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Abstract: We introduce a notion of integration defined from filters over families
of finite sets. This procedure corresponds to determining the average value of
functions whose range lies in any algebraic structure in which finite averages make
sense. The most relevant scenario involves algebraic structures that extend the field
of rational numbers; hence, it is possible to associate to the filter integral an upper
and lower standard part, which can be interpreted as upper and lower bounds on the
average value of the function that one expects to observe empirically. We discuss
the main properties of the filter integral and we show that it is expressive enough to
represent every real integral. As an application, we define a geometric measure on
an infinite-dimensional vector space that overcomes some of the known limitations
of real-valued measures. We also discuss how the filter integral can be applied to
the problem of non-Archimedean integration, and we develop the iteration theory
for these integrals.
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In this manuscript, we present a general method for assigning average values to functions
defined on arbitrary spaces using filters over families of finite sets. It is a generalization
of the hyperfinite summation technique of nonstandard analysis that does not rely on
the Axiom of Choice. This is inspired by the “non-Archimedean probability” theory
of Benci, Horsten and Wenmackers [5], that in turn drew inspiration from the early
results of nonstandard measure theory before the development of Loeb measures, such
as those obtained by Henson [22] and Wattenberg [51]. We note that other definable or
constructive approaches to nonstandard analysis have been developed by Kanovei et al
[23, 28] and by Hrbacek and Katz [24], respectively. These are quite different from the
techniques of our paper.

An advantage of our approach to integration over the classical one is its generality,
as it allows us to determine the average value of functions whose range lies in any
algebraic structure in which finite averages make sense. A potential drawback is that
the average values so determined typically lie in a proper extension of the algebraic
structure with which we start. In the case of real-valued functions, this means a partially
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ordered ring with infinite and infinitesimal elements. However, this can also be seen
as an advantage in that it allows for a more fine-grained quantification of the sizes
of sets and the behavior of functions. For example, different nonempty sets may be
assigned different nonzero infinitesimal sizes, with the relation between these sizes
corresponding to the limiting behavior of finite samples. The empirical meaning of a
series of relations like

m(Ai) ≪ m(Ai+1); m(Bi) ≈ rim(Ai),

for i ∈ N and positive reals ri , can be provided by saying that for all i, n ∈ N, a generic
finite sample of points z will have:

|z ∩ Ai|
|z ∩ Ai+1|

+

∣∣∣∣ |z ∩ Bi|
|z ∩ Ai|

− ri

∣∣∣∣ < 1
n

Classical measures would flatten the description to just give all of these sets measure
zero, erasing the information about such statistical phenomena.

If we use filters that are maximal with respect to inclusion, ie ultrafilters, then the range
of values for our integrals of ordered-field-valued functions will also be an ordered
field. If the functions are real-valued, the use of ultrafilters leads to the hyperfinite
counting measures of nonstandard analysis. These measures, together with the Loeb
measure construction [38, 39, 40], have become the main tool of nonstandard measure
theory and can be applied to the study of a variety of mathematical objects. Some
examples include generalized functions (see for instance Bottazzi [6] and Cutland [12]),
stochastic processes (examples include Anderson [1], Duanmu, Rosenthal and William
[13], Keisler [29], Perkins [42]), statistical decision theory (Duanmu and Roy [14]), and
mathematical economics (Anderson and Raimondo [2], Yeneng Sun and collaborators
[15, 16, 31, 32, 49, 50], Khan [30] and Xiang Sun [48]).

If we use non-maximal filters, then the range of values for our integrals of ordered-field-
valued functions is not an ordered field, and many of the techniques of nonstandard
analysis are not available to us. However, we can still do a lot while keeping to a
definable setting and avoiding much use of the Axiom of Choice (AC). In this way, our
work has similarities with that of Henle [21, 20] and Laugwitz [36, 37].

Considering filter integration instead of ultrafilter integration might have also the
advantage of allowing one to determine the extent to which AC can be weakened
when developing some theorems in measure theory. This may lead to some theorems
in Robinsonian approach to nonstandard analysis similar to the results obtained by
Hrbacek and Katz [24]. The current paper can be seen as a first step towards this goal.

However, there are a few places in the current work where AC is invoked. In Theorem
9, Proposition 11, and in §3.1, we rely on background facts from classical analysis that
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depend on the axiom of countable choice (CC) or the axiom of dependent choices (DC).
In §3.2, the full AC is used for a transfinite induction. In §4.3, the Hahn Embedding
Theorem makes an appearance. §6 deals with infinite product spaces, and AC is used
there a few times.

The structure of the manuscript is as follows. In §1, we introduce the basic facts and
definitions. In §2, we show that our integrals can be used to represent many classical
integrals. This representation has the advantage that a complete real-valued measure
over a set X and its filter representation are definable from one another, whereas a similar
representation via hyperfinite counting measures does not carry such a correspondence
(recall that hyperfinite counting measures can be used to extend any finitely additive
or σ–additive measure to a finitely additive measure defined on every subset of X , as
discussed eg by Benci, Bottazzi and Di Nasso [4] and by Henson [22]). In §3, we discuss
some applications of our integrals to geometry. We construct a non-Archimedean
measure on the direct limit of the Rn that overcomes some of the known limitations of
real-valued measures on infinite-dimensional spaces, addresses the Borel–Kolmogorov
paradox, and gives rise to a new notion of fractal dimension. In §4, we discuss the
application of our technique to the problem of developing an appropriate notion of
integral for non-Archimedean fields. In §5, we introduce iterated integrals via product
filters and discuss the interaction with the standard-part operation. In §6, we define
transfinitely iterated integrals and discuss a few applications.
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1 Basic structures and operations

The context in which our integrals can be defined is quite broad. We need an infinite set
X , a fine filter F over [X]<ω , and a divisible torsion-free Abelian group G. Recall that
a filter over a set Z is a collection F ⊆ P(Z) closed under pairwise intersections and
supersets, and if Z ⊆ P(X), then F is fine when for all x ∈ X , {z ∈ Z : x ∈ z} ∈ F . By
closure under intersections, fineness is equivalent to saying that for all finite z0 ⊆ X ,
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{z ∈ Z : z0 ⊆ z} ∈ F . Recall that a group G is divisible when for all a ∈ G and all
positive n ∈ N, there is b ∈ G such that

nb := b + b + · · ·+ b︸ ︷︷ ︸
n times

= a,

and torsion-free when na ̸= 0 for any nonzero a ∈ G and n ∈ N. If G is divisible and
torsion-free, then it follows that for each a ∈ G and n ∈ N, there is a unique b such
that nb = a, which we denote by a/n or n−1a.

1.1 Comparison rings

Although our notion of integration will make sense for functions taking values in any
divisible torsion-free Abelian group, in the cases of interest we want more than just
a group structure. Ideally, we would like to work with ordered fields, but our main
operation will take us out of this category. Thus we consider the following larger class
of structures. Let us say that a structure is a comparison ring if it is commutative ring
with 1 and it carries a binary relation < with the following properties:

(1) < is a strict partial order (ie transitive and irreflexive).
(2) For all a, b, c, if a < b, then a + c < b + c.
(3) For all a, b, if a, b > 0, then ab > 0.
(4) For all a, a has a multiplicative inverse if and only if a2 > 0.

Let us list some elementary properties of comparison rings that will come in handy:

Proposition 1 Suppose K is a comparison ring and a, b, c, d ∈ K .

(1) 0 < 1.
(2) If a > 0, then a is invertible and a−1 > 0.
(3) If a < 0, then a is invertible and a−1 = −(−a)−1 < 0.
(4) If a < b and c < d , then a + c < b + d .
(5) If a < b and 0 < c, then ac < bc.
(6) 0 < a < b if and only if 0 < b−1 < a−1 .
(7) The ordered field Q of rational numbers is a substructure of K .

Proof (1) 1−1 = 1 so by axiom (4), 1 = 12 > 0.
(2) If a > 0, then by axiom (3), a2 > 0, so a is invertible. Then a−1 is also

invertible, so (a−1)2 > 0. Thus a(a−1)2 = a−1 > 0.
(3) If a < 0, then axiom (2) implies −a > 0, and 0 < (−a)2 = (−1)2a2 = a2 , so

a is invertible. Further, (−a−1)(−a) = (−1)2aa−1 = 1, so (−a)−1 = −a−1 .
Since (−a)−1 > 0, a−1 = −(−a)−1 < 0.
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(4) Applying axiom (2), we have a + c < b + c < b + d .
(5) Note that axiom (2) implies a < b iff b − a > 0. By axiom (3), bc − ac > 0.
(6) Apply claims (2) and (5) and multiply the inequalities by a−1b−1 .
(7) First we claim that the natural numbers appear in K under the standard ordering

(with n represented in K as 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

). This follows by an induction using

claim (1) and axioms (1) and (2). Next, for inequalities −n < m among integers
where n > 0, use the inequality established previously for 0 < m + n, and then
add −1 +−1 + · · ·+−1︸ ︷︷ ︸

n times

to both sides and apply axiom (2). Next, note that by

claims (2) and (3) all nonzero integers have a multiplicative inverse in K . Finally,
let us verify that the ordering on the rationals in K agrees with the standard one.
For rational numbers p, q, represent them as p = ad−1 , q = bd−1 , where a, b, d
are integers and d > 0. Then Q |= p < q iff Z |= a < b. Since the ordering
of the integers in K agrees with the ordering of Z, K |= a < b iff Z |= a < b.
Multiplying both sides by d−1 and applying claims (2) and (5) yields Q |= p < q
iff K |= ad−1 < bd−1 .

Note that a comparison ring K is a divisible torsion-free Abelian group, since by item
(7), n−1 exists in K for each positive integer n. For any a ∈ K , n(n−1a) = a, so a is
divisible by n, and if na = 0, then n−1(na) = a = 0.

Let us introduce some terminology and notation. Let K be a comparison ring, and let
a, b ∈ K .

• We say a is finite when −n < a < n for some n ∈ N, and infinite when it is not
finite. Note that the set of finite elements forms a subring.

• If b > 0 and −b < na < b for all n ∈ Z, then we write a ≪ b. Note that the
set {a ∈ K : a ≪ b} is closed under addition and under multiplication by finite
elements.

• We say a is infinitesimal when a ≪ 1.
• We say a ∼ b when a − b is infinitesimal.
• We say a ≈ b when b is invertible and ab−1 ∼ 1. Note that this implies a is also

invertible, because 1/2 < (ab−1)2 and so 0 < b2/2 < a2 . Thus also ba−1 ∼ 1.
• We say that a, b > 0 are Archimedean-equivalent if there are n,m ∈ N such that

a < nb and b < ma. The definition is extended in the expected way to a, b ≤ 0.
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1.2 The reduced power construction

We recall briefly the properties of the reduced power construction relevant for the
development of the filter integral. The interested reader can find a more general presen-
tation with all the proofs we have omitted in Section V.2 of Burris and Sankappanavar
[10]. The approach to infinite and infinitesimal numbers of Laugwitz [36, 37], recently
popularized by Henle [20, 21], is also based on a similar reduced power construction of
R with a different index set.

Suppose K is a comparison ring, Z is a set, and F is a filter over Z . Consider the ring
Fun(Z,K) of functions f : Z → K . Define an equivalence relation ≡F on Fun(Z,K)
by putting f ≡F g if and only if the set {z : f (z) = g(z)} ∈ F . We will denote by
[ f ]F the equivalence class of f in the quotient Fun(Z,K)/ ≡F , which we will write as
Pow(K,F). The dependence of the power construction on the set Z is encoded in the
filter F , since Z is the maximal element of F .

The 0 and 1 of Pow(K,F) are interpreted as the equivalence classes of the constant
functions with value 0 or 1 respectively in K . Then the operations and the order relation
on the quotient are defined pointwise modulo the filter:

• [ f ]F + [g]F = [h]F iff {z : f (z) + g(z) = h(z)} ∈ F
• [ f ]F · [g]F = [h]F iff {x : f (x) · g(z) = h(z)} ∈ F
• [ f ]F < [g]F iff {z : f (z) < g(z)} ∈ F

The above definitions do not depend on the choice of the representatives.

We can identify every element a ∈ K with the equivalence class of the constant function
fa(x) = a for every x ∈ X , so we can identify K with the set {[ fa]F : a ∈ K} ⊆
Pow(K,F). This identification induces a natural embedding K ↪→ Pow(K,F) (see eg
Lemma 2.10 of Chapter V of [10]). We will sometimes write [a]F , or even just a,
instead of [fa]F .

If K is an ordered field, then usually Pow(K,F) is not an ordered field, because if F is
not maximal, we lose the existence of multiplicative inverses for all nonzero elements
and the totality of the ordering. Suppose X is an infinite set, F is a fine filter on
Z = [X]<ω , and K is a comparison ring. Let f : Z → K be defined as

(1) f (z) =
{

1 if |z| is even,
0 if |z| is odd.

Then [f ]F = 1 if and only if {z ∈ Z : |z| is even} ∈ F , [f ]F = 0 if and only if
{z ∈ Z : |z| is odd} ∈ F . If neither set is in F , [f ]F ̸= 0 and [f ]F ̸= 1. If F is
the minimal fine filter on Z , the latter case holds. Since [f ]F ̸= 1 and [f ]F ̸= 0 but
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[f ]F(1 − [f ]F) = 0, [f ]F is a zero-divisor. Moreover, [f ]F is order-incomparable with
0, 1, 1 − [f ]F , −[f ]F , and with every a ∈ K such that 0 < a < 1.

However, it is easy to check that being a comparison ring is preserved.

Lemma 2 If K is a comparison ring and F is a filter over a set Z then Pow(K,F) is
also a comparison ring.

Proof (sketch) The verification of each axiom is easy, so let us just check the axiom
on the existence of inverses as an example. If [f ]F · [f ]F > [0]F , then for some A ∈ F ,
f (z)2 > 0 for all z ∈ A. Thus f (z)−1 exists for all z ∈ A, and if g(z) = f (z)−1 on A and
otherwise g(z) = 0, then [f ]F · [g]F = [1]F . Conversely, if [ f ]F has a multiplicative
inverse [g]F , then there is A ∈ F such that f (z)g(z) = 1 for all z ∈ A. Thus f (z)2 > 0
for all z ∈ A, and so [f ]2

F > [0]F .

If F is a fine filter on Z = [X]<ω , then Pow(K,F) also contains infinite elements. To
see that this is the case, define f (z) = |z| for every z ∈ [X]<ω . Then for all n ∈ N,
n < [f ]F , since n < f (z) for large enough z.

An additional property of the order that will be relevant for our approach to integration
is the following: if F is a filter on Z and a is an infinitesimal in a comparison ring K ,
then [a]F ≪ [f ]F for every positive f : Z → Q. This is a consequence of the inequality
a ≪ f (z) for every z ∈ Z .

1.3 The standard part in comparison rings

In a comparison ring, it is in general false that every finite element is infinitesimally
close to a real number. An example is provided by the element [f ]F with f defined
by equation (1) in the comparison ring Pow(K,F): if F does not decide the equalities
[f ]F = 0 and [f ]F = 1, [f ]F is finite but it is not infinitesimally close to any real number.
Thus, in general it is not possible to define a standard part for an element of Pow(K,F).

However it is possible to define a superlinear “lower standard part” and a sublinear
“upper standard part”.

Definition For a comparison ring K , we define the upper standard part of a ∈ K as

st+ a = inf{q ∈ Q : a < q}

and the lower standard part of a as

st− a = sup{q ∈ Q : a > q}.
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We follow the convention that inf ∅ = supQ = ∞ and sup ∅ = inf Q = −∞.

We say that a ∈ K has a standard part if the upper standard part and the lower standard
part are equal. In this case, we define st a = st+ a = st− a.

