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Description of locally finite families from a nonstandard
point of view

ULF LEONARD CLOTZ

Abstract: In nonstandard topology we can describe a given topology by the
neighbourhood-monads of the standard points (see Sari, chapter 6 in Diener and
Diener [2]). Calling an internal point near-standard if it is contained in the
neighbourhood-monad of some standard point and remote otherwise we give some
statements about locally finite families and paracompact spaces in terms of near-
standard and remote points.
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1 Introduction

Given some topological space (X, T ) in the standard world one can describe such no-
tions as open and closed sets or continuity by the neighbourhood-monads of the standard
points in some nonstandard extension. This neighbourhood-monad is defined as the
filtermonad of the neighbourhood-filter: Let x ∈ X and V(x) := {V ∈ T : x ∈ V} be
the nbd-filter, then µT (∗x) :=

⋂
{∗V : V ∈ V(x)} is called the neighbourhood-monad

(or nbd-monad).

The definition of the nbd-monad can be found already in Robinson [6], together with
several applications to topological properties. One of the famous applications is the
proof that a topological space (X, T ) is compact iff every (internal) point of ∗X is
near-standard, i.e. contained in the nbd-monad of some standard point in ∗X . If X is
not compact there exist so-called remote points (cf Stroyan – Luxemburg [7]), which
don’t belong to any nbd-monad of standard points.

We use the notions of near-standard and remote to give a nonstandard description of
locally finite families (Lemma 3.2). The main results are Theorem 3.14 and Theo-
rem 3.17 which provide a nonstandard sufficient condition for a regular space to be
paracompact. For the proofs of these theorems we use the nonstandard characteriza-
tion of paracompactness given in [7] (which is here additionally stated using monads
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2 Ulf Clotz

instead of internal sets, cf Lemma 3.13) and the nonstandard characterization of local
finiteness we gave before.

All results are part of the author’s PhD-thesis [1] written under the supervision of
Professor Dr. Michael Reeken.

2 Preliminaries

We are working in the nonstandard set theory HST (see Kanovei and Reeken [4], also
for the usage of logical and mathematical symbols). So we have the class WF in the
universe H which behaves like an ordinary ZFC-universe. For every well-founded
X ∈WF there is a unique standard set S = ∗X ∈ S. Using Separation we can extract
the standard elements from every given set: {x ∈ X : stx} = X ∩ S =: σX . A set X
is of standard size if there exists a (possibly external) bijection f between X and the
standard elements of a standard set S ∈ S, i.e. f : X → σS . This is equivalent to the
existence of a (possibly external) bijection f : X → W ∈WF onto a well-founded set
W .

For a better orientation in this multiple universe setting we will use roman letters
(X,Y, x, y, . . . ) for sets in WF and gothic letters (A,V, x, . . . ) for internal sets and
external sets with only internal elements.

In HST we can use Saturation in the following form: Every f.i.p.1 family F of
standard size which consists only of internal sets has nonempty intersection

⋂
F 6= ∅.

Using this, we get one important tool in nonstandard arguing, which is as follows:

Lemma 2.1 (Overspill) Given internal sets X and Y with σX ⊆ Y, there exists a
hyperfinite set Z with σX ⊆ Z ⊆ Y.

A monad in our sense is the intersection of a standard-sized family of standard sets.
Given a filter F on some set X ∈ WF it follows from Saturation that the intersec-
tion

⋂
{∗F : F ∈ F} is always a nonempty monad. We call this intersection the

filtermonad of F .

Given a topological space (X, T ) ∈WF, let V map any subset A ⊆ X to the set V(A)
of all open sets containing A. From this we get a map ∗V , which maps any internal

1finite intersection property, i.e. every finite subfamily F ′ ⊂ F of the original family F
has nonempty intersection

⋂
F ′ 6= ∅ .
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Locally finite families from a nonstandard point of view 3

subset A ⊆ ∗X to the internal set ∗V(A) of all internal open sets containing A. For
convenience we write V(x) when A = {x} is a singleton.

For any internal subset A ⊆ ∗X the set ∗σV(A) of all standard neighbourhoods of A

defines a standard filter on ∗X which is the ∗-image of some filter F on X . We call
the filtermonad of F the neighbourhood-monad of A and denote it by µT (A). Again
we write µT (x) = µT ({x}).

