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Open sublocales of localic completions

ERIK PALMGREN1

Abstract: We give a constructive characterization of morphisms between open
sublocales of localic completions of locally compact metric (LCM) spaces, in
terms of continuous functions. The category of open subspaces of LCM spaces
is thereby shown to embed fully faithfully into the category of locales (or formal
topologies).
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1 Introduction

This paper is part of the general programme to relate constructive analysis and topology
in the sense of Bishop [1] to developments based on point-free topology [2, 6].

As is well-known the standard adjunction between locales and topological spaces
[2] gives a fully faithful embedding of the category of sober spaces (which includes
Hausdorff spaces) into locales

Ω : Sob // Locales.

From a strict constructive point of view this embedding of categories is of little use
since it cannot be proved, without employing axioms such as the Fan Theorem, that
Ω(R) is isomorphic to the localic reals R. For this reason one considers a different
and more restricted embedding which sends R to a locale isomorphic to R. In two
previous papers [4, 5] we studied the embedding of locally compact metric spaces
(in the sense of [1]) into locales or formal topologies. Vickers’ construction of the
localic completion of a metric space [8, 9] gives rise to a full and faithful functor
M : LCM // FTop from the category of locally compact metric (LCM) spaces in
to the category of (inductively generated) formal topologies; see [4]. This means, in
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2 Erik Palmgren

particular, that there is a bijection between the continuous maps X // Y (i.e. locally
uniformly continuous functions) and the continuous morphisms of formal topologies
M(X) // M(Y) (approximable mappings).

To study point-free versions of topological manifolds it is of interest to characterize
the maps between open sublocales of formal Euclidean spaces

(Rm)|U // (Rn)|V .

We consider a more general version of this problem where the Euclidean spaces have
been replaced by localic versions of LCM spaces. In this paper we study the corre-
spondence between maps and morphisms when the localic completions are restricted
to open sublocales

(1) M(X)|U // M(Y)|V .

This correspondence is not trivial from a constructive point of view. As shown in [5]
the maps M(X) // M(R)|(0,∞) correspond to continuous functions X // R that
on each open ball has a positive uniform lower bound, rather than positive functions.
Constructively, there is a distinction: Specker [7] gives a recursive example of a
continuous positive function [0, 1] // R that has no uniform positive lower bound.
These considerations make it clear that the set of maps U∗ // V∗ between open
subspaces of LCM spaces has to meet some extra conditions to be in 1-1 correspondence
to maps in (1). In Section 2 we introduce and study the appropriate categories of
metric spaces, called OLCM and FLCM. In Section 3 the open sublocales of M(X)
are studied. Section 4 establishes full and faithful functors OLCM // FLCM

// FTop. The whole development is constructive in the sense of Bishop [1] and
may be formalized within constructive set theory CZF with dependent choice, or in
Martin-Löf type theory.

2 Open subspaces of LCM spaces

Bishop and Bridges [1] define a metric space X to be locally compact if it is inhabited
and every bounded subspace is contained in a compact subspace. It follows that such
a space X is complete (and separable). Below we define a category OLCM of open
subspaces of locally compact metric (LCM) spaces. It is partly suggested by Definition
2.2.4 of [1], but its enunciation appears to be new.

The category of open subspaces of LCM spaces is given as follows. The objects are
pairs (X,U) where X = (X, d) is a LCM space and U is an open subset of X . A
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Open sublocales of localic completions 3

continuous map f : (X,U) // (Y,V) between two objects is a function f : U // V
such that for any compact subset K b U

(a) f is uniformly continuous on K ,

(b) f [K] b V .

Here K b U means that Kr ⊆ U for some r > 0, where

Kr = {x ∈ X : d(x,K) ≤ r}.

The distance d(x, S) is well-defined whenever the set S is located and in particular
when it is totally bounded. For S ⊆ X , let S be the closure of S in X , that is, the set of
points in X that are limits of points in S . We have for located S ⊆ X :

S b U ⇐⇒ S b U.

Moreover if S is totally bounded, then S is compact. Note that f [S] is totally bounded
whenever S is. Thus f [K] is compact, if K is compact. It follows that continuous
maps are closed under composition, and form a category which we shall call OLCM.

Remark 2.1 The category of locally compact metric spaces LCM may be regarded
as a full subcategory of this category, given by the objects of the form (X,X) since the
relation S b X is trivially true for any compact S ⊆ X .

The reciprocal map (·)−1 : (R,R 6=0) // (R,R) is continuous: suppose K b R 6=0 is
compact. Thus there is r > 0 so that

(2) d(x,K) ≤ r =⇒ x 6= 0.

We have K ⊆ (−∞,−r] ∪ [r,∞). Indeed, suppose y ∈ K . Then by (2) y 6= 0, i.e.
y < 0 or 0 < y. Consider the case y < 0. Then −r < y is impossible, since this
together y ∈ K would imply that d(0,K) < r which by (2) gives 0 6= 0, an absurdity.
Hence y ≤ −r , i.e. y ∈ (−∞,−r]. The case 0 < y, similarly implies y ∈ [r,∞).
The reciprocal map is uniformly continuous on (−∞,−r] ∪ [r,∞) and, a fortiori, on
K . Thus (a) is valid and (b) is trivially true.

A continuous map f : [0, 1] // (R,R 6=0) is in particular required to satisfy
f ([0, 1]) b R 6=0 . Thus f ([0, 1]) ⊆ (−∞,−r] ∪ [r,∞) for some r > 0. In the
recursive setting, this excludes the familiar counterexamples of Specker [7] and Julian
and Richman [3] of a positive (uniformly) continuous function on [0,1] which has no
positive uniform lower bound.
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4 Erik Palmgren

Next we prepare for the definition of a still wider category, FLCM, and for the definition
of the localic completion. In a metric space X = (X, d) a formal open ball is a symbol
b(x, δ), where x ∈ X and δ is a positive rational number. These symbols are ordered
by formal inclusion ≤

b(x, δ) ≤ b(y, ε)⇐⇒ d(x, y) + δ ≤ ε.

