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On the Borel–Cantelli Lemmas, the Erdős–Rényi Theorem,
and the Kochen–Stone Theorem
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Abstract: In this paper we present a quantitative analysis of the first and second
Borel–Cantelli Lemmas and of two of their generalisations: the Erdős–Rényi
Theorem, and the Kochen–Stone Theorem. We will see that the first three results
have direct quantitative formulations, giving an explicit relationship between
quantitative formulations of the assumptions and the conclusion. For the Kochen–
Stone Theorem, however, we can show that the numerical bounds of a direct
quantitative formulation are not computable in general. Nonetheless, we obtain
a quantitative formulation of the Kochen–Stone Theorem using Tao’s notion of
metastability.
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1 Introduction

Let (Ai)∞i=1 be an infinite sequence of events in a probability space (S, E ,P). The
Borel–Cantelli Lemma is a classical result in probability theory, relating the convergence
or divergence of the sum

∑∞
i=1 P[Ai] with the probability of the event “Ai infinitely

often”, which is defined as follows

Ai i.o. =
∞⋂

n=1

⋃
i≥n

Ai

ie ω ∈ S happens infinitely often in (Ai)∞i=1 if for all n there exists an i ≥ n such that
ω ∈ Ai . Note that, as

⋃
i≥1 Ai ⊇

⋃
i≥2 Ai ⊇ . . ., we have:

P[Ai i.o.] = lim
n→∞

P

⋃
i≥n

Ai


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2 Rob Arthan and Paulo Oliva

The Borel–Cantelli Lemma (see, for example, Feller [5]) is normally presented in two
parts. The first part says that when the sum

∑∞
i=1 P[Ai] converges, then the event Ai i.o.

has probability zero:

Theorem 1.1 (First Borel–Cantelli Lemma) Let (Ai)∞i=1 be an infinite sequence of
events such that

∑∞
i=1 P[Ai] <∞. Then P[Ai i.o.] = 0.

The second part says that when
∑∞

i=1 P[Ai] diverges, and when the Ai are mutually
independent, then the event Ai i.o. has probability one:

Theorem 1.2 (Second Borel–Cantelli Lemma) Let (Ai)∞i=1 be an infinite sequence of
mutually independent events such that

∑∞
i=1 P[Ai] = ∞. Then P[Ai i.o.] = 1.

In [7], Kochen and Stone presented a result that generalises the Second Borel–Cantelli
Lemma in two directions: (i) it gives a lower bound on P[Ai i.o.] when the Ai are not
mutually independent; and (ii) it can be used to show that the assumption of mutual
independence in the original lemma can be weakened to pairwise independence. We
formulate this generalisation following Yan [16]:

Theorem 1.3 (Kochen–Stone) Let (Ai)∞i=1 be an infinite sequence of events such that∑∞
i=1 P[Ai] = ∞. Then:

P[Ai i.o.] ≥ lim sup
n→∞

(∑n
k=1 P[Ak]

)2∑n
i,k=1 P[AiAk]

(1)

Erdős and Rényi [4] gave a result that is intermediate between the second Borel–Cantelli
Lemma and the Kochen–Stone Theorem. Like the Kochen–Stone Theorem it implies
that the assumption of mutual independence in the second Borel–Cantelli Lemma can
be weakened to pairwise independence. Erdős and Rényi applied their theorem to the
study of generalised Cantor expansions for real numbers.

Theorem 1.4 (Erdős–Rényi) Let (Ai)∞i=1 be an infinite sequence of events such that∑∞
i=1 P[Ai] = ∞ and:

lim inf
n→∞

∑n
i,k=1 P[AiAk](∑n

k=1 P[Ak]
)2 = 1(2)

Then P[Ai i.o.] = 1.
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On the Borel–Cantelli Lemmas 3

The aim of the present note is to investigate “quantitative” versions of each of these
“qualitative” results. The methods we use come from the proof mining programme
(see Kohlenbach [8])—where numerical information is obtained from (often non-
constructive) proofs via logical methods. For some noteworthy applications of these
methods, see the work of Avigad and collaborators on Ergodic Theory [1] and Kohlenbach
and collaborators on Fixed-Point Theory [9, 10].

Terence Tao’s programme of bridging “soft” and “hard” analysis [13] was an independent
rediscovery of some of these ideas. The results as presented above are results of “soft
analysis”: they relate statements about convergence or divergence, without giving any
numeric information about the corresponding rates of convergence or divergence. For
instance, regarding the First Borel–Cantelli Lemma, it is natural to ask how the rate
of convergence of the sequence of partial sums

(∑n
i=1 P[Ai]

)∞
n=1 relates to the rate of

convergence of the sequence of probabilities
(
P[
⋃

i≥n Ai]
)∞

n=1 , whose limit is P[Ai i.o.].
Similar questions arise regarding the other three results.

We provide here answers to these four questions. We will find in Section 2 that the
answer is almost trivial for the First Borel–Cantelli Lemma, as it has a very direct
(constructive) proof. It turns out that the sequence

(
P[
⋃

i≥n Ai]
)∞

n=1 converges with
the same rate as the sequence

(∑n
i=1 P[Ai]

)∞
n=1 . The answers are found to be less

trivial in Section 2 for the Second Borel–Cantelli Lemma and in Section 3 for the
Erdős–Rényi Theorem, but still, the quantitative versions of these follow the standard
proofs of the qualitative versions quite closely. As we will see in Section 4, in the
case of the Kochen–Stone Theorem the situation is more complicated. In Section 4.2,
we prove that a direct (computable) rate of convergence does not exist: we can find a
concrete sequence of events (with computable probabilities P[Ai]) such that the rate of
convergence for the quantitative version of the theorem is not computable. To allow
for this, we use Tao’s notion of “rate of metastability” (see Section 1.1), a concept
which is logically equivalent to convergence, but is computationally weaker. We give a
quantitative version of the Kochen–Stone Theorem that provides a rate of metastability
for inequality (1) as a computable function of the rate of divergence of the sequence of
partial sums

(∑n
i=1 P[Ai]

)∞
n=1 .