Using the notation given above we get the following well-known nonstandard descrip-
tion of open sets:

A ⊆ X is open iff for every a ∈ A we have µT (∗a) ⊆ ∗A.(1)

In Sari [2, chapter 6] one can find the following equality for internal A ⊆ ∗X :

µT (A) =
⋃
a∈A

µT (a)(2)

Using Overspill we get the following:

Lemma 2.2 For any internal subset A ⊆ ∗X there is an internal neighbourhood V

for which A ⊆ V ⊆ µT (A) holds.

If A denotes the topological closure of A ⊆ ∗X we get by ∗-Transfer

A =
{
x ∈ ∗X : ∀intV ∈ ∗V(x) (V ∩ A 6= ∅)

}
(3)

for internal A. For later application we take this equality as a definition for the
topological closure of external sets (such as monads). For A ⊆ X we have the
condition

x ∈ A iff µT (∗x) ∩ ∗A 6= ∅.(4)

If we take a look at the neighbourhood-monad µT (A) of an internal subset A ⊆ ∗X
we get the following result:

Lemma 2.3 For internal A ⊆ ∗X we have

µT (A) = µT (A) :=
⋂{

V : V ∈ ∗σV(A)
}
.

Proof For any V ∈ ∗σV(A) we have µT (A) ⊆ V, so µT (A) ⊆ V and µT (A) ⊆ µT (A)
follows.

For x /∈ µT (A), there exists an internal neighbourhood V with V ∩ µT (A) = ∅. But
then there exists standard W ∈ ∗σV(A) with V ∩W = ∅, so x /∈W ⊇ µT (A).
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Now we can generalize (4):

Lemma 2.4 For x ∈ ∗X and internal A ⊆ ∗X we have

x ∈ µT (A) ⇐⇒ µT (x) ∩ µT (A) 6= ∅.

Proof First, let x ∈ µT (A) and V ⊂ µT (x) be a neighbourhood of x, which exists by
Lemma 2.2. By (3) and Lemma 2.3 we have V∩ µT (A) 6= ∅, so µT (x)∩ µT (A) 6= ∅.

Now, let x /∈ µT (A), so there exists a standard open ∗V ∈ ∗σV(A) with x /∈ ∗V . Then
µT (A) ⊆ ∗V and µT (x) ⊆ ∗X \ ∗V , and it follows µT (x) ∩ µT (A) = ∅.

From (2) we get:

Lemma 2.5 For internal A ⊆ ∗X we have µT (A) =
⋃

a∈A µT (a).

Proof For x ∈ µT (A) there exists by (2) and Lemma 2.4 some a0 ∈ A with µT (x) ∩
µT (a0) 6= ∅. Applying Lemma 2.4 again gives x ∈ µT (a0) ⊆ µT (A).

The remaining subset-relation is obvious.

As we can see in (1) and (4), the neighbourhood-monads of the standard points play a
crucial role in nonstandard topology, so we will denote the elements of these monads
by a special name:

Definition 2.6 We call x ∈ ∗X near-standard iff there exists x ∈ X with x ∈ µT (∗x)
and remote otherwise. ns(∗X) :=

⋃
x∈X µT (∗x) denotes the (external) subset of all

near-standard points and rmt(∗X) := ∗X \ ns(∗X) the subset of all remote points.

Let us illustrate these notions:

Example 2.7 (1) Let T be the ordinary metric topology on R. Then

µT (∗x) =
{
x ∈ ∗R : x ≈ ∗x

}
= {x : ∀n ∈ N (|x− ∗x| < 1/n)}

so ns(∗R) = {x : ∃n ∈ N (|x| < n)} and rmt(∗R) = {x : ∀n ∈ N (|x| > n)}.

