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Representation of Integers: A nonclassical point of view
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Abstract: In [2], A. Boudaoud asked the following question: Which n ∈ N
unlimited can be represented in the form n = s + ω1ω2 , where s ∈ Z is limited
and ω1 , ω2 ∈ N are unlimited? In this paper we partially answer this question, ie
we present some families of unlimited positive integers which can be written as the
sum of a limited integer and the product of at least two unlimited positive integers.
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1 Introduction

The study of representation of integers has a long history. By the Fundamental Theorem
of Arithmetic, every positive integer has a unique prime factorization. That is, any
integer n > 1 is represented by a product of prime powers, ie

(F1) n = pk1
1 pk2

2 . . . p
kr
r

where p1, p2, . . . , pr are distinct primes and k1, k2, . . . , kr are positive integers. This
representation of n, which is unique, is called the canonical factoring of n into
prime powers or the standard factorization. When the numbers are sufficiently large,
no efficient, non-quantum integer factorization algorithm is known even though a
modification of Fermat’s difference of squares method is used for factoring large
integers. For further reference, we recall that ω(n) and Ω (n) are defined by ω(n) = r
which is the number of distinct prime divisors of n and Ω (n) = k1 + k2 + · · · + kr

which is the total number of prime factors of n.

A positive integer n can be, under suitable conditions, represented as a sum of two
squares (Nathanson [11, page 427]) or three squares (Mollin [13, page 252]), (for
example, 13 = 32 + 22 and 126 = 102 + 52 + 12 ) or as the difference of two squares
as in Fermat’s factorization method [13, page 203]. A partition of a nonnegative integer
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n is a representation of n as a sum of natural numbers, called parts or summands of
the partitions [11, page 455]. The order of the summands does not matter. Thus, we
write n = n1 + n2 + · · ·+ nl , where n1 ≥ n2 ≥ · · · ≥ nl . For example, the partitions
of 4 are: 4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1. We denote the number of such
partitions by p(n).

The classical results dealing with the subject of factorization give generally the number of
positive integers n in an interval [1, x] whose factorization satisfies a desired condition,
which do illustrate that there is some interest in knowing whether there are numbers in
some interval having a factorization with a given property. In the following we will cite
some examples satisfying this fact:

1. We have the well known result that, for every integers n ≥ 0 and k ≥ 1, there is
exactly one integer of the set {n + 1, n + 2, . . . , n + k} which is divisible by k .

2. In Nathanson [11, Theorem 8.9, page 283], we have, for x ≥ 2,∑
n≤x

ω(n) = x log log x + b1x + O
(

x
log x

)
where b1 is a positive real number.

3. In Nathanson [11, Hardy–Ramanujan Theorem, page 285], we have, for every δ >
0, the number of integers n ≤ x such that |ω(n)− log log n| ≥ (log log x)(1/2)+δ

is o(x).

4. In Jakimczuk [9] we also have, for a fixed positive integer k ≥ 2, the number of
2 ≤ n ≤ s having the greatest prime factor strictly greater than n/k is equivalent1

to Cks/ log s for some constant Ck . We can cite several other results of this kind.

Notice that in the intervals indicated in these examples, we do not know which are the
integers having sufficient prime factors in their canonical factorization even if the length
of the interval is unlimited.

Let n be an arbitrary large positive integer. In [2, 3], Boudaoud sought to represent
an integer which is in a small neighborhood of n as the product of two large positive
integers. Hence the natural framework of this idea is the nonstandard mathematics (see
Diener and Reeb [7], F. Diener and M. Diener [8]), because in such a language we
can use the words: small, large, etc. Therefore in the framework of the nonstandard

1Two number-theoretic functions F and G are said to be equivalent whenever F(s)
G(s) → 1 as s

tends to ∞.
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mathematics, we take n to be an unlimited positive integer and we look for a standard
integer s, which is possibly equal to zero, such that n− s = ω1ω2 , ie

(F2) n = s + ω1ω2

where ω1, ω2 are two unlimited positive integers. Note that (F2) is equivalent to
n− s = pk1

1 pk2
2 · · · pkr

r , where ω (n− s) is unlimited or Ω (n− s) is unlimited or there
exists an unlimited prime factor pij of n− s, ie 1 ≤ ij ≤ r , such that kij ≥ 2 or there
exist at least two unlimited distinct prime factors pij1 , pij2 of n− s, ie 1 ≤ ij1 ,ij2 ≤ r
with ij1 6= ij2 . Furthermore, it raises a question concerning the uniqueness of the limited
s which is involved in (F2). That is, we look in an interval of limited length containing
n, for integers written as the product of two unlimited integers.

Of course we can generalize the form (F2), while keeping the same conditions on limited
s and adding conditions on the factors ω1 and ω2 ; for example assume that an integer n
is representable as

(F3)
{

n = s + ω1ω2

m | ω1ω2,

where m is an integer greater than or equal to 2.

We study in this work the representation of integers of certain families in the form (F2)
and sometimes in the form (F3). We also note that the problem of representing of any
unlimited integer n in the form (F2) is still open. Also, we deal with the representation
of unlimited natural numbers as the sum of a limited integer and the product of at least
three unlimited positive integers, that is,

(F4) n = s + ω1ω2 · · ·ωk

where s ∈ Z is limited and ω1, ω2, . . . , ωk are unlimited positive integers with k ≥ 3.

2 Main results

2.1 General theorem of representation

Theorem 2.1 Any unlimited positive integer n can be represented in one of the
following two forms:

I. n = ω1ω2 + (ω3)2 , where ω1, ω2 ∈ Z are unlimited and ω3 ∈ N is also unlimited.

II. n = s + ω1ω2 , where s ∈ Z+ is limited and ω1 , ω2 are unlimited positive
integers satisfying ω1

ω2
∼= 1.
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Proof We distinguish the following cases:

A) n is a square. Then n is in form II.

B) n is not a square. In this case there exists an unlimited positive integer a with
a < n such that n − a2 is odd and positive. Now if n − a2 is limited, then
n =

(
n− a2

)
+ a2 and therefore n is in form II; otherwise, from Mollin [13,

Exercise 6.2, page 251], n− a2 = b2 − c2 for some b, c > 0 with b is unlimited,
and hence n = a2 + b2 − c2 . Now we distinguish the following cases:

B.1) t1 = b− c and t2 = a− c are limited. Then b = t1 + c and a = t2 + c.
Hence n = (t2 + c)2 + (t1 + c)2 − c2 = c (2t2 + 2t1 + c) + t2

1 + t2
2 . In this

case c must be unlimited; otherwise, n becomes limited. Then, n is in form
II.

B.2) One of the numbers t1 = b− c and t2 = a− c is unlimited. In this case,

n =

{
(b− c) (b + c) + a2, if b− c is unlimited
(a− c) (a + c) + b2, if a− c is unlimited.

Thus, in both cases, n is in form I.

This completes the proof of Theorem 2.1.

Corollary 2.2 There are an infinity of values of n which can be represented simulta-
neously as stated in the two forms of Theorem 2.1.

Proof Let a, b be positive integers and let m = a2 + b2 . Let c, d be positive integers
such that c or d is unlimited. Let us assume furthermore that ad−bc = s′ is limited and
ac− bd is unlimited. For instance, consider the numbers a = ω, b = ω − 1, c = ω − 1
and d = ω − 2 with ω is an unlimited positive integer, which satisfy our assumption.

Now, for n = c2 + d2 ∼= +∞, it follows from Lagrange’s identity (Jarvis [10, Lemma
1.18, page 9]) that mn =

(
a2 + b2

) (
c2 + d2

)
= (ac− bd)2 + (ad + bc)2 = ω1ω2 +ω2

3 ,
where ω1 = ω2 = ac− bd and ω3 = ad + bc are unlimited. On the other hand, we
also have mn = (ad − bc)2 + (ac + bd)2 = s + ω1ω2 , where s =

(
s′
)2 is limited and

ω1 = ω2 = ac + bd is unlimited. This completes the proof.

Recall that in Boudaoud [2], the following result has been proved.

Theorem 2.3 Assuming Dickson’s conjecture (Dickson [6]), for each couple of integers
q and k , there exists an infinite subset Lq,k ⊂ N such that, for each of the integers
n ∈ Lq,k and all integers s satisfying 0 < |s| ≤ q, we have n + s = |s| t1t2 · · · tk , where
t1 < t2 < · · · < tk are prime integers.
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Corollary 2.4 There exist infinitely many natural numbers n such that each of them
satisfies: ∀sts ∈ Z∗ = Z−{0} : n + s = |s| p, where p is prime.

Proof The proof follows immediately from Theorem 2.3 by taking q ∼= +∞ and
k = 1.

