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Principles of bar induction and continuity on Baire space1

TATSUJI KAWAI

Abstract: Brouwer-operations, also known as inductively defined neighbourhood
functions, provide a good notion of continuity on Baire space which naturally
extends that of uniform continuity on Cantor space. In this paper, we introduce a
continuity principle for Baire space which says that every pointwise continuous
function from Baire space to the set of natural numbers is induced by a Brouwer-
operation.

Working in Bishop constructive mathematics, we show that the above principle
is equivalent to a version of bar induction whose strength is between that of the
monotone bar induction and the decidable bar induction. We also show that the
monotone bar induction and the decidable bar induction can be characterised by
similar principles of continuity.

Moreover, we show that the Π0
1 bar induction in general implies LLPO (the

lesser limited principle of omniscience). This, together with the fact that the Σ0
1

bar induction implies LPO (the limited principle of omniscience), shows that an
intuitionistically acceptable form of bar induction requires the bar to be monotone.
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1 Introduction

The uniform continuity principle (UC) is the following statement:

UC Every pointwise continuous function F : {0, 1}N → N is uniformly continuous.

In classical mathematics, the above statement is true because Cantor space {0, 1}N is
topologically compact. This is not the case in Bishop constructive mathematics [4].
In fact, UC implies the decidable version of Brouwer’s fan theorem to which there is

1This paper is included in the Proceedings of the Fifth Workshop on Formal Topology, Institut
Mittag-Leffler, June 2015 (editors Thierry Coquand, Maria Emilia Maietti and Erik Palmgren).
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a well-known recursive counterexample (see Troelstra and van Dalen [10, Chapter 4,
Section 7.6]). Here, the fan theorem is a statement saying that every bar of Cantor space
is uniform (see Section 2 for terminology).

The connection between UC and the fan theorem is well studied in constructive reverse
mathematics (Ishihara [6]). It is well known that the fan theorem is equivalent to
compactness of Cantor space [10, Chapter 4, Section 6], and hence it implies UC.
Josef Berger [2] showed that a weaker version of UC is equivalent to the decidable fan
theorem (see also Remark 5.4). In another paper [3], he also introduced a variant of fan
theorem, called c–FT, and showed that it is equivalent to UC.

In this paper, we establish analogous correspondence between several notions of
continuity on Baire space NN and a variety of bar induction. Our focus is on the relation
between various versions of bar induction and statements similar to UC, but we consider
functions on Baire space instead of Cantor space and replace uniform continuity with a
suitable notion of continuity on Baire space. More precisely, we consider a function
from NN to N induced by a Brouwer-operation (Kreisel and Troelstra [9, Section 3]) to
be a fundamental notion of continuity on Baire space. The notion can be considered
as a natural generalisation of that of uniform continuity on Cantor space to the setting
of Baire space, since it becomes equivalent to uniform continuity when restricted to
Cantor space (see Proposition 3.2).

We now summarise our main contributions. First, we formulate a continuity principle
for Baire space called the principle of Brouwer continuity ( BC ), based on the notion of
Brouwer-operation. The principle BC states that every pointwise continuous function
from Baire space to the set of natural numbers is induced by a Brouwer-operation. Then,
we introduce a variant of bar induction, called the continuous bar induction (c–BI), and
show that c–BI is equivalent to BC . Moreover, we characterise the other versions of
bar induction, the monotone bar induction and the decidable bar induction, by a stronger
and a weaker version of BC by varying the strength of the premise of BC . Finally,
we show that the Π0

1 bar induction (of which c–BI is an instance) in general implies
the non-constructive principle LLPO (the lesser limited principle of omniscience), and
thus intuitionistically unacceptable.

The relation between several versions of bar induction and continuity axioms (namely
strong and weak continuity for numbers, and bar continuity) has been extensively studied
by Howard and Kreisel [5] and Kreisel and Troelstra [9]. Some of their results are
recalled as corollaries of our work in Section 6 (Theorem 6.1). Our main contribution
is in introducing the bar induction c–BI which is equivalent to BC and characterising
the other versions of bar induction by similar principles of continuity. In this way, the
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difference between various versions of bar induction can be understood as the difference
between the notions of continuity involved in the corresponding principles of continuity.

Formal system

We work in Bishop constructive mathematics [4]. However, our work should be
formalisable in a suitable extension of intuitionistic arithmetic in all finite types ( HAω ),
which we now briefly describe.

First, the language of HAω is extended with the types of boolean {0, 1} and finite
sequences {0, 1}∗ and N∗ of {0, 1} and N respectively, together with appropriate
constructors and axioms for these types. Second, we assume the following choice
axioms:

AC01 (∀x ∈ N)
(
∃α ∈ NN)A(x, α)→

(
∃F ∈ (NN)N

)
(∀x ∈ N) A(x,F(x))

AC10!
(
∀α ∈ NN) (∀x ∈ N)¬B(α, x) ∨ B(α, x)

→
[(
∀α ∈ NN) (∃!x ∈ N) B(α, x)→

(
∃F ∈ N(NN)

) (
∀α ∈ NN)B(α,F(α))

]
Moreover, we add a predicate symbol K on NN∗ together with the following axioms
(for the notation used, see the next subsection):

K1 λa.x + 1 ∈ K

K2
[
α(〈〉) = 0 ∧ (∀x ∈ N)λa.α(〈x〉 ∗ a) ∈ K

]
→ α ∈ K

K3
(
∀α ∈ NN∗) [A(Q, α)→ Q(α)]→ K ⊆ Q

where

A(Q, α) def⇐⇒ (∃x ∈ N) [α = λa.x + 1]∨
[
α(〈〉) = 0 ∧ (∀x ∈ N)λa.α(〈x〉 ∗ a) ∈ Q

]
.