Replacing ≤ by < everywhere gives the corresponding definition of strict formal
inclusion (<). The strict inclusion relation is extended to sets of symbols by saying
that U < V holds if, and only if, for each a ∈ U there is b ∈ V with a < b. The
radius of a formal ball is ρ(b(x, δ)) = δ . Each formal open ball represents a real open
ball

b(x, δ)∗ = B(x, δ) = {y ∈ X : d(x, y) < δ}.

This representation is of course not unique in general — consider X = [0, 1] and
δ > 1. For a set N of formal open balls, let N∗ =

⋃
{b∗ : b ∈ N}.

Lemma 2.2 Let X be a locally compact metric space. For any formal balls a < b of
X , there is a compact subset K ⊆ X with

a∗ ⊆ K ⊆ b∗.

Proof Suppose a < b are formal open balls where a = b(x, δ). Then there is ε > δ

with b(x, ε) < b. It now suffices to find a compact K ⊆ X with B(x, δ) ⊆ K ⊆ B(x, ε).
Since X is locally compact there is a compact L ⊇ B(x, ε). For n ≥ 1, we let

Nn = {xn,1, . . . , xn,mn}

be a 2−n -approximation for L ([1, Def. 4.4.1]). Pick α, β with δ < α < β < ε. Then
for each i we have d(x, xn,i) < β or d(x, xn,i) > α . Construct by induction a function
λn : {1, . . . ,mn} // {0, 1} so that

(i) λn(i) = 1 implies d(x, xn,i) < β

(ii) λn(i) = 0 implies d(x, xn,i) > α .

Let N = {xn,i : n ≥ 1, λn(i) = 1} and let K be the set of limit points of this set. Note
that we use the axiom of countable choice to construct λ. By definition N ⊆ B(x, β) and
hence K ⊆ B(x, ε). Suppose now z ∈ B(x, δ) and ρ > 0. Let n ≥ 1 be large enough
that 2−n ≤ min(α− δ, ρ). Then since z ∈ L there is some index i ∈ {1, . . . ,mn} with
d(z, xn,i) < 2−n . Then

d(x, xn,i) ≤ d(x, z) + d(z, xn,i) < δ + α− δ = α.

Hence we must have λn(i) = 1, so xn,i ∈ N . Since ρ > 0, this shows that B(x, δ) ⊆
K .
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Open sublocales of localic completions 5

We may characterize the relation b in terms of formal inclusion.

Lemma 2.3 Let X be a metric space. For a totally bounded S ⊆ X and open set
U ⊆ X : S b U if, and only if, there are formal open balls in X

bi < ci (i = 1, . . . n),

with S ⊆ {b1, . . . , bn}∗ and {c1, . . . , cn}∗ ⊆ U .

Proof (⇒): Suppose that Sr ⊆ U for some r > 0. By total boundedness there is a
r/2-approximation x1, . . . , xn of S . We may then take bi = b(xi, r/2) and ci = b(xi, r).
We have (ci)∗ = B(xi, r) ⊆ U , since if d(y, xi) < r , then d(y, S) ≤ r and so y ∈ U .

(⇐): Suppose that bi = b(xi, δi) and ci = b(yi, εi), where bi < ci and S ⊆
{b1, . . . , bn}∗ and {c1, . . . , cn}∗ ⊆ U . Let t > 0 be so small that

d(xi, yi) + δi + 2t < εi

for all i = 1, . . . , n. Then we have St ⊆ U : Suppose z ∈ St . Thus in particular
d(z, u) ≤ 2t for some u ∈ S . Hence u ∈ (bi)∗ for some i, and

d(z, yi) ≤ d(z, u) + d(u, xi) + d(xi, yi)

≤ 2t + δi + d(xi, yi) < εi

Thus z ∈ (ci)∗ ⊆ U .

Motivated by this lemma we define yet another inclusion relation <∗ . Let X be a
metric space. For a subset S ⊆ X and a set N of formal open balls of X define S <∗ N
to hold if and only if there is a finitely enumerable (f.e.) set F of formal balls with
S ⊆ F∗ and F < N . We pronounce S <∗ N as S is formally well-included in M . For
any open U ⊆ X define H(U) = {b(x, δ) : B(x, δ) ⊆ U}. We have by Lemma 2.3 the
following:

Corollary 2.4 Let X be a metric space. For S ⊆ X totally bounded and U ⊆ X open
that

S b U ⇐⇒ S <∗ H(U).

Moreover for any set of formal open balls N of X and for any totally bounded S ⊆ X
we have

(3) S <∗ N =⇒ S b N∗.
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6 Erik Palmgren

Remark The converse of (3) implies that [0, 1] is point-wise covering compact, which
is not provable constructively. Consider X = S = [0, 1] and let N be a set of formal
balls so that N∗ = X . Clearly S b N∗ , and hence by the converse of (3) S ⊆ F∗ for
some f.e. set F < N . Hence there is a f.e. set G ⊆ N with [0, 1] ⊆ G∗ . Thus [0, 1] is
point-wise covering compact, and we have a effective counterexample to the reversal
of the implication in (3).

2.1 Metric complements of located subsets

The function H is part of a Galois connection: for any set A of formal balls of X and
any open U ⊆ X ,

A∗ ⊆ U ⇐⇒ A ⊆ H(U).

Lemma 2.5 H(U)∗ = U .

Proof It is immediate that H(U)∗ ⊆ U . Moreover if x ∈ U , then there is a positive
rational δ so that B(x, δ) ⊆ U thus b(x, δ) ∈ H(U) and so x ∈ H(U)∗ . Hence also
H(U)∗ = U .

It is direct from the Galois connection that A ⊆ H(A∗). The reverse inclusion does not
always hold. A set of formal balls A of X is point-wise saturated if H(A∗) = A. Any
such set is saturated as well (see Section 3 for definition). By Lemma 2.5 it is clear
that A is point-wise saturated if, and only if, A = H(U) for some open U ⊆ X .