We deduce from the construction made in Theorem 2.3 that there exists a family formed
by an infinity of unlimited natural numbers n such that each of these numbers is of the
form ω1ω2 , where ω1, ω2 are two unlimited positive integers, and satisfies:

∀sts ∈ Z∗, n + s = |s| p

This means that for every limited integer s ∈ Z∗ the integer n + s cannot be the product
of two unlimited positive integers. Then every integer n of the considered infinite
family can be written in (F2) for a unique s (in this case s = 0). Thereby the question
that arises now is the following: Is there an unlimited positive integer n which is of
the form n = ω1ω2 , where ω1 , ω2 are two unlimited positive integers, and at the same
time n can be written in (F2), where s ∈ Z∗ is a limited integer? The answer to this
question is in the following examples, where at first we deal with unlimited integers of
the form nk with k ≥ 2.

Proposition 2.5 Let n be an unlimited positive integer and let k ≥ 2 be a limited
integer. Then nk is of the form tk + ω1ω2 , where t ∈ Z∗ is limited and ω1, ω2 are two
unlimited positive integers.

Proof Let m be an unlimited positive integer such that n− m = t 6= 0 is limited. We
see that

nk = nk − mk + mk

= (n− m)
(
nk−1 + nk−2m + nk−3m2 + · · ·+ nmk−2 + mk−1)+ mk

= t
[
(m + t)k−1 + (m + t)k−2 m + · · ·+ (m + t) mk−2 + mk−1]+ mk

= m
[
mk−1 + ktmk−2 + c3t2mk−3 + c4t3mk−4 + · · ·+ ck−1tk−2m + ktk−1]+ tk

where c3, c4, · · ·, ck−1 are positive integers.

Remark 1 We can prove Proposition 2.5 as follows: Let m be an unlimited positive
integer such that t = n− m with t ∈ Z∗ is limited. Since n ≡ t (mod m), it follows
that nk ≡ tk (mod m). Then there exists a positive integer ω such that nk = tk + ωm.
In this case, ω is unlimited; otherwise,

0 = nk −
(
ωm + tk) = n

(
nk−1 − ω

)
+ ωt − tk ∼= +∞,

which is a contradiction.
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Corollary 2.6 Let k ≥ 1 and let pk (x) be a standard integer-valued polynomial of
degree k whose leading coefficient is positive. For any unlimited positive integer n,
npk (n) is of the form s + ω1ω2 , where s ∈ Z∗ is limited and ω1, ω2 are two unlimited
positive integers.

Proof Since the polynomial pk is standard, then there exists a limited integer t0 ∈ Z∗
such that pk (t0) 6= 0. Let m, n be two unlimited positive integers such that n− m = t0 .
Since npk (n) ≡ t0pk (t0) (mod m), then npk (n) = t0pk (t0) + ωm, for some unlimited
integer ω ; otherwise,

0 = npk (n)− (mω + t0pk (t0)) = n (pk (n)− ω) + t0 (ω − pk (t0)) ∼= +∞

since pk (n) ∼= +∞, which is a contradiction.

Let dxe denote the least integer greater than or equal to x . We have

Theorem 2.7 Let p and q be two unlimited positive integers which are of the same
parity, ie they are both odd or both even. If the difference p− q is a nonzero limited
integer then the number

⌈√
pq
⌉2 is of the form s + pq, where s ∈ Z∗ is limited.

Proof Without loss of generality assume that p > q. Set A = p+q
2 and B = p−q

2 .
Since p − q ∈ N∗ is limited, B <

√
2A− 1. Therefore,(A− 1) <

√
A2 − B2 < A,

hence,
⌈√

A2 − B2
⌉

= A. Thus,
⌈√

pq
⌉

= p+q
2 . It follows that

d√pqe2 − pq =

(
p + q

2

)2

− pq

d√pqe2 =

(
p− q

2

)2

+ pq.and so

Since p and q are of the same parity, p− q is even, say s. That is, s = 2
∼
s for some

∼
s ≥ 1. Consequently,

⌈√
pq
⌉2

=
( s

2

)2
+ pq =

(∼
s
)2

+ pq, as required.

Remark 2 As we stated for p and q in Theorem 2.7, we can also prove that d√pqe =
p+q

2 by another method. First we recall the following well known formula

(1)
{ √

1 + x = 1 + 1
2 x− 1

8 x2 + o
(
x2
)

o
(
x2
)

= x2θ (x) , where θ (x)→ 0 as x→ 0

for a standard function θ . Estimate
√

pq for p = q + s. That is,
√

pq = q
√

1 + s
q .

Then by (1),
√

1 + s
q = p+q

2q + s2

q2

(
− 1

8 + θ
(

s
q

))
. It follows that

√
pq = p+q

2 +
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s2

q

(
− 1

8 + θ
(

s
q

))
. Since s

q
∼= 0 and θ (x)

x→0
→ 0, then θ

(
s
q

)
∼= 0. Consequently,

s2

q

(
− 1

8 + θ
(

s
q

))
is infinitesimal and strictly negative. This proves the assertion.

2.2 Representation via the perturbation of the factors of n

In this section we take n = pq, where p and q are two unlimited positive integers
linked together by the relation p = q − t . We aim to write n in the form (F2), ie
n = pq = s +ω1ω2 with s ∈ Z∗ limited and ω1 , ω2 are two unlimited positive integers.
For this purpose, we put ∆ = (p+s1)(q+s2), where s1, s2 are two integers not both zero.
Hence, ∆ = pq + q (s1 + s2) + (s1s2 − ts2). Thus, pq = ∆ + (ts2 − s1s2)− q (s1 + s2),
ie

(2) n = (p + s1) (q + s2) + (ts2 − s1s2)− q (s1 + s2) .

In the following, it is required that for any choice of t , s1 and s2 the sums p + s1 and
q + s2 are unlimited positive integers, and that (ts2 − s1s2)− q (s1 + s2) is a nonzero
limited integer. We start by choosing t while the choice of the other parameters (such
as s1 , s2 ,. . . ) comes after. For this reason we distinguish two cases for t .

a) t is limited.

Theorem 2.8 Let n be an unlimited positive integer which is of the form n = pq,
where p = q− t and q ∼= +∞. Then n is written in the form n = s + ω1ω2 , such that
s 6= 0 is a limited integer and ω1 , ω2 are two unlimited positive integers.

Proof We have n = pq = (q− t) q. Let us take s1 = l and s2 = −l, where l is a
limited integer such that tl− l2 6= 0. Thus, ∆ = (p + l) (q− l); equivalently,

∆ = pq− pl + lq− l2 = pq− (q− t) l + lq− l2.

Hence ∆ = pq + lt − l2 . Consequently, n = pq = ∆ + l2 − lt , as required.

Remark 3 In the case when t is limited we can prove Theorem 2.8 as follows. Let l
be a limited positive integer such l2 − lt 6= 0. Set m = q− l which is unlimited. Since
q is congruent to l (mod m), then n = q2 − qt ≡

(
l2 − lt

)
(mod m), and therefore

n = l2 − lt + k (q− l) for some k ≥ 1. Here, k is unlimited; otherwise,

0 = n−
[
l2 − lt + k (q− l)

]
= q (q− t − k) + l (k − l + t) ∼= +∞

which is a contradiction.
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Remark 4 In view of Remark 3, we can prove that k = m + 2l− t . In fact, let m, l be
as above. Then clearly n = (q− m) (q + m)− qt + m2 = l2 − lt + m (m + 2l− t).

b) t is unlimited.

Theorem 2.9 Let q, t, γ be positive integers satisfying the following conditions:

• γ 6= 0 is limited.

• q, t are unlimited.

• q2 ≡ γ (mod t) and q = at2 with a > 0 is a non infinitesimal real number.

If n = (q−t)q, then there exist two unlimited integers ω1 and ω2 such that n = γ+ω1ω2 .

Remark 5 By Adler and Coury [1, Theorems 5.11-5.12, page 130], we can choose t ,
γ and q such that q2 ≡ γ (mod t) with q = at2 with 0 < a is a noninfinitesimal real
number. For example, we can take t an unlimited prime of the form 1 + 12k , γ = 3
and this implies, by [1, Theorem 5.13 part (ii), page 131], the existence of a solution
q0 . Now if q0 is not like we want, then we add to it a multiple of t until we get the
desired value q. This implies that q− t ∼= +∞.

Proof of Theorem 2.9 From (2) we have γ = (ts2−s1s2)−q(s1+s2), then s2 = qs1+γ
t−s1−q .

If s1 = −q. Then s2 = −q2+γ
t ∈ Z, since by hypothesis t | −q2 + γ . Now

n = pq = ((q− t) + s1)(q + s2) + γ = −t
(

tq− q2 + γ

t

)
+ γ.

Since −t and tq−q2+γ
t are negative, then n = γ + ω1ω2 where ω1 = |−t| = t ∼= +∞,

ω2 =
∣∣∣ tq−q2+γ

t

∣∣∣ = −tq+q2−γ
t

∼= +∞. The proof of Theorem 2.9 is finished.