The predicate K can be understood as being inductively defined by K1 and K2.

The system described above can be thought of as an extension of the intuitionistic theory
of analysis IDB1 described in Kreisel and Troelstra [9] to all finite types, together with
the axiom of unique choice AC10! . See Troelstra and van Dalen [10, 11] for the details
of the systems HAω and IDB1 .

Notation

We adopt the following notation in this paper. The letters k, n,m, x, y range over
natural numbers N. The letters a, b range over the finite sequences N∗ of natural
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numbers or the finite binary sequences {0, 1}∗ . Greek letters α, β, γ, . . . range over
the infinite sequences NN or {0, 1}N . We write |a| for the length of a and a ∗ b for the
concatenation of a and b. We write 〈〉 and 〈n〉 for the empty sequence and a sequence
of length 1. We write a 4 b to mean that a is an initial segment of b. Moreover, we
write αk for the initial segment of α of length k , and we let α ∈ a abbreviate α|a| = a.
We extend concatenation between finite sequences to the one between finite sequences
and infinite sequences by letting a ∗ α denote the sequence such that a ∗ α ∈ a and
(∀n ∈ N) n ≥ |a| → a ∗ α(n) = α(n ·− |a|).

We let A,B,C, . . . range over the formulas of our system. By a predicate of type T, we
mean a formula A of our system with a free variable of type T. In this case, we write
A ⊆ T. For predicates A,B ⊆ T, we let A ⊆ B abbreviate (∀t ∈ T) A(t)→ B(t). We
sometimes write t ∈ A for A(t).

2 Continuous bar induction

We introduce the principle c–BI, the continuous bar induction, and argue that c–BI
naturally extends the fan theorem c–FT by Berger [3].

A predicate P ⊆ N∗ is a bar if(
∀α ∈ NN

)
(∃n ∈ N) P(αn).

A bar P is a c–bar if there exists a function δ : N∗ → N such that(
∀a ∈ N∗

) [
P(a)↔

(
∀b ∈ N∗

)
δ(a) = δ(a ∗ b)

]
.

A predicate Q ⊆ N∗ is inductive if(
∀a ∈ N∗

) [
(∀n ∈ N) Q(a ∗ 〈n〉)→ Q(a)

]
.

The continuous bar induction (c–BI) is the following statement:

c–BI For any c–bar P ⊆ N∗ and a predicate Q ⊆ N∗ , if P ⊆ Q and Q is inductive,
then Q(〈〉).

In the rest of this section, we relate c–BI to the fan theorem c–FT.

We recall the standard terminology. If P and Q are predicates of some type T such that
P ⊆ Q, we say that P is detachable from Q if

(∀t ∈ T) Q(t)→ ¬P(t) ∨ P(t).
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A predicate C ⊆ {0, 1}∗ is a c–set if there exists a detachable predicate D ⊆ {0, 1}∗

such that (
∀a ∈ {0, 1}∗

) [
C(a)↔

(
∀b ∈ {0, 1}∗

)
D(a ∗ b)

]
.

A predicate P ⊆ {0, 1}∗ is a bar of the binary tree {0, 1}∗ if(
∀α ∈ {0, 1}N

)
(∃n ∈ N) P(αn).

A bar P ⊆ {0, 1}∗ is uniform if

(∃N ∈ N)
(
∀α ∈ {0, 1}N

)
(∃n ≤ N) P(αn).

The principle c–FT is the following statement [3]:

c–FT Every bar P ⊆ {0, 1}∗ that is a c–set is uniform.

Proposition 2.1

(1) Let P ⊆ {0, 1}∗ be a bar for the binary sequences. Then, P is a c–set if and only
if there exists a function δ : {0, 1}∗ → N such that

(2–1)
(
∀a ∈ {0, 1}∗

) [
P(a)↔

(
∀b ∈ {0, 1}∗

)
δ(a) = δ(a ∗ b)

]
.

(2) c–BI =⇒ c–FT.

Proof (1) (⇒) Suppose that P is a c-set that is a bar. Let D ⊆ {0, 1}∗ be a detachable
predicate such that(

∀a ∈ {0, 1}∗
) [

P(a)↔
(
∀b ∈ {0, 1}∗

)
D(a ∗ b)

]
.

Define a function δ : {0, 1}∗ → N by

δ(a) def
=

{
1 if D(a),

0 otherwise.

Let a ∈ {0, 1}∗ , and suppose that
(
∀b ∈ {0, 1}∗

)
δ(a) = δ(a ∗ b). Since P is a bar,

there exists n ∈ N such that P(a ∗ 0ωn), where

0ω def
= λx.0.

