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Abstract: We study the algebras for the double power monad on the Sierpiński space
in the Cartesian closed category of equilogical spaces and produce a connection
of the algebras with frames. The results hint at a possible synthetic, constructive
approach to frames via algebras, in line with that considered in Abstract Stone
Duality by Paul Taylor and others.
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1 Introduction

The category Equ of equilogical spaces introduced by Dana Scott in [24] offers a very
nice extension of the category Top0 of T0 -spaces and continuous maps, as it is a locally
Cartesian closed quasitopos and the embedding of T0 -spaces is full and preserves all
products and existing exponentials. In other words, one may work with T0 -spaces as if
they formed a Cartesian closed category, just that sometimes the necessary space need
not be topological, but it is just equilogical; see also Bauer, Birkedal and Scott [1].

For instance, the Sierpiński space S is the open-subset classifier, in the sense that given a
T0 -space T , for every T0 -space X a continuous map f : X −→ ST determines precisely
an open subset of the space X × T . But there is a problem in reading the previous
sentence: the object ST need not exist as a topological space. The immediate solution
is to read that sentence in the category of equilogical spaces where ST always exists; it
is just that it may be a true equilogical space (ie which is not topological).

Such an extension of the language of Cartesian closed categories (and of the λ-calculus)
was tested in various guises in many papers, see for instance Taylor [28, 32] and Vickers
and Townsend [34]. In particular, in Bucalo and Rosolini [5] that extension is used
to prove an intrinsic description of the soberification of a T0 -space which involved
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the monad on the double power of S—the action on an object E is S(SE) —which has
also been studied as an instance of a continuation monad; see Thielecke [33]. All this
directed to a study of the category of algebras for the monad on the double power of S
which is what we confront with in the present paper.1

Bucalo and Rosolini [5] suggested that the algebras for the monad S2 resembled frames
with frame homomorphisms and we address exactly that connection in the present
paper. We show that the structure of S2 –algebra on an equilogical space A gives rise
to a structure of frame on the set of global sections of A. In order to do that, we also
study some Equ –enriched Lawvere theories, in the sense of Power [21], which relate
to S2 –algebras and provides a description of frames internal to the category Equ , and
we characterise the enriched cotensor-preserving functors from the enriched algebraic
theory L(M) of an enriched monad M in a way that extends results of Dubuc and
Power, see Dubuc [7] and [21]. This makes it possible, in particular, to fit the example
of soberification of T0 -spaces precisely within the paradigm considered in Paul Taylor’s
Abstract Stone Duality; see Taylor [27, 28, 29, 32] and Vickers and Townsend [34].

In Section 2 we recall the category Equ of equilogical spaces as a Cartesian closed
extension of the category Top0 of T0 -spaces and continuous maps, and in Section 3 we
present the double power monad S2 on equilogical spaces determined by the Sierpiński
space S. In Section 4 we introduce the enriched algebraic theory related to an enriched
monad on a Cartesian closed category and to the monad S2 in Equ in particular. We
prove a characterisation of the enriched cotensor-preserving functors from the enriched
algebraic theory L(M) of an enriched monad M in Theorem 4.11; we also give a
different presentation of the theory L

(
S2) which will be applied in Section 5, where we

prove some internal properties of S2 –algebras in Equ . In particular we show that every
S2 –algebra is an internal frame in Equ in Corollary 5.7 and show how their global
sections are connected to frames in Corollary 5.8.

2 Basic properties of equilogical spaces

We adopt the notation in Frosoni and Rosolini [10] and we refer the reader there for a
survey of the basic results. The reader is also referred to Bauer, Birkedal, and Scott [1],
Birkedal, Carboni, Rosolini and Scott [2] and Scott [24].

Recall that an equilogical space E = (|E|, τE,≡E) consists of a T0 -space (|E|, τE) and
an equivalence relation ≡E⊆ |E| × |E| on the points of the space.

1We shall follow Taylor [32] and write S2 for that monad; see Section 3.
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A map of equilogical spaces [f ] : E −→ F is an equivalence class of continuous
functions

f : (|E|, τE) −→ (|F|, τF)

preserving the equivalence relations, ie if x ≡E x′ then f (x) ≡F f (x′) for all x and x′ in
|E|, where two such continuous functions f , f ′ : (|E|, τE) −→ (|F|, τF) are equivalent
if f (x) ≡F f ′(x) for all x ∈ |E|.