Lemma 2.6 Let X be a metric space, let A be a set of formal balls of X and let S ⊆ X
be totally bounded. If A is point-wise saturated, then

(4) S <∗ A⇐⇒ S b A∗.

Proof Suppose A = H(A∗). Then by Lemma 2.4

S b A∗ ⇐⇒ S <∗ H(A∗)⇐⇒ S <∗ A.

An important class of point-wise saturated sets arise in the following way. Let X be a
metric space. Let A ⊆ X be a located subset, and denote its metric complement by

CA = {x ∈ X | d(x,A) > 0}.
The formal counterpart to CA is

SA =def {b(x, δ) : x ∈ X, d(x,A) ≥ δ}.
It is follows from the theorem below that SA is point-wise saturated.
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Open sublocales of localic completions 7

Example 2.7 C(−∞,0] = {x ∈ R : x > 0} and S(−∞,0] = {b(x, δ) : x ∈ R, x ≥
δ}.

Theorem 2.8 For any located subset A of a metric space X , CA is an open set and

H(CA) = SA (SA)∗ = CA.

Proof CA is open: if x ∈ CA , then d(x,A) > δ for some δ > 0. For y ∈ B(x, δ/2),
we have either d(y,A) > 0 or d(y,A) < δ/2. The latter is impossible, since it would
imply that there is z ∈ A with d(y, z) < δ/2, and thus d(x, z) < δ , which contradicts
d(x,A) > δ . Hence B(x, δ/2) ⊆ CA .

H(CA) = SA : First suppose b(x, δ) ∈ H(CA). Suppose that d(x,A) < δ . Thus
d(x, y) < δ for some y ∈ A. Thus y ∈ H(CA) by the assumption. Thereby d(y,A) > 0,
which is impossible since y ∈ A. Hence d(x,A) < δ is false, i.e. d(x,A) ≥ δ . This
means that b(x, δ) ∈ SA . Conversely, assume b(x, δ) ∈ SA , i.e. d(x,A) ≥ δ . We show
B(x, δ) ⊆ CA . Take y with d(y, x) < δ and ε such that d(y, x) + ε < δ . Then either
d(y,A) > 0 or d(y,A) < ε. The latter case is actually impossible, since then there
would be z ∈ A with d(y, z) < ε and so

d(x, z) ≤ d(y, x) + d(y, z) < d(y, x) + ε < δ.

This contradicts the assumption d(x,A) ≥ δ . Hence only the case d(y,A) > 0 remains
possible, i.e. y ∈ CA .

(SA)∗ = CA : By the first equation we have H(CA)∗ = (SA)∗ . Now Lemma 2.5 gives
CA = H(CA)∗ .

2.2 The Category FLCM

We use the relation <∗ to define a new category FLCM. An object (X,P) is a locally
compact metric space X together with a set P of formal balls of X . A morphism
f : (X,P) // (Y,Q) between two such objects is function f : P∗ // Q∗ so that for
any a < P we have

(a) f : a∗ // Q∗ is uniformly continuous,

(b) f [a∗] <∗ Q.

Lemma 2.9 FLCM is a category.
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8 Erik Palmgren

Proof The identity function idP∗ is uniformly continuous on any a∗ with a < P. If
a < P, then clearly a∗ <∗ P. Hence idP∗ is a morphism on (X,P). It now suffices to
show that the morphisms are closed under composition. Suppose f : (X,P) // (Y,Q)
and g : (Y,Q) // (Z,R) are morphisms. Let a < P be some open ball. We have by
(b) for f that there is a f.e. set of formal open balls F = {b1, . . . , bn} with f [a∗] ⊆ F∗
and F < Q. Now

(g ◦ f )[a∗] = g[f [a∗]] ⊆ g[(b1)∗] ∪ · · · ∪ g[(bn)∗].

By (b) for g we get, for each i = 1, . . . , n, a f.e. set Gi with g[(bi)∗] ⊆ (Gi)∗ and
Gi < R. Thus (g ◦ f )[a∗] <∗ R witnessed by the f.e. set G = G1 ∪ · · · ∪ Gn . Hence
g ◦ f satisfies (b).

Notice also that g is uniformly continuous on each (bi)∗ . Hence it is uniformly
continuous on the f.e. union F∗ and therefore also on f [a∗]. Thus g ◦ f satisfies (a) as
well.

Theorem 2.10 Let X and Y be LCM spaces. Let U ⊆ X and V ⊆ Y be open subsets.
Then f : (X,U) // (Y,V) is continuous in OLCM if, and only if, f : (X,H(U))

// (Y,H(V)) is a morphism in FLCM.

Proof (⇒) Suppose that f : (X,U) // (Y,V) is continuous. Let a < H(U). Thus
there is a formal ball c > a with c∗ ⊆ U . Take a formal ball b with a < b < c. By
Lemma 2.2 there is a compact K ⊆ X with a∗ ⊆ K ⊆ b∗ . Lemma 2.3 then yields
K b U . By assumption f is uniformly continuous on K and hence also on a∗ . This
verifies condition (a). We have moreover f [K] b V , and since f [K] is totally bounded,
there are by Lemma 2.3 formal balls bi < ci (i = 1, . . . , n) with f [K] ⊆ {b1, . . . , bn}∗
and {c1, . . . , cn}∗ ⊆ V . But this says that f [K] <∗ V . Now f [a∗] ⊆ f [K] so (b) is
verified.