Lemma 3 For every finite a, b ∈ K :

• st+ a ≥ st− a
• st+ a = − st−(−a)
• st+(a + b) ≤ st+ a + st+ b
• st−(a + b) ≥ st− a + st− b
• If a, b ≥ 0, then st− a · st− b ≤ st−(a · b) ≤ st+(a · b) ≤ st+ a · st+ b

Proof These inequalities follow from and the properties of inf and sup together with
Proposition 1.

Lemma 4 Suppose K is a comparison ring extending R. An element a ∈ K has a
finite standard part if and only if there is r ∈ R such that a ∼ r .

Proof Suppose first that a − r is infinitesimal, where r ∈ R. Let q < r be rational,
and let n ∈ N be such that r − q > 1/n. Since −1/n < a − r < 1/n, we have
a − q = (a − r) + (r − q) > 0, so a > q. Similarly, a < p for any rational p > r .
Hence, st(a) = r .

For the other direction, suppose st(a) = r ∈ R. Let n ∈ N be arbitrary. Let q0, q1

be rational numbers such that q0 < a < q1 and q1 − q0 < 1/n. We have that
a − r < q1 − r < 1/n and r − a < r − q0 < 1/n. Thus −1/n < a − r < 1/n. Since
n was arbitrary, a − r is infinitesimal.

In general it is false that every finite invertible element of a comparison ring has a
standard part. For instance, let f be defined as in (1) and let F be a filter that decides
neither [f ]F = 0 nor [f ]F = 1. Then [f ]F + 1 is invertible in Pow(Q,F) and its inverse
is the equivalence class of the function

g(z) =
{ 1

2 if |z| is even,
1 if |z| is odd.

However st+([f ]F + 1) = 2 ̸= 1 = st−([f ]F + 1).

If F is an ultrafilter and K is an ordered ring, then it is well-known that every finite
a ∈ Pow(K,F) has a standard part.
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1.4 The filter integral

Definition Let G be a divisible torsion-free Abelian group and F a fine filter over
[X]<ω . We define an operator that assigns to functions f : X → G a value in Pow(G,F):

�
f dF :=

[
z 7→

∑
x∈z

f (x)/|z|

]
F

The values
∑

x∈z f (x)/|z| give an approximation to the integral
�

f dF by looking at the
average behavior of f on finite snapshots of X . They approximate it in the sense that
we obtain

�
f dF by letting z “converge to X” via F .

We have that for any c ∈ G,
�

c dF = [c]F . Furthermore, for any functions f , g : X → G,�
(f + g) dF =

�
f dF +

�
g dF . This is because:

�
(f + g) dF =

[
z 7→ |z|−1

∑
x∈z

(f (x) + g(x))

]
F

=

[
z 7→

∑
x∈z

f (x)/|z|+
∑
x∈z

g(x)/|z|

]
F

=

[
z 7→

∑
x∈z

f (x)/|z|

]
F

+

[
z 7→

∑
x∈z

g(x)/|z|

]
F

=

�
f dF +

�
g dF

Moreover, when G has a ring structure, the integral is a linear operator.

Suppose K is a comparison ring. In general the non-strict inequality is not very
well-behaved in reduced powers of K . For a filter F on Z , it may be the case that for
some functions f , g : Z → K , we have f (z) ≤ g(z) for all z ∈ Z , but it is not the case
that there is a set A ∈ F such that either f (z) < g(z) for all z ∈ A or f (z) = g(z) for
all z ∈ A. However, integrals via fine filters behave better. Suppose F is a fine filter
on [X]<ω , and f , g : X → K are functions such that f (x) ≤ g(x) for all x ∈ X . Then
either f = g, or there is an x0 ∈ X such that f (x0) < g(x0). In the latter case, for all
z ∈ [X]<ω with x0 ∈ z, we have

∑
x∈z f (x) <

∑
x∈z g(x), and thus

�
f dF <

�
g dF .

Thus we can say that if f ≤ g, then
�

f dF ≤
�

g dF .

Lemma 5 Suppose F is a fine filter over [X]<ω , K is a comparison ring, and
f , g : X → K are such that f (x) ∼ g(x) for all x ∈ X . Then

�
f dF ∼

�
g dF .
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Proof Let ε(x) = f (x) − g(x). For all z ∈ [X]<ω and n ∈ N:

−1
n
< |z|−1

∑
x∈z

ε(x) <
1
n

Therefore,
�

(f − g) dF =
�

f dF −
�

g dF is infinitesimal.

1.5 Standard integrals

Definition If K is a comparison ring and F is a fine filter over [X]<ω , then for every
f : X → K we define

• the upper F–integral of f as
� + f dF := st+(

�
f dF);

• the lower F–integral of f as
� − f dF := st−(

�
f dF); and

• the standard F–integral of f as
�

f dF := st(
�

f dF), if this is well-defined.

If F is an ultrafilter, then every function has a standard F–integral. When there is no
ambiguity as to the filter F , we will sometimes drop the reference to F from the above
definitions.

By Lemma 3, for all functions f , g : X → K with finite integral and for all r ∈ Q,

•
� +(f + g) dF ≤

� + f dF +
� + g dF ;

•
� −(f + g) dF ≥

� − f dF +
� − g dU ;

•
�

(f + g) dF =
�

f dU +
�

g dF , if both terms on the righthand side are defined;
and

•
� ± rf dF = r

� ± f dF if r ≥ 0, and
� ± rf dF = r

� ∓ f dF if r < 0.

Thanks to the above properties, the set {f ∈ Fun(X,K) : f has a standard integral} is a
vector space over Q. If K ⊇ R, then in the above assertions, Q can be replaced with
R. Moreover, if F′ is a filter extending F , then for all f : X → K :� −

f dF ≤
� −

f dF′ ≤
� +

f dF′ ≤
� +

f dF

This holds because for all rational numbers q0, q1 , the relation “q0 <
�

f dF < q1 ”
means that for some A ∈ F , q0 < |z|−1∑

x∈z f (x) < q1 for all z ∈ A, and this A would
be in F′ as well. It follows that if

�
f dF exists, then so does

�
f dF′ , and it is the same

number.

Unfortunately, the collection of functions possessing a standard F–integral is in general
not a ring. For example, let F the filter generated by the sets An = {z ∈ [ω]<ω : z is
an initial segment of length ≥ n}. One may construct two sets A,B ⊆ ω such that
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�
χA dF =

�
χB dF = 1/2, but the function χAχB = χA∩B does not have a standard

integral because the density of the intersection oscillates between nearly half and nearly
zero. On the other hand, we will see in §2 that for many canonical filters, the class
of functions possessing a standard integral is closed under multiplication and other
operations.

One may interpret the upper and lower F–integrals of a function f as upper and lower
bounds on the average value of f that one expects to observe empirically. Similarly,
one may interpret the upper and lower integrals of the characteristic function of a set as
a confidence interval for the event described by the set. The gap between these values
can be reduced or even closed by encoding additional information, ie by considering
the integrals induced by a filter F′ ⊇ F . This can be done by simply adding a single
set to F and closing under intersections and supersets. Thus the filters can be readily
updated to accommodate new data.

1.6 Weighted integrals

We would like to allow the possibility for some parts of our space to contribute to the
approximation of the integral without having their contribution diminished as more
points are added. This will allow for point masses and for spaces with infinite volume.
Let X be a set and let P⃗ = {Pi : i ∈ I} be a partition of X . Let F be a fine filter over
[X]<ω , and let G be a divisible torsion-free Abelian group. For a function f : X → G,
we define: �

f d(F, P⃗) =

[
z 7→

∑
i∈I

∑
x∈z∩Pi

f (x)/|z ∩ Pi|

]
F

Since each relevant z is finite, each sum above involves only finitely many terms. As
before,

�
(f + g) d(F, P⃗) =

�
f d(F, P⃗) +

�
g d(F, P⃗).

For each i ∈ I , let πi : [X]<ω → [Pi]<ω be the map z 7→ z∩Pi . For each i, F canonically
projects to a fine filter Fi over [Pi]<ω via the criterion A ∈ Fi ⇔ π−1

i [A] ∈ F . Each
Pow(G,Fi) canonically embeds into Pow(G,F), via the map [ f ]Fi 7→ [ f ◦πi]F . If P⃗ is a
finite partition {Pi : i ≤ n}, then for any f : X → G,

�
f d(F, P⃗) =

∑n
i=0

�
(f ↾ Pi) dFi,

where we compute the sum of values from different reduced powers via the canonical
embeddings.

1.7 Probabilities and a countable example

If F is a fine filter over [X]<ω , then we define the F–probability of a set A ⊆ X as�
χA dF . This is also written as PrF(A). The expected value (according to F ) of a
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12 E Bottazzi and M Eskew

function f on X is
�

f dF . This is written as EF( f ). We drop the subscript for the filter
when it is clear from context.

We define the conditional expectation of a function f on a nonempty set A, E( f |A),
as (

�
f · χA dF)/PrF(A). Since the filter F is assumed to be fine, PrF(A) is always

an invertible element of the comparison ring Pow(Q,F) when A is nonempty, so the
conditional expectation is always well-defined. In contrast, it is well-known that, in
the Kolmogorov model for probability, the problem of determining the conditional
probability with respect to a set of null probability is not well posed (see for instance
the exposition by Rao [43]). A typical approach that allows one to define P(B|A) for
sets satisfying P(A) = 0 consists in considering the limit limn→∞ P(B|An) under the
hypotheses that limn→∞ An = A and P(An) > 0 for all n ∈ N. However this limit
depends on the choice of the sequence {An}n∈N . We discuss a more concrete example
in Section 3.4.

For a set B ⊆ X , we write Pr(B|A) for E(χB|A), which is always a member of the
comparison ring between 0 and 1. E( f |A) can also be directly expressed in the reduced
power as: [

z 7→
∑

x∈z∩A

f (x)/|z ∩ A|

]
F

These notions also make sense for weighted integrals. Suppose P⃗ is a partition of X
and A ⊆ X is nonempty. Then the average or expected value E( f |A) of a function
f on A is defined as

�
f · χA d(F, P⃗)/

�
χA d(F, P⃗). Thus it makes sense to compute

conditional expectations using any nonempty condition, even those of infinitesimal or
infinite measure.

As discussed by Benci, Horsten and Wenmackers [5], this kind of notion allows for “fair”
probability distributions on infinite sets (even countable sets), where the probability
of any single point is the same nonzero value, contrary to the classical situation. We
would like to briefly discuss a similar class of examples that allows us to naturally
model the notion of independent random variables using only hereditarily countable
mathematical objects. The classical treatment uses infinite products of measure spaces,
which involves objects of size at least continuum (see for example Durrett [17]).

Fix a natural number k ≥ 2. Let Tk be the complete k–ary tree of height ω . Our set X
consists of the nodes of Tk , ie the finite k–ary sequences. For each n < ω , let Tn

k be
the set of all k–ary sequences of length ≤ n. Let Z ⊆ [X]<ω be the collection of all Tn

k .
Let F be the smallest fine filter on Z , ie the one generated by the sets {Tm

k : m ≥ n} for
n < ω .
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Integration with filters 13

For n < ω and i < k , let An = {s ∈ Tk : len(s) > n} and let Bi,n = {s ∈ An : s(n) = i}.
It is easy to see that for all n, st (Pr(An)) = 1, and Pr(Bi,n|An) = 1/k . Further, for
distinct n1, . . . , nr < ω and any i1, . . . , ir < k :

st
(
Pr(Bi1,n1 ∩ · · · ∩ Bir,nr )

)
=

1
kr

If we want to model independent trials for which the probabilities can take on a
wider range of values, we can consider the space TQ , the set of finite sequences of
rational numbers between 0 and 1. To define the appropriate filter, consider for each
n,m < ω , the subtree Tn

1/m consisting of all finite sequences of length ≤ n such that
each coordinate is of the form k/m, where 0 ≤ k ≤ m is an integer. Let F be the
smallest fine filter over the set of all Tn

1/n .

For n < ω and reals 0 ≤ a ≤ b ≤ 1, let:

Bn
a,b = {s ∈ TQ : len(s) > n ∧ a ≤ s(n) < b}

It is easy to see that for all distinct n1, . . . , nr < ω and all choices of intervals
[a1, b1), . . . , [ar, br):

st
(

Pr(Bn1
a1,b1

∩ · · · ∩ Bnr
ar,br

)
)
= (b1 − a1) · · · (br − ar)

This is because, given any ε > 0, if we take m large enough, then the proportion of
points in

∏
1≤i≤r[0, 1]Q with denominator 1/m, that lie in the rectangle

∏
1≤i≤r[ai, bi),

is within ε of the classical volume of this rectangle.

2 Representations of classical integrals

In this section we show that the filter integral is general enough to represent every
real-valued measure defined on an algebra A of subsets of X . Using the “hyperfinite”
approach as in Ward [22], we can obtain similar results involving ultrafilters. However,
we work here to define the filters directly from given measures.

The following lemma is a slight strengthening of one used by Benci, Bottazzi and Di
Nasso [4].

Lemma 6 Suppose µ is a finitely additive measure defined on an algebra A of subsets
of an infinite set X , taking extended real values in [0,∞] and giving measure zero to all
singletons. Let Y1, . . . ,Yk ∈ A have finite measure, let x1, . . . , xℓ ∈ X , and let n ∈ N
be positive. There exists a finite z ⊆ X that satisfies the following properties:
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14 E Bottazzi and M Eskew

(1) x1, . . . , xℓ ∈ z
(2) nℓ < |z|
(3) if µ(Y1 ∪ · · · ∪ Yk) > 0, then z \ {x1, . . . , xℓ} ⊆ Y1 ∪ · · · ∪ Yk

(4) for 1 ≤ i, j ≤ k , if µ(Yi) ̸= 0, then:∣∣∣∣ |z ∩ Yj|
|z ∩ Yi|

−
µ(Yj)
µ(Yi)

∣∣∣∣ < 1
n

Proof Let r = µ(Y1∪· · ·∪Yk). We may assume r > 0, since otherwise the conclusion
is trivial. For 1 ≤ i ≤ k , let Y0

i = Yi and Y1
i = X \ Yi . Consider all Boolean

combinations of the form Y i1
1 ∩ · · · ∩ Y ik

k , where ij = 0 for at least one value of j. List
all such combinations that have positive measure as {Bi : 1 ≤ i ≤ N}. Note that these
are pairwise disjoint infinite sets, and

∑N
i=1 µ(Bi) = r .

Let s be the minimum positive value of µ(Yi) for 1 ≤ i ≤ k , and let ε > 0 be smaller
than min{1/n, s/2, s2/4rn}. For 1 ≤ i < N , let qi be a positive rational number such
that

µ(Bi)/r − ε/2N2 < qi < µ(Bi)/r.

Let qN = 1 −
∑N−1

i=1 qi , so that each qi is positive and
∑N

i=1 qi = 1. It follows that
0 < qN − µ(BN)/r < ε/2N . For 1 ≤ j ≤ k , we have that µ(Yj) =

∑
Bi⊆Yj

µ(Bi). Thus
|µ(Yj)/r −

∑
Bi⊆Yj

qi| < ε/2.

Now take a sufficiently large common denominator M for the qi such that for 1 ≤ i ≤ N ,
there is a natural number pi with pi/M = qi and ℓ/pi < ε/2. Then choose z′ ∈ [X]<ω

such that

(1) |z′| = M ;
(2) z′ ⊆

⋃N
i=1 Bi ; and

(3) for 1 ≤ i ≤ N , |z′ ∩ Bi| = pi .