(2) More general, if Γ is a family of pseudometrics then the monads of the topology
generated by Γ are

µΓ(∗x) = {x : ∀ρ ∈ Γ∀n ∈ N (ρ(x, ∗x) < 1/n)} .
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Locally finite families from a nonstandard point of view 5

(3) Now let S be generated by T ∪ {Q} with T as above. Then µS(∗x) = µT (∗x)
if x ∈ R \ Q and µS(∗x) = µT (∗x) ∩ ∗Q if x ∈ Q. For n ∈ ∗N \N we have
1/n ∈ µS(0), but

√
2/n /∈ µS(0) and therefore

√
2/n is a remote point (for S ).

Now we give three of the separation axioms in terms of nonstandard topology:

Definition 2.8 We call a topological space (X, T )
separated iff for all x 6= y ∈ X we have µT (∗x) ∩ µT (∗y) = ∅,
regular iff µT (∗x) ∩ µT (y) 6= ∅ implies y ∈ µT (∗x) for arbitrary x ∈ X and y ∈ ∗X
and
normal iff µT (∗A) ∩ µT (∗B) 6= ∅ implies A ∩ B 6= ∅ for all A,B ⊆ X .

One connection between separated and regular spaces is as follows:

Lemma 2.9 A separated space (X, T ) is regular iff for every remote point x ∈ rmt(∗X)
we have µT (x) ⊆ rmt(∗X).

Proof First, let X be regular and x ∈ rmt(∗X). Then µT (x) ∩ µT (∗x) = ∅ for
every x ∈ X because otherwise x ∈ µT (∗x) by Definition 2.8, but this contradicts our
assumption.

In order to prove sufficiency of the stated condition let x ∈ X , y ∈ ∗X with µT (y) ∩
µT (∗x) 6= ∅. So y cannot be remote and therefore y ∈ µT (∗y) for some y ∈ X . Then
we have µT (∗y) ∩ µT (∗x) 6= ∅ and x = y by X being separated.

Example 2.10 Let S be as in Example 2.7 (3). It is
√

2/n ∈ rmtS(∗R) but for every
V ∈ S with

√
2/n ∈ ∗V it follows from

√
2/n ∈ ∗R \ ∗Q that V ∈ T , so 0 ∈ V and

finally 0 ∈ µS(
√

2/n) 6⊂ rmtS(∗R). Thus, (R,S) is not regular.

If (X, T ) is regular, we can conclude from the above lemma together with (2) that for
every internal subset H ⊆ rmt(∗X) we have µT (H) ⊆ rmt(∗X). Applying Lemma 2.4
we even get µT (H) ⊆ rmt(∗X). This result is not only true for internal subsets of
rmt(∗X), but holds also for monads m ⊆ rmt(∗X), as the next lemma shows.

Lemma 2.11 Let (X, T ) be regular and m ⊆ rmt(∗X) a monad. Then we have
µT (m) ⊆ rmt(∗X).

Proof For X being regular, we have µT (∗x) = µT (∗x) for every x ∈ X , so from
m ⊆ rmt(∗X) we know µT (∗x) ∩m = ∅ and there is a neighbourhood Vx ⊆ X of x
with ∗Vx∩m = ∅. So for Ux := X\Vx it follows µT (m) ⊆ ∗Ux and µT (∗x)∩∗Ux = ∅,
from which we conclude µT (m) ∩ ns(∗X) = ∅.
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3 Local finiteness

3.1 A nonstandard description of locally finite families

Recall the usual definition of local finiteness:

Definition 3.1 A family {Mi : i ∈ I} of subsets of a topological space (X, T ) is
called locally finite, if for every x ∈ X there exists some neighbourhood Vx such that
Vx ∩Mi 6= ∅ for only finitely many i ∈ I .

For a locally finite family {Mi : i ∈ I} we look at its ∗-image ∗{Mi : i ∈ I} which
is of the form {∗M(i) : i ∈ ∗I}2 with the standard map ∗M : ∗I → ∗P(X) having the
property ∗M(∗i) = ∗(Mi) for every i ∈ I .

Now we can give a nonstandard characterization of local finiteness:

Lemma 3.2 A family {Mi : i ∈ I} ⊆ P(X) of subsets of a topological space
(X, T ) is locally finite iff for every near-standard point x ∈ ns(∗X) of ∗X the set
{i ∈ ∗I : x ∈ ∗M(i)} ⊆ ∗σ I contains only standard elements.