Theorem 2.10 Let r, t, γ be positive integers satisfying the following conditions:

• γ is a limited integer different from zero.

• r, t are unlimited.

• 2t2 ≡ γ (mod r).

If q = 2t + r and n = (q− t)q, then n = γ + ω1ω2 , where ω1, ω2 are two unlimited
integers.

Remark 6 For the choice of theses parameters we can consider the congruence 2x2 ≡ γ
(mod r). If we take for instance γ = 2, then this equation has a solution x = 1 + kr ,
and we can take t = 1 + kr with k a positive integer.
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Proof of Theorem 2.10 From (2) we have γ = (ts2 − s1s2)− q(s1 + s2), then s2 =
qs1+γ

t−s1−q . If s1 = −t , then s2 = −qt+γ
2t−q . This is an integer, since

s2 =
−qt + γ

2t − q
=
− (2t + r) t + γ

2t − 2t − r
= k + r

where k is a positive integer. Thus,

n = ((q− t) + s1)(q + k + r) + γ = (q− 2t) (q + k + r) + γ.

Then n = γ + ω1ω2 , where ω1 = q− 2t ∼= +∞, ω2 = q + k + r ∼= +∞.

Remark 7 Other similar results can be obtained by the methods used in the proofs of
Theorems 2.9 and 2.10.

Let n = qα1
1 qα2

2 · · ·qαs
s be an unlimited positive integer with Ω (n) ≥ 2, where s ≥ 1

is a limited integer and for i = 1, 2, . . ., s, qi is an unlimited prime and αi ≥ 1 is a
limited positive integer. We can now derive a representation of n in the form (F2) using
its representation as a product of prime factors:

Proposition 2.11 If there exists an integer m such that |qi − m| is a limited positive
integer for i = 1, 2, . . ., s, then there exists a limited integer t ∈ Z∗ such that
n = t + ω1ω2 , where ω1 and ω2 are two unlimited positive integers.

Proof Setting qi−m = ti , for i = 1, 2, . . ., s. Then each ti is a limited integer. Hence,
for each i, qi = ti + m. Consequently,

n = qα1
1 qα2

2 · · ·q
αs
s =

s∏
i=1

(ti + m)αi =

(
s∏

i=1

tαi
i

)
+ mk.

Note that the number
s∏

i=1
tαi
i is limited since s, (αi)1≤i≤s and (ti)1≤i≤s are also. Moreover,

since Ω (n) ≥ 2, then m, k are two unlimited positive integers, proving the desired
result.

Proposition 2.12 Suppose that n = pαqβ is the product of two distinct prime powers,
where α , β are unlimited and p, q are limited. Then n is of the form s + ω1ω2 , where
s ∈ Z∗ is limited and ω1, ω2 ∈ N are unlimited.

Proof We distinguish the following cases:

a) α , β are odd. In this case:

n = pq + pq
(

p
α−1

2 q
β−1

2 − 1
)(

p
α−1

2 q
β−1

2 + 1
)

Journal of Logic & Analysis 12:4 (2020)
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b) α is odd, β is even. In this case:

n = p + p
(

p
α−1

2 q
β
2 − 1

)(
p
α−1

2 q
β
2 + 1

)
c) α is even, β is odd. This case is the same as (b).

d) α , β are even. It is clear that:

n = 1 +
(

p
α
2 q

β
2 − 1

)(
p
α
2 q

β
2 + 1

)
This completes the proof.

In the case when n is an unlimited prime power we have:

Corollary 2.13 Let n = qα be an unlimited prime power with α ≥ 2. Then n is of the
form s + ω1ω2 , where s ∈ Z∗ is limited and ω1, ω2 are two unlimited positive integers.

Proof There are two cases:

Case 1. q is unlimited. In this case, we see that

n = 1 + qα − 1α = 1 + (q− 1)
(
qα−1 + qα−2 + · · ·+ q + 1

)
which is of the form 1 + ω1ω2 , where ω1, ω2 are two unlimited positive integers.

Case 2. q is limited. As in the proof of Proposition 2.12, we have

qα =

 1 +
(

q
α
2 − 1

)(
q
α
2 + 1

)
if α is even

q + q
(

q
α−1

2 − 1
)(

q
α−1

2 + 1
)

otherwise

as required.

Remark 8 Let n = pα1
1 pα2

2 · · ·pαr
r be an unlimited positive integer, where p1, p2, . . ., pr

are distinct prime numbers and α1, α2, . . ., αr are even positive integers. Set αi = 2βi

with βi ≥ 1 for i = 1, 2, . . ., r. Then for every limited integer s,

n = s2 + p2β1
1 p2β2

2 · · ·p
2βr
r − s2 = s2 +

(
pβ1

1 pβ2
2 · · ·p

βr
r − s

)(
pβ1

1 pβ2
2 · · ·p

βr
r + s

)
where pβ1

1 pβ2
2 · · ·p

βr
r − s and pβ1

1 pβ2
2 · · ·p

βr
r + s are unlimited. Therefore, n can be written

as the sum of a limited integer and the product of at least two unlimited positive integers.
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2.3 Representation of the values of certain polynomials in the form (F3)

In this part we consider polynomials f (x) with integer coefficients. In accord with the
general goal of this paper, we are looking for the integer values of x for which f (x) is
written in the form (F3).

Proposition 2.14 Let P be an odd unlimited positive integer. Let r be a positive
integer, and let pr denote the r th prime number. For every standard even integer t in Z,
and for every integer x, the polynomial x5 − x3 + P cannot be of the form t + ω1ω2 ,

where
r∏

i=1
pi | ω1ω2 .

Proof Let t ∈ Z be an even standard integer. Consider the congruence:

x5 − x3 + P− t ≡ 0

(
mod

r∏
i=1

pi

)
We remark that x5 − x3 + P is always odd because x5 − x3 is always even. The
congruence x5 − x3 + P− t ≡ 0 (mod 2) has no solution, since x5 − x3 + P− t is odd.
Consequently, the original congruence has no solutions.

Example 1 Consider the polynomial congruence

(3) xω − 14x− 4 ≡ 0
(
mod 7γ

)
where ω and γ are two unlimited positive integers such that 7 - ω . Find solutions
making the value of the polynomial representable in (F3).

Solution We first consider f (x) = xω − 14x− 4 and we look for unlimited solutions
that make the polynomial into form (F3). Set ω = 6q + r , where 0 ≤ r ≤ 5. Since 0 is
not a solution, we can use Fermat’s Theorem to conclude that for any solution x , x6 ≡ 1
(mod 7) and consequently x6q+r ≡ xr (mod 7). Thus, f (x) ≡ 0 (mod 7) reduces to
xr − 4 ≡ 0 (mod 7). Now, we distinguish the following cases:

a) r = 0. In this case the original congruence has no solutions, ie ∀x 7γ - f (x).

b) r = 1. This means that the unique solution is s1 = 4. Since f
′
(4) = ω.4ω−1 − 14

and 7 - f
′
(4) = ω.4ω−1 − 14, then, by Adler and Coury [1, Corollary 4.11, page

107], there exists precisely one solution sγ (4) of f (x) ≡ 0 (mod 7γ) such that
sγ (4) ≡ 4 (mod 7). Hence f

(
sγ (4)

)
=
(
sγ (4)

)ω − 14sγ (4)− 4 ≡ 0 (mod 7γ),
which implies that f

(
sγ (4)

)
= 0 + ω1ω2 , where ω1 and ω2 are two unlimited

integers and 7γ | ω1ω2 .
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c) r = 2. In this case the only solutions of f (x) ≡ 0 (mod 7) are −2, 2. Since
7 - f

′
(2) = ω.2ω−1 − 14 (respectively 7 - f

′
(−2) = ω. (−2)ω−1 − 14), then by

[1, Corollary 4.11, page 107] 2 (respectively −2) generates a unique solution
sγ (2) ( respectively sγ (−2)) modulo 7γ , where sγ (2) ≡ 2 (mod 7) (respectively
sγ (−2) ≡ −2 (mod 7) ). Hence f

(
sγ (2)

)
=
(
sγ (2)

)ω − 14sγ (2) − 4 ≡ 0
(mod 7γ) (respectively f

(
sγ (−2)

)
=
(
sγ (−2)

)ω−14sγ (−2)−4 ≡ 0 (mod 7γ)),
each can be written in form ω1ω2 , where ω1 and ω2 are two unlimited integers
and 7γ | ω1ω2 .

d) r = 3. The original congruence has no solutions. Indeed, first 7 is a prime, then
it has a primitive root. Since (7, 4) = 1, we note that (4)ϕ(7)/(3,ϕ(7)) = (4)2

which is not congruent to 1 modulo 7. Hence, by [1, Theorem 6.18, page 165],
the congruence f (x) ≡ 0 (mod 7) has no solution. Consequently the original
congruence has no solution, ie ∀x 7γ - f (x) when r = 3.