In Section 5 we also consider the optimality of the bounds we obtain. For the First
and Second Borel–Cantelli Lemmas, we can argue that the bounds obtained are in
some sense best possible. For the Erdős–Rényi Theorem we conjecture that the bounds
we present are optimal, but do not have a proof yet. For the Kochen–Stone Theorem,
however, the “metastable” reformulation makes it much less clear what the right notion
of optimality should be, and we leave this to future work.
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The work presented in this paper was motivated by our on-going work in the area
of metric Diophantine approximation, more specifically, on quantitative analyses of
generalisations of the Khintchine–Groshev Theorem on approximability of real numbers
by rationals. To introduce these generalisations, let Inm denote the unit cube [0, 1]nm

in Rnm , and let ψ : N → R+ be given. A point X ∈ Inm , viewed as an n × m matrix,
is said to be ψ–approximable if there are infinitely many (p,q) ∈ Zm × Zn such that
∥qX + p∥ < ψ(∥q∥) (where ∥ · ∥ is the supremum norm). Let An,m denote the set of
ψ–approximable points X ∈ Inm . The generalised Khintchine–Groshev Theorems are
0–1 laws for the Lebesgue measure of the sets An,m governed by assumptions on the
divergence (and possibly monotonicity) of sequences defined in terms of ψ . The most
general theorem of this form is given in Beresnevich and Velani [2], which improves on
earlier work of Gallagher [6] dealing with the case n = 1. In both of these works, the
proofs break into two parts: A proof of a 0–1 law and a proof that a certain set has
positive measure, and hence measure 1 by the 0–1 law. The Borel–Cantelli Lemmas
and their generalisations are important tools in some of these proofs. In particular,
the Kochen–Stone Theorem is a key step1 in Beresnevich and Velani’s work [2]. A
quantitative analysis of these tools seemed to us to be a worthwhile investigation in its
own right.

1.1 Rate of convergence vs rate of metastability

As mentioned above, in our quantitative analysis of the Kochen–Stone Theorem we will
make use of Terence Tao’s notion of metastability [13]. As an example, consider the
statement that a sequence of reals (xn)∞n=1 is Cauchy convergent:

(3) ∀ℓ∃k∀m, n > k
(
|xm − xn| <

1
2ℓ

)
A rate of Cauchy convergence (or just rate of convergence) for the sequence is a function
ϕ : N → N+ (where N+ denotes the positive integers) such that:

(4) ∀ℓ∀m, n > ϕ(ℓ)
(
|xm − xn| <

1
2ℓ

)
While the mere existence of ϕ in (4) is equivalent to (3), if one has an explicit ϕ for
which (4) holds, one has a quantitative rather than merely qualitative understanding of
the convergence of the sequence

(
xn
)∞

n=1 . However, for a given sequence that is known

1Beresnevich and Velani in fact refer to Sprindzuk [12, Lemma 5] for the result and not to
Kochen and Stone [7]. Presumably Sprindzuk obtained the result independently.
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On the Borel–Cantelli Lemmas 5

to be convergent, it may not be possible to provide an explicit rate of convergence: in
many interesting cases, it can be shown that no computable function ϕ satisfying (4)
exists. In such cases, it is often worth considering the equivalent “metastable” version
of (3), namely:

(5) ∀ℓ, fN+→N+∃k∀m, n ∈ [k, f (k)]
(
|xm − xn| <

1
2ℓ

)
Clearly (3) directly implies (5). But (5) also implies (3). Assume (5) and suppose (3)
does not hold for some ℓ, ie

∀k∃m, n > k
(
|xm − xn| ≥

1
2ℓ

)
and let f : N+ → N+ be any function which provides an upper bound for m and n for
each given k , ie:

∀k∃m, n ∈ [k, f (k)]
(
|xm − xn| ≥

1
2ℓ

)
Taking this f in (5) leads to a contradiction.

In cases where there is no computable rate of convergence (as will be the case with the
Kochen–Stone Theorem), one can still attempt to find a computable rate of metastability
instead. In the convergence example above, the rate of metastability would be a function
ϕ : N× (N+ → N+) → N+ such that:

(6) ∀ℓ, fN+→N+∃k ≤ ϕ(ℓ, f )∀m, n ∈ [k, f (k)]
(
|xm − xn| <

1
2ℓ

)
One should think of the function f : N+ → N+ as potentially producing longer and longer
intervals [k, f (k)], and the rate of metastability ϕ as trying to find, for arbitrarily large
ℓ, an interval in which the sequence is 1

2ℓ –stable, ie ∀m, n ∈ [k, f (k)]
(
|xm − xn| < 1

2ℓ
)

.

1.2 Rate of divergence

Let (xi)∞i=1 be a non-decreasing sequence of real numbers. The sequence is said to
diverge if

∀N∃i(xi ≥ N).

We say that a function ω : N+ → N+ gives a rate of divergence for (xi)∞i=1 if

∀N(xω(N) ≥ N).

In the sequel, the sequence xi will typically comprise the partial sums of a series of
terms in the interval [0, 1], for which we have the following lemma.