Composition of maps of equilogical spaces [f ] : E −→ F and [g] : F −→ G is given
on (any of) their continuous representatives: [g] ◦ [f ] := [g ◦ f ].

The data above determine the category Equ of equilogical spaces which is an extension
of the category of T0 -spaces: the embedding

Top0
� � Y

full
// Equ

maps a T0 -space (T, τ ) to the equilogical space on (T, τ ) with the diagonal relation, ie
the equilogical space (T, τ,=).

As shown in [24] the category Equ is equivalent to the category PEqu , where an
object is a pair P = (LP,≈P) consisting of an algebraic lattice LP and a symmetric
and transitive relation ≈P⊆ |LP| × |LP| on |LP|, ie a partial equivalence relation on
|LP|. An arrow in PEqu [g] : P −→ Q is an equivalence class of Scott-continuous
functions g : LP −→ LQ such that whenever a ≈P b, also g(a) ≈Q g(b), where two
such continuous functions g, g′ : LP −→ LQ are equivalent if g(a) ≈Q g′(a) for all
a ≈P a.

The composition of two arrows [g] : P −→ Q and [h] : Q −→ R in PEqu is given on
(any of) their continuous representatives: [h] ◦ [g] := [h ◦ g].

To describe the equivalence of categories, for an object P in PEqu write DP for the
domain {x ∈ |LP| | x ≈P x} of the relation ≈P and note that ≈P⊆ DP × DP . Also
write τSc for the Scott topology on the algebraic lattice LP and τsub for the subspace
topology induced by the inclusion DP ⊆ |LP|. We can now recall the two results from
[24] crucial for the developments in the paper.

Proposition 2.1 The assignment

PEqu Z // Equ
P � // (DP, τsub,≈P)

extends to a functor which is an equivalence of categories.
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Proposition 2.2 Let P = (LP,≈P) and Q = (LQ,≈Q) be objects in PEqu . Then

(i) their product can be chosen as

P× Q = (LP × LQ,≈P×Q)

where 〈a, b〉 ≈P×Q 〈a′, b′〉 if a ≈P a′ and b ≈Q b′ , and

(ii) their exponential can be chosen as QP = (Cont(LP, LQ),≈QP) where f ≈QP f ′ if,
for every a, a′ ∈ |LP|, whenever a ≈P a′ it is f (a) ≈Q f ′(a′).

Note that via the equivalence in Proposition 2.1 an object P of PEqu gives rise to a
diagram:

(1) Z(P) (DP, τsub,=)
[idDP]�lr // // (|LP|, τSc,=)

Remark 2.3 The category PEqu is (equivalent to) the quotient completion of the
subset doctrine on the category AL of algebraic lattices and Scott-continuous functions;
see Maietti and Rosolini [18, 19, 20] and Rosolini and Streicher [22].

3 The monad of the double power

Consider the Sierpiński T0 -space S which consists of two points {>,⊥} and one
non-trivial open subset {>}. In other words, one point is open, the other is closed. It is
an algebraic lattice with the Scott topology. So the equilogical space Y(S) = (|S|, τS,=)
is a regular projective of Equ .

We shall concentrate on the Sierpiński space as an object of Equ as we intend to study
the algebraic theory of S, and for that we need a Cartesian closed category. That theory
played a crucial role in a synthetic presentation of the soberification of a topological
space in Bucalo and Rosolini [5, 4] as it showed that the notion of soberification is
intrinsically related to the topology and to a monad derived from S. From now on we
shall write the equilogical space Y(S) simply as S, dropping the Y .

The main object of our study fits very well within a paradigm which was studied in
depth in general category-theoretical terms, in particular we refer the reader to a series
of papers by Paul Taylor [27, 28, 29, 30, 31, 32], to Bucalo and Rosolini [3] and to
Dubuc [7]. We develop the basic details in an ambient category which is Cartesian
closed. Since typed λ-calculus is the internal language of Cartesian closed categories
(see Lambek and Scott [15]) we shall use it extensively in the following.
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Let C be a Cartesian closed category, eg the category Equ , and let O be a fixed object
in C , eg S in Equ .