Then, obviously δ(a) = δ(a ∗ 0ωn) = 1. Hence P(a). The converse P(a) →(
∀b ∈ {0, 1}∗

)
δ(a) = δ(a ∗ b) is obvious.

(⇐) Let δ : {0, 1}∗ → N be a function that satisfies the condition (2–1). Define a
detachable predicate D ⊆ {0, 1}∗ by

D(a) def⇐⇒ δ(a) = δ(a ∗ 〈0〉) = δ(a ∗ 〈1〉).
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Obviously we have P(a)↔
(
∀b ∈ {0, 1}∗

)
D(a ∗ b).

(2) Assume c–BI. Let C ⊆ {0, 1}∗ be a c-set which is a bar of the binary tree. By the
first part of this proposition, there exists a function δ : {0, 1}∗ → N such that

C(a)↔
(
∀b ∈ {0, 1}∗

)
δ(a) = δ(a ∗ b).

Define a function Γ : NN → {0, 1}N by

Γ(α) def
= λn. sg(α(n))

where sg(n) def
= min(1, n). Similarly, we define Γ∗ : N∗ → {0, 1}∗ . Since C is a bar,

we have
(
∀α ∈ NN) (∃n ∈ N) C(Γ(α)n), ie

(
∀α ∈ NN) (∃n ∈ N) C(Γ∗(αn)). Define a

predicate P ⊆ N∗ and a function ε : N∗ → N by:

P(a) def⇐⇒ C(Γ∗(a))

ε(a) def
= δ(Γ∗(a))

Then, P(a)↔ (∀b ∈ N∗) ε(a) = ε(a ∗ b), so P is a c–bar. Define a predicate Q ⊆ N∗
by

Q(a) def⇐⇒ (∃N ∈ N)
(
∀α ∈ NN

)
(∃n ≤ N) P(a ∗ αn).

Clearly, P ⊆ Q. Let a ∈ N∗ and suppose that (∀n ∈ N) Q(a ∗ 〈n〉). Then, there exists
N ∈ N such that for each i ∈ {0, 1},(

∀α ∈ NN
)

(∃n ≤ N) P(a ∗ 〈i〉 ∗ αn).

From the definition of P, we see that Q(a). Thus, Q is inductive. Applying c–BI, we
obtain Q(〈〉), which implies

(∃N ∈ N)
(
∀α ∈ {0, 1}N

)
(∃n ≤ N) C(αn).

Thus, we can think of c–BI as a generalisation of c–FT to Baire space.

3 The principle of Brouwer continuity

We recall the notion of Brouwer-operation from Kreisel and Troelstra [9], which allows
us to give a constructive notion of continuity on Baire space which naturally extends
the notion of uniform continuity on Cantor space.
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The predicate K ⊆ NN∗ of Brouwer-operations is inductively defined by the following
clauses:

n ∈ N
λa.n + 1 ∈ K

γ(〈〉) = 0 (∀n ∈ N)λa.γ(〈n〉 ∗ a) ∈ K
γ ∈ K

(3–1)

Formally, we assume the existence of a predicate K satisfying the axioms K1 – K3; see
Introduction 1. If a Brouwer-operation γ ∈ K is introduced by the second clause, we
write supn∈N γn for γ , where

γn
def
= λa.γ(〈n〉 ∗ a).

Let K0 be a predicate on NN∗ defined by

K0(γ) def⇐⇒
(
∀α ∈ NN

)
(∃n ∈ N) γ(αn) > 0 ∧(

∀a, b ∈ N∗
) [
γ(a) > 0→ γ(a) = γ(a ∗ b)

]
.

An element of K0 is called a neighbourhood function. Note that every Brouwer-operation
is a neighbourhood function.

Lemma 3.1 K ⊆ K0 .

Proof The proof is by induction on K . Details can be found in Troelstra and van Dalen
[10, Chapter 4, Proposition 8.5].

The converse of Lemma 3.1 does not necessarily hold; see Lemma 5.2.

By AC10! , every neighbourhood function γ ∈ K0 determines a function Fγ : NN → N
by:

(3–2) Fγ(α) def
= γ

(
αmin

z∈N
[γ(αz) > 0]

)
·− 1

A function F : NN → N is K0 -realisable if there exists a neighbourhood function
γ ∈ K0 such that Fγ = F . Similarly, a function F : NN → N is said to be K -realisable
if there exists a Brouwer-operation γ ∈ K such that Fγ = F . In both cases, we say that
γ realises F and write γ  F .

We now formulate a continuity principle for Baire space, called the principle of Brouwer
continuity ( BC ):2

BC Every pointwise continuous function F : NN → N is K -realisable.
2The principle BC is called UCB in [7].
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Here, recall that a function F : NN → N is pointwise continuous if(
∀α ∈ NN

)
(∃n ∈ N)

(
∀β ∈ NN

)
βn = αn→ F(β) = F(α).

The following argument highlights the difference between pointwise continuity and
realisability by neighbourhood functions. Let K1 be a predicate on NN∗ defined by

K1(δ) def⇐⇒
(
∀α ∈ NN

)
(∃n ∈ N)

(
∀a ∈ N∗

)
δ(αn) = δ(αn ∗ a).

Note that K0 ⊆ K1 , and the predicate K1 represents the class of c–bars.