We are content with this, because the cases r = 4 and r = 5 are done in the same way
as above.

Example 2 Consider the polynomial congruence x12 ≡ 4 (mod 257). Find solutions
making the value of the polynomial representable in (F3).

Solution Since 257 is prime, 257 has a primitive root. Then, by Adler and Coury [1,
Theorem 6.18, page 165], the congruence is solvable if and only if 464 ≡ 1 (mod 257).
Since 257 = 1 + 8.32, 2 is a quadratic residue of 257, ie

(
2/257

)
= 1. Hence,

by Euler’s Criterion (see Mollin [13, Theorem 4.2, page 179]), 1 =
(
2/257

)
≡ 2128

(mod 257), which implies 2128 ≡ 1 (mod 257), ie
(
22
)64

= 464 ≡ 1 (mod 257).
Consequently, the equation in question is solvable and has 4 solutions.

If x1 is a solution then x1 is standard and it can not be equal to zero. It is easy to see
that x1 + 257ω , where ω ∈ N is unlimited, is also a solution. Then (x1 + 257ω)12 =

x12
1 + 257ω.ω̃ , where x12

1 is a limited integer and ω̃ is an unlimited positive integer.

Remark 9 In Example 2 we can use instead of 257 a prime number of the form 2k + 1
with k ≥ 1.

Proposition 2.15 For all unlimited integers ω , there exist an unlimited prime number
p and a positive integer n (n is minimal) such that ωn = 1 + λp, for some unlimited
positive integer λ.

Journal of Logic & Analysis 12:4 (2020)



Representation of Integers: A nonclassical point of view 13

Proof By Bertrand’s Postulate (Mollin [13, page 69]), there exists a prime number p
such that ω < p ≤ 2ω . Then p is an unlimited and (p, ω) = 1. Let us denote by n the
order of ω modulo p, ie n = ord (ω), so by the minimality of ord (ω), n is the smallest
one. Therefore,

(4) ωord(ω) = ωn = 1 + λp

for some positive integer λ. Since ω < p, then 2 ≤ ord (ω) = n. Moreover, it follows
from (4) that

(5) 1 =
1
ωn +

λp
ωn

which implies that λ must be an unlimited positive integer. Otherwise, the right hand
side of (5) would be infinitesimal and this is a contradiction.

Example 3 Let p be an unlimited prime number. Then:

a) If p is of the form 1 + 4k , then according to Adler and Coury [1, Theorem 5.11,
page 130] there exists an integer x̃ such that x̃2 = −1 + λ0p, for some positive
integer λ0 . Since x̃ + λp is also a solution for every λ ≥ 1, then there exists an
unlimited integer x such that x2 = −1 + ωp, for some unlimited ω ∈ N.

b) If p is of the form ±1 + 8k , then according to the previous example there exists an
unlimited integer x such that x2 = 2 + ωp, where ω ∈ N is unlimited.

c) If p is of the form ±3 + 8k , then there is no integer x satisfying the equation
x2 = 2 + ωp, where ω ∈ N is unlimited.

Example 4 Consider the congruence x2 ≡ 50 (mod p), where p is an unlimited prime
of the form p = 1 + 8k . Since 50 = 52 · 2, then

(
50/p

)
=
(
52 · 2/p

)
=
(
2/p
)

= 1 by
Adler and Coury [1, Theorem 5.12, page 130]. Thus, there exists an unlimited integer x
such that x2 = 50 + ωp, where ω is an unlimited positive integer.

Proposition 2.16 Let f (x, y) = ax2 + bxy + cy2 be a binary quadratic form with
integer coefficients a, b, c such that a > 0, gcd(a, b, c) = 1 and the discriminant
of f is 4(f ) = b2 − 4ac = d2 with d ∈ N. Let p ∼= +∞ be a prime number
such that (a, p) = 1. Then there are infinitely many couples (x, y) ∈ N2 such that
f (x, y) = s + ω1ω2 and p | ω1ω2 , where s is a limited integer and ω1, ω2 are two
unlimited positive integers. That is, f (x, y) can be written in the form (F3).

Proof By Buchmann and Vollmer [4, Formula 1.25, page 17], since b+d
2 and b−d

2 are
integers then

(6) f (x, y) =

(
a
d1

x +
1
d1

(
b + d

2

)
y
)(

a
d2

x +
1
d2

(
b− d

2

)
y
)
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where d1 = gcd
(
a, b+d

2

)
and d2 = gcd

(
a, b−d

2

)
. Let y be any positive integer such

that (yd, p) = 1.

Now we prove that the quadratic congruence

(7) ax2 + bxy + cy2 ≡ 0 (mod p)

has an infinity of solutions x ∈ N. Indeed, since (4a, p) = 1, we multiply the
congruence by 4a to get the equivalent congruence (2ax)2 + 4abxy + 4acy2 ≡ 0
(mod p); that is, (2ax + by)2 ≡ y2

(
b2 − 4ac

)
(mod p), and so, (2ax + by)2 ≡ (yd)2

(mod p). Since
(
(yd)2 /p

)
= 1, the last congruence has a solution x̃ which is a solution

for the congruence (7). Since x̃ + kp is a solution of congruence (7) for every integer
k ≥ 1, then (7) has infinitely many positive solutions. Hence the original congruence
f (x, y) ≡ 0 (mod p) has infinitely many solutions (x, y) ∈ N2 .

Let us finish the proof. By (6) and (7), we have for every solution (x, y),

(8) f (x, y) =

(
a
d1

x +
1
d1

(
b + d

2

)
y
)(

a
d2

x +
1
d2

(
b− d

2

)
y
)

= lp

where l is a positive integer. Let (x0, y) be a solution such that for every solution (x, y)
with x ≥ x0 , the factors a

d1
x + ( b+d

2d1
)y and a

d2
x + ( b−d

2d2
)y are unlimited positive integers.

Note that such x0 exists because we have an infinity of values of x for which (x, y) is a
solution. Hence for x ≥ x0 : f (x, y) = 0+

(
a
d1

x + 1
d1

( b+d
2 )
)(

a
d2

x + 1
d2

( b−d
2 )y

)
= ω1ω2 ,

where by (8) ω1ω2 = lp. That is, p | ω1ω2 .

Remark 10 Each y satisfying the condition (yd, p) = 1 allows us to obtain an infinite
family of solutions.

Next we look at another problem that actually generalizes (F2) and (F3).

2.4 Representation of integers in the form (F4)

We begin with the following propositions:

Proposition 2.17 Let k ≥ 2 be limited. Let n be an unlimited positive integer of the
form s + ω1ω2 where s ∈ Z∗ is limited and ω1, ω2 ∈ N are unlimited. Then nk can be
written in the form sk + ω1ω2ω3 such that ω3 ∈ N is also unlimited.

Proof Since n ≡ s (mod ω1ω2), then nk ≡ sk (mod ω1ω2). Thus, there exists a
positive integer ω3 such that nk = sk + ω1ω2ω3 , where ω3 is unlimited; otherwise,

0 = nk −
(
sk + ω1ω2ω3

)
= (s + ω1ω2)k −

(
sk + ω1ω2ω3

) ∼= +∞,

which gives us the required contradiction.
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We will prove that, for k ≥ 3, the value of ω3 in Proposition 2.17 depends on k as
follows: ω3 = wk + nk−1 , where wk is uniquely determined. More precisely:

Proposition 2.18 Let n be an unlimited positive integer of the form s + ω1ω2 , where
s ∈ Z∗ is limited and ω1, ω2 are two unlimited positive integers and let k ≥ 3 be limited.
Then there exists an unlimited positive integer ω3 such that nk = sk +ω1ω2

(
wk + nk−1

)
,

where:

wk =

{
sω3, for k = 3
sk−2ω3 + sk−3n2 + sk−4n3 + · · ·+ s2nk−3 + snk−2, for k ≥ 4

Proof The proof is by induction on k . Assume that k = 3. Since n ≡ s (mod (ω1ω2)),
then by Proposition 2.17 there exist two unlimited positive integers ω3, ω

′
3 such that:

(9)
{

n2 = s2 + ω1ω2ω3,
n3 = s3 + ω1ω2ω

′
3

Therefore, n3 = s3 + s2ω1ω2 + sω1ω2ω3 + ω2
1ω

2
2ω3 . Hence by (9), ω′3 = sω3 + n2 .

That is,
n3 = s3 + ω1ω2

(
sω3 + n2) = s3 + ω1ω2

(
w3 + n2) ,

where w3 = sω3 .

If the statement holds for k ≥ 3, then

nk+1 = n.nk = (s + ω1ω2)
[
sk + ω1ω2

(
wk + nk−1)]

= sk+1 + sω1ω2
(
wk + nk−1)+ skω1ω2 + ω2

1ω
2
2
(
wk + nk−1) .