(⇐) Suppose now that f : (X,H(U)) // (Y,H(V)) is a morphism in FLCM. Let K
be a compact subset of X with K b U . By Lemma 2.3, we find formal balls bi < ci

(i = 1, . . . , n) with K ⊆ {b1, . . . , bn}∗ and {c1, . . . , cn}∗ ⊆ U . Thus bi < H(U) for
each i. By assumption, f is uniformly continuous on each (bi)∗ . Hence f is uniformly
continuous on {b1, . . . , bn}∗ , since n is finite. Thus f is uniformly continuous on K .
By the assumption we have moreover that f [(bi)∗] <∗ H(V) for each i = 1, . . . , n.
Thus there are f.e. sets of formal balls Fi < Gi with f [(bi)∗] ⊆ (Fi)∗ and (Gi)∗ ⊆ V .
Thus f [K]∗ ⊆ (∪n

i=1Fi)∗ and ∪n
i=1Fi < ∪n

i=1Gi both f.e. and (∪n
i=1Gi)∗ ⊆ V . This

shows that f [K] b V . Hence f : (X,U) // (Y,V) is continuous.
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Open sublocales of localic completions 9

Corollary 2.11 The category OLCM is a full subcategory of FLCM via the embed-
ding (X,U) 7→ (X,H(U)).

Proof This follows by Theorem 2.10 and Lemma 2.5. The latter gives injectivity on
objects of the categories.

The structure of formal neighbourhoods P in the space (X,P) is essential. One might
think that only the extent of the points matter, i.e. that for sets P and Q of formal balls
of X , where X is a compact metric space,

P∗ = Q∗ =⇒ (X,P) ∼= (X,Q).

This is not so constructively. In fact, a special case of this implies that every compact
metric space is covering compact, which is constructively false. See Proposition 4.6
below.

However, if P and Q are point-wise saturated and P∗ = Q∗ , then obviously P = Q.

3 Localic completion

Vickers [8, 9] gives a construction M(X) of a formal topology from a metric space X
— the localic completion of X — so that the canonical map jX : X // Pt(M(X)) is a
metric completion of X . In particular jX is a metric isomorphism, in case X is already
complete.

The fundamentals of formal topology can be found in Sambin [6]. Here the stan-
dard notion of formal topology based on preorders is employed. Basically it is a
Grothendieck topology on a preorder instead of a category. A formal topology X is a
triple (X, C ,≤) where X is the set of formal neighbourhoods, ≤ is a preorder relation
on those and C is the formal cover relation, which is assumed to be set-presented.
The relation C is defined between elements of X and subsets of X and is to satisfy
the properties

(Refl) a ∈ U implies a C U ,

(Tra) a C U and U C V implies a C V ,

(Loc) a C U and a C V implies a C U ∧ V ,

(Ext) a ≤ b implies a C {b}.
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10 Erik Palmgren

Here U C V means that a C V for each a ∈ U , and U ∧ V is defined to be {x ∈ X :
(∃y ∈ U)x ≤ y & (∃z ∈ V)x ≤ z}. A subset U ⊆ X is saturated if a ∈ U whenever
a C U . The saturated subsets ordered by inclusion make up the locale that the formal
topology X represents.

A continuous morphism between formal topologies F : X // Y is a relation
R ⊆ X × Y , which is intended to be an abstraction and a constructive version of
the relation U ⊆ f−1[V] for a continuous function f . The required properties for a
continuous morphism are the following

(A1) a F b, b C V implies a C F−1V ,

(A2) a C U , (∀x ∈ U) x F b implies a F b,

(A3) X C F−1Y ,

(A4) a F b, a F c implies a C F−1[b ∧ c].

Here F−1V is the subset {x ∈ X : (∃y ∈ V) x F y}. Moreover we have written b ∧ c
for {b} ∧ {c}.

We shall here use the framework of [4]. There it was shown that the localic completion
M : LCM // FTop can be made into a full and faithful functor from the category
of locally compact metric spaces to the category of formal topologies. Another result
of [4] is that the inductively generated cover relation C of M(X) = (M, C ,≤) may
be characterized by an explicitly defined relation l :

(5) a C U ⇐⇒ a l U.

This relation is defined as follows

(6) a l U ⇐⇒ (∀b, c ∈ M)[b < c < a⇒ (∃U0 ∈ A(b, c))U0 < U].

We explain the notation. The formal neighbourhoods of M are the open formal balls
b(x, δ) of X and are ordered as described in the previous section. The set A(b, c)
consists of finitely enumerable sets C ⊆ M such that

(7) b v C < c.

The relation b v C says that there is a number δ > 0 (a “Lebesgue number”) so that
b vδ C . Now b vδ C is defined to mean that any formal ball of smaller radius than δ ,
which is included in b, is also included in some q ∈ C .

We also recall that the cover relation M(X) is the smallest cover relation C satisfying,
for all p ∈ M

(M1) p C {q ∈ M : q < p},

Journal of Logic & Analysis 2:1 (2010)



Open sublocales of localic completions 11

(M2) p C {b(x, ε) : x ∈ X}, for each rational ε > 0.

Notice that from (M2) follows by localization that

(8) V C V (ε) = V ∧ {b(x, ε) : x ∈ X}.

All balls in V (ε) have radius at most ε.

Lemma 3.1 Let X be a LCM space. Then for S ⊆ X and U,V ⊆ M(X)

S <∗ U C V =⇒ S <∗ V.

Proof Suppose S <∗ U C V . Then there is F = {b1, . . . , bn} ⊆ M(X) with S∗ ⊆ F∗
and F < U . We find for each index i = 1, . . . , n, some ai ∈ U with bi < ai . Pick ci

with bi < ci < ai . Now ai C V , so ai l V . Hence there is a f.e. Gi ∈ A(bi, ci) with
Gi < V . Thus G = G1∪· · ·∪Gn is f.e. and S∗ ⊆ G∗ and G < V . That is S <∗ V .

Two sets of neighbourhoods U and U′ are said to be equivalent (U ∼ U′ ) if U C U′

and U′C U .

Lemma 3.2 Let X and Y be LCM spaces. Let U,U′ ⊆ M(X) and V,V ′ ⊆ M(Y) and
suppose that U ∼ U′ and V ∼ V ′ . Then f : (X,U) // (Y,V) continuous implies
that f : (X,U′) // (Y,V ′) is continuous.