Since the functor O(−) : C → C op is self-adjoint—explicitly

C
O(−)

//
⊥ C op

O(−)
oo

—it gives rise to a monad on C . The functor part of the monad sends an arbitrary object
C of C to the object O(OC) . The unit of the monad has components ηC : C −→ O(OC) ,
the exponential adjunct of the composite

C × OC 〈pr2, pr1〉 // OC × C ev // O

which, in λ-notation using · to denote application, is written:

λF : OC.F · x in context x : C

The multiplication component µC : O(O(O(OC ))) −→ O(OC) is the map OηOC , which is:

λF : OC.G · (λU : O(OC).U · F) in context G : O(O(O(OC )))

The climbing exponentials are unpleasant to read and we follow Taylor lowering the
exponent of the functor—so we write O(C) in place of OC —and denoting iterations as

O2 (C), O3 (C). . . which replace O(OC) , O(O(OC )) . . . In particular, we write the monad
as O2 .

Examples 3.1 A well-known example of this kind of monads is obtained when one
takes the category Set of sets and functions as C and the set D = {0, 1} as the object
O. The Eilenberg–Moore category of algebras for the monad D2 is that of complete
Boolean algebras.

Another example is with C the category Pos of posets and monotone functions, the
object O is the standard order P on the previous set D. The Eilenberg–Moore category
of algebras for the monad P2 is that of completely distributive lattices.

An example is also that where O is again the poset P, but in a different category from
the previous one: C is the category DPos of posets with sups of directed subsets and
functions preserving sups of directed subsets. The Eilenberg–Moore algebras for the
monad P2 on the category DPos is that of frames and frame homomorphisms.
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In order to present some properties of the monad S2 on Equ , it is useful to introduce
auxiliary full subcategories of PEqu . We denote RPEqu the full subcategory of PEqu
on those objects R = (LR,≈R) where ≈R is reflexive, in other words the domain of ≈R

coincides with the whole of |LR|.

Similarly, SPEqu is the full subcategory of PEqu on those objects K = (LK ,≈K)
where ≈K is contained in the diagonal relation on |LK |—one may say that the relation
≈K is subreflexive.

Proposition 3.2 The restriction of the equivalence

PEqu Z // Equ

to the subcategory SPEqu determines an equivalence between SPEqu and the image

of the embedding Top0
� � Y // Equ .

Proof It is enough to consider the diagram (1) and note that ≈P is subreflexive if and

only if the map (DP, τsub,=)
[idDP] � ,2Z(P) is iso.

Remark 3.3 A condition similar to that used in the proof of Proposition 3.2 characterises
a full subcategory REqu of Equ equivalent to RPEqu : the objects of REqu are those
equilogical spaces E for which there is an algebraic lattice L and a regular epi
(L,=) � ,2 E .

Notation 3.4 In line with the notation used in Remark 3.3 we shall write SEqu for the

closure under isos of the image of the embedding Top0
� � Y // Equ .

Proposition 3.5 Let K be an object in SPEqu and let R be an object in RPEqu .
Then:

(i) RK is in RPEqu .

(ii) KR is in SPEqu .

Proof By Proposition 2.2(ii), for f , f ′ : LK −→ LR , it is f ≈RK f ′ if and only if:

for all a, a′ ∈ |LK | if a ≈K a′ then f (a) ≈R f ′(a′)

The two statements follow easily: For (i), when ≈K is subreflexive, a ≈K a′ is equivalent
to a ∈ DK and a = a′ , hence it is certainly f ≈RK f for any f : LK −→ LR . For (ii),
consider that by hypothesis a ≈R a for every a ∈ |LR|. So, for every f , f ′ : LR −→ LK

such that f ≈KR f ′ , it follows that f (a) ≈K f ′(a) for every a ∈ |LR|. Since ≈K is
subreflexive, one has that f = f ′ .
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Corollary 3.6 Let P be an object in PEqu . Then:

(i) If ≈P is subreflexive, then ≈SP is reflexive.

(ii) If ≈P is reflexive, then ≈SP is subreflexive.

Corollary 3.7 The functor S(−) : Equ → Equop applies the subcategory SEqu into
REquop and viceversa, the subcategory REqu into SEquop .

4 The algebraic theory of an object

We have seen in the previous section that the description of the monad O2 can be
performed in the internal language of the Cartesian closed category C . In fact, those
functor and natural transformations can be internalised in the sense of enriched categories,
see Kock [14], Linton [16, 17], Power [21] and Street [25].