Since nk+1 = sk+1 + ω1ω2ω
′′
3 for some unlimited positive integer ω′′3 , it follows that

ω′′3 = s
(
wk + nk−1)+ sk + ω1ω2

(
wk + nk−1)

= s
(
wk + nk−1)+ nk

and hence nk+1 = sk+1 + ω1ω2
(
wk+1 + nk

)
, where:

wk+1 = s
(
wk + nk−1)

= s
(
sk−2ω3 + sk−3n2 + sk−4n3 + · · ·+ s2nk−3 + snk−2 + nk−1)

= sk−1ω3 + sk−2n2 + sk−3n3 + · · ·+ s2nk−2 + snk−1

This completes the proof of Proposition 2.18.
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Theorem 2.19 Let (t1, t2) ∈ (Z∗)2 be a system of limited integers. Let q be an
unlimited positive integer, and let n = q (q− t1) (q− t2). If there exists a system of
limited integers (a, b, c) ∈ (Z∗)3 such that

(10)


a + b + c = 0
ab + ac + bc = (a + c) t1 + (b + c) t2
act1 + bct2 − ct1t2 − abc 6= 0,

then n can be written in the form (F4) with s 6= 0.

Proof As in the proof of Theorem 2.8, we set

∆ = (q− t1 + (q− t1)φ1) (q− t2 + (q− t2)φ2) (q + qφ3) ,

where φ1 = a
q−t1

, φ2 = b
q−t2

and φ3 = c
q . It is not difficult to see that ∆ is the product

of three unlimited positive integers. Moreover, we see that:

n = q (q− t1) (q− t2)

= ∆− q (q− t1) (q− t2) [φ1 + φ2 + φ3 + φ1φ2 + φ1φ3 + φ2φ3 + φ1φ2φ3]

= ∆− (q− t1) (q− t2) q [φ1 + φ2 + φ3 + φ1φ2 + φ1φ3 + φ2φ3]

− q (q− t1) (q− t2)φ1φ2φ3

Using (10), we obtain

n = ∆−
[
abq + ac (q− t1) + bc (q− t2) + a (q− t1) q + b (q− t2) q

+ c (q− t1) (q− t2)
]
− abc

= ∆− (a + b + c) q2 + [−at1 − bt2 − (t1 + t2) c + ab + ac + bc] q

− act1 − bct2 + ct1t2 − abc

= ∆− act1 − bct2 + ct1t2 − abc

= ∆− s

where s = act1 + bct2 − ct1t2 + abc 6= 0 is limited. This completes the proof.

Example 5 Let q be an unlimited positive integer and let n = q3 + 23q2 + 42q. We
would like to write n in the form (F4) with s 6= 0. Note also that n = q (q + 2) (q + 21).
By taking (t1, t2) = (−2,−21) and (a, b, c) = (−1, 4,−3), the equations stated in (10)
hold. As in the proof of Theorem 2.19, by computation we see that

∆ = (q− t1 + a) (q− t2 + b) (q + c) = (q− 3) (q + 6) (q + 20) ,

and so s = −act1 − bct2 + ct1t2 + abc = −360 6= 0. Thus,

n = ∆− s = (q− 3) (q + 6) (q + 20) + 360,

which is similar to the form (F4) with s 6= 0.
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Remark 11 Let n be as above, ie n = q (q− t1) (q− t2) , where t1, t2 are limited
integers. If there exist limited integers a, b, c ∈ Z∗ such that

(11)
{

t1 + t2 = a + b + c
t1t2 = ab + ac + bc

then n can be written in the form (F4), where s = abc ∈ Z∗ is limited. In fact, the condi-
tions stated in (11) follow immediately from the equation n = s+(q− a) (q− b) (q− c).

Proposition 2.20 Let (t1, t2, t3) ∈ (Z∗)3 be a system of limited integers. Let q be an
unlimited positive integer, and let n = q

(
q3 + t1q2 + t2q + t3

)
. If there exists a system

(a, b, c, d) ∈ (Z∗)4 of limited integers such that

(12)


t1 = −a− b− c− d
t2 = ab + ac + ad + bc + bd + cd
t1t2t3 = −abc− abd − acd − bcd,

then n can be written in the form n = s + ω1ω2ω3ω4 , where s ∈ Z∗ is limited integer
and ω1, ω2, ω3, ω4 are four unlimited positive integers.

Proof The proof follows immediately from the equations stated in (12), since by
computation we have n = (q− a) (q− b) (q− c) (q− d) + s, where s = −abcd ∈
Z∗.

Example 6 Let q be an unlimited positive integer and let n = q
(
q3 − 4q2 − 42q− 36

)
.

Setting (t1, t2, t3) = (−4,−42,−36) and (a, b, c, d) = (1,−3,−3, 9), then equations
(12) hold. By Proposition 2.20, n can be written in the form s + ω1ω2ω3ω4 , where
s ∈ Z∗ is limited and ωi is unlimited for 1 ≤ i ≤ 4. In fact, we see that:

(q− a) (q− b) (q− c) (q− d) + (−abcd) = (q− 1) (q + 3) (q + 3) (q− 9) + (−81)

= q
(
q3 − 4q2 − 42q− 36

)
= n

The following remark generalizes Proposition 2.20.

Remark 12 Let k ≥ 3 and let
(
t1, t2, . . ., tk−1

)
∈ (Z∗)k−1 be a system of limited

integers satisfying the following equations

(13)



t1 =

k−1∑
i=1

ai

t2 = −
∑
i<j

aiaj

...

tk−1 = (−1)k
∑

1≤i1<i2<···<ik−1≤k−1

ai1ai2 · · ·aik−1
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for some limited integers (a1, a2, . . . , ak). Let q be an unlimited positive integer,
and let n = q

(
qk−1 + t1qk−2 + · · ·+ tk−2q + tk−1

)
. Then n has a decomposition

n = s + ω1ω2· · ·ωk+1 such that s ∈ Z∗ is limited and ω1, ω2, . . ., ωk+1 are (k + 1)
unlimited positive integers. Indeed, by using the equations stated in (13) we can show
that n = (q− a1) (q− a2) · · · (q− ak) + s, where s = (−1)k a1a2· · ·ak .

Proposition 2.21 Let n = s1 + ω1ω2 , where s1 ∈ Z∗ is a limited integer, ω1 and ω2

are two unlimited positive integers. Then ∀stk ≥ 1, there exist a limited integer s and
k + 2 unlimited positive integers λ1 , λ2, . . ., λk+1, λk+2 such that

n2k
= s + λ1λ2· · ·λk+1λk+2.

Proof Let us define the following external formula for k ≥ 1: F (k) ≡ " ∀stk ≥ 1,
there exist a limited integer s and k+2 unlimited positive integers λ1, λ2, . . ., λk+1, λk+2

such that n2k
= s + λ1λ2· · ·λk+1λk+2". We will use the external induction principle (F.

Diener and M. Diener [8]). For k = 1, we have n21
= s2

1 + 2ω1ω2 (s1 + ω1ω2). Hence
n2 = s +λ1λ2λ3 , where s = s2

1 is limited and λ1 = 2ω1 , λ2 = ω2 and λ3 = s1 +ω1ω2

are unlimited. Assume F (k) for a standard integer k ≥ 1. We prove F (k + 1). Indeed,
from the fact that n2k

= s + λ1λ2· · ·λk+1λk+2 we have:

n2k+1
=

(
n2k
)2

=
(
s + λ1λ2· · ·λk+1λk+2

)2

= s2 + λ1λ2· · ·λk+1λk+2
(
2s + λ1λ2· · ·λk+1λk+2

)
Then n2k+1

is written in the required form, which completes the proof.

Proposition 2.22 Let q ≥ 2 be an integer and t be an unlimited positive integer. For
every limited integer k ≥ 1, the natural number q2t

is of the form 1 + ω1ω2· · ·ωkωk+1 ,
where ωi ∼= +∞ for 1 ≤ i ≤ k + 1 and ωk+1 = q2t−k − 1.

Proof Let F(k) be the assertion

F (k) : q2t
=1 + ω1ω2· · ·ωkωk+1, where ωi ∼= +∞ for 1 ≤ i ≤ k + 1

and ωk+1 = q2t−k − 1.