Journal of Logic & Analysis 13:6 (2021)



6 Rob Arthan and Paulo Oliva

Lemma 1.5 Let xn =
∑n

i=1 ai , where 0 ≤ ai ≤ 1 for all i, and assume ω : N+ → N+

is a rate of divergence for (xn)∞n=1 . Then, for all n,N we have:

(7)
ω(n+N−1)∑

i=n

ai ≥ N

Proof Since ω is a rate of divergence and each ai ≤ 1, we have that:

(8)
ω(n+N−1)∑

i=n

ai =

ω(n+N−1)∑
i=1

ai −
n−1∑
i=1

ai ≥ (n + N − 1) − (n − 1) = N

2 Quantitative Borel–Cantelli Lemmas

Given an infinite sequence of events (Ai)∞i=1 , the first Borel–Cantelli Lemma says
that the probability of Ai i.o. is 0 when

∑∞
i=1 P[Ai] is finite. Here the assumption

“
∑∞

i=1 P[Ai] is finite” is equivalent to the convergence of the sequence of partial sums
sk =

∑k
i=1 P[Ai]. In quantitative terms, that implies the existence of a rate of Cauchy

convergence ψ(ℓ) for sk , ie

(9) ∀ℓ,m, n > ψ(ℓ)
(
|sm − sn| <

1
2ℓ

)
or, equivalently, the existence of a function ϕ(ℓ) such that:

(10) ∀ℓ∀m > ϕ(ℓ)

 m∑
i=ϕ(ℓ)

P[Ai] <
1
2ℓ


Theorem 2.1 (First Borel–Cantelli Lemma: Quantitative Version) Let (Ai)∞i=1 be an
infinite sequence of events. Assume that

(∑m
i=1 P[Ai]

)∞
m=1 converges with a rate of

convergence ϕ : N → N+ , ie that for all ℓ ≥ 0 and m > ϕ(ℓ):
m∑

i=ϕ(ℓ)

P[Ai] ≤
1
2ℓ

Then the sequence
(
P[
⋃m

i=1 Ai]
)∞

m=1 converges to 0 with the same rate, ie for all ℓ ≥ 0
and m > ϕ(ℓ):

P

 m⋃
i=ϕ(ℓ)

Ai

 ≤ 1
2ℓ

Journal of Logic & Analysis 13:6 (2021)



On the Borel–Cantelli Lemmas 7

Proof By subadditivity we have

(11) P

 m⋃
i=ϕ(ℓ)

Ai

 ≤
m∑

i=ϕ(ℓ)

P[Ai] ≤
1
2ℓ

for all ℓ > 0 and m > ϕ(ℓ).

The second Borel–Cantelli Lemma says that, under the extra assumption that the events
are mutually independent, the probability of Ai i.o. is 1 whenever the sum

∑∞
i=1 P[Ai]

diverges. In our quantitative version of this lemma we will estimate, for each n, how
fast the sequence (

P

[
m⋃

i=n

Ai

])∞

m=1

converges to 1, given a rate of divergence for the sequence
(∑m

i=n P[Ai]
)∞

m=1 .

Theorem 2.2 (Second Borel–Cantelli Lemma: Quantitative Version) Let (Ai)∞i=1
be an infinite sequence of events which are mutually independent. Assume that the
sequence

(∑n
i=1 P[Ai]

)∞
n=1 diverges with rate ω : N+ → N+ , ie for all N

ω(N)∑
i=1

P[Ai] ≥ N

then, for all n and N :

P

[
ω(n+N−1)⋃

i=n

Ai

]
≥ 1 − e−N

Proof Fix n and N . Let us write Ai for the complement of the event Ai . The
independence of the events implies:

P

[
ω(n+N−1)⋂

i=n

Ai

]
=

ω(n+N−1)∏
i=n

P
[

Ai
]

(12)

=

ω(n+N−1)∏
i=n

(
1 − P [Ai]

)
(13)

Journal of Logic & Analysis 13:6 (2021)



8 Rob Arthan and Paulo Oliva

Taking the natural logarithm on both sides we have

ln

(
P

[
ω(n+N−1)⋂

i=n

Ai

])
= ln

(
ω(n+N−1)∏

i=n

(
1 − P [Ai]

))
(14)

=

ω(n+N−1)∑
i=n

ln
(
1 − P [Ai]

)
(15)

≤ −
ω(n+N−1)∑

i=n

P[Ai](16)

≤ −N(17)

where inequality (16) follows from the fact that ln(1 + x) ≤ x , for all x ∈ (−1,∞) and
inequality (17) follows from Lemma 1.5. Hence

(18) P

[
ω(n+N−1)⋂

i=n

Ai

]
≤ e−N

and so:

(19) P

[
ω(n+N−1)⋃

i=n

Ai

]
≥ 1 − e−N

2.1 Proving qualitative version from quantitative one

That Theorem 1.1 (First Borel–Cantelli Lemma) follows from Theorem 2.1 (its quanti-
tative version) is clear. Let us show that Theorem 1.2 (Second Borel–Cantelli Lemma)
also follows from Theorem 2.2 (its quantitative version).

Let (Ai)∞i=1 be an infinite sequence of mutually independent events. Assuming∑∞
i=1 P[Ai] = ∞, there exists ω : N+ → N+ , such that for all N :(

ω(N)∑
i=1

P[Ai]

)
≥ N

By Theorem 2.2, for all n and N

P

[
ω(n+N−1)⋃

i=n

Ai

]
≥ 1 − e−N

which implies that

P

[ ∞⋃
i=n

Ai

]
≥ 1 − e−N

and hence P[Ai i.o.] = 1.

Journal of Logic & Analysis 13:6 (2021)
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3 Quantitative Erdős–Rényi Theorem

In this section, we present a quantitative version of the Erdős–Rényi Theorem. Our
proof follows that of Erdős and Rényi [4], but uses more modern notation: X,Y for
random variables, E(X) for the expectation of X (or mean value in Erdős and Rényi’s
terminology), and σ(X) for the standard deviation of X .

A simplistic logical formalisation of equation (2), involving lim inf , would give a
formula with quantifier prefix ∀∃∀∃. We can simplify this to a ∀∃ using the following
lemmas.