Proof Suppose f : (X,U) // (Y,V) continuous. Consider an arbitrary p < U′ .
Then there is a ∈ U′ and q with p < q < a. As U ∼ U′ , we have a C U . Hence also
a l U . Thus there is a f.e. F = {p1, . . . , pn} ∈ A(p, q) with F < U . By assumption
f is uniformly continuous on each (pi)∗ . Hence f is uniformly continuous also on
p∗ ⊆ F∗ . Moreover by assumption, f [(pi)∗] <∗ V . It follows that f [F∗] <∗ V . By
Lemma 3.1 and V C V ′ , we get f [F∗] <∗ V ′ . Since f [p∗] ⊆ f [F∗] we get f [p∗] <∗ V ′ .
Thereby we have proved that f : (X,U′) // (Y,V ′) is continuous.

Corollary 3.3 Let X be a LCM space and let U ⊆ M(X) be a set of formal balls.
Then the identity function i on U∗ gives an isomorphism

i : (X,U) // (X, Ũ)

in FLCM. Here Ũ = {a ∈ M(X) : a C U}, the saturation of U .

By this corollary it is enough to consider objects (X,U) in FLCM where U ⊆ M(X)
is a saturated subset with respect to the cover relation of M(X). Let SLCM denote the
full subcategory of FLCM determined by such objects.
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12 Erik Palmgren

Corollary 3.4 The functor J : FLCM // SLCM given by J(X,U) = (X, Ũ) and
J(f ) = f and the inclusion functor in the reverse direction, form an equivalence of
categories. In particular we have that J : FLCM // SLCM is full and faithful.

Proof This follows from Corollary 3.3 and Lemma 3.2.

3.1 Open sublocales

Let X = (X, C ,≤) be a formal topology, and let G ⊆ X be a set of neighbourhoods.
Then the open subspace X|G of X determined by G is defined as follows. Let X|G =
(X, C ′,≤), which is as X except that we change the cover relation C of X to be the
one defined by

a C ′U ⇐⇒def a ∧ G C U.

Note that U1 C ′U2 iff U1 ∧ G C U2 ∧ G. Hence only the parts covered by G counts
when comparing two open sets. Also if G ∼ G′ then

a ∧ G C U ⇐⇒ a ∧ G′C U.

It is thus sufficient to consider Gs that are saturated subsets of X . Such subsets are
necessarily down-closed, i.e. G≤ = G.

We have the following useful results about regular formal topologies. Recall that a
formal topology X = (X,≤, C ) is regular if for all b ∈ X ,

b C wc(b)

where wc(b) = {a ∈ X : a ≪ b} and

a ≪ b⇐⇒def X C a⊥ ∪ {b},

and moreover a⊥ = {u ∈ X : u ∧ a C ∅}.

Lemma 3.5 Let X be a formal topology and let G ⊆ X be an arbitrary set of
neighbourhoods. If X is regular, then so is X|G .

Proof Suppose that X = (X,≤, C ) is regular. We prove that X|G = (X,≤, C ) is
regular. Now let a⊥

′
, ≪′ and wc′(b) be the terms for X|G involved in the definition of

regularity. We wish to prove b C ′wc′(b), i.e. that for an arbitrary d ≤ b with d ≤ G
we have d C wc′(b). By regularity of X : d C wc(d). Now wc(d) ⊆ wc′(b), as for any
a:

a⊥ ∪ {d}C a⊥
′ ∪ {b}.

Thus d C wc(d) ⊆ wc′(b).
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Lemma 3.6 Suppose that F,G : X // Y are continuous morphisms between formal
topologies, where Y is regular. If F ⊆ G, then F = G.

Proof Suppose that F ⊆ G. Since Y is regular we have for any b that G−1b C G−1[wc(b)].
To prove G ⊆ F it will thus be enough to prove

G−1[wc(b)] C F−1b.

Suppose that a G c with c ≪ b. Thus Y C c⊥ ∪ {b}. Hence by (A3) for F and
localization we obtain

a C F−1[c⊥ ∪ {b}] ∧ a.

To prove a C F−1b it is enough to show

F−1[c⊥ ∪ {b}] ∧ a C F−1b.

Suppose that u ≤ a, u F d where d ∈ c⊥ ∪ {b}. In case d = b, u ∈ F−1b and so
u C F−1b is clear. In case d ∈ c⊥ , it holds that d∧ c C ∅. Now u F d implies u G d by
assumption and as u ≤ a we gave also u G c. Hence

u C G−1[d ∧ c] C G−1[∅] C ∅.

Thus, trivially, also u C F−1b.

Lemma 3.7 Let X and Y be formal topologies and let U ⊆ X and V ⊆ Y be
saturated subsets. Suppose that F,G : X|U // Y|V are continuous mappings with
F ∩ (U × V) ⊆ G. Then F ⊆ G.

Proof Suppose that a F b, with a ∈ X and b ∈ Y arbitrary. Then we have b C Y|V b∧V .
Hence by (A1) for F , and the definition of the covering relation in M|U

a ∧ U C X U ∧ F−1[b ∧ V].

But the assumption F ∩ (U × V) ⊆ G implies that

U ∧ F−1[b ∧ V] ⊆ U ∧ G−1[b ∧ V].

Hence a ∧ U C X U ∧ G−1[b ∧ V] C XG−1b and consequently a G b.
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3.2 Open sublocales of localic completions

Let X be a complete metric space, and let G ⊆ M(X) be a subset. The canonical metric
isomorphism jX : X // Pt(M(X)) restricts to a metric isomorphism

jX,G = G∗ // G∗ = Pt(M(X)|G) = Pt(M(X)|G̃)

i.e. jX,G(x) = {b(y, δ) ∈ M(X) : d(x, y) < δ}. Note that

b ∈ j(x)⇐⇒ x ∈ b∗.

Let X be a LCM space. For a saturated subset G ⊆ M(X), the open sublocale M(X)|G
has the following characterization of its cover relation

a C ′U ⇐⇒ a ∧ G l U.

Note that since G is down-closed with respect to < we get

(9) a ∧ G l U ⇐⇒ (∀b, c ∈ G)[b < c < a⇒ (∃U0 ∈ A(b, c))U0 < U].

Further, note that if c ∈ G then each set in A(b, c) is a subset of G.