We refer the reader to previous references and to Kelly [13] for the notions of enriched
category theory, in particular of monads in the enriched situation, or as they are called
strong monads. Recall that a Cartesian closed category C has a canonical C –enrichment
given by the exponentials:

C op × C // C
〈C,D〉 � // DC

In fact, this can be done for any symmetric monoidal closed category, but that kind
of generality is not needed for the purposes of the present study. In the λ-notation, a
composition arrow

CB × DC
cB,C,D // DB

is given by the term

λx : B.g · (f · x) in context f : CB, g : DC

and, for T the terminal object in C , identities are iA : T → CC given by the term
λx : C.x in the empty context. From now on, we may drop the application dot in case
doing so generates no confusion, eg write g(fx) in the term above.

We shall adopt a standard notation for the enriched homsets, and for objects A and A′ in
the enriched C –category A we write A[A,A′] for the C –object of A –arrows from A to
A′ . So the C –enrichment of the Cartesian closed category C is C [C,D] = DC , and for

Journal of Logic & Analysis 11:FT5 (2019)



8 G Frosoni, G Rosolini and A Santamaria

arrows f : C′ → C and g : D→ D′ in C the C –arrow C [f , g] : C [C,D]→ C [C′,D′]
is given by the λ-term

C [f , g](h) = λx : C′.g[(h · f )/y] in context h : DC = C [C,D]

where f and g are in context x : C′ and y : D respectively. With respect to the
canonical enrichment, C has C –tensors and C –cotensors given by product and power,
respectively, since:

C [I,C [C,D]] ∼ // C [I × C,D] ∼ // C [C × I,D] ∼ // C [C,C [I,D]]

Note that every object of C is a tensor of the terminal object T . Similarly, the
C –enrichment of the category C op is C op[C,D] = CD .

Recall also that, for a fixed object O in C , the monad O2 is C –enriched: the action of
the functor O2 on arrows, for every pair of objects C and D in C , is the C –arrow

C[C,D]
O2

X,Y // C[O2 (C) ,O2 (D)]

given by the term

λU : O2 (C) .(λa : O1 (D) .U(λx : C.a(fx))) in context f : C [C,D],

and there are commutative diagrams involving the natural transformations η and µ as
follows

(2)

C[C,D]
O2

C,D//

C[C, ηD] ''

C[O2 (C) ,O2 (D)]

C[ηC,O2 (D)]
��

C[C,O2 (D)]

C[C,D]
O2

C,D //

O4
C,D
��

C[O2 (C) ,O2 (D)]

C[µC,O2 (D)]
��

C[O4 (C) ,O4 (D)]
C[C, µD]

// C[O4 (C) ,O2 (D)]

which internalise the standard (Set –enriched) commutative diagrams.

Remark 4.1 There is a very elegant analysis of this kind of monads in Kock [14] with
an elementary characterisation of the conditions for enrichment given by the notion of
strong monad.
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We are interested in giving a presentation of the category of algebras for the monad O2

in terms of certain enriched functors along the lines of Dubuc [6, 7] and Power [21]; see
also Kelly [12]. The intuition about that presentation is that a C –enriched monad is an
abstract presentation of an algebraic theory (in a suitable internal sense) and it hinges
on the parallel between the Kleisli category of a monad and the terms of a theory; see
Streicher and Reus [26].

Remark 4.2 The precise sense in which to consider an “internal” algebraic theory
requires the review of a few constructions on a C –enriched monad which appear in the
references. Unfortunately we have not been able to single out the explicit result we
need, see Theorem 4.11. So, although the interest of the present paper is for monads of
the form O2 , in the following we sketch that result for an arbitrary C –enriched monad
M = (M, η, µ) on C .

First we briefly recall the notions of enriched Kleisli category and enriched Eilenberg–
Moore category of an enriched monad. The Kleisli category CM of the monad M
consists of the same objects as C , but an arrow t : X → Y is an arrow t : X → M(Y) in
C . The composition of t : X → Y and s : Y → Z is defined by the composition in C
of the following three arrows:

X t // M(Y)
M(s) // M2(Z)

µZ // M(Z)

Taking advantage of the enriched monad, the Kleisli category has a C –enrichment given
by CM[X,Y] = C [X,M(Y)]. Also the C –enriched Kleisli category inherits C –tensors
from C since

C [I,CM[X,Y]] = C [I,C [X,M(Y)]] ∼ // C [I × X,M(Y)] = CM[I × X,Y]

quite similarly to how it inherits colimits from C . Like in C , every object of CM is a
tensor of the terminal object T .

There is an identity-on-object, C –enriched functor from C to CM which maps an arrow
f : X → Y of C to the arrow ηY ◦ f : X → Y in CM .

Let L(M) be the opposite C –enriched category CM .