Let z = z′ ∪ {x1, . . . , xℓ}. For each Yj , 1 ≤ j ≤ k , let ℓj = |(z \ z′) ∩ Yj|. Then:

∣∣∣∣ |z ∩ Yj|
|z|

−
|z′ ∩ Yj|

M

∣∣∣∣ = ∣∣∣∣ |z′ ∩ Yj|+ ℓj

M + ℓj
−

|z′ ∩ Yj|
M

∣∣∣∣ = ℓj(M − |z′ ∩ Yj|)
M(M + ℓj)

≤ ℓ

M
<
ε

2

Since |z′ ∩ Yj| =
∑

Bi⊆Yj
pi :∣∣∣∣ |z ∩ Yj|

|z|
−
µ(Yj)

r

∣∣∣∣ <
∣∣∣∣∣∣
∑

Bi⊆Yj

qi − µ(Yj)/r

∣∣∣∣∣∣+ ε/2 < ε
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Integration with filters 15

Now suppose 1 ≤ i, j ≤ k and µ(Yi) > 0. If µ(Yj) = 0, then

|z ∩ Yj|/|z ∩ Yi| ≤ ℓ/pi < ε < 1/n,

so the desired conclusion holds. If µ(Yj) > 0, then set ex = |z ∩ Yx|/|z| and
mx = µ(Yx)/r for x = i, j. We have:

∣∣∣∣ |z ∩ Yj|
|z ∩ Yi|

−
µ(Yj)
µ(Yi)

∣∣∣∣ =

∣∣∣∣ej

ei
−

mj

mi

∣∣∣∣ = ∣∣∣∣ejmi − eimj

eimi

∣∣∣∣ ≤ ∣∣∣∣ejmi − eimj

s2/2

∣∣∣∣
≤
∣∣∣∣ (mj + ε)mi − (mi − ε)mj

s2/2

∣∣∣∣ = ε(mi + mj)
s2/2

≤ 4rε
s2 <

1
n

Theorem 7 Suppose µ is a finitely additive real-valued probability measure defined
on an algebra A of subsets of X , giving measure zero to all singletons. Then there is a
definable filter Fµ over [X]<ω , which is the smallest fine filter F with the property that
for any bounded µ–measurable function f : X → R:�

f dµ =

�
f dF

Proof For x ∈ X , let Ax = {z ∈ [X]<ω : x ∈ z}, and for a set Y ∈ A and n ∈ N, let
AY,n = {z : ||Y ∩ z|/|z| − µ(Y)| < 1/n}. By Lemma 6, the collection of all Ax and
AY,n for x ∈ X , Y ∈ A, and n ∈ N, has the finite intersection property. Let Fµ be the
generated filter.

Suppose F is any filter with the desired property. Then for every Y ∈ A, µ(Y) =�
χY dµ =

�
χY dF . This implies that for every n ∈ N, the set of z ∈ [X]<ω such that

||Y ∩ z|/|z| − µ(Y)| < 1/n, is a member of F . Thus Fµ is contained in any fine filter
with the desired property.

Let f be a bounded µ–measurable function, and let M ∈ R be such that |f | < M . For
real numbers a < b, the set

Ea,b := {x : a < f (x) ≤ b}

is in A. For a positive n ∈ N, let gn be the function that takes value Mi/n on
EMi/n,M(i+1)/n for −n ≤ i < n, and let hn the function that takes value M(i + 1)/n on
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EMi/n,M(i+1)/n . By the linearity of the integrals, for each n:�
gn dFµ ≤

�
f dFµ ≤

�
hn dFµ

�
gn dµ =

�
gn dFµ =

n−1∑
i=−n

Mi
n
µ(EMi/r,M(i+1)/r)

�
hn dµ =

�
hn dFµ =

n−1∑
i=−n

M(i + 1)
n

µ(EMi/r,M(i+1)/r)

�
hn dFµ −

�
gn dFµ =

M
n

It follows that limn→∞
�

gn dµ = limn→∞
�

hn dµ =
�

f dµ =
�

f dFµ .

Suppose µ is a finitely additive real-valued probability measure defined on an algebra
A ⊆ P(X). For Y ⊆ X , let µ+(Y) = inf{µ(A) : A ∈ A and Y ⊆ A}, and
let µ−(Y) = sup{µ(A) : A ∈ A and Y ⊇ A}. Say a set Y is µ–measurable if
µ−(Y) = µ+(Y). It is not hard to check that the collection of µ–measurable sets forms
an algebra Ā, and if we define µ̄(Y) = µ−(Y) = µ+(Y) for Y ∈ Ā, then µ̄ is a finitely
additive measure on Ā.

Proposition 8 Suppose µ is a finitely additive probability measure defined on an
algebra A ⊆ P(X) that gives measure zero to all singletons. Then for Y ⊆ X , χY has a
standard Fµ–integral if and only if Y is µ–measurable.

Proof If Y ⊆ X is µ–measurable, then for every ε > 0, there are A,B ∈ A such that
A ⊆ Y ⊆ B and:

µ̄(Y) − ε < µ(A) =
�
χA dFµ ≤

�
χB dFµ = µ(B) < µ̄(Y) + ε

Since
�
χA dFµ ≤

�
χY dFµ ≤

�
χB dFµ , we have that

�
χY dFµ = µ̄(Y).

For the other direction, a result of Łoś and Marczewski [41] shows that, if Y ⊆ X and
µ−(Y) ≤ r ≤ µ+(Y), then we can define a measure ν on the algebra generated by
A ∪ {Y} such that ν(Y) = r and ν ↾ A = µ. By Theorem 7, we have that Fν ⊇ Fµ ,
and

�
χY dFν = ν(Y). Thus if Y is not µ–measurable, there are extensions of µ that

give different values to Y . Thus χY cannot have a standard Fµ–integral.

Theorem 9 Suppose µ is a countably additive, real-valued, σ–finite measure defined
on a σ–algebra A of subsets of X . Then there is a countable partition P⃗ of X , a fine
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filter F over [X]<ω , definable from µ and P⃗, and a “weight function” w : X → R,
constant on each Pi , such that F is the smallest fine filter G with the property that for
any µ–integrable function f : X → R:�

f dµ =

�
fw d(G, P⃗)

Furthermore, if µ(X) <∞ then we can take P⃗ = ⟨Pi : i < ω⟩ such that P0 contains no
point masses, and |Pi| ≤ 1 for i > 0.

Proof First note that by σ–finiteness, there can be only countably many point masses.
Let X0 be the set of point masses, let {P0

i : i < ω} partition X0 into sets of size ≤ 1,
and let w(x) = µ({x}) for x ∈ X0 . By countable additivity, µ(Y) =

∑
x∈Y w(x) for all

Y ⊆ X0 . Let X1 = X \ X0 . If µ(X1) = ∞, let {P1
i : i ∈ N} be a partition of X1 into

sets of finite measure. If µ(X1) <∞, let P1
0 = X1 . For x ∈ P1

i , let w(x) = µ(P1
i ).

For x ∈ X , let Ax = {z ∈ [X]<ω : x ∈ z}, and for an integrable function f and ε > 0,
and let:

Af ,ε =

z :

∣∣∣∣∣∣
�

f dµ−
∑

i,j

∑
x∈z∈Pi

j

f (x)w(x)
|z ∩ Pi

j|

∣∣∣∣∣∣ < ε


Let F be generated by closing this collection of sets under intersection and supersets.
Clearly any filter satisfying the desired equations must contain all of these sets. We
must check that F is a filter. It will suffice to consider only nonnegative integrable
functions f , since by breaking f into the sum of its positive and negative parts and
taking ε small enough, we see that F is generated by the same collection.

Let x0, . . . , xm−1 ∈ X , and let f0, . . . , fn−1 be µ–integrable nonnegative functions. Let
ε > 0 be given. Using the countable additivity of µ, we can find a large enough N ∈ N
such that, if Ak =

⋃
i<N Pk

i , then x0, . . . , xm−1 ∈ A0 ∪ A1 , and for i < n and k < 2:�
Xk

fi dµ−
�

Ak

fi dµ <
ε

4

For r ∈ R, let Er = {x ∈ X : (∀i < n)fi(x) < r}. Again using the countable additivity
of µ (more specifically, the Monotone Convergence Theorem), we can find a large
enough M ∈ R such that x0, . . . , xm−1 ∈ EM ∩ (A0 ∪ A1), and for i < n and j < N :∣∣∣∣∣ µ(P1

j )

µ(P1
j ∩ EM)

�
P1

j ∩EM

fi dµ−
�

P1
j

fi dµ

∣∣∣∣∣ < ε

4N
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18 E Bottazzi and M Eskew

For i < n and 0 ≤ a < b ≤ M , consider the set Ea,b
i := {x : a < fi(x) ≤ b}. By

partitioning [0,M] into small enough subintervals, we can apply Lemma 6 to expand
X1 ∩ {x0, . . . , xm} to a finite set z′ ⊆ A1 ∩ EM , so that for each i < n and j < N :∣∣∣∣∣∣∣

�
P1

j ∩EM
fi dµ

µ(P1
j ∩ EM)

−
∑

x∈z′∩P1
j

fi(x)
|z′ ∩ P1

j |

∣∣∣∣∣∣∣ <
ε

4Nµ(P1
j )

Multiplying by µ(P1
j ) and combining with the previous inequality, we get that:∣∣∣∣∣∣∣

�
P1

j

fi dµ−
∑

x∈z′∩P1
j

fi(x)w(x)
|z′ ∩ P1

j |

∣∣∣∣∣∣∣ <
ε

2N

Let z = A0 ∪ z′ . Note that for each i < n:�
fi dµ−

∑
j<N
k<2

∑
x∈z∩Pk

j

fi(x)w(x)/|z ∩ Pk
j | =

�
X0

fi, dµ−
∑

x∈z∩X0

fi(x)w(x)

+
∑
j<N

�
P1

j

fi dµ−
∑

x∈z∩P1
j

fi(x)w(x)/|z ∩ P1
j |

+

(�
X1

fi dµ−
�

A1

fi dµ
)

The absolute value of this number is bounded by ε/4 + N(ε/2N) + ε/4 = ε.

Recall that a measure is complete when all subsets of measure zero sets are measurable.
Every measure has a minimal extension to a complete measure with the same additivity.
Suppose µ is a probability measure on X . For a bounded function f : X → R, let:� −

f dµ = sup
{�

g dµ : g ≤ f and g is measurable
}

� +

f dµ = inf
{�

g dµ : g ≥ f and g is measurable
}

When µ is countably additive, the Monotone Convergence Theorem implies that there
are measurable functions fℓ, fu such that fℓ ≤ f ≤ fu , and

�
fℓ dµ =

� − f dµ, and�
fu dµ =

� + f dµ. The following is well-known:

Fact 10 Suppose µ is a countably additive complete probability measure on X , and
f : X → R is bounded. The following are equivalent:

(1)
� − f dµ =

� + f dµ.
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(2) µ({x : fℓ(x) < fu(x)}) = 0.
(3) f is µ–measurable.

Proposition 11 Suppose µ is a countably additive complete probability measure
defined on a σ–algebra A ⊆ P(X). Let f : X → R be bounded. The following are
equivalent:

(1) f is µ–measurable.
(2) f has a standard (F, P⃗)–integral, where P⃗ is a partition according to Theorem 9

and F is the canonical filter.

Proof The direction (1) ⇒ (2) follows from Theorem 9. For the other direction,
assume for simplicity that µ has no point masses, so that we can ignore P⃗. Let µ∗

be the outer measure on P(X) induced by µ. Suppose f : X → R is a bounded
function that is not measurable. By countable additivity, there is some ε > 0 such that
µ({x : fu(x) ≥ fℓ(x) + ε}) > 0. Thus

�
fℓ dµ <

�
fu dµ. Now we claim that for all

ε > 0:
µ∗({x : f (x) − fℓ(x) < ε}) = µ∗({x : fu(x) − f (x) < ε}) = 1

Towards a contradiction, suppose that for some ε, δ > 0,

µ∗({x : f (x) − fℓ(x) < ε}) = 1 − δ.

Let E ∈ A be such that E ⊇ {x : f (x) − fℓ(x) < ε} and µ(E) = 1 − δ . Define:

g(x) =

{
fℓ(x) if x ∈ E

fℓ(x) + ε if x ∈ X \ E

Then g is measurable, g ≤ f , and
�

g dµ−
�

fℓ dµ = εδ > 0. Thus
�

g dµ >
� − f dµ,

a contradiction. We can show similarly that µ∗({x : fu(x) − f (x) < ε}) = 1.

It follows that for all A ∈ A of positive measure and all ε > 0:

µ(A) = µ∗({x ∈ A : f (x) − fℓ(x) < ε}) = µ∗({x ∈ A : fu(x) − f (x) < ε})

In particular, each set above is infinite. Now, recalling the proofs of Lemma 6 and
Theorem 9, we can use this to show that the following collection generates a filter Fℓ
over [X]<ω :

• Ax for x ∈ X
• Ah,ε for µ–integrable h : X → R and ε > 0
• {z : |

∑
x∈z f (x)/|z| −

�
fℓ dµ| < ε} for ε > 0
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We have that
�

f dFℓ =
� − f dµ. There is an analogous filter Fu such that

�
f dFu =� + f dµ. If F is the minimal filter given by Theorem 9, then Fℓ,Fu ⊇ F . Thus the

function f does not have a standard F–integral.

Very similar conclusions can be drawn about functions that are bounded above and
below by integrable functions.

3 Non-Archimedean measures and geometry

3.1 A geometric measure on R<ω

A well-known no-go result in functional analysis states that there is no analogue of
Lebesgue measure on infinite-dimensional separable Banach spaces such that:

• every Borel set is measurable;
• the measure is translation-invariant; and
• every point has a neighborhood with finite measure.

In the study of measures over infinite-dimensional spaces it is therefore usual to renounce
σ–finiteness, as in the approach by Baker [3]. This result is based on the following
more general fact: if X is an infinite-dimensional normed vector space over the reals,
then every open ball contains an infinite collection of pairwise-disjoint open balls of
equal radius (in fact only 1/4 the radius of the original ball). Thus there cannot exist
even a finitely additive translation-invariant measure on an infinite-dimensional normed
real vector space that gives every open ball of finite radius a positive real measure.

We give a construction here of a non-Archimedean measure on a rather concrete space
that contrasts with these impossibility results. It will be translation-invariant (in a
reasonable sense) on a wide class of sets that includes open balls, and it will have several
other natural geometrical properties.

Let us consider the space R<ω of ω–sequences of real numbers that are eventually
zero, ie finitely-supported sequences. Each Rn appears canonically as the collection of
sequences x⃗ such that x⃗(m) = 0 for all m ≥ n. Of course, this real vector space comes
along with the standard Euclidean norm.

For a detailed discussion of the following facts of classical analysis, see Chapters 11 and
12 of Zorich [52]. For a set S ⊆ Rn , we say that S is a parameterized (k–dimensional)
smooth surface if there are bounded open sets U ⊆ V ⊆ Rk such that the closure Ū of
U is contained in V , and there is an injective function φ : V → Rn such that S = φ[U]
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and φ,φ−1 are both continuously differentiable (ie C1 ). The purpose of the set V is
simply to guarantee that φ has a continuous derivative defined on a compact set. If S is
such a surface, witnessed by φ : U → S , then the classical volume of S is given by

volk(S) =
�

U

√
det
(
Gφ(⃗x)

)
d⃗x

where Gφ is the Gram matrix of all inner products of partial derivatives of φ. A key
result is that this number does not depend on the way a surface is parameterized.