For k = 1, we have

q2t
= 1 + q2t − 1 = 1 +

(
q2t−1

+ 1
)(

q2t−1 − 1
)

= 1 + ω1ω2,

where ω1 , ω2 are two unlimited positive integer and ω2 = q2t−1 − 1. Hence F (1).
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Assume F (k) for a limited integer k ≥ 1 and prove F (k + 1). By F (k) we have
q2t

= 1 + ω1ω2· · ·ωkωk+1 , where ωi ∼= +∞ for 1 ≤ i ≤ k + 1 and ωk+1 = q2t−k − 1.
Then ωk+1 = q2t−k − 1 =

(
q2t−(k+1)

+ 1
)(

q2t−(k+1) − 1
)

. Hence:

q2t
= 1 + ω1ω2· · ·ωkωk+1 = 1 + ω1ω2· · ·ωk

(
q2t−(k+1)

+ 1
)(

q2t−(k+1) − 1
)

We put ωk+1 = q2t−(k+1)
+ 1 and ωk+2 = q2t−(k+1) − 1. Then ωk+1 and ωk+2 are two

unlimited positive integers, and

q2t
= 1 + ω1ω2· · ·ωkωk+1ωk+2.

Hence F (k + 1). Consequently ∀stk ≥ 1 F (k), and this end the proof.

Let f (x) be a standard integer-valued polynomial of degree k whose leading coefficient
is positive and let q be an unlimited positive integer. In general, f (q) can not be written
as

(14) f (q) = s +
k∏

i=0

(q− xi)

where xi are limited integers for i = 0, 1, . . ., k . In the rest of this section we give some
examples of such polynomials which do not satisfy (14).

Proposition 2.23 Let q ∈ N be unlimited. The natural number q
(
q2 + q + 1

)
is not

of the form s + (q− x) (q− y) (q− z), where x, y, z ∈ Z∗ are limited and s = xyz.

Proof Assume, by way of contradiction, that q
(
q2 + q + 1

)
= s + (q− x) (q− y)

(q− z) for some limited integers x, y, z ∈ Z∗ with s = xyz. Since q is unlimited,
1 ∼= −x− y− z, and hence

(15) − x− y− z = xy + xz + yz = 1.

From (15), it follows that

(16) − y2 − yz− y− z2 − z− 1 = 0.

Now, assume that (y0, z) is a solutions of the equation (16). Then −z2 − (y0 + 1) z−
y2

0 − y0 − 1 = 0. The later equation has no integer solutions because its discriminant
∆ = −3y2

0 − 2y0 − 3 is negative. This is a contradiction.

Proposition 2.24 Let q ∈ N be unlimited. The natural number q
(
q3 + q2 + q + 1

)
is not of the form s + (q− x) (q− y) (q− z) (q− t), where x, y, z, t ∈ Z∗ are limited
and s = −xyzt .
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Proof Assume, by way of contradiction, that

(17) q
(
q3 + q2 + q + 1

)
= s + (q− x) (q− y) (q− z) (q− t)

for some limited integers x, y, z, t ∈ Z∗ with s = −xyzt . Set:

l1 = −t − x− y− z

l2 = tx + ty + tz + xy + xz + yz

l3 = −txy− txz− tyz− xyz

In the case when the equality l1 = l2 = l3 = 1 is not true, we use the relation (17) to
obtain:

(18) (l1 − 1) q2 + (l2 − 1) q + l3 − 1 = 0

There are two cases:

• If l1 6= 1, then (l1 − 1) + (l2−1)
q + l3−1

q2 = 0. By this, l1 − 1 ∼= 0 and therefore
l1 − 1 = 0, which is absurd.

• If l1 = 1, then l2 6= 1; otherwise, l3 = 1. In this case q = 1−l3
l2−1 , which is

impossible since q is unlimited.

Thus, we have shown that l1 = l2 = l3 = 1. It follows from (17) that

(19) − x2 − xy− xz− x− y2 − yz− y− z2 − z− 1 = 0.

Assume that (x0, y0, z) is a solutions of the equation (19). Then −z2− (x0 + y0 + 1) z−
x2

0 − x0y0 − x0 − y2
0 − y0 − 1 = 0. The later equation has the discriminant ∆ =

−3x2
0− 3y2

0− 2x0y0− 2x0− 2y0− 3, which is negative since ∆ = −2x2
0− 2x0− 2y2

0−
(x0 + y0)2 − 2y0 − 3. Thus, (17) is not valid.

Next, we shall prove the following result which is a generalization of Propositions 2.23
and 2.24.

Theorem 2.25 Let k ≥ 2 be limited and let q be an unlimited positive inte-
ger. The natural number n = q

(
qk + qk−1 + · · ·+ q + 1

)
is not of the form

s + (q− x0) (q− x1) · · · (q− xk), where x0, x1, . . ., xk ∈ Z∗ are limited and s =

(−1)k x0x1· · ·xk .

Proof Suppose the contrary. That is,

(20) n = q
(
qk + qk−1 + · · ·+ q + 1

)
= s + (q− x0) (q− x1) · · · (q− xk) ,
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where x0, x1, . . ., xk ∈ Z∗ are limited integers and s = (−1)k x0x1· · ·xk . By computation,
we see that:

n = [(q− x0) (q− x1)] (q− x2) · · · (q− xk) + s

=
[
q2 − (x0 + x1) q + x0x1

]
(q− x2) · · · (q− xk) + s

=
[
q3 − (x0 + x1 + x2) q2 + (x0x1 + x0x2 + x1x2) q− x0x1x2

]
· (q− x3) · · · (q− xk) + s

...

= qk+1 −

(
k∑

i=0

xi

)
qk +

 ∑
0≤i<j≤k

xixj

 qk−1 −

 ∑
0≤i<j<s≤k

xixjxs

 qk−1

+ · · ·+ s

Since q is unlimited and x0, x1, . . ., xk are limited, then by (20), 1 ∼= −
k∑

i=0
xi , and

therefore:

(21) 1 = −
k∑

i=0

xi

Moreover, using (20) once again, 1 ∼=
∑

0≤i<j≤k
xixj , and therefore:

(22) 1 =
∑

0≤i<j≤k

xixj

From (21), x0 = −x1 − x2 − · · · − xk − 1, and by replacing in (22) we obtain:

0 =
∑

1≤i<j≤k

xixj − 1

=

(
−

k∑
i=1

xi − 1

)
k∑

i=1

xi +
∑

1≤i<j≤k

xixj − 1

= −x2
k −

(
k−1∑
i=1

xi + 1

)
xk −

k−1∑
i=1

x2
i − 2

∑
1≤i<j≤k−1

xixj −
k−1∑
i=1

xi

+
∑

1≤i<j≤k−1

xixj − 1

= −x2
k −

(
k−1∑
i=1

xi + 1

)
xk −

k−1∑
i=1

x2
i −

∑
1≤i<j≤k−1

xixj −
k−1∑
i=1

xi − 1
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That is,

−x2
k −

(
k−1∑
i=1

xi + 1

)
xk −

k−1∑
i=1

x2
i −

∑
1≤i<j≤k−1

xixj −
k−1∑
i=1

xi − 1 = 0.

Let
(
x1,0, x2,0, . . ., xk−1,0

)
be a system of (k − 1) limited integers and consider the

following quadratic equation:

(23) − x2 −

(
k−1∑
i=1

xi,0 + 1

)
x−

k−1∑
i=1

x2
i,0 −

∑
1≤i<j≤k−1

xi,0xj,0 −
k−1∑
i=1

xi,0 − 1 = 0

The later equation has the discriminant

∆ =

(
k−1∑
i=1

xi,0 + 1

)2

− 4 (−1)
[
−

(
k−1∑
i=1

x2
i,0

)
−

 ∑
1≤i<j≤k−1

xi,0xj,0


−

(
k−1∑
i=1

xi,0

)
− 1
]

= −3
k−1∑
i=1

x2
i,0 − 2

∑
1≤i<j≤k−1

xi,0xj,0 − 2

(
k−1∑
i=1

xi,0

)
− 3

= −2
k−1∑
i=1

(
x2

i,0 + xi,0
)
−

(
k−1∑
i=1

xi,0

)2

− 3

which is negative. Thus, (23) is not valid for every x ∈ Z. That is, there is no limited
value xk to achieve the equation (23), and therefore (20) is not true.

Corollary 2.26 Let k ≥ 3 be limited and let q be an unlimited positive integer. The
natural number n = qk is not of the form (q− x1) (q− x2) · · · (q− xk) + s, where
x1, . . ., xk ∈ Z∗ are limited and s = (−1)k x1· · ·xk .

Proof As in the proof of Theorem 2.25 if qk = (q− x1) (q− x2) · · · (q− xk) + s,
where x1, x2, . . ., xk ∈ Z∗ are limited and s = (−1)k x1x2· · ·xk , we have:

0 =

k∑
i=1

xi(24)

0 =
∑

1≤i<j≤k

xixj(25)
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It follows from (24) and (25) that

−
k∑

i=2

x2
i −

∑
2≤i<j≤k

xixj = 0

−x2
k −

(
k−1∑
i=2

xi

)
xk −

k−1∑
i=2

x2
i −

∑
2≤i<j≤k−1

xixj = 0.and so

Consider the following quadratic equation,

(26) − x2 −

(
k−1∑
i=2

xi

)
x−

k−1∑
i=2

x2
i −

∑
2≤i<j≤k−1

xixj = 0,

which has no integer solutions since

∆ =

(
k−1∑
i=2

xi

)2

− 4 (−1)

− k−1∑
i=2

x2
i −

∑
2≤i<j≤k−1

xixj


= −3

k−1∑
i=2

x2
i − 2

∑
2≤i<j≤k−1

xixj = −2
k−1∑
i=2

x2
i −

(
k−1∑
i=2

xi

)2

< 0.