Remark 4.3 The category L(M) has C –cotensors. Every object of L(M) is a cotensor
of the object T by the natural iso V ∼ //V ∩T .

Remark 4.4 Note that, in the case of a (standard) monad on the category Set for an
algebraic theory, the Kleisli category is the category of free algebras and homomorphisms
of the theory.
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For a monad of the form O2 there is an isomorphic presentation of L
(
O2) which

will be useful for section 5. For O an object in C , let T (O) be the C –enriched
category with the same object as C —so the same objects as CO2 and L

(
O2)—and let

T (O)[V,W] = C [OV ,OW]. Composition and identities are as in C . Clearly, T (O) is
equivalent to the full C –enriched subcategory of C on the objects of the form OV.

Proposition 4.5 Let O be an object in C . Then there is an isomorphism of C –enriched
categories H : L

(
O2) −→ T (O).

Proof The functor H is the identity on the objects of L
(
O2). To define the C –

enriched action on the arrows HV,W : L
(
O2)[V,W]→ T (O)[H(V),H(W)], consider

the composite:

L
(
O2)[V,W]

HV,W // T (O)[H(V),H(W)]

C [W,O2 (V)]

∼��

C [OV ,OW]

C [W × OV ,O] ∼
C [〈pr2, pr1〉,O]

// C [OV ×W,O]

∼

OO

In λ-notation, HV,W is the term

λU : OV .λy : W. (t · y) · U in context t : L
(
O2)[V,W]

where one sees clearly that the “two arguments”of t—y : W and U : OV —get swapped.
It is straightforward to check that the assignment H is a C –enriched functor. Moreover,
since HV,W is iso, the functor is fully faithful. Hence H is iso.

The Eilenberg–Moore category C M has objects the M–algebras, ie pairs A =

(A, α : M(A) → A) of an object A and an arrow α : M(A) → A in C such that the
diagrams

M2(A)

µA
��

M(α) // M(A)

α
��

M(A) α
// A

A

idA !!

ηA // M(A)

α
��

A

commute, and an arrow h : (A, α) → (B, β) is an arrow h : A → B in C which is a
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M–homomorphism, ie the following is a commutative diagram:

M(A)

α
��

M(h) // M(B)

β
��

A
h

// B

Example 4.6 For a fixed object O in C , an example of an O2 –algebra is O = (O, jO)
where jO : O2 (O)→ O denotes evaluation at iO , ie the composite

O2 (O)
〈idO2(O), iO!〉

//O2 (O)× O ev //O

for ! : O2 (O) → T the unique arrow to the terminal object, which can be written in
λ-notation as φ · (λx : O. x) in context φ : O2 (O).

Remark 4.7 In case C has equalisers, the Eilenberg–Moore category C M has the
C –enrichment which, for M–algebras A = (A, α) and B = (B, β), is given by (a
choice of) the equaliser

C [M(A),M(B)] C [M(A), β]
,,

C M[A,B] // // C [A,B]

MA,B 22

C [α,B]
// C [M(A),B]

which internalises the commutativity condition for M–homomorphisms; see Dubuc [7].
Such an enrichment inherits cotensors from C . But in the general case of a category C
with finite products that enrichment need not be available.

Remark 4.8 In the case of a (standard) monad on the category Set for an algebraic
theory considered in Remark 4.4, the category L(M), being the opposite of the category
of free algebras and homomorphisms between them, can be considered equivalently as
the sets V of the generators—think of variables. With that point of view, a L(M)–arrow
t : V → W is a W –list of terms of the theory written in the variables (ie the elements)

of V and the composition V t //W s //U in L(M) is substitution of the variables
W in the terms of the U–list with the W –list of terms.

Notation 4.9 We recall when a C –enriched functor F : A −→ B preserves cotensors
since we shall need it to prove Theorem 4.11. For objects X in A and I in C ,
write I ∩X for the cotensor X by I and consider the universal I–family of A –arrows
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12 G Frosoni, G Rosolini and A Santamaria

pI,X : I → A[I ∩X,X] of the cotensor I ∩X , obtained by the exponential adjunction
from the composite arrow

T
idI∩X //

πI,X

11A[I ∩X, I ∩X] ∼ //C [I,A[I ∩X,X]]

from the terminal object T of C . Preservation of cotensors requires that F transform
each universal family pI,X into another such, in other words that the B –arrow obtained
by exponential adjunction from

T
πI,X //

ψF,I,X ,,

C [I,A[I ∩X,X]]
C [I,FI∩X,X]

//C [I,B[F(I ∩X),F(X)]]

∼

��
B[F(I ∩X), I ∩F(X)]

is iso, necessarily natural. In case B is C , one can use λ-notation to write the adjunct
qF,I,X : F(I ∩X)→ I ∩F(X) of ψF,I,X as:

λi : I.
(
F(pI,X · i) · a

)
in context a : F(I ∩X)

Following Dubuc [6] and Power [21] a model of L(M) is a C –enriched functor
F : L(M) −→ C which preserve cotensors.