Every function δ ∈ K1 determines a pointwise continuous function Fδ : NN → N in
the following way. For each α ∈ NN , define

(3–3) Dα
def
= {m ∈ N | δ(αm) 6= δ(α(m + 1))} ∪ {1}.

Then, Dα is bounded because δ determines a c–bar. By AC10! , defined a function
Fδ : NN → N by

Fδ(α) def
= δ(α(max Dα + 1)).

To see that Fδ is pointwise continuous, let α ∈ NN . Then, there exists n ∈ N such
that (∀a ∈ N∗) δ(αn) = δ(αn ∗ a). Then, for any β ∈ αn, we have Dβ = Dα , and
so Fδ(α) = Fδ(β). Hence Fδ is pointwise continuous. Conversely, every pointwise
continuous function F : NN → N arises in this way from a function δ ∈ K1 by setting

δ(a) def
= F(a ∗ 0ω).

In the rest of this section, we relate BC to the uniform continuity principle UC.

First, we adjust the notion of Brouwer-operation to the functions on Cantor space. The
predicate KC ⊆ N{0,1}

∗
of Brouwer-operations on Cantor space is inductively defined

by the following clauses:

n ∈ N
λa.n + 1 ∈ KC

γ(〈〉) = 0
(
∀i ∈ {0, 1}

)
λa.γ(〈i〉 ∗ a) ∈ KC

γ ∈ KC

Each Brouwer-operation γ ∈ KC determines a continuous function Fγ : {0, 1}N → N
as in equation (3–2). The notion of KC -realisable function from {0, 1}N to N is
similarly defined.

In the following proposition, recall that a function F : {0, 1}N → N is uniformly
continuous if

(3–4) (∃n ∈ N)
(
∀α, β ∈ {0, 1}N

)
αn = βn→ F(α) = F(β).
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Proposition 3.2 A function F : {0, 1}N → N is uniformly continuous if and only if
F is KC -realisable.

Proof (⇒) Define a predicate A ⊆ N by

A(n) def⇐⇒
(
∀F ∈ N

(
{0,1}N

))[(
∀α, β ∈ {0, 1}N

) [
αn = βn→ F(α) = F(β)

]
→ (∃γ ∈ KC) γ  F

]
.

It suffices to show that A(n) for all n ∈ N, which is proved by induction.

n = 0: Then λa.F(0ω) + 1 realises F .

n = k + 1: Let F : {0, 1}N → N be a function such that(
∀α, β ∈ {0, 1}N

)
αn = βn→ F(α) = F(β).

By induction hypothesis, there exist γ0, γ1 ∈ KC such that for each i ∈ {0, 1} the
Brouwer-operation γi realises a function Fi : {0, 1}N → N given by

(3–5) Fi(α) def
= F(〈i〉 ∗ α).

Define γ ∈ KC by γ(〈〉) def
= 0, and λa.γ(〈i〉 ∗ a) def

= γi for i ∈ {0, 1}. Let α ∈ {0, 1}N ,
and put i = α(0). Since γi  Fi , there exists k ∈ N such that γi(α≥1k) = Fi(α≥1) + 1,

where α≥1
def
= λn.α(n + 1). Then γ(α(k + 1)) = F(α) + 1. Therefore γ realises F .

(⇐) Suppose that F is realised by γ ∈ KC . We show by induction on KC that(
∀F ∈ N{0,1}

N)
γ  F → “F is uniformly continuous”

where “F is uniformly continuous” is the formula of the form (3–4).

γ = λa.n + 1: Then γ realises the constant function λα.n, which is uniformly
continuous.

γ(〈〉) = 0∧
(
∀i ∈ {0, 1}

)
λa.γ(〈i〉 ∗ a) ∈ KC : Let F : {0, 1}N → N be a function such

that γ  F . Then, for each i ∈ {0, 1} we have λa.γ(〈i〉 ∗ a)  Fi , where Fi is defined
as in (3–5). By induction hypothesis, Fi is uniformly continuous for each i ∈ {0, 1}.
Hence F is uniformly continuous.
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4 Equivalence of c–BI and BC

The aim of this section is to prove the following equivalence.

Theorem 4.1 c–BI ⇐⇒ BC .

First, we prove the direction (⇒).

Proposition 4.2 c–BI =⇒ BC .

Proof Assume c–BI. Let F : NN → N be a pointwise continuous function. Define a
function δ : NN → N and a predicate P ⊆ N∗ by:

δ(a) def
= F(a ∗ 0ω)

P(a) def⇐⇒
(
∀b ∈ N∗

)
δ(a) = δ(a ∗ b)

Since F is pointwise continuous, P is a c–bar. Define a predicate Q ⊆ N∗ by

(4–1) Q(a) def⇐⇒ (∃γ ∈ K)
(
∀b ∈ N∗

)
γ(b) > 0→ P(a ∗ b) ∧ γ(b) = δ(a ∗ b) + 1.

We show that

(1) P ⊆ Q, and

(2) Q is inductive.

(1) Let a ∈ N∗ such that P(a). Define γ ∈ K by γ
def
= λb.δ(a) + 1. Then, γ is a

witness of the existential quantifier in (4–1). Thus Q(a).