Lemma 3.1 For any sequence of events (Ai)∞i=1 we have that for all n ≥ 1:

(20)

∑n
i,k=1 P[AiAk](∑n

k=1 P[Ak]
)2 ≥ 1

Proof Let Xi be the random variable given by the indicator function of the event Ai .
Then E(Xi) = P[Ai] and E(XiXk) = P[AiAk]. Define Yn =

∑n
i=1 Xi so that:

(21)

∑n
i,k=1 P[AiAk](∑n

i=1 P[Ai]
)2 =

E(Y2
n )

E2(Yn)

Since the variance σ2(X) = E(X2) − E2(X) ≥ 0 for any X , the result follows.

Lemma 3.2 For any sequence of reals dn ≥ 1, the following are equivalent:

lim inf
n→∞

dn = 1(22)

∀ℓ, n∃k ≥ n
(

dk ≤ 1 + 2−ℓ
)

(23)

Proof Because dn ≥ 1, we have that lim infn→∞ dn = 1 is equivalent to

∀ℓ∃m∀i ≥ m
(

inf
k≥i

dk ≤ 1 + 2−ℓ

)
which, by the definition of inf , is equivalent to:

∀ℓ∃m∀i ≥ m∃k ≥ i(dk ≤ 1 + 2−ℓ)

This is easily seen to be equivalent to ∀ℓ, n∃k ≥ n
(
dk ≤ 1 + 2−ℓ

)
(for the right-to-left

direction take i = max(m, n)).

Journal of Logic & Analysis 13:6 (2021)
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In the quantitative version of the Erdős–Rényi Theorem, we will assume that we
are given a rate of divergence for the sequence

(∑m
i=n P[Ai]

)∞
m=1 , and a function ϕ

witnessing

∀ℓ, n∃m ≥ n

(∑m
i,k=1 P[AiAk](∑m

k=1 P[Ak]
)2 ≤ 1 +

1
2ℓ

)
which, by Lemmas 3.1 and 3.2, is equivalent to the assumption:

lim inf
n→∞

∑n
i,k=1 P[AiAk](∑n

k=1 P[Ak]
)2 = 1

Theorem 3.3 (Erdős–Rényi: Quantitative Version) Let (Ai)∞i=1 be an infinite sequence
of events. Let ω : N+ → N+ be such that for all N

(24)

(
ω(N)∑
i=1

P[Ai]

)
≥ N

and let ϕ : N× N → N be such that:

(25) ∀ℓ, n

(
ϕ(ℓ, n) ≥ n ∧

∑ϕ(ℓ,n)
i,k=1 P[AiAk](∑ϕ(ℓ,n)

i=1 P[Ai]
)2 ≤ 1 +

1
2ℓ

)
Define n1 = ϕ(1, 1) and, for k > 1, nk = ϕ(k,max(nk−1, k)). Then, for all n and ℓ

(26) P

[
nm⋃

i=n

Ai

]
≥ 1 − 1

2ℓ

where m = max(ω(2n), ℓ+ 3).

Proof Let Xi and Yn be as in the proof of Lemma 3.1. Assumption (25) gives us:

(27) ∀ℓ, n

(
ϕ(ℓ, n) ≥ n ∧

E(Y2
ϕ(ℓ,n))

E2(Yϕ(ℓ,n))
≤ 1 +

1
2ℓ

)
Since E(Y2

n ) = σ2(Yn) + E2(Yn), we have:

(28)
E(Y2

n )
E2(Yn)

=
σ2(Yn)
E2(Yn)

+ 1

By (27) and (28), we get:

(29) ∀ℓ, n
(
ϕ(ℓ, n) ≥ n ∧

σ2(Yϕ(ℓ,n))
E2(Yϕ(ℓ,n))

≤ 1
2ℓ

)

Journal of Logic & Analysis 13:6 (2021)



On the Borel–Cantelli Lemmas 11

Let n1 = ϕ(1, 1) and, for k > 1, nk = ϕ(k,max(nk−1, k)). The above implies (taking
ℓ = k and n = max(nk−1, k)):

(30) ∀k
(
σ2(Ynk )
E2(Ynk )

≤ 1
2k

)
The Chebyshev inequality tells us that:

(31) P[|Yn − E(Yn)| ≥ λσ(Yn)] ≤ 1
λ2

Taking λ = εE(Yn)
σ(Yn) , we have that, for any given ε ∈ (0, 1):

(32) P[Yn ≤ (1 − ε)E(Yn)] ≤ σ2(Yn)
ε2E2(Yn)

From (30) and (32) (taking n = nk and ε = 1/2), we find that:

(33) ∀k
(
P
[

Ynk ≤
E(Ynk )

2

]
≤ 1

2k−2

)
Let Bk be the event Ynk ≤

E(Ynk )
2 , so that (33) together with the formula for the partial

sums of a geometric series implies:

(34) ∀ℓ∀m ≥ ℓ+ 3

(
m∑

k=ℓ+3

P[Bk] ≤ 1
2ℓ

)
By the quantitative version of the First Borel–Cantelli Lemma (Theorem 2.1):

(35) ∀ℓ∀m ≥ ℓ+ 3

(
P

[
m⋃

k=ℓ+3

Bk

]
≤ 1

2ℓ

)
Hence

(36) ∀ℓ∀m ≥ ℓ+ 3

(
P

[
m⋂

k=ℓ+3

Bk

]
≥ 1 − 1

2ℓ

)

where Bk is the complement of Bk , ie the event Ynk >
E(Ynk )

2 . Hence, an outcome

x ∈ Bk if Ynk (x) =
∑nk

i=1 Xi(x) > E(Ynk )
2 . Therefore, x ∈ Bk iff x ∈ Ai for at least E(Ynk )

2
values of i ∈ [1, nk].