Proof First, let {Mi : i ∈ I} be locally finite and x ∈ ns(∗X) some near-standard
point, say x ∈ µT (∗x) ⊂ Vx with {i ∈ I : Vx ∩Mi 6= ∅} finite. So we have{

i ∈ ∗I : x ∈ ∗M(i)
}
⊆
{
i ∈ ∗I : ∗Vx ∩ ∗M(i) 6= ∅

}
= ∗{i ∈ I : Vx ∩Mi 6= ∅}.

Now this last set is standard and finite and contains therefore only standard elements.

For the reverse implication we assume {Mi : i ∈ I} to be not locally finite, i.e. there
is x0 ∈ X such that for every neighbourhood Ux0 the set {i ∈ I : Ux0 ∩Mi 6= ∅}
contains infinitely many elements. In order to show the existence of a near-standard
point x ∈ ns(∗X) with {i ∈ ∗I : x ∈ ∗M(i)} 6⊆ ∗σ I we define the internal sets

FU,i :=
{

(x, i) ∈ ∗(U × I \ {i}) : x ∈ ∗M(i)
}

for U ∈ V(x0) and i ∈ I . Since the f.i.p.-family {FU,i : U ∈ V(x0) ∧ i ∈ I} is of
standard size we can apply Saturation and get

∅ 6=
⋂
{FU,i : U, i} =

{
(x, i) : x ∈ µT (∗x0) ∧ i ∈ ∗I \ ∗σ I ∧ x ∈ ∗M(i)

}
.

Any element in this nonempty intersection now is a near-standard point with the desired
property, so the proof is complete.

2We will use the notation ∗{Ui : i ∈ I} =
{∗U(i) : i ∈ ∗I

}
for any family (Ui)i∈I

throughout this article.
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Example 3.3 Let (X, d) be a metric space and x0 ∈ X some fixed point. The family
(Un)n∈N for Un := {x ∈ X : d(x, x0) > n} is locally finite:

Let x ∈ nsd(∗X) be arbitrary, say x ∈ µd(∗y) = {y ∈ ∗X : ∗d(y, ∗y) ≈ 0} and let n ∈
∗
N such that x ∈ ∗U(n). Then n < ∗d(x, ∗x0) ≤ ∗d(x, ∗y) + ∗d(∗y, ∗x0) ≈ ∗(d(y, x0)),

so n ∈ N, i.e. standard.

Example 3.4 Let `1 be the space of absolutely summable sequences of real numbers.
Then we can identify the space `∞ of bounded sequences as its (topological) dual. On
`∞ we can define T as the usual topology induced by ||(xn)n||∞ = sup {|xn| : n ∈ N}
and S as the weak-*-topology. Both topologies are compatible with the linear structure
and it suffices to concentrate on the monad of 0.

µT (0) = {h ∈ ∗`∞ : ||h||∞ ≈ 0} and µS(0) = {h : ∀x ∈ `1 (h(∗x) ≈ 0)}3. Now
let h ∈ µT (0) and 0 6= x ∈ `1 be arbitrary. Taking `∞ as the dual of `1 it follows
that h(∗x) = ||∗x||∞ · h(∗x/||∗x||∞) ≈ 0, so h ∈ µS(0). Now let N ∈ ∗N \N and
g := (δNk)k∈∗N ∈

∗`∞ i.e. gk = 0 for k 6= N and gN = 1. For x = (xn)n ∈ `1

we get g(∗x) = ∗x(N) ≈ 0 (because xn → 0 for n → ∞), so g ∈ µS(0). But
g /∈ µT (0), because ||g||∞ = 1 and for S is separated and coarser than T we get that
g ∈ rmtT (∗`∞). In particular, it follows that µT (0) $ µS(0).

Now let Mn := {f ∈ `∞ : fn = 1 ∧ ∀k < n (fk = 0)}. The family (Mn)n∈N is locally
finite for T but not for S : Let h ∈ nsT (∗`∞), say h ∈ µT (∗f ) and let h ∈ ∗M(n) for
n ∈ ∗N. Assume that n /∈ N, then ∗f (k) ≈ 0 for all k ∈ N, so f = 0 in contrary to
∗f (n) ≈ hn = 1. So n has to be standard and (Mn)n is locally finite for T . Now, let
g be as above, then g ∈ nsS(∗`∞) and g ∈ ∗M(N) for N ∈ ∗N \N, so (Mn)n is not
locally finite for S .

