) ⊆ R.

Within a complete arithmetical solid we may now characterize the set of precise numbers
and its shadow by lower and upper bounds as follows.

Theorem 7.17 Let E be a complete arithmetical solid. Then up to identifications,
∗Q ⊂ P ⊆ ∗R and Q ⊂ P = F ⊆ R.

In the natural case where K =N we have some simplifications. The set ∗R becomes
a nonstandard model ∗R of the reals and the set ∗Q a nonstandard model ∗Q of the
rationals. The field F can be identified with the quotient of the external set of limited
rationals ∗Q of a nonstandard model ∗R of the reals by the infinitesimal rationals. So F

itself is already Dedekind complete and is isomorphic to R. With these identifications
the set of precise elements is a proper extension of ∗Q and a cofinal subfield of ∗R. As
a consequence, up to identifications the lower and upper bounds of Theorem 7.17 take
the form ∗Q⊂ P ⊆ ∗R and Q ⊂ P =R.
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7.4 Complete arithmetical solids and nonstandard analysis

In this final subsection we investigate the relation between the standard structure and
the nonstandard structure of a complete arithmetical solid. We show that the precise
numbers satisfy the axiomatics ZFL and that the set of nonstandard natural numbers ∗K
satisfy the axiomatics REPT , with external induction restricted to the language {+, ·}.

The language of ZFL is {∈, lim}, where lim stands for “limited” and the axioms are
all the axioms of ZF and

(1) ∀x(lim(x)⇒ x ∈ R)

(2) lim(1)

(3) ∀x∀y
((

lim(x) ∧ y ∈ R ∧ |y| ≤ x
)
⇒ lim(y)

)
(4) ∀x∀y ((lim(x) ∧ lim(y))⇒ (lim(x + y) ∧ lim(xy)))

(5) ∃x (x ∈ R ∧ ¬ lim(x))

The rules of calculation of Axiom 4 are called the Leibniz rules. For a presentation of
the theory ZFL we refer to Callot [6, page 416].

We recall that the language of REPT is {st,∈} and its axioms are the axioms of ZFC
and

(1) st(0)

(2) ∀n ∈ N(st(n)→ st(n + 1))

(3) ∃ω ∈ N(¬st(ω))

(4) (Φ(0) ∧ ∀stn ∈ N(Φ(n)→ Φ(n + 1)))→ ∀stn Φ(n)

In the last axiom Φ is an arbitrary formula, internal or external, and ∀stn ∈ NΦ(n) is
an abbreviation of ∀n ∈ N(st(n)→ Φ(n)).

Theorem 7.18 Let E be a complete arithmetical solid. Then P∩£ satisfies the Leibniz
rules. Moreover, if we interpret R by ∗R and the limited elements as elements of P∩£,
the set P is a model of ZFL .

Proof Axiom 1 follows because all elements of P ∩£ are elements of ∗R. Axioms
2, 3 and 4 follow from the fact that 1 ∈ £ and £ is an idempotent neutrix. Axiom 5
follows from Theorem 7.7.

Theorem 7.19 Let E be a complete arithmetical solid. If we interpret the standard
numbers by elements of K , the set ∗K is a model of REPT with external induction
restricted to the language {+, ·}.
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Proof We interpret st(n) by n ∈ K . Then the result is a consequence of Theorem
7.7.

Observe that in the special case where K = N we even have external induction in the
language {st,∈} and then ∗K is a model of REPT .
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