(2) Let a ∈ N∗ and suppose that (∀n ∈ N) Q(a∗ 〈n〉). By AC01 , there exists a sequence
(γn)n∈N of Brouwer-operations such that

(∀n ∈ N)
(
∀b ∈ N∗

)
γn(b) > 0→ P(a ∗ 〈n〉 ∗ b) ∧ γn(b) = δ(a ∗ 〈n〉 ∗ b) + 1.

Put γ def
= supn∈N γn . Let b ∈ N∗ , and suppose that γ(b) > 0. Then, there exist n ∈ N

and b′ ∈ N∗ such that b = 〈n〉 ∗ b′ ∧ γn(b′) > 0. Thus, P(a ∗ 〈n〉 ∗ b′) ∧ γn(b′) =

δ(a ∗ 〈n〉 ∗ b′) + 1, that is P(a ∗ b) ∧ γ(b) = δ(a ∗ b) + 1. Hence Q(a).

By c–BI, we obtain Q(〈〉), ie there exists γ ∈ K such that(
∀a ∈ N∗

)
γ(a) > 0→ P(a) ∧ γ(a) = δ(a) + 1.

Therefore γ realises F .

To prove the direction (⇐) of Theorem 4.1, we need some preliminaries.
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Lemma 4.3 (Kreisel and Troelstra [9, Theorem 3.1.2]) Let Q be a predicate on N∗ .
Then

(∀γ ∈ K)
[
Pγ ⊆ Q ∧

(
∀a ∈ N∗

) [
(∀n ∈ N) Q(a ∗ 〈n〉)→ Q(a)

]
→ Q(〈〉)

]
where Pγ

def
= {a ∈ N∗ | γ(a) > 0}.

Proof See Kreisel and Troelstra [9, Theorem 3.1.2].

We prove the following two lemmas for the sake of completeness.

Lemma 4.4 (Troelstra and van Dalen [10, Exercise 4.8.5])

(∀γ ∈ K)
(
∀γ′ ∈ K0

) [(
∀a ∈ N∗

) [
γ(a) > 0→ γ′(a) > 0

]
→ γ′ ∈ K

]
.

Proof By induction on K .

γ = λa.n + 1: For any γ′ ∈ K0 , if (∀a ∈ N∗) γ(a) > 0 → γ′(a) > 0, then γ′ is a
constant function with a positive value. Thus γ′ ∈ K .

γ = supn∈N γn : Let γ′ ∈ K0 and suppose that (∀a ∈ N∗) γ(a) > 0 → γ′(a) > 0.

Then, for each n ∈ N, we have γ′n
def
= λa.γ′(〈n〉 ∗ a) ∈ K0 and (∀a ∈ N∗) γn(a) >

0 → γ′n(a) > 0. By induction hypothesis, we have γ′n ∈ K for all n ∈ N. Since
γ′ = supn∈N γ

′
n , we conclude γ′ ∈ K .

Lemma 4.5 (Troelstra and van Dalen [10, Exercises 4.8.6])

(∀γ ∈ K)λa.γ(a) · sg(|a| ·− γ(a)) ∈ K.

Proof By induction on K . Put γ′ def
= λa.γ(a) · sg(|a| ·− γ(a)).

γ = λa.n + 1: This follows from Kreisel and Troelstra [9, Theorem 3.2.2 (iv), (vi)].
Alternatively, it is clear that λa.(n + 1) · sg(|a| ·− (n + 1)) is introduced in K by
(n + 2)-times applications of the second clause of (3–1).

γ = supn∈N γn : By induction hypothesis, we have γ′n ∈ K for all n ∈ N. Put

ξ
def
= supn∈N γ

′
n ∈ K . Let a ∈ N∗ and suppose that ξ(a) > 0. Then, there exist n ∈ N

and a′ ∈ N∗ such that a = 〈n〉∗a′ and γ′n(a′) > 0. Thus γ′(a) = γ(a)·sg(|a| ·−γ(a)) > 0.
Clearly, we have γ′ ∈ K0 . Hence γ′ ∈ K by Lemma 4.4.

We now prove the direction (⇐) of Theorem 4.1.
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Proposition 4.6 BC =⇒ c–BI.

Proof Let P ⊆ N∗ be a bar, and let δ : N∗ → N be a function such that P(a) ↔
(∀b ∈ N∗) δ(a) = δ(a ∗ b). Let Q ⊆ N∗ be an inductive predicate such that P ⊆ Q.
Define a function F : NN → N by

F(α) def
= max Dα

where Dα is given by (3–3). Then, F is pointwise continuous. By BC , there exists
a Brouwer-operation γ ∈ K such that Fγ = F . By Lemma 4.5, we may assume that
(∀a ∈ N∗) γ(a) > 0→ |a| > γ(a). Let a ∈ N∗ such that γ(a) > 0. Let b ∈ N∗ . Then,
|a| > γ(a) ∧ γ(a) = γ(a ∗ b) so that

|a| > max Da∗0ω + 1 = max Da∗b∗0ω + 1.

Thus δ(a) = δ(a ∗ b). Hence P(a), and so Q(a). By Proposition 4.3, we obtain
Q(〈〉).