Inspection of the proof of Lemma 3.2 indeed gives the next result.

Corollary 3.5 A family {Mi : i ∈ I} ⊆ P(X) of subsets of a topological space
(X, T ) is locally finite iff for every x ∈ X there is a neighbourhood Vx ⊆ X with
∗Vx ∩

(⋃
i∈∗I\∗σ I

∗M(i)
)

= ∅.

3.2 Application of the nonstandard characterization

We apply the above characterization of local finiteness on two well-known facts.

3cf Example 10.1.31 in Stroyan – Luxemburg [7]
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8 Ulf Clotz

Lemma 3.6 If {Mi : i ∈ I} is locally finite, then so is the family
{

Mi : i ∈ I
}

.

Proof Let x ∈ ns(∗X) be an arbitrary near-standard point, say x ∈ µT (∗x0) for x0 ∈ X ,
and i ∈ ∗I such that x ∈ ∗M(i). By Overspill there is an internal neighbourhood V

of x with V ⊆ µT (∗x0). From V ∩ ∗M(i) 6= ∅ (see formula (3)) it follows that
µT (∗x0) ∩ ∗M(i) 6= ∅ which leads to i ∈ ∗σ I by Lemma 3.2.

Lemma 3.7 For a locally finite family {Ai : i ∈ I} of closed subsets Ai ⊆ X of a
topological space (X, T ) the union

⋃
{Ai : i ∈ J} is closed in X , where J ⊆ I is any

subset of I .

Proof Let {Ai : i ∈ I} and J be as in the lemma and x0 ∈ X an arbitrary point with
µT (∗x0) ∩ ∗

(⋃
{Ai : i ∈ J}

)
6= ∅. Because of the equality

∗(⋃ {Ai : i ∈ J}
)

=
⋃{∗A(i) : i ∈ ∗J

}
there is some j ∈ ∗J with µT (∗x0)∩ ∗A(j) 6= ∅. Since the family {Ai : i ∈ I} is locally
finite it follows that j ∈ ∗σ J has to be standard, say j = ∗j0 for some j0 ∈ J , and so we
get x ∈ A(j0) ⊆

⋃
{Ai : i ∈ J} from (4).

To apply these results about locally finite families, we now turn to paracompact spaces.
First, we recall the traditional definition in standard terms, which can be found as
first definition in Chapter 6.4 of Munkres [5]. After this, we give the nonstandard
formulation of paracompactness, which can be found in Stroyan–Luxemburg [7]. After
two short proofs of well-known (standard) properties of paracompact spaces we turn to
a reformulation of the definition which talks about monads instead of internal sets. This
is done in order to give an easy proof of Lemma 3.15 and Lemma 3.16, respectively.

Definition 3.8 (cf [5, Definition in Ch. 6.4]) A separated space (X, T ) is paracom-
pact, if each open covering of X has an locally finite open refinement, that covers
X .

Theorem 3.9 (cf [7, Theorem 8.3.16]) A separated space (X, T ) is paracompact iff
for every internal subset K ⊆ rmt(∗X) there exists an open locally finite covering
(Ui)i∈I of X with K ∩

(⋃
i∈I
∗(Ui)

)
= ∅.

An easy consequence of Theorem 3.9 and Lemma 2.9 is the following:

Lemma 3.10 Every paracompact space is regular.
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Example 3.11 (1) (R, T ) with T as in Example 2.7 (1) is paracompact: For any
monad m ⊂ rmtT (∗R) we can take the following open locally finite covering
(Un)n∈N0 : U0 := {x ∈ R : |x| < 1} and Un := {x ∈ R : n− 1 < |x| < n + 1}
for n ≥ 1. From Example 2.7 (1) it follows that ∗(Un)∩m = ∅ and that n ∈ N
if x ∈ ∗U(n) for x ∈ rmtT (∗R).

(2) Let S be as in Example 2.7 (3), then (R,S) is not paracompact, since it is not
regular (cf Example 2.10).