Example 4.10 An M–algebra A = (A, α : M(A)→ A) determines a standard example
of a C –enriched, cotensor-preserving functor A(−) : L(M) −→ C , see [6, 21]. It is
defined as follows: on an object V in L(M), the value AV is C [V,A]. The C –enriched
action of A(−)

L(M)[V,W]
A(−)

V,W//C [C [V,A],C [W,A]]

is given by the λ-term

λf : C [V,A]. C [t, α] · (MV,A · f ) in context t : C [V,W].

The proof that the assignment is indeed a functor is direct, though laborious, as it
involves the categorical structure of L(M) = (CM)op and the conditions in (2). It is
immediate to see that A(−) preserves cotensors as

AI∩V = C [I × V,A] ∼ // C [I,C [V,A]] = C [I,AV ],

and it is easy to check that, given an M–homomorphism h : A → B , post-composition
with h

AV = C [V,A]
C [V, h] //C [V,B] = BV

is a natural transformation.
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The result mentioned in Remark 4.2 is the statement that the examples in 4.10 are the
most general.

Theorem 4.11 Let C be a Cartesian closed category and let M = (M, η, µ) be
C –enriched monad on C . Then the functor that assign to an M–algebra A the
C –enriched, cotensor-preserving functor A(−) : L(M) −→ C is an equivalence of
categories between C M and the full subcategory of the functor category [L(M) ,C ] on
the C –enriched, cotensor-preserving functors.

Proof For the sake of space saving, in the proof write the category L(M) simply as
T . Fix a C –enriched, cotensor-preserving functor F : T −→ C . Hence, for every
object I in C and every object V in T , the C –arrow ψF,I,V : F(I ∩V) //C [I,F(V)]
is natural iso. Since every object in T is a cotensor of the terminal object T , the value
F(T) determines the functor F up to a natural isomorphism. By Remark 4.3 there is a
natural iso V ∼ //V ∩T . So we can identify V and V∩T in T , and F(V) and C [V,F(T)]
in C . Also, to simplify notation, write F(T) as A, so that:

FV,W : T [V ∩T,W ∩T]→ C [C [V,A],C [W,A]]

Given any T –arrow t : V → W , there is a commutative diagram

C [V,A]

C [V, pA,T ]
��

C [V, qF,A,T ]

)) idC [V,A]

��

C [V,T [A∩T,T]]

∼

��

C [V,FA,T ]
// C [V,C [C [A,A],A]]

∼

��

C [V, jA]

((
T [A∩T,V ∩T]

T [A∩T, t∩T]
��

FA,V
// C [C [A,A],C [V,A]]

C [C [A,A],F(t)]
��

jC [V,A]
// C [V,A]

F(t)
��

T [A∩T,W ∩T]
FA,W

// C [C [A,A],C [W,A]]
jC [W,A]

// C [W,A]

where, like in Example 4.6, the arrow jC : C [C [A,A],C] → C denotes evaluation at
the identity iA , ie the composite

C [C [A,A],C]
〈idC [C [A,A],C], iA!〉

//C [C [A,A],C]× C [A,A] ev //C

Remark 4.12 As already mentioned, there are results in the literature related to
Theorem 4.11, for instance Theorem III in [6] and Theorem 3.4 in [21]. The reader
may find more details about this in Santamaria’s masters thesis [23].
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In the particular case of the monad of an object O in C , one can see the models
F : T (O)→ C as an interpretation of all the operations OV → O on O available in C
which satisfies all identities that the operations satisfy on O. Or, turning things around,
one can see T (O) as the algebraic theory of all the operations on O. And Theorem 4.11
states that the models are precisely the O2 –algebras.