Thus, there are no limited values x2, . . ., xk ∈ Z∗ to satisfy the equation (26), and hence
the corollary is proved.

2.5 Examples of the natural numbers of the form ±1+ω1ω2 where ω1, ω2

are unlimited

There are several identities of the form F ≡ ±1 (mod n), where n may or may not be a
prime. For example, Fermat’s Little Theorem, Wilson’s Theorem and its consequences,
Unique Sums of Two Squares (Nathanson [11, Theorem 13.4, page 407]), Criterion for
Power Residue Congruences (Mollin [13, Theorem 3.10, page 155]) and many others.
For this purpose, we survey some examples of families of unlimited positive integers
which can be written in the form ±1 + ω1ω2 , where ω1, ω2 are two unlimited positive
integers. That is, we give unlimited integers n satisfying n ≡ ±1 (mod ω1ω2), where
ω1, ω2 ∈ N are unlimited.

1. Let n be an unlimited positive integer and let k ≥ 2. Since nk = (−1 + (n + 1))k ,
nk is of the form (−1)k + ω (n + 1), for some unlimited positive integer ω .
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2. Let n be an unlimited positive integer. Then n5 + n4 is of the form −1 + ω1ω2 ,
where ω1, ω2 are two unlimited positive integers2 . In fact, we see that n5 + n4 =

−1 +
(
n2 + n + 1

) (
n3 − n + 1

)
.

3. Let m, n be two unlimited positive integers with m ≤ n. If (m+n)|(m−1) (n−1)
then mn is of the form −1 + ω1ω2 , where ω1, ω2 are two unlimited positive
integers. In fact, we see that mn = −1 +

(
(m−1)(n−1)

m+n + 1
)

(m + n), where
(m−1)(n−1)

m+n ≥ (m−1)(n−1)
2n

∼= +∞. As an example, m = n2− n− 1 with n ∼= +∞.

4. Let ω be an unlimited positive integer. From Nathanson [11, Theorem 3.9, page
95], 52ω ≡ 1 + 3 · 2ω+2

(
mod 2ω+4

)
. Then 52ω is of the form 1 + ω1ω2 , where

ω1, ω2 are two unlimited positive integers.

5. If there exists an unlimited prime number p such that 2p− 1 is a perfect square,
then p is of the form 1 + ω1ω2 , where ω1, ω2 are two unlimited positive integers.
In fact, assume that 2p − 1 = n2 for some odd n. Setting ω = n−1

2 , hence
n = 2ω + 1 and therefore,

p =
1 + n2

2
=

1 + (2ω + 1)2

2
= 1 + 2ω + 2ω2 = 1 + 2ω (ω + 1) .

This completes the proof.

6. Let n be an unlimited positive integer and let k be an unlimited integer with
k ≤ n + 2. Since (k − 1) divides (n + 1)! + k − 1, the expression (n + 1)! + k
is of the form 1 + ω1ω2 , where ω1, ω2 are two unlimited positive integers.

Example 7 Let ω be an unlimited positive integer and let k ≥ 2. Using different
ways we show that k2ω can be written as ±1 + ω1ω2 , where ω1, ω2 are two unlimited
positive integers.

Form 1. It is clear that k2ω = 1 +
(
k2ω/2 − 1

) (
k2ω/2 + 1

)
.

Form 2. Assume that k is odd. By induction on n, we prove that 2n+2 divides k2n − 1.
If n = 1, then 8 divides k2 − 1 = (k − 1) (k + 1) since 2 divides both k − 1
and k + 1, and 4 divides one of the numbers k − 1 and k + 1 (set k = 2s + 1
for some s ≥ 1; if s is even, then 4 divides k − 1 and if s is odd, then 4
divides k + 1). Assume that 2n+2 divides k2n − 1. As k2n

+ 1 is even, we
have 2n+3 = 2 · 2n+2 divides

(
k2n − 1

) (
k2n

+ 1
)

. Thus, k2ω = 1 + r · 2ω+2 for
some unlimited positive integer r , which is different from those of k2ω/2 − 1 and
k2ω/2 + 1.

2Let n be an unlimited integer. Using some properties of congruence or the Euclidean
algorithm, we can write nk + nk−1 in the form 2 + ω1ω2 for every k ≥ 2, where ω1, ω2 are two
unlimited positive integers.
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Form 3. Assume that k is unlimited. Then:

k2ω = 1 + (k − 1)
(
k2ω−1 + k2ω−2 + · · ·+ k + 1

)
= −1 + (k + 1)

(
k2ω−1 − k2ω−2 + · · · − k + 1

)
Theorem 2.27 Let k ≥ 1. Let p = 2n + 1 be an unlimited prime number and let
di = i, for i = 1, 2, . . ., 2n. Define the polynomial of degree 2n− 1 by:

p (x) =
(∑

di

)
x2n−1−

∑
i<j

didj

 x2n−2 +

∑
i<j<k

didjdk

 x2n−2−· · ·−d1d2· · ·d2n

Let k ≥ 2 and s ≤ 2n. For every a ∈ {2, 3, . . ., kp− s} with a and p relatively prime,
p (a) is of the form 1 + ω1ω2 , where ω1, ω2 are two unlimited positive integers with
p | ω1ω2 .

Proof Using a result stated in Adler and Coury [1, Problem 4.11, page 114] we can
write:

−p (x) + 1 = −x2n + x2n −
(∑

di

)
x2n−1 +

∑
i<j

didj

 x2n−2

−

∑
i<j<k

didjdk

 x2n−2 + · · ·+ (−1)2n d1d2· · ·d2n + 1

= x2n −
(∑

di

)
x2n−1 +

∑
i<j

didj

 x2n−2

−

∑
i<j<k

didjdk

 x2n−2 + · · ·+ d1d2· · ·d2n + 1− x2n

= (1− x) (2− x) (3− x) · · · (2n− x) + 1− x2n

Assume that 2 ≤ a ≤ p− 1. Since (a, p) = 1, it follows from Fermat’s little theorem
that −p (a) + 1 = 1 − a2n = 1 − ap−1 ≡ 0 (mod p). Assume that p < a ≤ kp − s
with 2 ≤ s ≤ p− 1. Let F (x) = (1− x) (2− x) (3− x) · · · (2n− x). From Fermat’s
little theorem once again, we obtain −p (a) + 1 ≡ F (a) (mod p) ≡ 0 (mod p) , since p
divides F (a). In both cases, p (a) = 1 + ωp for some unlimited positive integer ω .

We end this section by giving a sequence of positive integers of the form 1 +ω1ω2 such
that the product of its first k−terms can be written uniquely in the form −1 + ω1ω2 ,
where ω1, ω2 are two unlimited positive integers.
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Proposition 2.28 Consider the sequence given in De Koninck and A Mercier [5, pages
56-57] by x0 = 2 and xk = x0x1· · ·xk−1 + 1 for k ≥ 1. The first few terms are
2, 3, 7, 43, 1807, 3263443, . . .. For each unlimited positive integer n, x0x1· · ·xn−2xn is
of the form −1 + ω1ω2 , where ω1, ω2 are two unlimited positive integers3 .

Proof Since 1
x0

+ 1
x1

+ · · ·+ 1
xn

+ 1
x0x1···xn

= 1, it follows that

x1x2· · ·xn + x0x2· · ·xn + · · ·+ x0x1· · ·xn−2xn + x0x1· · ·xn−1 + 1 = x0x1· · ·xn

that is,

x0x1· · ·xn−2xn =− 1 + x0x1· · ·xn − x1x2· · ·xn − x0x2· · ·xn − · · · − x0x1· · ·xn−2xn

− x0x1· · ·xn−1 = −1 + xn−1ω

where

ω = x0x1· · ·xn−2xn − x1x2· · ·xn−2xn − x0x2· · ·xn−2xn − · · · − x0x2· · ·xn−2

is unlimited since x0x1···xn−2xn
xn−1

is also.