Another well-known fact about paracompact spaces is as follows:

Lemma 3.12 Let (X, T ) be paracompact and A ⊆ X closed. Then (A, T |A) is
paracompact as well.

Proof Let H ⊆ rmt(∗A) be any internal subset. Since rmt(∗A) = rmt(∗X) ∩ ∗A there
exists an open locally finite covering (Ui)i∈I of X with ∗(Ui) ∩ H = ∅ for all i ∈ I .
Let Vi := Ui ∩ A, then (Vi)i∈I is a T |A -open covering of A with ∗(Vi) ∩ H = ∅ for
all i ∈ I . For i ∈ ∗I \ ∗σ I we have ∗V(i) = ∗U(i) ∩ ∗A ⊆ rmt(∗X) ∩ ∗A = rmt(∗A) by
Lemma 3.2, so (Vi)i∈I is locally finite again by Lemma 3.2.

A characterization of paracompactness in terms of monads instead of internal sets is
given by the next lemma.

Lemma 3.13 A separated space (X, T ) is paracompact if and only if for every monad
m ⊆ rmt(∗X) there exists an open, locally finite covering (Ui)i∈I of X with ∗(Ui)∩m =
∅ for all i ∈ I .

The above statement is an immediate consequence of the following stronger result.

Theorem 3.14 Let (X, T ) be a topological space and P one of the properties being
arbitrary, being open, being closed. Then the following are equivalent:

(1) For every internal subset H ⊆ rmt(∗X) there exists a locally finite covering
(Ai)i∈I of X with H ∩ ∗(Ai) = ∅ for all i ∈ I and Ai ⊆ X being subsets with
property P.

(2) For every monad m ⊆ rmt(∗X) there exists a locally finite covering (Ai)i∈I of
X with m ∩ ∗(Ai) = ∅ for all i ∈ I and Ai ⊆ X being subsets with property P.
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10 Ulf Clotz

Proof First we show (ii) ⇒ (i). Given H ⊆ rmt(∗X) internal we have δ(H) ⊆
rmt(∗X) for the discrete monad δ(H) :=

⋂
{∗M : M ⊆ X ∧ H ⊆ ∗M} (eg, see chapter

8 in Stroyan–Luxemburg [7]).

For (i) ⇒ (ii) let m ⊆ rmt(∗X) be an arbitrary monad. Then for every x ∈ X there
exists an open neighbourhood Vx with ∗(Vx) ∩ m = ∅. By Standardisation we get
∗V(x) for every x ∈ X and by Overspill there is a hyperfinite subset X ⊆ ∗X with
∗
σX ⊆ X. Now W := ∗X \

⋃
{∗V(x) : x ∈ X} ⊆ rmt(∗X) is internal and we find a

locally finite covering (Ai)i∈I with Ai having property P and ∗(Ai) ∩W = ∅ for all
i ∈ I . By ∗-Transfer we get a finite subset Y ⊆ X with Ai ⊆

⋃
x∈Y Vx for all i ∈ I . It

follows ∗(Ai) ⊆ ∗
(⋃

x∈Y Vx
)

=
⋃

x∈Y
∗(Vx) and finally ∗(Ai)∩m = ∅ for all i ∈ I .

This equivalence motivates the following two lemmata.

Lemma 3.15 Let (X, T ) be a regular space such that for every monad m ⊆ rmt(∗X)
a locally finite covering (Ui)i∈I of X exists with ∗(Ui)∩m = ∅ for all i ∈ I . Then for
every monad m′ ⊆ rmt(∗X) there exists a closed locally finite covering (Ai)i∈I of X
with ∗(Ai) ∩m′ = ∅ for all i ∈ I .

Proof Let the monad m ⊆ rmt(∗X) be arbitrary. By Lemma 2.11 we have µT (m) ⊆
rmt(∗X) and there is a locally finite cover (Ui)i∈I of X with ∗(Ui) ∩ µT (m) = ∅ for
all i ∈ I . It follows that ∗(Ui) ∩m = ∅ and from Lemma 3.6 we know that (Ui)i∈I is
locally finite.