In case C has equalisers, hence finite limits, by Remark 4.7 the Eilenberg–Moore
category C O2

is C –enriched with cotensors. In particular, the natural isomorphism of
cotensors

C [I,C O2
[A,O]] ∼ // C O2

[A,OI] =
(

C O2
)op

[OI,A]

for objects I in C and A in C O2
, gives a C –enriched adjunction:

(
C O2

)op

C O2
[–,O]

//⊥ C
O(−)

oo

In our case of interest, when C is Equ and O is S, if T is a T0 -space and T̂ denotes its

soberification, then T̂ ∼ //EquS2
[ST ,S] ; see Bucalo and Rosolini [5].

5 Global sections of S2–algebras

By viewing an S2 –algebra A = (A, α : S2 (A) −→ A) as an Equ –enriched, cotensor-
preserving functor

T (S) A(−)
// Equ

D � // AD

from T (S) to Equ , it is possible to distinguish some of the operations induced on the
object A by the S2 –structure α : S2 (A) −→ A and determine the identities these satisfy.
This is a slight abuse of notation since it should be A(−) : L

(
S2) −→ Equ , but by

Proposition 4.5 the category T (S) is isomorphic to L
(
S2).

There is a useful, functorial way to analyse part of the structure given by a model
A(−) : T (S) −→ Equ . Let D be a subcategory of T (S) and write I : D � � //T (S)
the inclusion functor. Then the restriction functor

D � � I // T (S) A(−)
// Equ

Journal of Logic & Analysis 11:FT5 (2019)
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is a (Set –enriched) model of D in Equ . If a syntactic presentation of the category D
is available by means of a logical theory, then the functor A(−) ◦ I is a model of D with
underlying object A. As an instance of this procedure, we show that every S2 –algebra
A induces a distributive lattice structure on A.

Let TFin(S) be the full subcategory of T (S) whose objects are the discrete (finite)
numerals.

Proposition 5.1 The category TFin(S) is the smallest subcategory of T (S) which
contains the object 1, is closed under finite products of T (S), and contains the arrows:

> : 0 −→ 1 ⊥ : 0 −→ 1 ∧ : 2 −→ 1 ∨ : 2 −→ 1

Proof Each object n in TFin(S) is the product of n copies of 1 as n =

n times︷ ︸︸ ︷
1 + . . .+ 1.

An arrow f : n −→ m in TFin(S) is a continuous function f : Sn −→ Sm between finite
powers of S. As such it is monotone and the four arrows in the statement are enough to
generate by composition and pairing all such monotone maps.

Note that TFin(S) has an enrichment on the category FinSet of finite sets and functions
and it has FinSet –cotensors.

Corollary 5.2 The category TFin(S) is the Lawvere algebraic theory of distributive
lattices.

Proof The identities satisfied by the four arrows in Proposition 5.1 are precisely those
given by commutative diagrams in T (S), in other words are precisely the identities
satisfied by those operations in their interpretation as meet and join in S.

Proposition 5.3 Every S2 –algebra A inherits a structure of a (bounded) distributive
lattice in Equ as given by the maps A> : A0 −→ A1 , A⊥ : A0 −→ A1 , A∧ : A2 −→
A1 and A∨ : A2 −→ A1 .

Proof By Proposition 5.1, TFin(S) has finite products, computed by cotensors; so a
cotensor-preserving functor from T (S) to Equ preserves such limits. So A0 is terminal
in Equ and A2 is a product A× A in Equ . Functoriality ensures that the operations in
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16 G Frosoni, G Rosolini and A Santamaria

the statement satisfy all the commutative diagrams in which they appear in T (S). For
instance, distributivity of ∨ over ∧ is the commutative diagram

3
〈π1,∧◦ < π2, π3〉 > //

〈π1, π2, π1, π3〉
��

2
∨

''4
〈∨ ◦ 〈π1, π2〉,∨ ◦ 〈π3, π4〉〉

// 2 ∧
// 1

in T (S). Therefore, A(−) transforms it in the corresponding commutative diagram
involving the operations on A.

In fact, in the following we strengthen Proposition 5.3 to show that every S2 –algebra
has a unique structure of a frame. In order to do that, we introduce two other full
subcategories of T (S): the full subcategory TFinPos(S) of T (S) on the finite posets (each
considered with its Scott topology) and the full subcategory TSet(S) on the discrete
T0 -spaces.