2.6 In classical terms

Finally, we give the classical equivalent statement to the fact that every unlimited
positive integer can be written in the form (F2). Unfortunately, we could not prove it in
the general case. The nonclassical statement can be written as

∀N
(
∀sti (i < N)

)
⇒ ∃sts ∃ω1, ω2 ∀str (N = s + ω1ω2 & min (ω1, ω2) > r)

where N, i, r, ω1, ω2 ∈ N and s ∈ Z. By using the idealization principle (I), the last
formula is equivalent to

∀N
[(
∀sti(i < N)

)
⇒

∃sts ∀st finR ∃ (ω1, ω2) ∀r ∈ R (N = s + ω1ω2 & min (ω1, ω2) > r)
]

where R belongs to the set of finite parts of N. This last formula is equivalent to:

∀N ∃st (i, s) ∀st finR
[

(i < N)⇒
∃ (ω1, ω2) ∀r ∈ R (N = s + ω1ω2 & min (ω1, ω2) > r)

]
3For each unlimited n and for each limited k ≥ 1, by definition, the term xn is of the form

1 + ω1ω2· · ·ωk , where ω1, ω2, . . ., ωk are k unlimited positive integers.
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By the extension principle, this last formula is equivalent to

∀N ∀stR̃ ∃st (i, s)
[
(i < N)⇒
∃ (ω1, ω2) ∀r ∈ R̃ (i, s) (N = s + ω1ω2 & min (ω1, ω2) > r)

]
where R̃ is a mapping from N× Z to the set of finite parts of N. Then:

∀stR̃ ∀N ∃st (i, s)
[
(i < N)⇒
∃ (ω1, ω2) ∀r ∈ R̃ (i, s) (N = s + ω1ω2 & min (ω1, ω2) > r)

]
By using the idealization principle (I), the last formula is equivalent to

∀stR̃ ∃st finS ∀N ∃ (i, s) ∈ S
[
(i < N)⇒

∃ (ω1, ω2) ∀r ∈ R̃ (i, s) (N = s + ω1ω2 & min (ω1, ω2) > r)
]

where S belongs to the set of finite parts of N× Z. By the transfer principle (T), this
last formula is equivalent to:

(27) ∀R̃ ∃finS ∀N ∃ (i, s) ∈ S
[
(i < N)⇒

∃ (ω1, ω2) ∀r ∈ R̃ (i, s) (N = s + ω1ω2 & min (ω1, ω2) > r)
]

Let us look at what (27) means by considering the following illustration. Let ω be a
positive integer large enough. Define the function R̃ from N× Z to the set of finite
parts of N by:

R̃ (m, n) =
{(

m + |n|+ ω
)ω}

It follows from (27) that:

(28) ∃finS ∀N ∃ (i, s) ∈ S
[
(i < N)⇒

∃ (ω1, ω2)
(
N = s + ω1ω2 & min (ω1, ω2) >

(
i + |s|+ ω

)ω) ]
The formula (28) is valid for any N > max {Pr1 (S)}, where Pr1 (S) means the first
projection of S . Also we notice from (28) the smallness of s compared to ω1 and ω2 .

2.7 Open questions and final thoughts

We conclude with a (very non-exhaustive) list of open questions which have arisen
along the way. As we mentioned earlier in the introduction, if we consider an unlimited
positive integer we do not know whether it is possible to factorize it into a product of
smaller unlimited integers. Also if we consider an unlimited positive integer which is
the product of two unlimited integers, that is n = ω1ω2 where ω1, ω2 ∈ N are unlimited,
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we do not know whether it can be written as the sum of a nonzero limited integer and the
product of at least two unlimited positive integers, for example, n = s + ω′1ω

′
2 where

s ∈ Z∗ is limited and ω′1, ω
′
2 ∈ N are unlimited. Even if this last representation is

possible, we do not have valuable information whether the factors ω′1, ω
′
2 are coprime,

semiprime, squarefree,. . . ; or neither. Also this work may develop a generalization of
the factoring of unlimited Gaussian integers and unlimited matrices with integer entries.
For these reasons, all of the following questions are worth pursuing.

1. Let n be an unlimited positive integer of the form s + ω1ω2 , where s ∈ Z∗ is
limited and ω1, ω2 are two unlimited positive integers and let d be a limited
divisor of n. We ask if n/d is of the form s′ + ω′1ω

′
2 , where s′ ∈ Z∗ is limited

and ω′1, ω
′
2 are two unlimited positive integers.4

2. Let q be an unlimited positive integer and let (ai)0≤i≤k−1 be limited integers,
where k ≥ 2 is limited. Then q

(
ak−1qk−1 + · · ·+ a1q + a0

)
is of the form

s + ω1ω2· · ·ωk , where s ∈ Z∗ is limited and ωj is unlimited for 1 ≤ j ≤ k . This
problem is solvable for k = 2 by congruences.

3. Let p be an unlimited prime number of the form aω + b, where a, b ≥ 1 are
limited. We ask if p is of the form s + ω1ω2 , where s ∈ Z∗ and ω1, ω2 are two
unlimited positive integers.

4. Let n be an unlimited positive integer of the form 1+ω1ω2 . We ask if n is also of
the form −1 + ω′1ω

′
2 . In fact, assume that n = 1 + ω1ω2 = −1 + ω′1ω

′
2 for some

unlimited positive integers ω1, ω2, ω
′
1, ω
′
2 . Let ω′1 = ω1 + x and ω′2 = ω2 + y,

where x, y ∈ Z∗ . We must have ω1y + ω2x + xy = 2. Generally, it is not so easy
to solve this nonlinear equation.

5. Let n be an unlimited positive integer of the form s + ω1ω2 , where s ∈ Z∗ is
limited and ω1, ω2 are two unlimited positive integers. We ask if n is also of
the form s′ + ω′1ω

′
2 , where s′ ∈ Z∗ is limited and ω′1, ω

′
2 ∈ N are unlimited and

relatively prime.

6. Let n be an unlimited positive integer. First, we ask if n can be written in the
form s + ω1ω2 , where s ∈ Z∗ is unlimited and ω1, ω2 are two unlimited positive
integers satisfying the condition s

ω1
∼= s

ω2
∼= 0. Second, we ask if n can be

written in the form s + ω1ω2 , where s ∈ Z∗ is unlimited and ω1, ω2 are two
unlimited positive integers satisfying the condition s

ω1ω2
∼= 0. As an example

concerning the second part of this question, we have the following proposition:

4In the case when d divides both n and s , then n/d is of the form s′ + ω′1ω
′
2 , where s′ ∈ Z∗

is limited and ω′1, ω
′
2 are also two unlimited positive integers.
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Proposition 2.29 Let n be an unlimited positive integer and let π (n) be the number
of primes not exceeding n. Then nπ (n− 1) is of the form s + ω1ω2 , where s ∈ Z∗
and ω1, ω2 are two unlimited positive integers satisfying the condition s/(ω1ω2) ∼= 0.

Proof Setting s = nπ (n− 1) − (n− 1)π (n), we show that s
(n−1)π(n)

∼= 0. In fact,
since π(n−1)

π(n)
∼= n−1

n
∼= 1, we have s

nπ(n) = π(n−1)
π(n) −

n−1
n
∼= 0. Let s

nπ(n) = φ ∼= 0. It

follows that n− 1 = s−π(n)φ
π(n)φ , and therefore

s
(n− 1)π (n)

=
sφ

s− π (n)φ
=

n− 1
n

φ ∼= 0,

as claimed.

7. Let S(x) be the sum of the digits of the positive integer x in its decimal
representation. It is clear that we can find at least two unlimited positive integers
n,m such that S (n) is limited, S (m) is unlimited and S (nm) = s + ω1ω2, where
ω1, ω2 ∈ N are unlimited. For example, n = 10t with t ≥ 0, and:

m = 11. . .1︸ ︷︷ ︸
ω1ω2-times

Here, S (n) = 1, S (m) ∼= +∞ and S (nm) = ω1ω2 . But, it is not so easy
to find two unlimited positive integers n,m such that S (n) ∼= S (m) ∼= +∞,
|S (n)− S (m)| = 1 and S (nm) can be written in the form s + ω1ω2 .

8. Recall that several factoring algorithms has been generalized using Gaussian
integers. First, we need to the following definition:

Definition 2.30 Let α = a + bi ∈ Z [i] be a Gaussian integer and let N (α) be its
norm. If either a or b is unlimited, α is said to be unlimited. Otherwise, α is said to be
limited. Thus, α ∈ Z [i] is unlimited if and only if N (α) is also. If both a and b are
unlimited, α is said to be completely unlimited.

In view of the above definition, is it possible to characterize unlimited Gaussian integers
z ∈ Z [i] which can be written in the form s + ω1ω2 , where s ∈ Z [i] is limited and
ω1, ω2 ∈ Z [i] are unlimited (respectively completely unlimited)?

9. Let A be an m× n matrix with integer entries. If one of its entries is unlimited,
then A is said to be unlimited; otherwise, A is said to be limited. Given an
m× n unlimited matrix A with integer entries, we ask if there are two unlimited
matrices Ω1(u× k) and Ω2(k × v) such that

A = S + Ω1Ω2,

where S (m× n) is a nonzero limited matrix with integer entries.
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