Fact 12 Suppose φ0 : U0 → S is a parametrization of a smooth surface S , and
φ1 : U1 → S is another parametrization. Then:�

U0

√
det
(
Gφ0 (⃗x)

)
d⃗x =

�
U1

√
det
(
Gφ1 (⃗x)

)
d⃗x

If φ : U → S is a parametrization of a k–dimensional smooth surface S and A ⊆ U is
Lebesgue-measurable in Rk , let us say φ[A] is a measurable fragment of S . We can
define the measure of φ[A] to be the Lebesgue integral

�
A

√
det Gφ d⃗x . This measure is

independent of parametrization. For suppose ψ : V → S is another parametrization and
A ⊆ U′ ⊆ U , where U′ is open. Then φ[U′] is also a smooth surface, and ψ−1 ◦φ[U′]
is an open set V ′ ⊆ V . By Fact 12,

�
U′

√
det Gφ dx⃗ =

�
V′
√

det Gψ dx⃗. Thus taking
the infimum of these values over open cover covers of A versus ψ−1 ◦ φ[A] attains the
same real number. For any measurable fragment A of a k–dimensional parameterized
smooth surface, let volk(A) be this measure.

Note that if A,B,C are measurable fragments of k–dimensional parameterized surfaces,
A ∩ B = ∅, and A ∪ B = C , then volk(C) = volk(A) + volk(B). This is because for any
parametrization φ : U → S ⊇ C :

volk(C) =
�
φ−1[C]

√
det Gφ d⃗x =

�
φ−1[A]

√
det Gφ d⃗x +

�
φ−1[B]

√
det Gφ d⃗x

= volk(A) + volk(B)

Another important fact we will need is:

Fact 13 If k < n, U ⊆ Rk is open, and φ : U → Rn is C1 , then the n–dimensional
Lebesgue measure of φ[U] is zero.

It follows that for any smooth surface S ⊆ Rn , there is at most one natural number k
such that S is parametrizable in k dimensions. Furthermore, if A ⊆ S is Borel and
T ⊆ Rn is an m–dimensional smooth surface, where m > k , then volm(A ∩ T) = 0.
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In general, smooth surfaces S do not need to be parameterized by a single map, but rather
they are given by a countable atlas, {φi : i ∈ ω}, where each φi is a parametrization
of a smooth surface Si , S =

⋃
i Si , and some differentiability conditions hold on the

compositions φ−1
i ◦ φj . For our purposes here, we will only consider surfaces given

by a finite atlas. This suffices for many applications, such as for compact surfaces.
But more generally, we ignore the coherence conditions between the parameterizations
and consider piecewise smooth surfaces, which are just finite unions of parameterized
surfaces.

Suppose S ⊆ Rn is a k–dimensional piecewise smooth surface given as a finite union
of parameterized smooth surfaces in two ways, S =

⋃
i≤n Si =

⋃
i≤m Ti . Let A ⊆ S be

Borel. By putting S′i = A ∩ Si \
⋃

j<i Sj and T ′
i = A ∩ Ti \

⋃
j<i Tj , we present A as a

disjoint union of Borel fragments of parameterized surfaces in two ways. Consider the
set of all Boolean combinations of the S′i and T ′

i , besides the complement of A, listed
as {Bi : i ≤ N}. Then for each j ≤ m, n, it follows by the observations above that
volk(S′j) =

∑
Bi⊆S′j

volk(Bi) and volk(T ′
j ) =

∑
Bi⊆T′

j
volk(Bi). Therefore:

n∑
i=0

volk(S′i) =
m∑

i=0

volk(T ′
i ) =

N∑
i=0

volk(Bi)

This allows us to unambiguously define volk(A) as
∑M

i=0 volk(Ci), where {Ci}i≤M is any
partition of A into parameterized k–dimensional Borel surface fragments. Furthermore,
if C is the disjoint union of A and B, where each is a Borel subset of a k–dimensional
piecewise smooth surface, then taking partitions of A and B into parameterized Borel
fragments yields one for C , call it {Pi}i≤N . Since A =

⋃
Pi⊆A Pi and B =

⋃
Pi⊆B Pi , it

follows that volk(C) = volk(A) + volk(B). In summary, we have:

Proposition 14 Let k ≤ n be positive natural numbers. The function volk is a finitely
additive measure on the Borel subsets of k–dimensional piecewise smooth surfaces
contained in Rn .

For a positive integer n, let µn be the Lebesgue measure on Rn . Let us call a set
A ⊆ R<ω middling if for all but finitely many n < ω , µn(A ∩ Rn) < ∞, and for
infinitely many n < ω , µn(A ∩ Rn) > 0. The intuition is that middling sets are larger
than finite-dimensional sets but much smaller than the whole space. Clearly, every open
ball in R<ω is middling.

Theorem 15 There is a fine filter Γ over [R<ω]<ω and a ≪–increasing sequence of
positive infinitesimals ⟨εi : i < ω⟩ ⊆ Pow(R,Γ), such that, if m(A) =

�
χAdΓ for

A ⊆ R<ω , then:
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(1) εn = m([0, 1]n), the measure of the n–dimensional unit cube.
(2) For any measurable fragment A of a n–dimensional piecewise smooth surface S ,

m(A) = voln(A)εn + δ,

where δ ≪ εn.

(3) For any countable C ⊆ R<ω , m(C) ≪ ε1 .
(4) For any middling Borel A ⊆ R<ω and any x⃗ ∈ R<ω , m(A + x⃗) ≈ m(A).

Proof Let Γ be generated by closing the following collection under intersections and
supersets:

(1) {z : x⃗ ∈ z}, for x⃗ ∈ R<ω
(2) {z : |z ∩ [0, 1]n| > k|z ∩ [0, 1]m|}, for natural numbers n > m and k
(3) {z :

∣∣|z ∩ A|/|z ∩ [0, 1]k| − volk(A)
∣∣ < 1/m} for each Borel subset A of a

k–dimensional piecewise smooth surface S ⊆ Rn and each integer m > 0
(4) {z : |z ∩ [0, 1]| > k|z ∩ C|} for each countable C ⊆ R<ω and integer k
(5) {z : ||z ∩ A|/|z ∩ (A + x⃗)| − 1| < 1/n} for each middling Borel A ⊆ R<ω ,

x⃗ ∈ R<ω and integer n > 0

A filter containing all of these sets clearly gives us what we want. We must show that
this family has the finite intersection property.

Suppose we are given finitely many points, piecewise smooth surfaces with given Borel
subsets, middling Borel sets, and countable sets. Let ε > 0 be arbitrary. Order the
surfaces as

S1
0, . . . , S

1
n1
, S2

0, . . . , S
2
n2
, . . . , Sk

0, . . . , S
k
nk
,

where each Sd
i is d–dimensional. Let Ad

i be the given Borel subset of Sd
i . We may

assume that for 1 ≤ d ≤ k , Ad
0 = [0, 1]d .

Let z0 be the given set of points, and let C be the union of the given countable
sets. We inductively build a sequence of finite sets z0 ⊆ z1 ⊆ · · · ⊆ zk as follows.
Suppose we have zd−1 . For i ≤ nd , let Bd

i = (Ad
i \ C) \

⋃
j<d;r≤nj

Sj
r . By Fact 13,

vold(Bd
i ) = vold(Ad

i ). By Lemma 6, there is a finite zd ⊇ zd−1 with the following
properties:

(1) |zd−1|/|zd| < ε;
(2) zd \ zd−1 ⊆

⋃
i≤nd

Bd
i ; and

(3) for 1 ≤ i ≤ nd ,
∣∣|zd ∩ Bd

i |/|zd ∩ [0, 1]d| − vold(Bd
i )
∣∣ < ε.

When we arrive at zk , we have a set satisfying the desired inequalities related to
the Borel subsets of smooth surfaces. (1) goes towards making smaller dimensional
surfaces infinitesimal relative to larger dimensional ones. (2) ensures that our work in
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higher dimensions does not disturb the proportions of (1) and (3) set up for the lower
dimensions.

Let M1, . . . ,Ms be the given middling Borel sets. Pick an increasing sequence of natural
numbers m1 < · · · < ms such that each Sd

i ⊆ Rm1−1 , z0 ⊆ Rm1 , and for 1 ≤ i, j ≤ s,
µmi(Mj ∩ Rmi) <∞ and µmi(Mi ∩ Rmi) > 0. For 1 ≤ i ≤ s, let yi be the collection of
indices j such that µmi(Mj ∩ Rmi) > 0. We inductively build a sequence of finite sets
zk ⊆ zk+1 ⊆ · · · ⊆ zk+s .

Assume we have zd−1 , where d > k . Consider the collection of all translations Mj + x⃗
for x⃗ ∈ z0 ∪ {⃗0} and j ∈ yd . For j ∈ yd , Mj ∩ Rmd has the same Lebesgue measure as
(Mj + x⃗) ∩ Rmd . By Lemma 6, we can select a finite zd ⊆ Rmd such that:

(1) for j ∈ yd and x⃗ ∈ z0 ,
∣∣∣ |zd∩Mj|
|zd∩(Mj+x⃗)| − 1

∣∣∣ < ε;

(2) (zd \ zd−1) ∩ (C ∪ Rmd−1 ∪
⋃

i/∈yd
Mi) = ∅.

To check that this works, let j ≤ s and let d be the largest integer such that j ∈ yd .
Then the desired inequalities hold for zd by (1). They are preserved for zk+s by (2).
The fact that C is mentioned in (2) ensures that we preserve the smallness properties of
C in relation to the smooth surfaces as well.

Now zk+s is a finite set which, with a small enough choice of ε, witnesses the finite
intersection property of the collection of interest.

Remark 16 If κ is a cardinal such that every set of reals of size < κ has Lebesgue
measure zero, then we can replace “countable” with “<κ–sized” in item (3) of the
theorem. This just requires a corresponding adjustment in item (4) of the definition of
Γ. Let us call the resulting filter Γκ .

3.2 Dimension

The above result suggests a relevant notion of dimension of an arbitrary subset A of
R<ω as the Archimedean equivalence class of

�
χA dΓ. We would like to understand

the structural relations among the Γ–dimensions. The usual integer dimensions are
ordered in the expected way, while middling sets have dimension larger than all of these,
and the whole space is still of higher dimension than any middling set. There are also
dimensions in between. For example, (Q× R) ∩ [0, 1]2 has dimension between 1 and
2. Its measure is larger than any finite length curve since it contains infinitely many
pairwise disjoint unit length line segments, but its 2-dimensional volume is zero. Thus
its Archimedean class is between those of ε1 and ε2 .
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It seems hard to describe the structure of these dimensions in full generality. We content
ourselves here with some partial information that shows how complex this structure can
be: under some standard set-theoretic assumptions, there is an extension of Γ to an
ultrafilter U such that the order structure of U–dimensions contains a copy of every
linear order of cardinality ≤ 22ω .

Suppose F is a fine filter over [X]<ω . Let dimF(A) denote the Archimedean class
of
�
χA dF . Let us say dimF(A) < dimF(B) when

�
χA dF ≪

�
χB dF . Note that if

F′ ⊇ F , then dimF(A) < dimF(B) implies dimF′(A) < dimF′(B). Let us say that a set
A ⊆ X is F–solid if for all Y ⊆ X such that |Y| < |X|, dimF(Y) < dimF(A). If every
set of reals of size less than the cardinality of the continuum c = 2ω has Lebesgue
measure zero, then each positive-volume Borel subset of a finite-dimensional surface in
R<ω is Γc–solid.

Recall that Martin’s Axiom (MA) says that for any partial order P satisfying the
countable chain condition (ccc), and any collection {Dα : α < κ} of dense subsets of
P, where κ < c, there is a filter G ⊆ P such that G ∩ Dα ̸= ∅ for each α < κ. MA is
implied by the continuum hypothesis (CH), but ¬CH does not decide MA. MA implies
that c is a regular cardinal, 2κ = c for all infinite κ < c, and every set of reals of size
< c has Lebesgue measure zero. See Jech [25] for background.

Lemma 17 Assume MA. Let F be a fine filter over [c]<ω that is generated by a base
of size c. Suppose {Aα : α < c} and {Bα : α < c} are collections of subsets of c such
that each Bα is F–solid, and for all α, β < c, dimF(Aα) < dimF(Bβ). Then there is a
filter F′ ⊇ F with a base of size c and an F′–solid C ⊆ c such that for all α, β < c,
dimF′(Aα) < dimF′(C) < dimF′(Bβ).

Proof Let ⟨Xα : α < c⟩ be an enumeration of a base for F . Let ⟨Mα : α < c⟩ be a
sequence of elementary submodels of H(2c)+ such that:

• For each α < c, |Mα| < c, Mα ∩ c is an ordinal, and Mα ∈ Mα+1 .
• For each limit λ < c, Mλ =

⋃
α<λ Mα .

• F, {(Aα,Bα,Xα) : α < c} ∈ M0 .

For a set X , let Fun(X, 2, <ω) be collection of finite partial functions from X to 2. We
partially order these functions by putting p ≤ q when p extends q. It is well-known
that this partial order has the ccc. For the rest of the argument, let P = Fun(c, 2, <ω).

Claim 18 Suppose δ < c, s ∈ [c]<ω , and n ≥ 2. For p ∈ P, let Cp = {β ∈ dom(p) :
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p(β) = 1}. Consider the set:

Dδ,s,n = {p ∈ P : dom(p) ∈
⋂
i∈s

Xi, and for all i, j ∈ s

n
(
| dom(p) ∩ Ai|+ | dom(p) ∩ δ|

)
< |Cp \ δ| < n−1| dom(p) ∩ Bj|}

Then Dδ,s,n is dense.

Proof Let p ∈ P be arbitrary. Using the assumptions that each Bβ is solid and of larger
F–dimension than each Aα , find z ∈

⋂
i∈s Xi such that z ⊇ dom(p), |z| > 2| dom(p)|,

and for all α, β ∈ s:

2n2(|s||z ∩ Aα|+ |z ∩ δ|) < |z ∩ Bβ|

By fineness, we may assume the numbers on the left hand side are all positive.
If m = n2

(
|
⋃

i∈s z ∩ Ai|+ |z ∩ δ|
)

, then |z \ dom(p)| > m. Then choose a set
C∗ ⊆ z \ (dom(p) ∪ δ) of size m

n + 1, which is possible since n ≥ 2 and |z ∩ δ| < m/n.
Define an extension q of p with dom(q) = z by putting q(γ) = 1 for γ ∈ C∗ , and
otherwise q(γ) = 0 for γ ∈ z \ dom(p). Then q ∈ Dδ,s,n .

By MA, let G0 be P–generic over M0 , ie G0 is a filter that meets every dense
subset of P which lies in M0 . G0 can be thought of as a function from M0 ∩ c to
2. Let C0 = {γ : G0(γ) = 1}. Assume inductively that we have a sequence of
sets ⟨Cα ⊆ Mα : α < β⟩, with Cα ∩ Mα′ = Cα′ for α′ < α . If β is a limit, let
Cβ =

⋃
α<β Cα . If β = β′ + 1, let Gβ be P–generic over Mβ , and let:

Cβ = Cβ′ ∪ {γ : γ ≥ Mβ′ ∩ c,Gβ(γ) = 1}

Finally, we let C =
⋃
α<c Cα .