Fix n and ℓ. We will show that

(37) P

[
nm⋃

i=n

Ai

]
≥ 1 − 1

2ℓ

Journal of Logic & Analysis 13:6 (2021)



12 Rob Arthan and Paulo Oliva

for m = max(ω(2n), ℓ+ 3). Let Cm
ℓ =

⋂m
k=ℓ+3 Bk . By (36), inequality (37) will follow

if we can show that:

(38) Cm
ℓ ⊆

nm⋃
i=n

Ai

So, let us assume that x ∈ Cm
ℓ . Since, x ∈ Cm

ℓ iff ∀k ∈ [ℓ+ 3,m](x ∈ Bk), we have,
taking k = m:

(39) Ynm(x) >
E(Ynm)

2
By the definition of nk and the assumption (25), which implies ϕ(ℓ, n) ≥ n, we have
nω(2n) ≥ ω(2n), and by the definition of m we also have m ≥ ω(2n). Hence

(40) Ynm(x) >
E(Ynm)

2
≥ E(Yω(2n))

2
≥ n

using, for the last inequality, that assumption (24) implies ∀N
(
E(Yω(N)) ≥ N

)
. Since,

Ynm(x) =
∑nm

i=1 Xi(x), (40) and the pigeon-hole principle imply that for at least one
i ∈ [n, nm] we have Xi(x) = 1, ie x ∈ Ai ⊆

⋃nm
j=n Aj . Since x was an arbitrary element

of Cm
ℓ , this gives us (38) and hence (37).

Remark To obtain a quantitative version of the Erdős–Rényi Theorem, we have had
to make two choices about points that are left open in the qualitative proof of [4]. The
first choice is essentially forced upon us by our decision to use 1

2ℓ in the formulation of
assumption (25). This means that where Erdős and Rényi take the nk to be any sequence

such that
∑∞

k=1
σ2(Ynk )
E2(Ynk ) converges, we have had to choose a sequence such that the series

is dominated by a geometric series (see formula (30)). The second choice is that in
formula (33), we have taken ε to be 1

2 , where Erdős and Rényi leave it unspecified. As
pointed out by one of the referees, both the statements and the proofs above (Lemma
3.2 and Theorem 3.3) could be made more general, but rather more complicated, by
introducing a convergent series in place of 1

2l and a constant ε ∈ (0, 1) in place of 1
2 as

parameters.

3.1 Proving qualitative version from quantitative one

Let us show that the Erdős–Rényi Theorem (Theorem 1.4) follows directly from our
quantitative version (Theorem 3.3).

Let (Ai)∞i=1 be an infinite sequence of events such that
∑∞

i=1 P[Ai] = ∞ and assume:

lim inf
n→∞

∑n
i,k=1 P[AiAk](∑n

k=1 P[Ak]
)2 = 1(41)
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On the Borel–Cantelli Lemmas 13

The above assumptions imply that there exists an ω : N+ → N+ such that

(42) ∀N

(
ω(N)∑
i=1

P[Ai] ≥ N

)
and a function ϕ : N× N → N such that:

(43) ∀ℓ, n

(
ϕ(ℓ, n) ≥ n ∧

∑ϕ(ℓ,n)
i,k=1 P[AiAk](∑ϕ(ℓ,n)

i=1 P[Ai]
)2 ≤ 1 + 2−ℓ

)
From these and Theorem 3.3 we have (26), which implies P[Ai i.o.] = 1.

4 Quantitative Kochen–Stone Theorem

As with the quantitative version of the second Borel–Cantelli Lemma, we will also
assume that we are given a rate of divergence for the sequence

(∑m
i=n P[Ai]

)
m∈N+ .

Our quantitative version will follow closely the very concise proof of the Kochen–Stone
Theorem discovered by Yan [16].

After expressing P[Ai i.o.] as a limit, the Kochen–Stone inequality (1) has the form
limn→∞ pn ≥ lim supn→∞ qn . Much as in Lemma 3.2, we can be more economical
with the quantifiers using the following lemma.

Lemma 4.1 For any sequence of events (Ai)∞i=1 and sequence of reals (xi)∞i=1 , the
following are equivalent:

P[Ai i.o.] ≥ lim sup
i→∞

xi(44)

∀m, ℓ∃n > m∀j > n

(
P

[
n⋃

i=m+1

Ai

]
+

1
2ℓ

≥ xj

)
(45)

Proof By the definition of Ai i.o., (44) is equivalent to:

(46) ∀m

(
P

[ ∞⋃
i=m+1

Ai

]
≥ lim sup

i→∞
xi

)
Let us first show that the above is equivalent to:

(47) ∀m, ℓ∃n > m

(
P

[
n⋃

i=m+1

Ai

]
+

1
2ℓ

≥ sup
i>n

xi

)

Journal of Logic & Analysis 13:6 (2021)
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Assume (46), and fix m and ℓ. Pick n1 > m such that

(48) P

[ n1⋃
i=m+1

Ai

]
+

1
2ℓ+1 > P

[ ∞⋃
i=m+1

Ai

]
and n2 > m such that:

(49) lim sup
i→∞

xi +
1

2ℓ+1 > sup
i>n2

xi

Then, taking n = max(n1, n2), by (46), (48) and (49) we get:

P

[
n⋃

i=m+1

Ai

]
+

1
2ℓ
> P

[ ∞⋃
i=m+1

Ai

]
+

1
2ℓ+1 ≥ lim sup

i→∞
xi +

1
2ℓ+1 > sup

i>n
xi(50)

Thus (46) implies (47). Now, suppose (47) holds but (46) does not. Then, for some m
and ℓ, we have that:

(51) P

[ ∞⋃
i=m+1

Ai

]
+

1
2ℓ
< lim sup

i→∞
xi

But by (47) we have an n > m such that

(52) P

[
n⋃

i=m+1

Ai

]
+

1
2ℓ

≥ sup
i>n

xi

and hence

(53) P

[ ∞⋃
i=m+1

Ai

]
+

1
2ℓ

≥ P

[
n⋃

i=m+1

Ai

]
+

1
2ℓ

≥ sup
i>n

xi ≥ lim sup
i→∞

xi

contradicting (51). Thus (47) implies, and hence is equivalent to (46). Finally, (47) is
equivalent to (45), by the definition of sup.