This completes the proof of Theorem 4.1. We note that the structure of the proof of
Proposition 4.6 is quite similar to the proof of the implication UC =⇒ c–FT by Berger
[3, Proposition 2].

5 Characterisation of bar inductions by continuity principles

We show that the decidable bar induction and the monotone bar induction can be
characterised by statements similar to BC .

5.1 Decidable bar induction

The decidable bar induction BID is the following statement:

BID For any detachable bar P ⊆ N∗ and a predicate Q ⊆ N∗ , if P ⊆ Q and Q is
inductive, then Q(〈〉).

We relate BID to two notions of continuity.

First, recall that in Section 3 we defined a function F : NN → N to be K0 -realisable if
there exists a neighbourhood function γ ∈ K0 such that Fγ = F .

Next, given a function F : NN → N, a function g : NN → N is a modulus of F if

(5–1)
(
∀α ∈ NN

)
(∀β ∈ αg(α)) F(β) = F(α).
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The following lemma is due to Beeson [1, Chapter VI, Section 8, Exercise 8].3

Lemma 5.1 A function F : NN → N is K0 -realisable if and only if F has a pointwise
continuous modulus of continuity.

Proof Suppose that F is realised by γ ∈ K0 . By AC10! , define g : NN → N by

g(α) def
= min {n ∈ N | γ(αn) > 0} .

Then, g is a modulus of F . It is also clear that g is pointwise continuous.

Conversely, suppose that F has a pointwise continuous modulus g : NN → N. Define a
function γ : N∗ → N by

γ(a) def
=

{
F(a ∗ 0ω) + 1 if

(
∃a′ 4 a

)
|a′| ≥ g(a′ ∗ 0ω),

0 otherwise.

We show that γ ∈ K0 and that γ realises F . Let α ∈ NN . Since g is pointwise
continuous, there exists n ∈ N such that n ≥ g(αn ∗ 0ω). Since g is a modulus of F ,

γ(αn) = F(αn ∗ 0ω) + 1 = F(α) + 1.

Next, let a ∈ N∗ and suppose that γ(a) > 0. Then, there exists a′ 4 a such that
|a′| ≥ g(a′ ∗ 0ω). Thus, F(a′ ∗ 0ω) = F(a ∗ 0ω) = F(a ∗ b ∗ 0ω) for all b ∈ N∗ . Hence,
(∀b ∈ N∗) γ(a) = γ(a ∗ b). Therefore, γ ∈ K0 and γ realises F .

We recall the following result from Troelstra and van Dalen [10, Proposition 8.13 (i)].

Lemma 5.2 BID ⇐⇒ K = K0 .

Proof See Troelstra and van Dalen [10, Proposition 8.13 (i)].

Proposition 5.3 The following are equivalent.

(1) BID .

(2) Every K0 -realisable function F : NN → N is K -realisable.

(3) Every function F : NN → N which has a pointwise continuous modulus is K -
realisable.

3In Beeson [1], neighbourhood functions are called associates.
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Proof In view of Lemma 5.1 and Lemma 5.2, it suffices to show that (2) implies
K0 ⊆ K .

Assume (2). Let γ ∈ K0 . Define a neighbourhood function γ′ ∈ K0 by

γ′(a) def
=

{
0 if (∀b 4 a) γ(b) = 0,

min {|b| | b 4 a ∧ γ(b) > 0}+ 1 otherwise.

By the assumption, there exists a Brouwer-operation ξ ∈ K that realises the function
Fγ′ : NN → N induced by γ′ . By Lemma 4.5, we may assume that(

∀a ∈ N∗
)
ξ(a) > 0→ |a| > ξ(a).

Let a ∈ N∗ , and suppose that ξ(a) > 0. Then, |a| > ξ(a) = Fγ′(a ∗ 0ω) + 1. Thus,
there exists k ∈ N such that γ′(a ∗ 0ωk) = Fγ′(a ∗ 0ω) + 1. By the definition of γ′ ,
there exists b 4 a ∗ 0ωk such that γ(b) > 0 and |b|+ 1 = γ′(a ∗ 0ωk). Hence b 4 a
so that γ(a) > 0. By Lemma 4.4, we obtain γ ∈ K .

Remark 5.4 The decidable fan theorem is a version of the fan theorem formulated
with respect to decidable bars on {0, 1}∗ . Berger [2] showed that the decidable fan
theorem and the following statement are equivalent:

Every function F : {0, 1}N → N which has a pointwise continuous
modulus is uniformly continuous.

Here, a modulus of F : {0, 1}N → N is similarly defined as in (5–1). Proposition 5.3
says that this characterisation naturally extends to the decidable bar induction.

5.2 Monotone bar induction

The monotone bar induction BIM is the following statement:

BIM For any monotone bar P ⊆ N∗ and a predicate Q ⊆ N∗ , if P ⊆ Q and Q is
inductive, then Q(〈〉).

Here, a bar P ⊆ N∗ is monotone if (∀a, b ∈ N∗) P(a)→ P(a ∗ b).

A predicate R ⊆ NN × N is said to be locally continuous if(
∀α ∈ NN

)
(∃x ∈ N) (∃y ∈ N) (∀β ∈ αx) R(β, y).