Suppose that Y is an arbitrary metric space and that H ⊆ M(Y) is a saturated subset.
For F : M(X)|G // M(Y)|H the relation a C ′F−1V , where a ∈ G and V ⊆ H , is
characterized by
(10)
(∀b, c ∈ G)[b < c < a⇒ (∃{u1, . . . , un} ∈ A(b, c))(∃{v1, . . . , vn} < V)(∀i) ui F vi].

This follows since F−1V C ′F−1{v ∈ M(Y) : v < V}.

Theorem 3.8 Let X be a LCM space and let G be a subset of M(X). Let Y be a
complete metric space and H be a subset of M(Y). There are thus metric isomorphisms

jX,G : G∗ // Pt(M(X)|G̃) jY,H : H∗ // Pt(M(Y)|H̃)

Suppose F : M(X)|G̃ // M(Y)|H̃ is a continuous morphism. Then f : (X,G)
// (Y,H) defined as the composition j−1

Y,H ◦ Pt(F) ◦ jX,G is a continuous map in
FLCM. Moreover for a ∈ G̃, b ∈ H̃

a F b implies f [a∗] ⊆ b∗ .

Proof We make the abbreviations A = M(X)|G̃ and B = M(Y)|H̃ . Let p < G.
We prove that f is uniformly continuous on p∗ : Let ε > 0. Then by (8) we have
B C B H C B H(ε/2) . Thus for any a ∈ A

a C A F−1[B] C A F−1[H(ε/2)].
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Now p < G, so there some a ∈ G with p < a. Pick further b, c with p <

b < c < a. By the characterization (10) we get U = {u1, . . . , un} ∈ A(b, c) and
V = {v1, . . . , vn} < H(ε/2) with ui F vi for all i = 1, . . . , n. Since b v U < c, there
is a rational θ > 0 such that for all q ∈ A

(11) ρ(q) ≤ θ and q ≤ b =⇒ q ≤ U.

Write p = b(z, α) and b = b(z′, α). Since p < b, we can find θ′ > 0 with

(12) d(z, z′) + α+ θ′ < α′.

Then pick δ > 0 so that δ < θ/2, θ′/2.

To prove uniform continuity of f on p∗ we show that for x, y ∈ p∗ :

d(x, y) < δ =⇒ d(f (x), f (y)) ≤ ε.

Suppose x, y ∈ p∗ with d(x, y) < δ . Put q = b(x, 2δ). Then ρ(q) < θ and q ≤ b
by (12) and x ∈ p∗ . Thus by (11) there is some i with q ≤ ui . As ui F vi , we have
a fortiori q F vi . Now x, y ∈ q∗ so f (x), f (y) ∈ (vi)∗ . Hence d(f (x), f (y)) ≤ ε as the
radius of vi is no greater than ε/2.

We verify the second condition for a morphism of FLCM. Suppose p < G. Let ε = 1
(in fact, any positive rational number would work) and let p < b < c < a, U and V be
as obtained above. From b v U follows that p∗ ⊆ b∗ ⊆ U∗ . We have f [(ui)∗] ⊆ (vi)∗
and hence f [p∗] ⊆ V∗ . Since V < H(ε/2) ≤ H , we have indeed f [p∗] <∗ H .

4 The embedding functor

For a continuous map f : (X,U) // (Y,V) in FLCM we define two relations
Df ,Bf ⊆ U × V

a Df b⇐⇒ (∃b′ ∈ V)f [a∗] ⊆ b′∗& b′ < b

and
a Bf b⇐⇒ (∃a′ ∈ U)a < a′& a′Df b.

Lemma 4.1 Let f : (X,U) // (Y,V) be continuous map in FLCM where U and
V are saturated sets of formal balls. Suppose that a < b < U and C,E ⊆ V satisfies

f [b∗] <∗ C and C v E .

Then there is S ∈ A(a, b) with

(∀d ∈ S)(∃e ∈ E) d Bf e
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Proof From f [b∗] <∗ C follows that there are formal balls c1, . . . , cn ∈ C and
c′1, . . . , c

′
n ∈ V with

f [b∗] ⊆ {c′1, . . . , c′n}∗ c′i < ci {c1, . . . , cn} v E.

Pick a rational γ > 0 so small that ci vγ E for all i = 1, . . . , n. Write

c′i = b(xi, αi) ci = b(yi, βi)

As c′i < ci we can find a rational θi > 0 with

(13) d(xi, yi) + αi + θi < βi.

Then take ε = min(θ1, . . . , θn, γ). Now f is uniformly continuous on b∗ , so there is
δ > 0 with

(14) (∀v,w ∈ b∗)[d(v,w) < δ =⇒ d(f (v), f (w)) < ε/2].

Since X is locally compact and a < b there is a S ∈ A(a, b) where each ball in S has
radius smaller than δ . (See Lemma 4.7 in [4].)

Now pick any d = b(z, σ) ∈ S . Thus d < b and z ∈ b∗ . Since f [b∗] ⊆ {c′1, . . . , c′n}∗ ,
we get f (z) ∈ (c′i)∗ for some i = 1, . . . , n. Thus d(f (z), xi) < αi . Hence by (13)

d(f (z), yi) + ε ≤ d(f (z), xi) + d(xi, yi) + ε < αi + d(xi, yi) + ε < βi.

This implies that b(f (z), ε) < ci . But ε ≤ γ and since ci vγ E , there is some e ∈ E
with

(15) b(f (z), ε) ≤ e.

Next let d′ = b(z, σ′) where σ′ is sufficiently small that σ < σ′ < δ and d < d′ < b.
We claim that

(16) f [d′∗] ⊆ b(f (z), ε/2)

This together with d < d′ and b(f (z), ε/2) < b(f (z), ε) and (15) yields

d Bf e

as required. We prove (16). Let v ∈ f [d′∗]. Thus v = f (u) for some u with
d(u, z) < σ′ < δ . By (14) we have d(f (u), f (z)) < ε/2. Thus v ∈ b(f (z), ε/2)∗ .