Proposition 5.4 The full subcategory TFinPos(S) of T (S) is the smallest subcategory
of T (S) which contains the object 1, is closed under finite products and retracts and
contains the arrows:

> : 0 −→ 1 ⊥ : 0 −→ 1 ∧ : 2 −→ 1 ∨ : 2 −→ 1

Proof Because of Proposition 5.1, it is enough to show that any finite poset P with the
Scott topology is in TFinPos(S). Let n be the cardinality of P and let ` : n → P be a
bijection. Consider the idempotent:

h : Sn // Sn

U � //
[
i 7→

∨
`(n)≤P`(i) U(n)

]
It is immediate to see that SP is (isomorphic to) the distributive lattice of fixpoints of
h.

The following result is reminiscent of the study in Hyland [11]; see also Fiore and
Rosolini [8].

Corollary 5.5 The lattice structure on an S2 –algebra A = (A, α : S2 (A) −→ A)
depends only on the underlying object A.
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Proof The object S is in TFinPos(S); for instance, in T (S) it splits the idempotent on 2:

(3) 2
〈π1,∨〉 //

s � &-
2

S 44 S(⊥>)

44

So the order on A induced by the S2 –algebra is determined by the monic A(⊥>)

AS

AS(⊥>)

  

// A(⊥>)
// A× A

A2
〈π1,A∨〉

FF

A〈π1,∨〉
//

As
>>

A2

∼
<<

since the functor A(−) preserves the splitting in (3). But a lattice structure is uniquely
determined by the order on the underlying A.

Proposition 5.6 The category TSet(S) is the smallest subcategory of T (S) which
contains the object 1, is closed under arbitrary products and contains the arrows

> : 0 −→ 1 ⊥ : 0 −→ 1 ∧ : 2 −→ 1 ∨ : 2 −→ 1
∨

>
I : I → 1

where I varies among arbitrary sets.

Proof Given a discrete T0 -space I and a subset E ⊆ I , let iE : E �
� //I be the

inclusion map of the discrete topological space E and let jE : SE � � //SI be the
inclusion of the powerset of E into the powerset of I . In Equ , the diagram

SI
SiE

**SE '
�

jE 44

idSE

// SE

commutes producing every subset (equivalently, subspace) E of I as an idempotent of I
in TSet(S):

I

SiE **

jE ◦ SiE
// I

E jE

44

The two maps SiE : I //E and jE : E //I are into products of 1 in TSet(S); by
evaluating at any element x one sees that each component is either a projection or the
constant map ⊥! : E −→ 1. Moreover the family

(jE ◦ SiE : I −→ I)E⊆I, E finite
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is directed and its join is the identity map on I in TSet(S).

Let now f : I −→ 1 be an arbitrary map in TSet(S); in other words, a continuous
function f : SI −→ S1 from a power of S into S. Consider the diagram

I

SiE ))

jE ◦ SiE
// I f

))E
jE

55

f ◦ jE
// 1

which displays the map f is the directed join of the family of maps (f ◦ jE ◦ SiE ) : I → 1
as E varies among the finite subsets of I . By Proposition 5.1, each map f ◦ jE : E //1
can be obtained from the lattice structure and each map SiE is obtained as a pairing of
projections.

Corollary 5.7 Every S2 –algebra is an internal frame in Equ .

Proof It is enough to note that the map which takes joins
∨

I : SI −→ S gives rise to a
map

∨
I : I −→ 1 in TSet(S) and that arbitrary joins are characterised by identities.

Corollary 5.8 The global section functor of equilogical spaces Γ : Equ −→ Set
extends to a faithful functor EquS2 → Frm .

Proof Note that the discrete T0 -spaces are the values of the left adjoint ∆ : Set −→
Equ of Γ : Equ −→ Set , in fact for every discrete T0 -space I there is an iso
I ∼−→ ∆(Γ(I)) and that Γ(Equ[D,E]) is exactly the (standard) homset of maps from D
to E .

6 Final remarks and further directions

The result in Corollary 5.8 may induce to consider that the category of S2 –algebras and
homomorphisms resembles that of frames and frame-homomorphisms. But the analysis
performed in the Equ –enriched case seems to suggest a different situation: while an
S2 –algebra bears a structure of a frame, there may be more to the structure than just
that. And there may be more structure, or the structure that is induced by the order
satisfies more properties than simply being a frame. Frosoni’s Ph.D. thesis [9] contains
further results about that.

A very interesting remark that derives from Proposition 5.6 is that the Equ -enrichment
reduces the infinitary algebraic structure of frames to a finitary situation where the only
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reference to the infinite is the existence of arbitrary products in the category TSet(S).
This suggests that it is possible to see the notion of frame as a finitary one from some
appropriate, non-classical point of view. There is a similar approach in Hyland [11].
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