We want to show that for each δ < c, each s ∈ [c]<ω , and each positive n ∈ N, there is
z ∈

⋂
i∈s Xi such that for α, β ∈ s:

n(|z ∩ Aα|+ |z ∩ δ|) < |z ∩ C| < n−1|z ∩ Bβ|

To find such z, let α be large enough such that s, δ ∈ Mα . Then C ∩ Mα+1 = Cα+1 ,
and Cα+1 = Cα ∪ {γ : γ ≥ Mα ∩ c,Gα+1(γ) = 1}, where Gα+1 is P–generic over
Mα+1 . By Claim 18, there is some z ∈ Mα+1 ∩

⋂
i∈s Xi such that for all i, j ∈ s:

2n
(
|z ∩ Ai|+ |z ∩ Mα|

)
< |z ∩ Cα+1 \ Mα| < (2n)−1|z ∩ Bj|

In particular, n(|z ∩ Ai|+ |z ∩ δ|) < |z ∩ C|, and:

|z ∩ C| = |z ∩ C ∩ Mα|+ |z ∩ C \ Mα| ≤ 2|z ∩ C \ Mα| < n−1|z ∩ Bj|

This means that the following family has the finite intersection property:
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• {z : n|z ∩ Aβ| < |z ∩ C|} for n < ω and α < c

• {z : n|z ∩ C| < |z ∩ Bβ|} for n < ω and β < c

• {z : n|z ∩ γ| < |z ∩ C|} for n < ω and γ < c

• Xδ for δ < c

Let F′ be the generated filter. Then C is F′–solid, and for α, β < c, dimF′(Aα) <
dimF′(C) < dimF′(Bβ).

For an infinite cardinal κ, let us say a linear order L is κ–universal if every linear order
of size ≤ κ embeds into L . Generalizing Cantor’s theorem on the categoricity of dense
linear orders, it is easy to show that the following is a sufficient condition for a linear
order L to be κ–universal: For every two sets A,B ⊆ L of size < κ such that a < b for
every a ∈ A and b ∈ B, there is c ∈ L such that a < c < b for all a ∈ A and b ∈ B.

Theorem 19 Assume MA and 2c = c+ . There is an extension of Γc to an ultrafilter
U such that the collection of U–solid dimensions below the maximal dimension is a
2c–universal linear order.

Proof It suffices to show that there exists an ultrafilter U ⊇ Γc such that for any two
nonempty collections A,B ⊆ P(R<ω) of size at most c such that dimU(A) < dimU(B)
for A ∈ A and B ∈ B , and such that each B ∈ B is U–solid, there is a U–solid C such
that dimU(A) < dimU(C) < dimU(B) for all A ∈ B and B ∈ B . We will produce U as
an increasing union of filters ⟨Fα : α < c+⟩, with F0 = Γc . We assume inductively
that each Fα has a base of size c.

Let π be a function on c+ such that for each α < c+ , π(α) is a triple (X,A,B),
where X ⊆ [R<ω]<ω and A,B ⊆ P(R<ω) are nonempty sets of size at most c, and
every such triple appears unboundedly often. Suppose we are given Fα , and for every
A ∈ π(α)1 and B ∈ π(α)2 , dimFα(A) < dimFα(B), and B is Fα–solid. By Lemma
17, there is a filter F′

α ⊇ Fα with a base of size c and an F′
α–solid set C such that

dimF′
α

(A) < dimF′
α

(C) < dimF′
α

(B) for A ∈ A and B ∈ B . Let Fα+1 be the filter
generated by F′

α together with either π(α)0 or its complement, according to whichever
family has the finite intersection property. At limit ordinals λ, let Fλ =

⋃
α<λ Fα .

Let U =
⋃
α<c+ Fα . Suppose A,B are as hypothesized. Then then there is some

α < c+ such that dimFα(A) < dimFα(B) for A ∈ A and B ∈ B , and every B ∈ B is
Fα–solid. Let β ≥ α be such that π(β)1 = A and π(β)2 = B . Then at stage β + 1,
we obtain an Fβ+1 –solid set C that separates the Fβ+1 –dimensions of A from those of
B . This continues to hold for dimU .
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3.3 Representing general multi-dimensional measures

The Hausdorff measure is a well-known measure-theoretic construction which assigns
to subsets X ⊆ Rn a family of (outer) measures Hα(X), for real numbers α , 0 ≤ α ≤ n.
The idea is to give a generalization of volumes of smooth surfaces, which incorporates
a general notion of dimension, for a wide class of subsets of Rn . A basic property
of Hausdorff measure is that for any X ⊆ Rn , there is at most one real α such that
0 < Hα(X) <∞, while Hβ(X) = ∞ for β < α , and Hβ(X) = 0 for β > α . If such
a value α exists for a set X , then α is called the Hausdorff dimension of X .

There are many variations on the Hausdorff measure that all agree on smooth surfaces
but disagree in general (see Krantz and Parks [34, p. 63] for 8 examples). A related
notion is Minkowski content, which gives finitely but not countably additive measures
and agrees with the Hausdorff and Lebesgue measures in special cases.

Our filter-integral on R<ω can be thought as another generalization of the classical
notion of volume in a rather different direction. Aspects of our construction apply in an
abstract setting that covers many of the families of measures discussed above. A similar
result about the Hausdorff measures has been obtained by Wattenberg with techniques
of nonstandard analysis [51].

Theorem 20 Suppose X is a set, A is an algebra of subsets of X , (I, <) is a linear
order, and {µi : i ∈ I} is a family of functions on A satisfying the following conditions.

(1) For each i ∈ I , µi is a finitely additive measure on A taking extended real values
in [0,∞].

(2) For each i < j in I and each Y ∈ A, µi(Y) ≥ µj(Y).
(3) For each Y ∈ A, there is at most one i ∈ I such that 0 < µi(Y) <∞.
(4) For each i ∈ I , there is some Y ∈ A such that 0 < µi(Y) <∞.
(5) For each i ∈ I and Y ∈ A, if 0 < µi(Y), then Y is an infinite set.

Then there is a fine filter F over [X]<ω and a ≪–increasing sequence ⟨εi : i ∈ I⟩ ⊆
Pow(R,F) such that for all Y ∈ A and i ∈ I with µi(Y) <∞,�

χY dF = µi(Y)εi + δ

where δ ≪ εi .

Proof We will show that the following family of sets has the finite intersection property,
so that it is the basis of a fine filter F over [X]<ω with the desired properties:

(1) {z : x ∈ z}, for x ∈ X
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(2)
{

z :
∣∣∣ |z∩Y|
|z∩Y| −

µ(Y)
µ(Y)

∣∣∣ < 1
m

}
whenever m ∈ N+ , Y,Y ∈ A, µi(Y), µi(Y) < ∞,

and 0 < µi(Y)
(3)

{
z : |z∩Y|

|z∩Y| > m
}

whenever m ∈ N+ , Y,Y ∈ A, 0 < µi(Y) <∞ and µi(Y) = ∞
To this end, consider finitely many points x1, . . . , xn ∈ X and finitely many sets
Y1, . . . ,Yv ∈ A. Define also

• i1 = min{i ∈ I : µi(Yj) > 0 for some j ≤ v}; and
• in+1 = min{i > in : µi(Yj) > 0 for some j ≤ v}.

Since v ∈ N, we can order such indexes as i1, . . . , ik with k ≤ v. Without loss of
generality, suppose also that for every j = 1, . . . , k there exists a set Y j such that
0 < µij(Y j) < ∞. In fact, if there is no such set in the original list Y1, . . . ,Yv , it
is sufficient to add one set that satisfies the desired inequalities for every dimension
i1, . . . , ik . We can do so by hypothesis (4).

Consider the finite set {x1, . . . , xn} and the elements of A1 = {Yj : µi1(Yj) <∞}. By
Lemma 6 applied to µi1 , there exists a finite set z1 such that

(1) x1, . . . , xk ∈ z1 ; and
(2) for every Y ∈ A1 ,

∣∣∣ |z1∩Y|
|z1∩Y1|

− µi1 (Y)
µi1 (Y1)

∣∣∣ < 1
m .

We can repeat a similar argument for i2 in order to obtain a suitable finite set z2 . In
this case, however, we have to take into account that we want our finite set z2 to satisfy
hypothesis (3) of the basis of F : namely, |z2∩Y|

|z2∩Y1|
> m for every Y ̸∈ A1 . Thus we

replace {x1, . . . , xk} with z1 , A1 with A2 = {Yj : 0 < µi2(Yj) < ∞} and we apply
Lemma 6 to obtain a finite set z2 that satisfies

(1) z1 ⊆ z2 ;
(2) z2 \ z1 ⊆

⋃
A2 \

⋃
A1 ;

(3) for every Y ∈ A2 ,
∣∣∣ |z2∩Y|
|z2∩Y2|

− µi2 (Y)
µi2 (Y2)

∣∣∣ < 1
m ; and

(4) for every Y ∈ A2 , |z2∩Y|
|z1| > m.

The second condition ensures that the inequalities arranged for z1 with respect to A1

continue to hold for z2 . We proceed in a similar way and obtain the sets z3, . . . , zk that
satisfy analogous properties. The set zk satisfies the desired conditions stated at the
beginning of the proof for x1, . . . , xn and Y1, . . . ,Yv ∈ A. Thus we have proved that
the family of sets (1)–(3) has the finite intersection property, so it generates a fine filter
F over [X]<ω .

3.4 The Borel-Kolmogorov paradox

The geometric measure on R<ω and, more generally, the possibility of representing
simultaneously multi-dimensional measures, allows us to address the Borel-Kolmogorov
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paradox, which concerns a violation of intuitions about conditional probability in the
context of geometry on the two-dimensional sphere. Let us first discuss the paradox,
following the more synthetic-geometrical presentation of Easwaran [18].

Consider a sphere S with a given axis a0 and a small circular region A around one
of the poles determined by a0 . For example, A could be the set of all points north of
the arctic circle on the earth. Now consider the set C0 of all great circles touching the
two ends of the axis a0 . For reasons of symmetry, the conditional probability Pr(A|C),
or the proportion of measures m(A ∩ C)/m(C), should be the same for all C ∈ C0 .
Furthermore, this should be in the same proportion as m(A)/m(S). Now let B be the
surface of revolution obtained by revolving A around an axis a1 perpendicular to a0 .
Then B is of strictly larger surface area than A. Let C1 be the collection of great circles
touching the ends of a1 . For the same reasons as before, for all C ∈ C1 , m(B∩C)/m(C)
should be the same as m(B)/m(S). But there is a C∗ ∈ C0 ∩ C1 . Thus we have

m(A)/m(S) = m(A ∩ C∗)/m(C∗) = m(B ∩ C∗)/m(C∗) = m(B)/m(S),

and so m(A) = m(B). This is a contradiction.

Of course, the argument works equally well if we replace “=” with “≈” in the case that
m is non-Archimedean, and we arrange that m(A)/m(S) ̸≈ m(B)/m(S). Kolmogorov’s
diagnosis of the error in the paradox was, “This shows that the concept of a conditional
probability with regard to an isolated given hypothesis whose probability equals 0 is
inadmissible” [33]. On our view, this cannot be the right explanation, since the paradox
carries the same force if we use a non-Archimedean analysis that gives all nonempty
sets a nonzero measure, as we have done.

On our view, the error lies in the claim that the conditional probabilities Pr(A|C∗) and
Pr(B|C∗) “should be” in the same (or approximately the same) proportion as the sizes
of the background sets A and B relative to the sphere. This sounds somewhat intuitive,
but we contend that it is much more intuitive that m(A ∩ C∗)/m(C∗) should be the
proportion of the arc length of C∗ taken up by A, as is the case for our filter-integral on
R<ω , without regard to the larger background of the set A.

So why “should” m(A ∩ C∗)/m(C∗) and m(A)/m(S) be the same? The argument
advanced by Easwaran [18] is a principle called “conglomerability.” This concept
originated with De Finetti [35] and has also been studied by other authors (see for
instance Schervish, Seidenfeld and Kadane [45]). This is a generalization of a formula
for weighted averages from the finite to the infinite case. If A0, . . . ,An are disjoint
sets with nonzero measure, then simple arithmetic implies that for any measurable
B ⊆ A0 ∪ · · · ∪ An :

Pr(B) = Pr(B|A0) Pr(A0) + · · ·+ Pr(B|An) Pr(An)
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It is easy to see that if the probability measure is countably additive, then this generalizes
to countable collections of disjoint measurable sets. Conglomerability generalizes this
further to say that if {Ai : i ∈ I} is any partition of a set A, then for every B ⊆ A, we
should have the integral equation:

Pr(B) =
� (∑

i

Pr(B|Ai)χAi(x)

)
dx

(Note that since the Ai are pairwise disjoint, the sum in the integrand has at most one
nonzero term at a given x.) In the context of our reasoning about the sphere, the idea
is that when the two poles are removed, the set of great circles through those poles
forms a partition of the sphere. Thus the proportion of the sphere taken up by the set
A should be the conglomeration of all of the pieces meeting the great circles. Since
all of these pieces are congruent, this is an integral of a constant function with value
c = Pr(A|C∗). In other words, assuming we start with a sphere with surface area 1,
Pr(A) =

�
c dx = c.

Now we know this kind of equation will not hold in general, but it is interesting to look
closely at what it says in the context of our filter integrals. Suppose F is a fine filter
over [X]<ω , B ⊆ X , and {Ai : i ∈ I} is a partition of X into nonempty sets. Then by
definition we have:�

χB dF =

� (∑
i

χB∩Ai

)
dF =

[
z 7→

∑
i

|B ∩ Ai ∩ z|
|z|

]
F

=

[
z 7→

∑
i

|B ∩ Ai ∩ z|
|Ai ∩ z|

|Ai ∩ z|
|z|

]
F

This looks a lot like we are integrating
∑

i Pr(B|Ai)χAi(x). However, in our situation,
Pr(B|Ai) is an integral and typically a nonstandard element of Pow(Q,F). If it has a
standard part, this value depends on the convergence properties modulo F , and we
should not expect a similar-looking formula to be substitutable back into the process
and have the convergence come out unaffected.

Easwaran ultimately comes down in favor of the conglomerability principle, and due
to several reasons including the above paradox, against the position that conditional
probabilities should be construed as ratios of unconditional measures. Instead, he
argues that conditional probabilities depend on a context, namely a given partition of
the underlying space. However, we contend that the filter integral gives a coherent
and natural picture of conditional probability as a ratio of measures for any nonempty
condition, and the geometric intuitions buttressing this picture outweigh the philosophical
arguments for conglomerability.
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4 Non-Archimedean integration

Besides being able to represent real-valued measures, the filter integral has also
relevant applications in non-Archimedean integration. Recall that for arbitrary fields
k , developing a non-Archimedean integration is still an open problem, despite some
positive results established for particular classes of such fields. For a survey of this
topic, see the introduction of Bottazzi [9]. For known limitations of non-Archimedean
integration, we refer to Bottazzi [7, 8].

In a non-Archimedean field k ⊃ R, the idea underlying the Riemann and Lebesgue
integrals of defining integrable functions as those that can be approximated arbitrarily
well with step functions has some drawbacks. The main issue is that convergence
in k is much more restrictive than convergence in R, so that it is not even possible
to approximate polynomials over finite intervals arbitrarily well. For instance, it is
well-known that for all ε ∈ R, ε > 0 there exists a step function sε : [0, 1] → R such
that maxx∈[0,1] |x2 − sε| < ε. From this argument it is easy to obtain that for all positive
ε ∈ R, there exists a step function sε : [0, 1]k → k such that maxx∈[0,1]k |x2 − sε| < ε.
However, no step function over [0, 1]k can approximate x2 up to an infinitesimal
precision.

In order to overcome this issue in the Levi-Civita field, Shamseddine [46], Shamseddine
and Berz [47] and Bottazzi [7] have suggested to enlarge the family of “elementary
functions” from step functions to analytic functions, with partial success.

In this section we discuss how the filter integral provides an alternative approach to
non-Archimedean integration. We start by acknowledging that in the non-Archimedean
setting, the filter integral lacks some geometric properties, especially when dealing with
integrals over sets of an infinitesimal length. Then we discuss a general representation
theorem that allows us to definably extend real-valued measures to non-Archimedean
field extensions of R, in a way that the family of integrable functions is richer than
that obtained with different approaches. Finally, we show that the F–integral can be
decomposed in a meaningful way according to the skeleton group of k .