Given a locally continuous predicate R ⊆ NN × N, we say that a function F : NN → N
refines R if

(
∀α ∈ NN)R(α,F(α)), ie F is a choice function of R.
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Proposition 5.5 The following are equivalent.

(1) BIM .

(2) Every locally continuous predicate R ⊆ NN×N has a K -realisable function which
refines R.

Proof (1) ⇒ (2) Assume BIM . Let R ⊆ NN × N be a locally continuous predicate.
Define a predicate P ⊆ N∗ by

P(a) def⇐⇒ (∃x ∈ N)
(
∀α ∈ NN

)
α ∈ a→ R(α, x).

Clearly, P is a monotone bar. Define a predicate Q ⊆ N∗ by

(5–2) Q(a) def⇐⇒ (∃γ ∈ K)
(
∀α ∈ NN

) (
∀b ∈ N∗

)
[
γ(b) > 0 ∧ α ∈ a ∗ b

]
→ R(α, γ(b) ·− 1).

We show that

(1) P ⊆ Q, and

(2) Q is inductive.

(1) Let a ∈ N∗ such that P(a). Then, there exists n ∈ N such that
(
∀α ∈ NN)α ∈

a→ R(α, n). Put γ def
= λa.n + 1, which is in K . Then, γ is a witness of the existential

quantifier in (5–2). Thus Q(a).

(2) Let a ∈ N∗ and suppose that (∀n ∈ N) Q(a∗ 〈n〉). By AC01 , there exists a sequence
(γn)n∈N of Brouwer-operations such that

(∀n ∈ N)
(
∀α ∈ NN

) (
∀b ∈ N∗

) [
γn(b) > 0 ∧ α ∈ a ∗ 〈n〉 ∗ b→ R(α, γn(b) ·− 1)

]
.

Put γ def
= supn∈N γn . Let α ∈ NN and b ∈ N∗ , and suppose that γ(b) > 0 and α ∈ a∗b.

Then, there exist n ∈ N and b′ ∈ N∗ such that b = 〈n〉 ∗ b′ ∧ γn(b′) > 0. Thus,
α ∈ a ∗ 〈n〉 ∗ b′ , so R(α, γn(b′) ·− 1), that is R(α, γ(b) ·− 1). Hence Q(a).

By BIM , we obtain Q(〈〉), ie there exists a Brouwer-operation γ ∈ K such that(
∀α ∈ NN

) (
∀a ∈ N∗

)
γ(a) > 0 ∧ α ∈ a→ R(α, γ(a) ·− 1).

Thus, the function Fγ : NN → N induced by γ refines R.

(2) ⇒ (1) Assume (2). Let P be a monotone bar, and let Q ⊆ N∗ be an inductive
predicate such that P ⊆ Q. Define a predicate R ⊆ NN × N by

R(α, x) def⇐⇒ P(αx).
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Then R is clearly locally continuous. Thus, there exists a Brouwer-operation γ ∈ K
such that (

∀α ∈ NN
)

P(αFγ(α)).

By Lemma 4.5, we may assume that (∀a ∈ N∗) γ(a) > 0→ |a| > γ(a). Let a ∈ N∗ such
that γ(a) > 0. Then, we have a ∗ 0ωγ(a) 4 a ∗ 0ω|a| = a. Since P(a ∗ 0ω(γ(a) ·− 1))
and P is monotone, we have P(a), and thus Q(a). Since Q is inductive, we obtain
Q(〈〉) by Proposition 4.3.

6 Continuity axioms

A continuity axiom states that if we have
(
∀α ∈ NN) (∃x ∈ N) R(α, x), then the depen-

dence of x ∈ N on α ∈ NN is continuous. By varying the strength of continuity with
which x depends on α , we obtain several principles. The following continuity axioms
are well known; see Troelstra and van Dalen [10, Chapter 4, Section 6 and Section 8].

BC-N
(
∀α ∈ NN) (∃x ∈ N) R(α, x)→ (∃γ ∈ K)

(
∀α ∈ NN)R(α,Fγ(α)).

C-N
(
∀α ∈ NN) (∃x ∈ N) R(α, x)→ (∃γ ∈ K0)

(
∀α ∈ NN)R(α,Fγ(α)).

WC-N
(
∀α ∈ NN) (∃x ∈ N) R(α, x)→

(
∀α ∈ NN) (∃x, y ∈ N) (∀β ∈ αx) R(β, y).

Here, Fγ is the function Fγ : NN → N induced by γ ∈ K (or γ ∈ K0 ). The notions
of continuity that correspond to BC-N, C-N, and WC-N are that of K -realisability,
K0 -realisability, and local continuity, respectively.

The following is immediate from Proposition 5.3 and Proposition 5.5.

Theorem 6.1

(1) BC-N ⇐⇒ BID + C-N.

(2) BC-N ⇐⇒ BIM + WC-N.

Remark 6.2 Theorem 6.1 is not new. The equivalence (1) can be found in Troelstra and
van Dalen [10, Chapter 4, Proposition 8.13 (iii)], and the equivalence (2) was shown by
Kreisel and Troelstra [9, Theorem 5.6.3 (ii)]. However, Proposition 5.3 and Proposition
5.5 make these equivalences obvious. Moreover, they clarify the complementary roles
of various versions of bar induction and continuity axiom, which is one of the main
contributions of the present work.