Using the above lemma we can show that the Kochen–Stone inequality (1) can be
equivalently written as a ∀∃∀-statement:

Lemma 4.2 The Kochen–Stone inequality (1) is equivalent to:

(54) ∀m, ℓ∃n > m∀j > n

(
P

[
n⋃

i=m+1

Ai

]
+

1
2ℓ

≥
(∑j

k=1 P[Ak]
)2∑j

i,k=1 P[AiAk]

)

Proof This follows from Lemma 4.1 using the sequence xj =

(∑j
k=1 P[Ak]

)2∑j
i,k=1 P[AiAk]

.
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As we will see in Section 4.2, there can be no computable function of m and ℓ that
bounds n in (54). Therefore, we will consider its metastable counterpart

(55) ∀m, ℓ, g∃n > m∀j ∈ [n, g(n)]

(
P

[
n⋃

i=m+1

Ai

]
+

1
2ℓ

≥
(∑j

k=1 P[Ak]
)2∑j

i,k=1 P[AiAk]

)
and will produce an explicit computable bound on n as a function of m, ℓ and the
function g.

Theorem 4.3 (Kochen–Stone: Quantitative Version) Let (Ai)∞i=1 be an infinite
sequence of events. Let ω : N+ → N+ be such that for all N :(

ω(N)∑
i=1

P[Ai]

)
≥ N

Then, for all m and ℓ and g : N+ → N+ such that g(i) > i, for all i, there exists an
n > m such that:

• n ≤ g(2ℓ+1)
(
max

(
ω
(
2ℓ+2∑m

i=1 P[Ai]
)
,m
))

, and

• for all j ∈ [n, g(n)]:

(56) P

[
n⋃

i=m+1

Ai

]
+

1
2ℓ

≥

(∑j
i=1 P[Ai]

)2

∑j
i,k=1 P[AiAk]

Remark Since P[Ai] ≤ 1, we have that
∑m

i=1 P[Ai] ≤ m. Hence, we can obtain a
bound g(2ℓ+1)(ω(2ℓ+2m)) on n which is completely independent of the actual events Ai ,
but only depends on the parameters ω, g,m and ℓ.

Before we embark on the proof of Theorem 4.3, we need three further lemmas.

Lemma 4.4 (Chung–Erdős Inequality) For every n and sequence of events A1, . . . ,An :

P

[
n⋃

k=1

Ak

]
≥
(∑n

k=1 P[Ak]
)2∑n

i,k=1 P[AiAk]

Proof See Chung and Erdős [3] or Yan [16].

Lemma 4.5 Let a and b be such that 0 < a ≤ b. Assume 0 ≤ x < a, 0 ≤ y < b and
0 < ε. If b ≥ 4x/ε2 then:

(
√

a −
√

x)2

b − y
+ ε ≥ a

b

Journal of Logic & Analysis 13:6 (2021)
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Proof Since
(
√

a −
√

x)2

b − y
=

a − 2
√

xa + x
b − y

≥ a − 2
√

xa
b

it is enough to show that:
2
√

xa
b

≤ ε

But since a ≤ b, that follows from

2
√

xb
b

= 2
√

x√
b
≤ ε

which follows from b ≥ 4x/ε2 .

Lemma 4.6 Let (Ai)∞i=1 and ω : N+ → N+ be as in the statement of Theorem 4.3.
Then for all m and ε > 0 and all j > max

(
ω
(⌈ 2

ε

∑m
i=1 P[Ai]

⌉)
,m
)

:

P

[ j⋃
i=m+1

Ai

]
+ ε ≥

(∑j
i=1 P[Ai]

)2∑j
i,k=1 P[AiAk]

Proof Let m and ε > 0 be fixed. Let2 an =
(∑n

i=1 P[Ai]
)2 and bn =

∑n
i,k=1 P[AiAk].

The assumption in the statement of Theorem 4.3 says that
√

an diverges with rate ω .
By Lemma 4.4, bn ≥ an . Hence, for all N :

bω(N) ≥ aω(N) ≥ N2

Since
∑n

i,k=m+1 P[AiAk] ≤ bn − bm , by Lemma 4.4 we have for all j > m:

(57) P

[ j⋃
i=m+1

Ai

]
+ ε ≥

(√aj −
√

am
)2

bj − bm
+ ε

Let M = max
(
ω
(⌈ 2

ε

∑m
i=1 P[Ai]

⌉)
,m
)

and let j > M . By assumption we have that:

bj ≥ b
ω
(
⌈ 2

ε

∑m
i=1 P[Ai]⌉

) ≥

(
2
ε

m∑
i=1

P[Ai]

)2

≥ 4am

ε2

By Lemma 4.5, we have that:

(58)

(√aj −
√

am
)2

bj − bm
+ ε ≥

aj

bj
=

(∑j
i=1 P[Ai]

)2

∑j
i,k=1 P[AiAk]

The result follows from (57) and (58).
2In the notation of the proof of Lemma 3.1, an = E2(Yn) and bn = E(Y2

n ).
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Proof of Theorem 4.3 Let n0 = max
(
ω(⌈2ℓ+2∑m

i=1 P[Ai]⌉),m
)

and nr+1 = g(nr).
We claim that with n = nr for some r ≤ 2ℓ+1 , the conclusion holds. Assume this is not
the case. Then for each r there is a jr ∈ [nr, nr+1] such that:

(59) P

[
nr⋃

i=m+1

Ai

]
+

1
2ℓ
<

(∑jr
i=1 P[Ai]