4.1 A geometric limitation

Let k ⊃ R, ε ∈ k , 0 < ε ≪ 1, X = [0, 1]k and consider the function f = ε−1χ[0,ε] .
Since eventually the function z 7→

∑
x∈z f (x)/|z| assumes an infinite value,

�
f dF is

infinite, regardless of the filter F .
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This is at odds with the geometric intuition that, if the filter F is chosen in a way that�
χ[0,1/n) dF = 1/n for every n ∈ N, we would expect that the F–integral of f is 1.

In order to overcome this limitation, it might be possible to define a “Riemann-like”
integral of a function f : k → k in the following way. Let z ∈ [k]<ω and let
x1 < x2 < . . . < x|z| be its elements. Then define the Riemann-like integral of a
function f as: z 7→

|z|−1∑
i=1

(xi+1 − xi)f (xi)


F

The choice of evaluating f at the left endpoint of the interval [xi, xi+1] can be replaced
by evaluating f at other points of the interval. However, this approach suffers from the
same drawback discussed for other non-Archimedean measures, namely that the class of
functions that can be approximated by step functions up to an arbitrary precision is too
narrow. Thus, we find that it is more convenient to work directly with the F–integral.

4.2 A general representation result

Despite the limitation discussed above, the F–integral allows us to lift measures over
Rn to kn in a way that the family of integrable functions is preserved.

In order to state the next result, we need to generalize the notion of S–continuous
function, used in nonstandard analysis, to arbitrary non-Archimedean field extensions
of R.

Definition Let k ⊃ R be an ordered field, X ⊆ kn
fin and f : X → km . We say that f is

standardizable iff

• f (x) ∼ f (y) whenever x, y ∈ X and x ∼ y; and
• f (x) is finite for every x ∈ X .

If f is standardizable, we define its standard part st f : st X → Rm as st f (x) = st ( f (y))
for any y ∈ X satisfying st y = x .

Notice that, contrary to S–continuous functions of nonstandard analysis, the standard
part of a standardizable function need not be continuous.

Proposition 21 Let k ⊃ R be an ordered field, and let µ satisfy the hypotheses of
Theorem 7. Then there exists a fine filter F on [kn

fin]<ω such that for every standardizable
f : kn

fin → k , if st f is a bounded µ–measurable function, then f has a standard F–integral
and

�
fdF =

�
st f dµ.
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Proof Let F′ be a filter satisfying Theorem 7 for µ. Then for any ε ∈ R, ε > 0, and
for any finitely many f1, . . . , fm such that fi : Rn → R is a bounded µ–measurable
function, and for any finitely many points x1, . . . , xℓ in Rn there is A ∈ F′ such that for
any z ∈ A, {x1, . . . , xℓ} ⊆ z and:∣∣∣∣∣∑

x∈z

st fi(x)
|z|

−
�

fi dµ

∣∣∣∣∣ < ε

Now let x1, . . . , xℓ ∈ kn
fin , let f1, . . . , fm be standardizable, and let ε > 0 be a real

number. Let A ∈ F′ be given with respect to the functions st f1, . . . , st fm and the points
st x1, . . . , st xℓ , and let z′ ∈ A. Let z ∈ [kn

fin]<ω be such that

• x1, . . . , xℓ ∈ z;
• st z = z′ ; and
• for every r, s ∈ z′ , |{x ∈ z : st x = r}| = |{x ∈ z : st x = s}|.

These conditions ensure that when we compute the average of fi over z, we get the
same standard part as computing the average of st fi over z′ .

Thus for standardizable f and real ε > 0, if Af ,ε is the set of z ∈ [kn
fin]<ω such that

−ε <
∑
x∈z

f (x)
|z|

−
�

st fi dµ < ε

then the collection of all Af ,ε , together with the sets {z : x ∈ z} for x ∈ kn
fin , generates a

filter F as desired.

This proof can be adapted to prove the non-Archimedean counterpart of Theorem 9.

Corollary 22 Let k ⊃ R be an ordered field, and let µ satisfy the hypotheses of
Theorem 9. Then there exists a countable partition P⃗ of kn

fin and a fine filter F on
[kn

fin]<ω such that for every standardizable f : kn
fin → k , if st f is a µ–integrable function,

then f has a standard (F, P⃗)–integral and
�

f d(F, P⃗) =
�

st f dµ.

In order to assess the relevance of these results, we suggest a comparison with Proposition
3.16 of Bottazzi [7] in the case k = R, the Levi-Civita field. Proposition 3.16 of [7]
shows that any real-valued function that is not locally analytic at almost every point of its
domain does not have a measurable representative with respect to the non-Archimedean
uniform measure developed by Shamseddine and Berz [47, 46].

Conversely, Proposition 21 applied with µ = λ, the Lebesgue measure over Rn , shows
that it is possible to define a fine filter F on [Rn

fin]<ω and a countable partition P⃗ of
Rn

fin such that
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• µ
(
Πn

i=1[ai, bi]R
)
≈ Πn

i=1 st (bi − ai) for every finite a1, . . . , an, b1, . . . , bn ∈ R,
ie µ is infinitesimally close to the uniform measure of Berz and Shamseddine,
and

• if f is standardizable and st f is Lebesgue integrable, then f has a standard
(F, P⃗)–integral, and moreover its (F, P⃗)–integral is infinitesimally close to the
Lebesgue integral of st f .

Thus the filter integral allows for a broader family of functions with a well-defined
standard integral. Using the minimal definable filter instead of a larger filter (such as
an ultrafilter) has the benefit of not assigning a standard integral to functions whose
standard part is not µ–measurable. The possibility of meaningfully enlarging the
family of functions with a well-defined integral might enable further applications to
mathematical models in the spirit of the ones discussed in Section 5 of Bottazzi [7] or
in Sections 4.6 and 4.7 of Bottazzi [9].

Recall also that a non-uniform measure theory over non-Archimedean fields has not
yet been developed. In contrast, the filter integral allows one to do so by extending
real-valued measures, an improvement upon the state of the art in this field.

4.3 The decomposition of the F–integral for arbitrary fields

The value of the filter integral of a function that takes values in k ⊃ R can be
characterized based on the skeleton group of k .

Invoking the Axiom of Choice, the Hahn Embedding Theorem [19] (see also the
exposition by Clifford [11]) allows us to write the elements of any k ⊃ R as generalized
formal power series over an ordered group Γ (often called the skeleton group of k)
with real coefficients, in a way that the exponents of the terms with nonzero coefficients
form a well-founded subset of Γ. Let λ : k → Γ be the valuation chosen in such a way
that if λ(x) > 0, then |x| ≪ 1. The subfield {x ∈ k : λ(x) = 0} is isomorphic to R.

Let ε > 0 be an infinitesimal such that λ(ε) = 1. We can write every y ∈ k as
∑

i∈Γ aiε
i

with ai ∈ R. Similarly, every function f : X → k decomposes as
∑

i∈Γ fiεi , where
each fi : X → R. For every i ∈ Γ define also f<i =

∑
j<i fjεj and f>i =

∑
j>i fjεj .

For an arbitrary skeleton group Γ, we can exploit the decomposition of f as f<i+ fi+ f>i

to obtain the following F–integral decomposition:

(2)
�

f dF =

�
f<i dF + [εi]F

�
fi dF +

�
f>i dF
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In the above decomposition, since |f>i| ≪ εi ,
�

f>i dF ≪ [εi]F . If fi has a finite
standard F–integral,

�
fi dF =

�
fi dF + δ , with δ ≪ 1. Thus�

f dF =

�
f<i dF + [εi]F

�
fi dF + ηi

where ηi = [εi]Fδ +
�

f>i dF satisfies ηi ≪ [εi]F .

Additionally, if there exists i ∈ Γ such that fi(x) ̸= 0 for some x ∈ X and f<i(x) = 0
for every x ∈ X , the F–integral of f can be expressed as�

f dF = [εi]F

�
fi dF + ηi

ie the F–integral of f is the integral of its leading term plus another term of a smaller
magnitude.

If Γ = Z, it is possible to further refine the above decomposition. Let k ⊃ R have the
skeleton group Z (eg the field of formal Laurent series). Assume that the function f
is bounded in k and each fi has a finite standard F–integral. Let n ∈ Z be such that
|f | < εn . For any m ≥ n, the decomposition (2) can be further refined as:

�
f dF =

m∑
i=n

[εi]F

�
fi dF +

�
f>m dF

=
m∑

i=n

[εi]F

(�
fi dF + δi

)
+

�
f>m dF(3)

Let us compare the contribution of the error term δi to higher degrees of ε. Let
ai =

�
fi dF : the error term is the equivalence class of the function z 7→

∑
x∈z fi(x)
|z| − ai .

If δi ̸= 0, then
∣∣∣∑x∈z fi(x)

|z| − ai

∣∣∣ is eventually a positive real number. As a consequence,

|δi| ≫ εn for every n > 0. Therefore εi ≫ εi|δ| ≫ εj for every j > i. Thus, each term
of the sum (3) operates on a different scale, with no arithmetic influence between scales:

. . .≫ [εi−1]F|δi−1| ≫ [εi]F|ai| ≫ [εi]F|δi| ≫ [εi+1]F|ai| ≫ . . .

5 Product Spaces

Suppose we have fine filters F,G over [X]<ω, [Y]<ω respectively. We construct a fine
filter F × G over [X × Y]<ω concentrating on the finite rectangles, the collection of
which is naturally isomorphic to [X]<ω × [Y]<ω . We put sets into F × G essentially
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when for a large subset of the Y –axis, the cross-section along the X–axis is large. More
precisely, F × G is the set of A ⊆ [X × Y]<ω such that:

{z1 ∈ [Y]<ω : {z0 ∈ [X]<ω : z0 × z1 ∈ A} ∈ F} ∈ G

It is straightforward to check that F × G is a filter. Furthermore, if F and G are both
ultrafilters, then so is F × G.

This operation is not symmetric. Suppose X is an infinite set and F is a fine filter over
[X]<ω . For z ∈ [X]<ω , let Az be the set of finite z′ ⊇ z, and let A =

⋃
z Az × {z}.

Then for all z, {z′ : z′ × z ∈ A} = Az ∈ F by fineness, and so A ∈ F2 . But for any
z ∈ [X]<ω and any z′ ⊋ z, z × z′ /∈ A, so {z′ : z × z′ ∈ A} /∈ F . Thus switching the
roles of horizontal and vertical cross-sections yields a different filter.

Suppose K is a divisible torsion-free Abelian group. For functions f : X × Y → K ,
we can compute

�
f d(F × G) as before. But we can also compute in two steps. For

fixed p ∈ Y , we obtain a value in Pow(K,F) by taking
�

f (x, p) dF . This gives a
function from Y to Pow(K,F), which we denote by

�
f (x, y) dF . We can then compute�

(
�

f (x, y) dF) dG. To show that this yields the same result, let us establish a general
fact about iterated reduced powers:

Lemma 23 (Folklore) Suppose F,G are filters over sets X, Y respectively. Let A be
any algebraic structure. Then there is a canonical isomorphism:

ι : Pow(A,F × G) ∼= Pow(Pow(A,F),G)

Proof First note that there is a natural correspondence between the objects of these
structures, before we compute equivalence classes. The elements of the iterated reduced
power are represented by functions from Y to functions from X to A, which are coded
by functions on pairs.

Suppose φ(v0, . . . , vn) is an atomic formula in the language of A. Let f0, . . . , fn be
functions from X × Y to A. Then:

Pow(A,F × G) |= φ([ f0]F×G, . . . , [ fn]F×G)

⇐⇒ {(x, y) : |=φ (f0(x, y), . . . , fn(x, y))} ∈ F × G

⇐⇒ {y : {x : A |= φ (f0(x, y), . . . , fn(x, y))} ∈ F} ∈ G

⇐⇒ {y : Pow(A,F) |= φ([ f0(x, y)]F, . . . , [ fn(x, y)]F)} ∈ G

⇐⇒ Pow(Pow(A,F),G) |= φ([[ f0(x, y)]F]G, . . . , [[ fn(x, y)]F]G)

Thus we may define an isomorphism ι by [ f ]F×G 7→ [[ f ]F]G .
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Because of the above fact, we will abuse notation slightly and write a = b for
a ∈ Pow(A,F × G) and b ∈ Pow(Pow(A,F),G) when we really mean that ι(a) = b,
where ι is the canonical isomorphism above.

Lemma 24 Suppose K is a divisible torsion-free Abelian group, F,G are fine filters
over [X]<ω, [Y]<ω respectively. Then for all f : X × Y → K :�

f d(F × G) =
�

f dFdG

Proof Since F × G concentrates on the set of finite rectangles z0 × z1 :

�
f d(F × G) =

 ∑
(x,y)∈z0×z1

f (x, y)/|z0 × z1|


F×G

The isomorphism ι maps this to: ∑
(x,y)∈z0×z1

f (x, y)
|z0||z1|


F


G

=

[� (∑
y∈z1

f (x, y)/|z1|

)
dF

]
G

=

[
|z1|−1

∑
y∈z1

�
f (x, y) dF

]
G

=

�
f (x, y) dFdG

The key reason we introduced the notion of a comparison ring is that it makes the theory
of iterated filter integration more elegant. Since a reduced power of a comparison ring
is also a comparison ring, general facts about integrating functions taking values in
comparison rings apply to each step of an iterated integral. The remainder of this section
is devoted to exploring some facts about standard parts in iterated filter integrals.

Proposition 25 Suppose F,G are fine filters over [X]<ω, [Y]<ω respectively. For
A ⊆ X and B ⊆ Y :� +

χA×B dFdG =

(� +

χA dF
)(� +

χB dG
)

� −
χA×B dFdG =

(� −
χA dF

)(� −
χB dG

)
Proof First we claim that there are filters Fu,Fℓ ⊇ F and Gu,Gℓ ⊇ F such that
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•
�
χA dFu =

� +
χA dF ;

•
�
χA dFℓ =

� −
χA dF ;

•
�
χB dGu =

� +
χB dG; and

•
�
χB dGℓ =

� −
χB dG.

Let us show the first point; the others are similar. Let r =
� +

χA dF . We claim that for
all D ∈ F and all ε > 0, there exists z ∈ D such that |z ∩ A|/|z| > r − ε. Otherwise,
there is D ∈ F and ε > 0 such that for all z ∈ D, |z ∩ A|/|z| ≤ r − ε, which would
mean that

� +
χA dF < r , a contradiction. It follows that F together with the sets

{z ∈ [X]<ω : ||z ∩ A|/|z| − r| < ε}, for ε > 0, generates a filter Fu , and
�
χA dFu = r .

Note that χA×B(x, y) = χA(x)χB(y). By linearity:�
χA×B(x, y) dFudGu =

�
(χB(y)

�
χA(x) dFu) dGu

By Lemma 4,
�
χA dFu =

�
χA dFu + ε, where ε is an infinitesimal of Pow(R,Fu).

Thus: �
χA×B(x, y) dFudGu =

[
z 7→

(�
χA dFu + ε

)
|z ∩ B|
|z|

]
Gu

If
�
χA dFu = 0, then this is an infinitesimal of Pow(Pow(R,Fu),Gu), and so�

χA×B dFudGu = 0. Suppose then that
�
χA dFu ≠ 0. For any real δ > 0,

there is D ∈ Gu such that | |z∩B|
|z| −

�
χB dGu| < δ for z ∈ D. Since ε is infinitesimal, it

follows that for z ∈ D:

−δ
�
χA dFu <

(�
χA dFu + ε

)
|z ∩ B|
|z|

−
�
χA dFu

�
χB dGu < δ

�
χA dFu

Hence,
�
χA×B dFudGu = (

� +
χA dF)(

� +
χB dG). This shows that:(� +

χA dF
)(� +

χB dG
)

≤
� +

χA×B dFdG

It remains to show the reverse inequality. Let p, q be rational numbers such that
p >

� +
χA dF and q >

� +
χB dG. Then:�

χA×B dFdG =

� (�
χA dF

)
χB dG <

�
pχB dG < pq

Thus inf{s ∈ Q : s >
�
χA×B dFdG} = (

� +
χA dF)(

� +
χB dG). The argument for

the lower integrals is entirely analogous.