Let f : (X,U) // (Y,V) be a continuous map in FLCM where U and V are
saturated sets of formal balls. We shall define a morphism of formal topologies

Af : M(X)|U // M(Y)|V

by
a Af b⇐⇒def a C M(X)|U D−1

f [b ∧ V].

The right hand side is equivalent to a ∧ U C M(X) D−1
f [b ∧ V]
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Lemma 4.2 If f : (X,U) // (Y,V) a continuous map in FLCM , where U and
V are saturated, then Af : M(X)|U // M(Y)|V is a continuous morphism between
formal topologies.

Proof Let M1 = M(X)|U and M2 = M(Y)|V . We verify the continuity conditions for
A = Af . Explicitly these are

(A1) a A b and b C M2W ⇒ a C M1 A−1W ,

(A2) a C M1 W and (∀c ∈ W)c A b ⇒ a A b,

(A3) M1 C M1 A−1[M2],

(A4) a A b1 and a A b2 ⇒ a C M1 A−1[b1 ∧ b2].

We notice that (A2) is immediate by the transitivity of C M1 . To verify the other
conditions it useful to note that

(17) a C M1 A−1W ⇐⇒ a C M1 D−1[W ∧ V]

where D = Df .

Proof of (A1): Suppose a A b and b C M2W . By (17) it is sufficient to establish
a C M1 D−1[W ∧ V]. Since a A b means a C M1 D−1[b ∧ V], it is enough to prove

D−1[b ∧ V] C M1 D−1[W ∧ V].

Take q ∈ D−1[b∧ V]. By the axiom (M1) we need only to prove q′C M1 D−1[W ∧ V]
for an arbitrary q′ < q. Let q′ < q. Pick q′′ with q′ < q′′ < q. There is d ∈ b∧V with
q D d . Hence there is c < d with f [q∗] ⊆ c∗ . Since U and V are saturated, they are
also down-closed. Thus q, q′ ∈ U and c, d ∈ V . Now b C M2 W and d ∈ b∧V implies
d C M(Y) W ∧ V . By (5) we thus have d l W ∧ V . Pick c′, c′′ so that c < c′ < c′′ < d .
Hence there is E ∈ A(c′, c′′) with E < W ∧ V . We have f [q′′∗] ⊆ f [q∗] <∗ {c′} and
{c′} v E . Then we can apply Lemma 4.1 and get S ∈ A(q′, q′′) with

(∀u ∈ S)(∃e ∈ E)u Bf e.

Thus
S ⊆ D−1[W ∧ V].

Since q′ v S , we have q′C M(X) S and thus q′C M(X) D−1[W ∧ V].

Proof of (A3): By (17) it is sufficient to show M1 C M1 D−1[M2 ∧V]. But since U and
V are both down-closed, this is equivalent to verifying U C M(X) D−1V . By (5) this is
in turn equivalent to U l D−1V . Take an arbitrary a ∈ U and take arbitrary b and c
with b < c < a. Now c < U , so by the continuity of f there is P = {p1, . . . , pn} < V
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with f [c∗] ⊆ P∗ . Thus we find E = {q1, . . . , qn} ⊆ V with pi < qi and further
C = {p′1, . . . , p′n} with pi < p′i < qi . This implies that f [c∗] <∗ C and C v E . By
Lemma 4.1 we get S ∈ A(b, c) with

(∀d ∈ S)(∃e ∈ E) d Bf e.

But d Bf e and e ∈ E ⊆ V implies d < D−1V . Hence b v S < D−1V . Thus also
b C M1 D−1V . Now since a C M1 {b ∈ U : b < a} by axiom (M1) we get by transitivity
a C M1D−1V . Hence U C M1D−1V .

Proof of (A4): Suppose a A b1 and a A b2 . By (17) and localization,

a C M1 D−1[b1 ∧ V] ∧ D−1[b2 ∧ V] = D−1[b1 ∧ V] ∩ D−1[b2 ∧ V].

By (17) it is enough to show a C M1 D−1[b1 ∧ b2 ∧V]. This is done as soon as we have
shown

D−1[b1 ∧ V] ∩ D−1[b2 ∧ V] C M(X) D−1[b1 ∧ b2 ∧ V].

Let d be an arbitrary element in the set on the left hand side. Thus there are c′i < ci ∈
bi ∧ V with f [d∗] ⊆ (c′i)∗ . Moreover V is down-closed so ci ∈ V and ci ≤ bi . Write
ci = b(zi, γi) and c′i = b(z′i, γ

′
i ). Pick ε > 0 small enough that

(18) d(z′i, zi) + γ′i + 2ε < γi,

for i = 1, 2. We wish to prove d C M(X) D−1[b1 ∧ b2 ∧ V]. We use (5). Suppose that
d′ < d′′ < d . It is enough to find C ∈ A(d′, d′′) with C < D−1[b1 ∧ b2 ∧ V]. Pick p
so that d′′ < p < d . We have d ∈ U , so p < U . The function f is thus uniformly
continuous on p∗ and we find δ > 0 with

(19) (∀x, y ∈ p∗)[d(x, y) < δ =⇒ d(f (x), f (y)) < ε].

Now as X is locally compact there is C = {b(u1, α1), . . . , b(un, αn)} ∈ A(d′, d′′) where
αj < δ for all j = 1, . . . , n. (Lemma 4.7 of [4].) We may find a small β > 0 so that
b(uj, αj +β) < d′′ and αj +β < δ for all j = 1, . . . , n. To prove C < D−1[b1∧b2∧V]
it is now sufficient to demonstrate that b(uj, αj + β) ∈ D−1[b1 ∧ b2 ∧ V] for each j.
Now uj ∈ d′′∗ ⊆ p∗ and (19) gives

f [b(uj, αj + β)∗] ⊆ b(f (uj), ε)∗.