)2

∑jr
i,k=1 P[AiAk]

But by Lemma 4.6, with ε = 1
2ℓ+1

(60)

(∑jr
i=1 P[Ai]

)2

∑jr
i,k=1 P[AiAk]

≤ P

[ jr⋃
i=m+1

Ai

]
+

1
2ℓ+1

and hence, combining (59) and (60) and subtracting 1
2ℓ+1 , we have:

(61) P

[
nr⋃

i=m+1

Ai

]
+

1
2ℓ+1 < P

[ jr⋃
i=m+1

Ai

]
≤ P

[ nr+1⋃
i=m+1

Ai

]

Chaining together the inequalities given by (61) for r = 0 to 2ℓ+1 , we have

(62) P

[ n0⋃
i=m+1

Ai

]
+ 1 < P

[ n2ℓ+1⋃
i=m+1

Ai

]
≤ 1

which is a contradiction.

4.1 Proving qualitative version from quantitative one

Let us argue that the qualitative version of the Kochen–Stone Theorem (Theorem 4.3)
directly implies the original qualitative version. Theorem 4.3 implies that for all m, ℓ
and g : N+ → N+ (with g(i) > i) there exists an n such that:

∀j ∈ [n, g(n)]

P

[
n⋃

i=m+1

Ai

]
+

1
2ℓ

≥

(∑j
k=1 P[Ak]

)2

∑j
i,k=1 P[AiAk]


But (see Section 1.1), the above is equivalent to: for all m, ℓ there exists an n such that:

∀j ≥ n

P

[
n⋃

i=m+1

Ai

]
+

1
2ℓ

≥

(∑j
k=1 P[Ak]

)2

∑j
i,k=1 P[AiAk]


Journal of Logic & Analysis 13:6 (2021)
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Then, this is equivalent to: For all m, ℓ there exists an n such that:

P

[
n⋃

i=m+1

Ai

]
+

1
2ℓ

≥ sup
j≥n

(∑j
k=1 P[Ak]

)2

∑j
i,k=1 P[AiAk]

Hence, for all m and ℓ there exists an n such that:

P

[
n⋃

i=m+1

Ai

]
+

1
2ℓ

≥ sup
j≥n

(∑j
k=1 P[Ak]

)2

∑j
i,k=1 P[AiAk]

≥ lim sup
n→∞

((∑n
k=1 P[Ak]

)2∑n
i,k=1 P[AiAk]

)
Therefore, for all m

P

[ ∞⋃
i=m+1

Ai

]
≥ lim sup

n→∞

((∑n
k=1 P[Ak]

)2∑n
i,k=1 P[AiAk]

)
and hence:

P[Ai i.o.] ≥ lim sup
n→∞

((∑n
k=1 P[Ak]

)2∑n
i,k=1 P[AiAk]

)

4.2 Necessity for use of metastability

We wish to show that there is no effective bound on the witness n in (54), so that the
approach via metastability is necessary. To this end, we will need examples where the
Kochen–Stone inequality (1) is actually an equality with P[Ai i.o.] < 1. To do this we
will use the following result of Yan which shows that the diagonal terms in the sums on
the right-hand side of the inequality are negligible. Yan’s sketch of the proof in [16] is
very terse, so we give more detail here.

Theorem 4.7 Let (Ai)∞i=1 be an infinite sequence of events such that
∑∞

i=1 P[Ai] = ∞.
Then:

lim sup
n→∞

(∑n
k=1 P[Ak]

)2∑n
i,k=1 P[AiAk]

= lim sup
n→∞

∑
1≤i<k≤n P[Ai]P[Ak]∑

1≤i<k≤n P[AiAk]
(63)

Proof Define sequences sn, tn, bn and cn as follows:

sn =

n∑
k=1

P[Ak] tn =
∑

1≤i<k≤n

P[Ai]P[Ak]

bn =
n∑

i,k=1

P[AiAk] cn =
∑

1≤i<k≤n

P[AiAk]
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Since
∑∞

i=1 P[Ai] = ∞, we have sn = o(s2
n). Hence, as 2tn ≤ s2

n ≤ 2tn + sn ,
limn→∞ s2

n/2tn = 1. By inequality (1), s2
n ≤ (1 + o(1))bn . Hence, as 2cn ≤ bn =

2cn + sn , limn→∞ bn/2cn = 1. It follows that lim supn→∞ s2
n/bn = lim supn→∞ tn/cn ,

which is what we wish to prove.

Let (qn)∞n=1 be any non-decreasing sequence of elements of the open unit interval (0, 1),
let q = limn→∞ qn and let Ai be the event that a uniformly random member of the
unit interval [0, 1] lies in [0, qi]. Then P[Ai] = qi and P[Ai i.o.] = q. Moreover,
P[AiAk] = P[Ai] for i < k . Let us define un, vn and wn as follows:

un = q1

n∑
k=2

qk + q2

n∑
k=3

qk + . . .+ qn−1qn(64)

vn = (n − 1)q1 + (n − 2)q2 + . . .+ qn−1(65)

wn =
un

vn
(66)

Then, rearranging the terms in the sums on the right-hand side of equation (63), we find
that, given equation (63), the inequality (1) is equivalent to q ≥ lim supn→∞ wn . The
following lemma implies that equality holds in the Kochen–Stone inequality for any
sequence of events (Ai)∞i=1 constructed in this way.

Lemma 4.8 Let wn and q be as above. Then wn → q as n → ∞.