If f : X × Y → Z is a function, let f̄ : Y × X → Z be defined by f̄ (y, x) = f (x, y).
Our iterated integrals on products of two spaces are defined to integrate in the leftmost
variable first, and this operation f 7→ f̄ allows us to consider switching the order of
integration in line with our conventions.
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Theorem 26 Suppose µ, ν are countably additive probability measures on X,Y
respectively. Then for all µ × ν–integrable functions f : X × Y → R, there are sets
A ⊆ X and B ⊆ Y such that µ(A) = ν(B) = 1, and:�

f d(µ× ν) =
�

A×B
f d(Fµ × Fν) =

�
B×A

f̄ d(Fν × Fµ)

Proof Let f : X × Y → R be µ× ν–integrable. By Fubini’s Theorem, we have:

(a) There are sets A ⊆ X and B ⊆ Y such that µ(A) = ν(B) = 1, and for all
(x0, y0) ∈ A × B, f (x, y0) is µ–integrable and f (x0, y) is ν–integrable.

(b) The functions x 7→
�

f (x, y) dν and y 7→
�

f (x, y) dµ are integrable.
(c)

�
f d(µ× ν) =

�
f dµdν =

�
f̄ dνdµ =

�
f̄ d(ν × µ).

Since y 7→
�

A f (x, y) dµ is ν–integrable:
�

f d(µ× ν) =
� (

χB(y)
�

A
f (x, y) dµ

)
dν =

� (
χB(y)

�
A

f (x, y) dµ
)

dFν

For all y ∈ Y such that x 7→ f (x, y) is µ–integrable, we have:�
A

f (x, y) dFµ :=
�
χA(x)f (x, y) dFµ =

�
χA(x)f (x, y) dµ

By Lemma 5:� (
χB(y)

�
A

f (x, y) dFµ

)
dFν =

� (
χB(y)

�
A

f (x, y) dFµ

)
dFν

Putting this together, we have the desired conclusion that:�
f d(µ× ν) =

�
B

(�
A

f (x, y) dµ
)

dν =

�
B

(�
A

f (x, y) dµ
)

dFν

=

�
B

(�
A

f (x, y) dFµ

)
dFν =

�
B

(�
A

f (x, y) dFµ

)
dFν

=

�
A×B

f dFµdFν =

�
A×B

f d(Fµ × Fν)

By exactly the same argument,
�

f̄ d(ν × µ) =
�

B×A f̄ d(Fν × Fµ).

Unfortunately, the restriction to measure-one sets A and B in the above result cannot in
general be avoided. To see this, consider the function f on the open unit square defined
by

F(x, y) =

{
1/x if y = 1/2,

0 otherwise.
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Since f is nonzero only on a set of Lebesgue measure zero, its Lebesgue integral is zero.
Suppose F = Fλ , where λ is the Lebesgue measure on (0, 1). Then

�
f (x, 1/2) dF

is a positive infinite number a ∈ Pow(R,F). For all z ∈ [(0, 1)]<ω with 1/2 ∈ z,
|z|−1∑

y∈z

�
f (x, y) dF = a/|z|, which is still infinite. Thus

�
f dF2 is infinite. On

the other hand, for all y ∈ (0, 1), |z|−1∑
x∈z f̄ (x, y) ≤ 1/y|z|. Thus for all y ∈ (0, 1),�

f̄ (x, y) dF is infinitesimal, and thus so is
�

f̄ dF2 .

Proposition 27 Suppose n is a natural number and for i < n, τi is a compact topology
on Xi and Fi is a fine filter over [Xi]<ω such that all τi –continuous functions into R
have a standard Fi –integral. Then any (

∏
i<n τi)–continuous function from

∏
i<n Xi to

R has a finite standard (
∏

i<n Fi)–integral.

Proof It suffices to prove the claim for n = 2, since the general case then follows by
induction. Since τ0 × τ1 is compact, every continuous f : X0 × X1 → R is bounded.
For each y ∈ X1 , x 7→ f (x, y) is a τ0 –continuous function on X0 . Thus

�
f (x, y) dF0

exists and is finite for each y ∈ X1 .

We claim that the function y 7→
�

f (x, y) dF0 is a τ1 –continuous function on X1 .
Let y ∈ X1 and ε > 0 be given. Let r =

�
f (x, y) dF0 . By the compactness of

τ0 × τ1 , there is a finite collection of open rectangles {Ai × Bi : i < m} such that if
(a0, b0), (a1, b1) ∈ Ai × Bi , then |f (a0, b0) − f (a1, b1)| < ε. Let B =

⋂
{Bi : y ∈ Bi}.

Then for all y′ ∈ B and all x ∈ X0 , |f (x, y′) − f (x, y)| < ε. It follows that −ε <� (
f (x, y′) − f (x, y)

)
dF0 < ε. Thus y′ ∈ B implies |

�
f (x, y′) dF0 − r| < ε.

By hypothesis,
�

(
�

f (x, y) dF0)dF1 has a standard part. It is finite since f is bounded.
Applying Lemma 5, we get:� (�

f (x, y) dF0

)
dF1 =

� (�
f (x, y) dF0

)
dF1 =

�
f d(F0 × F1)

6 Transfinite integrals

Let (L, <) be a linear order, and let ⟨(Zi,Fi) : i ∈ L⟩ be such that each Fi is a filter over
Zi . For a finite a ⊆ L , we interpret the product filter

∏
i∈a Fi as taken in the order given

by (L, <).

Lemma 28 Suppose a ⊆ b are finite nonempty subsets of L. Let πb,a :
∏

i∈b Zi →∏
i∈a Zi be the canonical projection. Then A ∈

∏
i∈a Fi if and only if π−1

b,a [A] ∈
∏

i∈b Fi .
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Proof Write b in L–increasing order as ξ0 < · · · < ξn−1 . Let i0 = min{i : ξi ∈ a}.
For j ≤ n and x = a, b, let xj = x ∩ {ξ0, . . . , ξj−1}. We will show by induction that the
conclusion holds with respect to πbj,aj for i0 < j ≤ n.

Assume the claim holds for i < j. Suppose first that ξj ∈ a. Then:

A ∈
∏

i∈aj+1

Fi ⇐⇒ {y : {⃗x : x⃗⌢⟨y⟩ ∈ A} ∈
∏
i∈aj

Fi} ∈ Fξj

⇐⇒ {y : {⃗z : πbj,aj (⃗z)⌢⟨y⟩ ∈ A} ∈
∏
i∈bj

Fi} ∈ Fξj

⇐⇒ {⃗z : πbj+1,aj+1 (⃗z) ∈ A} ∈
∏

i∈bj+1

Fi

Suppose next that ξj /∈ a. Then by induction:

A ∈
∏

i∈aj+1

Fi ⇐⇒ A ∈
∏
i∈aj

Fi ⇐⇒ π−1
bj,aj

[A] ∈
∏
i∈bj

Fi

But π−1
bj+1,aj+1

[A] = π−1
bj,aj

[A] × Zξj , which is in
∏

i∈bj+1
Fi if and only if π−1

bj,aj
[A] ∈∏

i∈bj
Fi .

Now let A be any structure. For finite a ⊆ b contained in L, define a map ea,b :
Pow(A,

∏
i∈a Fi) → Pow(A,

∏
i∈b Fi) by [ f ]∏

i∈a Fi 7→ [ f ◦ πb,a]∏
i∈b Fi . The above

lemma implies that each ea,b is an embedding. If a ⊆ b ⊆ c are finite subsets of
L, then πc,a = πb,a ◦ πc,b , and thus ea,c = eb,c ◦ ea,b . We define the direct limit of
this system as the collection of equivalence classes of pairs (a, x), where a ⊆ L is
finite and x ∈ Pow(A,

∏
i∈a Fi), with the equivalence relation (a, x) ∼ (b, y) holding

when ea,a∪b(x) = eb,a∪b(y). We interpret the relation and function symbols in the
language of A according to their interpretations in the finite iterated reduced powers,
which is coherent because of the commuting system of embeddings. Call this structure
Pow(A, F⃗). We have that for any atomic formula φ(v0, . . . , vn) and any objects
[(a0, x0)], . . . , [(an, xn)], if b = a0 ∪ · · · ∪ an , then

Pow(A, F⃗) |= φ ([(a0, x0)], . . . , [(an, xn)])

⇐⇒ Pow(A,
∏
i∈b

Fi) |= φ
(
ea0,b(x0), . . . , ean,b(xn)

)
⇐⇒ Pow(A,

∏
i∈c

Fi) |= φ
(
ea0,c(x0), . . . , ean,c(xn)

)
where c ⊆ L is an arbitrary finite superset of b. For finite a ⊆ L, let ea :
Pow(A,

∏
i∈a Fi) → Pow(A, F⃗) be the canonical embedding x 7→ [(a, x)].
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Lemma 29 Suppose K is a comparison ring, L is a linear order, and ⟨Fi : i ∈ L⟩ is a
sequence of filters. Then Pow(K, F⃗) is a comparison ring. Furthermore, if a ⊆ L is
finite and x ∈ Pow(K,

∏
i∈a Fi) has standard part r , then st (ea(x)) = r .

Proof (sketch) Lemma 2 implies that for each finite a ⊆ L, Pow(K,
∏

i∈a Fi) is a
comparison ring. We need only to check that the axioms are preserved under embeddings.
For those that can be written Π1 –formulas, this is immediate. Beyond this, the key is
just that additive and multiplicative inverses are the unique solutions to equations like
a + x = 0 and ax = 1, which are themselves atomic formulas.

For the second claim, note that for any q0, q1 ∈ Q, the formulas “q0 < x” and “x < q1 ”
are preserved by the embedding ea .

If X⃗ = ⟨Xi : i ∈ I⟩ is a sequence of sets and f :
∏

X⃗ → Y is a function, let us say that f
is finitely dependent when there is a finite s ⊆ I such that whenever x⃗, y⃗ ∈

∏
X⃗ are such

that x⃗ ↾ s = y⃗ ↾ s, then f (⃗x) = f (⃗y). If s0, s1 both witness that f is finitely dependent,
then so does s = s0∩s1 . For suppose x⃗ ↾ s = y⃗ ↾ s, and put z⃗ = x⃗ ↾ s0∪y⃗ ↾ (I\s0). Then
f (⃗x) = f (⃗z) = f (⃗y). Thus if s0, s1 are ⊆–minimal witnesses to the finite dependency of
f , then s0 = s1 . Thus let us define dep( f ) as the smallest s witnessing that f is finitely
dependent. f is constant if and only if dep( f ) = ∅. If f is finitely dependent, then it
canonically determines a function f ′ on

∏
i∈J Xi , whenever dep( f ) ⊆ J ⊆ I , by putting

f ′(⃗x) = f (⃗x ∪ y⃗), where y⃗ ∈
∏

i∈I\J Xi is arbitrary. We will abuse notation slightly and
denote such f ′ also by f .

Proposition 30 Suppose L is a linear order, G is a divisible torsion-free Abelian group,
⟨Xi : i ∈ L⟩ is a sequence of sets, and for each i ∈ L, Fi is a fine filter over [Xi]<ω .
Suppose f :

∏
X⃗ → G is finitely dependent and a ⊇ dep( f ) is a finite subset of L.

Then
�

f d(
∏

i∈a Fi) = edep( f ),a

(�
f d(
∏

i∈dep( f ) Fi)
)

.

Proof For any finite s ⊆ L ,
∏

i∈s Fi can be regarded as a fine filter over
[∏

i∈s Xi
]<ω

concentrating on the finite rectangles
∏

i∈s zi ⊆
∏

i∈s Xi . For s ⊇ dep( f ), let gs :[∏
i∈s Xi

]<ω → G be defined by gs(z) = 0 if z is not a rectangle, and otherwise:

gs

(∏
i∈s

zi

)
=

1∏
i∈s |zi|

∑
x⃗∈

∏
i∈s zi

f (⃗x)

Let a \ dep( f ) = {i0, . . . , in}. In the expression above for ga , for each y⃗ ∈
∏

i∈dep( f ) zi ,
f (⃗y) is repeated |zi0 | · · · |zin |–many times and then divided by the same number. So,
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for each rectangle
∏

i∈a zi , ga
(∏

i∈a zi
)
= gdep( f )

(∏
i∈dep( f ) zi

)
. In other words,

ga = gdep( f ) ◦ πa,dep( f ) . Thus:�
f d(
∏
i∈a

Fi) = [ga]∏
i∈a Fi = [gdep( f ) ◦ πa,dep( f )]∏i∈a Fi

= edep( f ),a

(
[gdep( f )]∏i∈dep( f ) Fi

)
= edep( f ),a

� f d(
∏

i∈dep( f )

Fi)


Suppose f :

∏
X⃗ → G is finitely dependent. We define

�
f dF⃗ := ea

(�
f d(
∏
i∈a

F⃗i)

)
∈ Pow(G, F⃗)

where a is any finite superset of dep( f ). By the previous proposition, this is well-defined.

Proposition 31 Suppose L is a linear order, R is a ring, ⟨Xi : i ∈ L⟩ is a sequence
of sets, and for each i ∈ L, Fi is a fine filter over [Xi]<ω . Any algebraic operation
between finitely dependent functions on

∏
X⃗ yields a finitely dependent function. If f , g :∏

X⃗ → R are finitely dependent and r, s ∈ R, then
�

(rf +sg) dU⃗ = r
�

f dU⃗+s
�

g dU⃗ .
(where we identify elements of R with constant functions taking those values).

Proof For the first claim, just note that if the operation involves finitely many functions,
then coordinates outside the union of their dependency sets have no influence. For
the second claim, let a = dep( f ), let b = dep(g), and let c = a ∪ b. Since�

(rf + sg) d(
∏

i∈c Fi) = r
�

f d(
∏

i∈c Fi) + s
�

g d(
∏

i∈c Fi), the conclusion follows by
the fact that ec is an embedding.

Now we wish to extend the integrals
�

f dF⃗ to give a value to all functions on
∏

X⃗
taking values in a divisible torsion-free Abelian group G, not just the finitely dependent
ones. Choose a filter H over [L]<ω ×

∏
X⃗ which is fine in the sense that for every

i ∈ L , {(s, x⃗) : i ∈ s} ∈ H . For each f :
∏

X⃗ → G, each s ∈ [L]<ω , and each y⃗ ∈
∏

X⃗ ,
we define a finitely dependent function:

Fs,⃗y(⃗x) = f
(⃗
x ↾ s ∪ y⃗ ↾ (L \ s)

)
We define the following operator on functions f :

∏
X⃗ → G:�

f d(F⃗,H) =
[

(s, y⃗) 7→
�

fs,⃗y dF⃗
]

H
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Note that this operation enjoys the usual linearity properties. If f is finitely dependent,
then for all s ⊇ dep( f ) and all x⃗, y⃗ ∈

∏
X⃗ , f (⃗x) = fs,⃗y(⃗x). Thus if e : Pow(G, F⃗) →

Pow(Pow(G, F⃗),H) is the canonical embedding, then e(
�

f dF⃗) =
�

f d(F⃗,H).