Lemma 3.16 Let (X, T ) be a regular space such that for every monad m ⊆ rmt(∗X) a
closed locally finite covering (Ui)i∈I of X exists with ∗(Ui)∩m = ∅ for all i ∈ I . Then
for every monad m′ ⊆ rmt(∗X) there exists an open locally finite covering (Oi)i∈I of
X with ∗(Oi) ∩m′ = ∅ for all i ∈ I .

Proof Again, let the monad m ⊆ rmt(∗X) be arbitrary. By Lemma 2.11 we have
µT (m) ⊆ rmt(∗X) and there exists a locally finite cover (Ai)i∈I of X with ∗(Ai) ∩
µT (m) = ∅ for all i ∈ I . Then for every i ∈ I there is an open V ′i ⊆ X with m ⊆ ∗V ′i
and Ai ∩ V ′i = ∅, so for Vi := X \ V ′i we have Ai ⊆ Vi and ∗Vi ∩m = ∅.

Because (Ai)i is locally finite, by Corollary 3.5 there exists open Vx 3 x with ∗Vx ∩(⋃
i∈∗I\∗σ I

∗A(i)
)

= ∅ for every x ∈ X . So, m1 :=
⋂

x∈X
∗(X \ Vx) ⊆ rmt(∗X) is a

monad with
⋃

i∈∗I\∗σ I
∗A(i) ⊆ m1 . Again, there is a closed locally finite cover (Bk)k∈J

of X with ∗Bk ∩m1 = ∅ for all k ∈ J , so ∗Bk ∩
(⋃

i∈∗I\∗σ I
∗A(i)

)
= ∅.
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Now we set Oi := X \
⋃
{Bk : Bk ∩ Ai = ∅} which is open by Lemma 3.7. We

prove local finiteness of (Oi)i using Lemma 3.2. So let x ∈ ns(∗X) be arbitrary with
x ∈ ∗O(i). Then x ∈ ∗B(k) for k ∈ ∗J implies ∗B(k)∩ ∗A(i) 6= ∅. So by Lemma 3.2 we
have k ∈ ∗σ J standard and therefore i ∈ ∗I standard. Finally, if we set Ui := Oi ∩ Vi ,
we get an open locally finite cover (Ui)i∈I of X with ∗Ui ∩m = ∅ for all i ∈ I .

Combining Theorem 3.14, Lemma 3.15 and Lemma 3.16, we get the following result.
A standard version of this can be found as Theorem 2.3 in chapter VIII in Dugundji
[3].

Theorem 3.17 Let (X, T ) be a regular space such that for every internal H ⊆ rmt(∗X)
there is a locally finite covering (Ui)i∈I of X (the Ui being arbitrary) with ∗(Ui)∩H = ∅
for all i ∈ I . Then X is paracompact.

We use this result to give a nonstandard proof of another well-known fact about
paracompact spaces (eg, see [3, chapter VIII, Theorem 2.5]).

Theorem 3.18 Let A =
⋃

k∈N Ak be a countable union of closed subsets Ak ⊆ X of
the paracompact space (X, T ). Then (A, T |A) is paracompact as well.

Proof Let H ⊆ rmt(∗A) be internal. For every n ∈ N we have Hn := H∩ ∗An internal
with Hn ⊆ rmt(∗An) = rmt(∗X) ∩ ∗An , so there is an open locally finite covering
(V(n, i))i∈In of X with ∗(V(n, i))∩Hn = ∅ for all i ∈ In . Let W ′n :=

⋃
i∈In

V(n, i), then
Wn := W ′n \

⋃
k<n W ′k and finally U(n, i) := V(n, i) ∩W ′n ∩ An .

For a ∈ ns(∗A), say a ∈ µT |A(∗a), let n := min {k ∈ N : a ∈ Ak}, then we have
a ∈ ∗(W ′n), so a /∈ ∗W(m) for all m > ∗n. Therefore n ∈ ∗N must be standard if
a ∈ ∗U(n, i) and then i ∈ ∗I must be standard by a ∈ ∗V(n, i).

From this it follows that (U(n, i))(n,i) is a locally finite covering of A with ∗(U(n, i)) ∩
H = ∅ for all n ∈ N and all i ∈ In . An application of Theorem 3.17 now completes
the proof.
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