Proof We have:
n∑

k=i

qk = q

(
n − i + 1 − 1

q

n∑
k=i

(q − qk)

)
(67)

Let us write σj
i for

∑j
k=i(q − qk). From the above, multiplying by qi−1 and summing

for i from 2 to n, we have:

(68) un = qvn −
n∑

i=2

qi−1σ
n
i

Define the sequence rn by:

rn =

∑n
i=2 qi−1σ

n
i

vn
(69)

We claim that rn → 0 as n → ∞ so that wn = un/vn = (q− rn) → q, which is what we
have to prove. So given ε > 0, let ε0 = q1

4 ε and choose N such that for all n > N ,we
have q − qn < ε0 . Define C by:

(70) C = q1σ
N
2 + q2σ

N
3 + . . .+ qN−1σ

N
N
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Then, for n > N

rn =
C
vn

+
q1σ

n
N+1 + . . .+ qNσ

n
N+1 + qN+1σ

n
N+2 + . . .+ qn−1σ

n
n

(n − 1)q1 + (n − 2)q2 + . . .+ qn−1
(71)

≤ C
vn

+
(n − 1)σn

N+1

q1((n − 1) + (n − 2) + . . .+ 1)
(72)

≤ C
vn

+
1
q1

· (n − 1)(n − N)ε0
1
2 (n − 1)n

(73)

→ 2
q1
ε0 =

ε

2
as n → ∞(74)

where in equation (71) we have expanded the denominator of the second fraction using
the definition of vn and where the bounds (72) and (73) are obtained using the facts that
0 < q1 ≤ qi < 1 and σn

N+m ≤ σn
N+1 ≤ (n − N)ε0 . Hence we can choose M > N , such

that for n > M , we have |rn − ε
2 | <

ε
2 , giving rn < ε. Hence rn → 0 as n → ∞.

Recall that a Specker sequence (see Specker [11] or Toelstra and van Dalen [14]) is a
computable, monotone increasing, bounded sequence of rationals whose limit is not a
computable real number.3

Theorem 4.9 There is a sequence of events (Ai)∞i=1 and a computable function
ω : N+ → N+ such that, for any N(

ω(N)∑
i=1

P[Ai]

)
≥ N

but for which there is no computable function ϕ : N× N+ → N+ satisfying:

(75) ∀m, ℓ∃n ∈ [m, ϕ(m, ℓ)]

P

[
n⋃

i=m+1

Ai

]
+

1
2ℓ

≥ lim sup
j→∞

(∑j
k=1 P[Ak]

)2

∑j
i,k=1 P[AiAk]


Proof Take Ai to be the event that a uniformly random element of [0, 1] lies in the
interval [0, qi] where the qi ∈ (0, 1) form a Specker sequence with limit q (note that
q < 1, since q is not a computable real). Also

∑∞
i=1 qi diverges with the rate of

divergence given by the computable function ω(N) = ⌈ N
q1
⌉. Then, for n > m, we have

(76) P

[
n⋃

i=m+1

Ai

]
= P[An] = qn

3A real number is said to be computable if it is the limit of a computable sequence of rationals,
with a computable rate of convergence (see Weihrauch [15]).
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and, by Lemma 4.8 and the discussion preceding it, we have:

(77) lim sup
j→∞

(∑j
k=1 P[Ak]

)2

∑j
i,k=1 P[AiAk]

= lim
j→∞

(∑j
k=1 P[Ak]

)2

∑j
i,k=1 P[AiAk]

= q

Assume ϕ satisfies (75), ie:

(78) ∀m, ℓ∃n ∈ (m, ϕ(m, ℓ)]
(

qn +
1
2ℓ

≥ q
)

Hence

(79) ∀ℓ∃n ≤ ϕ(0, ℓ)
(
|q − qn| ≤

1
2ℓ

)
implying that, g(ℓ) = ϕ(0, ℓ) is a rate of convergence for the Specker sequence qn . But
since q = limn→∞ qn is not a computable real, it cannot be approximated by a sequence
with a computable rate of convergence. It follows that g, and hence also ϕ, is not a
computable function.

5 Optimality of the estimates

It is easy to argue that the numeric bounds in Theorem 2.1 are best possible. Indeed, let
(Ai)∞i=1 be a sequence of mutually exclusive events. In this case, the first inequality in
(11) is actually an equality and hence the given estimate is optimal.

The estimate given by Theorem 2.2 is also the best possible amongst estimates that
do not depend on n. To see this, consider the probability space whose outcomes are
functions α : N+ → {1, . . . , k} representing an infinite sequence of throws of a fair
k-sided die. Let Ai be the event α(i) = k , so that P[Ai] = 1/k . Clearly

∑∞
i=1 P[Ai]

diverges with (optimal) rate ω(N) = kN . We have that:

(80) P

[ k(n+N−1)⋂
i=n

Ai

]
=

(
1 − 1

k

)k(n+N−1)−n+1

This is a decreasing function of n, so the worst case for our estimate is when n = 1, but
in that case we have

(81) P

[
kN⋂
i=n

Ai

]
=

(
1 − 1

k

)kN

→ e−N as k → ∞

showing that the bounds in (18) and (19) are tight.
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Unlike the quantitative proofs of the First and Second Borel–Cantelli Lemmas, where
we have argued above that the numerical bounds obtained have optimal rate of growth,
in the case of the quantitative Erdős–Rényi Theorem (Theorem 3.3), it is plausible that
the bounds we have achieved are optimal for the given formulation of assumption (25)
(see remark after Theorem 3.3), but we have been unable to prove that.

In the case of the quantitative Kochen–Stone Theorem (Theorem 4.3), we have had to
reformulate the original theorem using Tao’s notion of metastability. This means that
the numerical bound given also depends on a new functional input g : N → N. This
makes an asymptotic analysis of the growth rate of the bound much more difficult. It is
again unclear whether the bound we have obtained has optimal dependency on any of
the parameters ω, g,m and ℓ. We leave this for future work. It is worth emphasising,
however, that all our numerical bounds are uniform in (ie independent of) the actual
sequence of events (Ai)∞i=1 .
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