Let us say that a function f :
∏

X⃗ → R is uniformly continuous if for all n ∈ N, there
is a finite s ⊆ L such that x⃗ ↾ s = y⃗ ↾ s implies |f (⃗x) − f (⃗y)| < 1/n. The next result
shows that the standard integral of uniformly continuous functions depends only on the
sequence of filters F⃗ .

Lemma 32 Suppose X⃗, F⃗ are L–sequences of sets and filters as above. Suppose
f :
∏

X⃗ → R is uniformly continuous, and for (s, y⃗) ∈ [L]<ω ×
∏

X⃗ ,
�

fs,⃗y d(
∏

i∈s Fi)
has a standard part. Then there is an r ∈ R∪ {±∞} such that for all fine filters H over
[L]<ω ×

∏
X⃗ ,
�

f d(F⃗,H) = r .

Proof For n ∈ N, let sn ∈ [L]<ω be such that |f (⃗x) − f (⃗y)| < 1/n whenever
x⃗ ↾ sn = y⃗ ↾ sn . Thus for all finite t0, t1 ⊇ sn and all x⃗, y⃗0, y⃗1 ∈

∏
X⃗ :

|ft0 ,⃗y0 (⃗x) − ft1 ,⃗y1 (⃗x)| < 1
n

For t = t0 ∪ t1 , we have that

−1
n
<

�
ft0 ,⃗y0 d(

∏
i∈t

Fi) −
�

ft1 ,⃗y1 d(
∏
i∈t

Fi) <
1
n

and it follows by the fact that et is an embedding that:

−1
n
<

�
ft0 ,⃗y0 dF⃗ −

�
ft1 ,⃗y1 dF⃗ <

1
n

If
�

fs,⃗y dF⃗ = ±∞ for some s, y⃗, then
�

ft,⃗z dF⃗ = ±∞ for all t ⊇ s ∪ s1 and all z⃗. In
this case, let r = ±∞ accordingly. Otherwise, for each n ∈ N,

Bn =

{�
ft,⃗y dF⃗ : t ⊇ sn and y⃗ ∈

∏
X⃗
}

is a subset of R of diameter ≤ 1/n, and Bn+1 ⊆ Bn . There is a unique r ∈ R such that
for all n, inf Bn ≤ r ≤ sup Bn .

Now let H be a fine filter as hypothesized. If r is finite, then for each t ⊇ sn and each
y⃗ ∈

∏
X⃗ , −1/n <

�
ft,⃗y dF⃗ − r < 1/n. Thus

�
f d(F⃗,H) = r . This also holds if r is

infinite by the remarks above.

Theorem 33 Suppose X⃗, F⃗ are L–sequences of sets and filters as above. Suppose
for each α ∈ L, Xα carries a compact topology τα , such that every τα–continuous
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function has a standard Fα–integral. Let τ be the product topology on
∏

X⃗ . Then for
every τ –continuous f :

∏
X⃗ → R, there is a real r such that

�
f d(F⃗,H) = r for every

choice of H .

Proof By Tychonoff’s Theorem, the space (
∏

X⃗, τ ) is compact. Let f :
∏

X⃗ → R
be τ –continuous. For any n ∈ N and x⃗ ∈

∏
X⃗ , the inverse image of (f (⃗x) −

1/2n, f (⃗x) + 1/2n) is open. By compactness, there is a finite set {⃗x0, . . . , x⃗n} ⊆
∏

X⃗
and, for each i ≤ n, a finite collection of basic open sets {Ai,0, . . . ,Ai,mi} such that∏

X⃗ =
⋃

i≤n,j≤mi
Ai,j , and whenever y ∈ Ai,j , then |f (⃗xi) − f (⃗y)| < 1/2n. For each

i ≤ n and j ≤ mi , there is a finite si,j ⊆ L such that Ai,j =
∏
α∈L Bi,j

α , where Bi,j
α ∈ τα

for α ∈ si,j , and otherwise Bi,j
α = Xα . Let s =

⋃
i≤n,j≤mi

si,j . For y⃗, z⃗ ∈
∏

X⃗ , if
y⃗ ↾ s = z⃗ ↾ s, then there are i, j such that y⃗, z⃗ ∈ Ai,j . Thus |f (⃗y) − f (⃗z)| < 1/n, and f is
uniformly continuous.

Now suppose (s, y⃗) ∈ [L]<ω ×
∏

X⃗ . Then fs,⃗y is a continuous function on the space
(
∏

i∈s Xi,
∏

i∈s τi). By Proposition 27,
�

fs,⃗y d(
∏

i∈s Fi) exists and is finite. Lemma 32
implies that there is an r such that

�
f d(F⃗,H) = r for every choice of H . Since f is

bounded, r is finite.

As an application, we give a representation of the Lebesgue integral on the Cantor space
2N that is more “inevitable” than the representations of §2. In this context, let L = N
with the usual ordering, and for each i ∈ N, let Xi = {0, 1} with the discrete topology.
Let Fi be the unique fine filter over P(Xi), ie A ∈ Fi if and only if {0, 1} ∈ A. For each
n ∈ N, integrals using F0 × · · ·×Fn−1 are the same as computing expected values with
the uniform probability measure on a space with 2n elements, or in other words, just
finding the arithmetic average value of the function over all points. Thus if f : 2N → R
is finitely dependent, then

�
f dF⃗ =

�
f dλ, where λ is the Lebesgue measure on 2N .

By compactness, every continuous f : 2N → R is uniformly continuous. Thus for
every n ∈ N, there is a finitely dependent g : 2N → R such that |f (⃗x) − g(⃗x)| < 1/n
for all x⃗. It follows that |

�
f dλ−

�
g dλ| < 1/n. Also, for every choice of the filter

H , −1/n <
�

f d(F⃗,H) −
�

g d(F⃗,H) < 1/n. Since
�

g d(F⃗,H) =
�

g dλ and n is
arbitrary,

�
f d(F⃗,H) =

�
f dλ for every choice of H .

Theorem 34 Let λ be the Lebesgue measure on the Cantor space 2N . For each
i ∈ N, let Xi = {0, 1} = 2 and let Fi be the unique fine filter over P(2). There is a
smallest fine filter H over [N]<ω × 2N such that for every Lebesgue-integrable function
f : 2N → R,

�
f d(F⃗,H) =

�
f dλ.

We give a short proof using a result of Jessen [26]:
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Theorem 35 (Jessen) Suppose f is a Lebesgue-integrable function on the unit interval.
Let Sf ,n(x) = n−1∑n−1

i=0 f (x + i/n). Then limn→∞ Sf ,2n(x) =
�

f dλ for almost all x .

We note that by a result of W. Rudin [44], we cannot simply replace 2n with n in the
limit.

Proof of Theorem 34 For an integrable function f and n ∈ N, consider the set:

Af ,n =

{
(s, z⃗) :

∣∣∣∣� fs,⃗z dF⃗ −
�

f dλ
∣∣∣∣ < 1

n
, and n ⊆ s

}
Any fine filter with the desired property must contain each such set. It suffices to show
that this family of sets has the finite intersection property.

Let f0, . . . , fm be integrable functions and let k > 0 be arbitrary. Note that, if i ≤ m,
t = {0, . . . , n − 1}, and x⃗ ∈ N, then Sfi,2n (⃗x) =

�
(fi)t,⃗x dF⃗ . By Jessen’s Theorem,

there is y⃗ ∈ 2N such that for all i ≤ m, limn→∞ Sfi,2n (⃗y) =
�

fi dλ. Let N be large
enough such that for all i ≤ m, |Sfi,2N (⃗y) −

�
fi dλ| < 1/k . Then (N, y⃗) ∈ Afi,k for all

i ≤ m.

Suppose ⟨(Xi, µi) : i ∈ I⟩ is a collection of measure spaces, and
∏

i∈I Ai is a rectangle
contained in

∏
i∈I Xi . One would expect that for a reasonable notion of integration over

any number of coordinates, the value assigned to such rectangles should be the product
of the values assigned to their factors,

∏
i µi(Ai), provided that this converges. In the

case that each µi is a countably additive probability measure, Kakutani [27] proved
that there is a canonical measure µ on the σ–algebra generated by finitely-dependent
rectangles yielding µ

(∏
i Ai
)
=
∏

i µi(Ai) for all countably-dependent rectangles
∏

i Ai ,
ie those such that Ai = Xi for all but countably many i. The argument is based on
verifying the conditions for the applicability of the Carathéodory Extension Theorem
to the set function on the algebra of finitely-dependent rectangles determined by the
measures µi . The desired product formula holds for countably-dependent rectangles
because the measure µ is countably additive, and a countably-dependent rectangle is a
limit of finitely-dependent ones.

We show that a similar fact holds of our transfinitely iterated filter integrals. Namely, a
canonical filter makes it possible for the standard integrals of such rectangles to behave
as expected, and for some invariance of measure under transformations to be lifted
from the factors to the product. Furthermore, no assumption of countable additivity
about the factor spaces is needed, and our rectangles can have an arbitrary number of
nontrivial factors (rather than just countably many). To clarify the relevant notion of
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infinite product, for a sequence of real numbers ⟨ri : i ∈ I⟩ such that 0 ≤ ri ≤ 1 for
each i ∈ I , we define

∏
i ai := inf{

∏
i∈s ri : s ∈ [I]<ω}.

Suppose ⟨(Xi,Fi) : i ∈ I⟩ is a sequence such that each Fi is a fine filter over [Xi]<ω .
Let us say a product of sets

∏
i Ai , Ai ⊆ Xi , is a standard rectangle if

�
χAi dFi exists

for every i ∈ I .

Proposition 36 Suppose L is a linear order and ⟨(Xi,Fi) : i ∈ L⟩ is a sequence such
that each Fi is a fine filter over [Xi]<ω . There is a smallest fine filter H on [L]<ω×

∏
i Xi

such that for every standard rectangle A =
∏

i Ai :�
χA d(F⃗,H) =

∏
i

�
χAi dFi

Proof Let A0, . . . ,Am−1 be standard rectangles, Ak =
∏

i∈L Ak
i . Let rk

i =
�
χAk

i
dFi .

Let ε > 0.

Suppose k is such that
∏

i rk
i = 0. There is s ∈ [L]<ω such that

∏
i∈s rk

i < ε. Suppose
x⃗ = ⟨xi : i ∈ L⟩ ∈

∏
i Xi . If ⟨xi : i ∈ L \ s⟩ ∈

∏
i/∈s Ak

i , then (χAk )s,⃗x = χ(
∏

i∈s Ai) on∏
i∈s Xi . Otherwise, if ⟨xi : i /∈ s⟩ /∈

∏
i/∈s Ak

i , then (χAk )s,⃗x = 0 on
∏

i∈s Xi . Applying
Proposition 25, we get that for every x⃗ ,

�
(χAk )s,⃗x dF⃗ < ε. Hence, for any fine filter H ,�

χAk d(F⃗,H) = 0.

Suppose then, without loss of generality, that
∏

i rk
i > 0 for all k < m. Then clearly for

every δ > 0 and every k < m, there are only finitely many i ∈ L such that rk
i ≤ 1 − δ .

Let s ∈ [L]<ω be large enough such that for each k < m and each i /∈ s, 1 − 1/m < rk
i .

Then for each i /∈ s, there is xi ∈
⋂

k<m Ak
i . Hence if x⃗ is such that x⃗(i) = xi for i /∈ s,

then for each k < m we have (χAk )s,⃗x = χ(
∏

i∈s Ai) on
∏

i∈s Xi . Let t ⊇ s be such that
for each k < m,

∏
i∈t rk

i −
∏

i∈L rk
i < ε. Then:

−ε <
�

(χAk )t,⃗x dF⃗ −
∏
i∈L

rk
i < ε

For a standard rectangle A, let rA be the infinite product of its side lengths. The above
argument shows that the collection of sets

SA,ε =

{
(t, x⃗) : −ε <

�
(χA)t,⃗x − rA < ε

}
for standard rectangles A and real ε > 0, generates a fine filter on [L]<ω ×

∏
i Xi ,

giving the desired conclusion.
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A difficulty one encounters with infinite products of measure spaces is that, unlike in
the finite case, complements of rectangles are not necessarily finite or even countable
unions of rectangles. Nonetheless, integrals as above behave nicely on the algebra
generated by standard rectangles:

Proposition 37 Suppose L is a linear order and ⟨(Xi, µi,Gi) : i ∈ L⟩ is a sequence
such that for each i, µi is a finitely additive real-valued probability measure on Xi

without point masses, and Gi is a group of µi –invariant transformations of Xi . Let
G =

∏
i Gi , and let G act on

∏
i Xi by g⃗(⃗x) = ⟨gi(xi) : i ∈ L⟩.

Let Fi = Fµi , given according to Theorem 7, and let H be the filter given by Proposition
36 with respect to the sequence ⟨Fi : i ∈ L⟩. Let A be the algebra of subsets of

∏
i Xi

generated by standard rectangles. Then for each A ∈ A and g ∈ G,

(1)
�
χA d(F⃗,H) exists; and

(2)
�
χA d(F⃗,H) =

�
χg[A] d(F⃗,H).

Proof Let us say that a set A ⊆
∏

i Xi is G–invariant if
�
χA d(F⃗,H) exists and�

χA d(F⃗,H) =
�
χg[A] d(F⃗,H) for each g ∈ G.

Claim 38 Standard rectangles are G–invariant.

Proof Suppose A =
∏

i Ai is a standard rectangle. Then
�
χAi dFi exists for each i,

and by Proposition 8, this means that Ai is µi –measurable, and thus its Gi –images have
the same measure. Thus for any g ∈ G, g[A] is a standard rectangle, and:�

χA d(F⃗,H) =
∏

i

µi(Ai) =
∏

i

µi(gi[Ai]) =
�
χg[A] d(F⃗,H)

Claim 39 Suppose A1, . . . ,An are pairwise disjoint. If each Ai is G–invariant, then so
is A1 ∪ · · · ∪ An . If each Ai is G–invariant for i < n, and A1 ∪ · · · ∪ An is G–invariant,
then so is An .

Proof This follows from the fact that for any bijection g,
�
χg[A1∪···∪An] d(F⃗,H) =�

χg[A1] d(F⃗,H) + · · ·+
�
χg[An] d(F⃗,H).

Claim 40 Boolean combinations of standard rectangles (finite intersections of standard
rectangles or their complements) are G–invariant.
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Proof Let A1, . . . ,An be standard rectangles. Then A1 ∩ · · · ∩ An is also a standard
rectangle and is thus G–invariant. It follows from the previous claim that for any j,
1 ≤ j ≤ n,

(A1 ∩ · · · ∩ Aj−1 ∩ Aj+1 ∩ · · · ∩ An) \ (A1 ∩ · · · ∩ An)

is G–invariant. Thus each Boolean combination of the Ai ’s where at most one set is
complemented is G–invariant. Suppose inductively that all Boolean combinations of
the Ai ’s where at most k − 1 sets are complemented yields a G–invariant set. Consider
a combination in which k sets are complemented. For ease of notation assume it is:

A1 ∩ · · · ∩ An−k \ (An−k+1 ∪ · · · ∪ An)

This can be written as A1 ∩ · · · ∩ An−k minus the disjoint union of all Boolean
combinations of the Ai ’s in which A1, . . . ,An−k appear positively, and at least one other
Ai appears positively. Thus by the previous claim, the desired Boolean combination
with k complementations is also G–variant. At the end of the induction, we get that all
Boolean combinations are G–invariant.

To finish, take any set in the algebra generated by standard rectangles. It can be written
in disjunctive normal form as a disjoint union of Boolean combinations of standard
rectangles. Thus by the above claims, it too is G–invariant.
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