We can formulate a continuity axiom with respect to the notion of pointwise continuity.
The principle of pointwise continuity (PC-N) is the following statement:
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PC-N
(
∀α ∈ NN) (∃x ∈ N) R(α, x)

→
(
∃δ ∈ NN∗) (∀α ∈ NN) (∃x ∈ N) (∀a ∈ N∗) δ(αx) = δ(αx∗a)∧R(α, δ(αx))

The principle PC-N asserts the existence of a pointwise continuous choice function from
the assumption

(
∀α ∈ NN) (∃x ∈ N) R(α, x). One can show that PC-N is equivalent to

the following statement:(
∀α ∈ NN

)
(∃x ∈ N) R(α, x)

→
(
∃δ ∈ NN∗

)(
∀α ∈ NN

)
(∃x ∈ N)

(
∀a ∈ N∗

) (
δ(αx) = δ(αx ∗ a)

∧ (∀β ∈ αx) R(β, δ(αx))
)

The following equivalence is immediate from Theorem 4.1.

Proposition 6.3 BC-N ⇐⇒ c–BI + PC-N.

7 Π0
1 bar induction

The Π0
1 bar induction ( Π0

1 -BI) is defined with respect to a bar that is a Π0
1 -set, where a

predicate P ⊆ N∗ is a Π0
1 -set if there is a detachable predicate D ⊆ N∗ × N such that(
∀a ∈ N∗

)
[P(a)↔ (∀n ∈ N) D(a, n)] .

Specifically, Π0
1 -BI is the following statement:

Π0
1 -BI For any Π0

1 -bar P ⊆ N∗ and a predicate Q ⊆ N∗ , if P ⊆ Q and Q is inductive,
then Q(〈〉).

Note that every c–bar is a Π0
1 -set modulo the coding of finite sequences in N. Thus,

Π0
1 -BI implies c–BI. We show, however, that Π0

1 -BI is not an intuitionistic principle.

Recall that LLPO (the lesser limited principle of omniscience) is Σ0
1 De Morgan’s Law,

ie for any α, β ∈ NN ,

¬ [(∃n ∈ N)α(n) 6= 0 ∧ (∃n ∈ N)β(n) 6= 0]→
¬ (∃n ∈ N)α(n) 6= 0 ∨ ¬ (∃n ∈ N)β(n) 6= 0.

Proposition 7.1 Π0
1 -BI implies LLPO.
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Proof Assume Π0
1 -BI. Let α, β ∈ NN , and suppose that

¬ [(∃n ∈ N)α(n) 6= 0 ∧ (∃n ∈ N)β(n) 6= 0] .

Define a predicate P ⊆ N∗ by

P def
= {〈n〉 | α(n) = 0} ∪ {〈〉 | (∀n ∈ N)β(n) = 0} .

Note that P is a Π0
1 -set. We show that P is a bar. Let γ ∈ NN . Then, either

α(γ(0)) = 0 or α(γ(0)) 6= 0. If α(γ(0)) = 0, then γ1 ∈ P. If α(γ(0)) 6= 0, then
(∃n ∈ N)β(n) 6= 0 implies (∃n ∈ N)α(n) 6= 0 ∧ (∃n ∈ N)β(n) 6= 0, a contradiction.
Thus, (∀n ∈ N)β(n) = 0. Hence, γ0 = 〈〉 ∈ P. Therefore, P is a bar.

Define a predicate Q ⊆ N∗ by

Q def
= P ∪ {〈〉 | (∀n ∈ N)α(n) = 0} .

Then, Q is clearly inductive and P ⊆ Q. Thus, by Π0
1 -BI, we have 〈〉 ∈ Q, ie

(∀n ∈ N)α(n) = 0 ∨ (∀n ∈ N)β(n) = 0

or, equivalently, ¬ (∃n ∈ N)α(n) 6= 0 ∨ ¬ (∃n ∈ N)β(n) 6= 0.

It is well known that the Σ0
1 bar induction implies LPO (the limited principle of

omniscience, also known as the Σ0
1 law of excluded middle); see Troelstra and van

Dalen [10, Chapter 4, Exercise 4.8.11].4 Since the continuity axiom WC-N contradicts
LLPO (Troelstra and van Dalen [10, Chapter 4, Proposition 6.5]), those results show that
the monotonicity of the bar is essential for an intuitionistically acceptable formulation
of bar induction. Note that the situation is quite different for the fan theorem; since the
Π0

1 fan theorem (the fan theorem with respect to Π0
1 binary bars) is an instance of the

full fan theorem, it is intuitionistically acceptable.

8 Further work

We now have the following implications.

(1) BIM =⇒ c–BI =⇒ BID .

(2) BC-N =⇒ C-N =⇒ PC-N =⇒ WC-N.

It remains to be seen which of these implications are strict, that is cannot be reversed.
In view of the strength of the notion of continuity associated with each principles, we
conjecture that all of the above implications are strict.

4The example of the bar that is used to derive LPO from the Σ0
1 bar induction is attributed to

Kleene [8, Section 7.14], but the bar defined in [8, Section 7.14] is not a Σ0
1 set.
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