Obviously b(f (uj), ε) < b(f (uj), 2ε), so if we can show b(f (uj), 2ε) ∈ b1 ∧ b2 ∧ V we
are done. To do this we show that b(f (uj), 2ε) < ci = b(zi, γi) for i = 1, 2. This is the
same as proving

(20) d(f (uj), zi) + 2ε < γi.
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Since f (uj) ∈ f [p∗] ⊆ f [d∗] ⊆ c′i and d(f (uj), z′i) ≤ γ′i we have

d(f (uj), zi) + 2ε ≤ d(f (uj), z′i) + d(z′i, zi) + 2ε ≤ γ′i + d(z′i, zi) + 2ε.

Thus by (18) we get the desired (20).

Lemma 4.3 Let f : (X,U) // (Y,V) be a continuous map in FLCM, where U
and V are saturated. Then the diagram

(Y,V) Pt(M(Y)|V )
jY,V

//

(X,U)

(Y,V)

f

��

(X,U) Pt(M(X)|U)
jX,U // Pt(M(X)|U)

Pt(M(Y)|V )

Pt(Af )

��

commutes.

Proof Let x ∈ U∗ . Then using that points split covers we get

Pt(Af )(jX,U(x)) = {b ∈ M(Y)|V : (∃a ∈ jX,U(x)) a Af b}
= {b ∈ M(Y)|V : (∃a ∈ jX,U(x)) a ∈ U & a Df b}
= {b ∈ M(Y)|V : (∃a ∈ U)(∃c ∈ V) x ∈ a∗ & f [a∗] ⊆ c∗ & c < b}

For any b ∈ Pt(Af )(jX,U(x)), we have f (x) ∈ b∗ and so b ∈ jY,V (f (x)). Conversely,
suppose that b ∈ jY,V (f (x)). Thus f (x) ∈ b∗ . Since x ∈ U∗ , we have also f (x) ∈ V∗ .
Take d ∈ V with f (x) ∈ d∗ . Chose ε > 0 so small that q = b(f (x), ε) < b and q < d .
Let δ > 0 be so small that both p = b(x, δ) < U and (by continuity of f ) f [p∗] ⊆ q∗ .
Therefore b ∈ Pt(Af )(jX,U(x)).

Lemma 4.4 Let X and Y be LCM spaces. Suppose that U ⊆ M(X) and V ⊆ M(Y)
are saturated sets. Let F : M(X)|U // M(Y)|V be a continuous map. Then F = Af

where f : (X,U) // (Y,V) is given by

f = j−1
Y,V ◦ Pt(F) ◦ jX,U.

Proof Since M(Y) is a regular formal topology the open subspace M2 = M(Y)|V is
regular too (Lemma 3.5). Thus to prove F = Af it is, by Lemma 3.6, sufficient to
check that F ⊆ Af . By Lemma 3.7 it is enough to verify that F ∩ (U × V) ⊆ Af .
Assume that a F b where a ∈ U and b ∈ V . By axiom (M1) b C M2 {p : p < b}
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where M2 = M(Y)|V . Thus a C M1 F−1{p : p < b} and hence by localization
a C M1 U ∧ F−1{p : p < b}. We prove

U ∧ F−1{p : p < b} ⊆ A−1
f b.

If c is in the left hand side, we have c ∈ U and c F p for some p < b. Hence by
Theorem 3.8, f [c∗] ⊆ p∗ . Thus c Df b, and hence c ∈ A−1

f b. Thus a C M1 A−1
f b.

Therefore a Af b.

Theorem 4.5 There is a full and faithful functor M : SLCM // FTop given by

M(X,U) = M(X)|U and M(f ) = Af .

By composition
MJ : FLCM // FTop

is a full and faithful functor as well. Further composition gives a fully faithful functor

MJK : OLCM // FTop,

where K(X,U) = (X,H(U)) and K(f ) = f .

Proof Functoriality of M : To prove this we employ the functoriality of Pt. Let (X,U)
be an object in SLCM. By Lemma 4.4 we have idM(X,U) = Ah where

h = j−1 ◦ Pt(idM(X,U)) ◦ j = j−1 ◦ idPt(M(X,U)) ◦ j = j−1 ◦ j = id(X,U).

Let g : (X,U) // (Y,V) and f : (Y,V) // (Z,W) be continuous functions in
SLCM. Using functoriality of Pt and Lemma 4.3 one obtains

j−1 ◦ Pt(Af ◦ Ag) ◦ j = j−1 ◦ Pt(Af ) ◦ j−1 ◦ j ◦ Pt(Ag) ◦ j = f ◦ g.

By Lemma 4.4 we have Af ◦ Ag = Ah where h is the left hand side in the equation
above. Thus h = f ◦ g. This establishes functoriality of M .

Fullness: For any F : M(X,U) // M(Y,V) we have by Lemma 4.4 some f : (X,U)
// (Y,V) so that F = Af = M(f ).

Faithfulness: If M(f ) = M(g), then Af = Ag and so by Lemma 4.3

f = j−1 ◦ Pt(Af ) ◦ j = j−1 ◦ Pt(Ag) ◦ j = g.

The functors J : FLCM // SLCM and K : OLCM // FLCM both are full and
faithful according Corollary 3.4 and Corollary 2.11 respectively.
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Finally, we can prove what was stated at the end of Section 2: that the point-wise
structure of the objects in FLCM is not enough, unless we assume non-constructive
axioms. We have:

Proposition 4.6 Let X be a compact metric space. Then X is covering compact if for
any P ⊆ M(X),

P∗ = X =⇒ (X,P) ∼= (X,H(X)).

Proof Assume that the condition holds. Suppose that P ⊆ M(X) and suppose that
P∗ = X . Then (X,P) ∼= (X,H(X)) by the condition. Thus since M is functor we
have M(X,P) ∼= M(X,H(X)) ∼= M(X). Now M(X) is compact, since X compact, so
M(X,P) must be compact as well. We have

M(X) C M(X,P) P.

By compactness of M(X,P) there is a f.e. F ⊆ P with M(X) C M(X,P) F . Hence
P C M(X) F , but then also P∗ ⊆ F∗ . Thus P has a f.e. point-wise subcover F . This
shows that X is covering compact.
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