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Some semilattices of definable sets in continuous logic

JAMES E. HANSON

Abstract: In continuous first-order logic, the union of definable sets is definable
but generally the intersection is not. This means that in any continuous theory,
the collection of ∅–definable sets in one variable forms a join-semilattice under
inclusion that may fail to be a lattice. We investigate the question of which
semilattices arise as the collection of definable sets in a continuous theory. We
show that for any non-trivial finite semilattice L (or, equivalently, any finite lattice
L), there is a superstable theory T whose semilattice of definable sets is L . We then
extend this construction to some infinite semilattices. In particular, we show that
the following semilattices arise in continuous theories: α+ 1 and (α+ 1)∗ for any
ordinal α , a semilattice containing an exact pair above ω , and the lattice of filters
in L for any countable meet-semilattice L . By previous work of the author, this
establishes that these semilattices arise in stable theories [7]. The first two are done
in languages of cardinality ℵ0 + |α| , and the latter two in countable languages.
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Introduction

Continuous first-order logic, introduced in its modern form in Ben Yaacov, Berenstein,
Henson, and Usvyatsov [4], is a generalization of ordinary first-order logic that deals
with structures comprising complete metric spaces and uniformly continuous predicates
and functions, called metric structures.

In a metric structure M , a closed set D ⊆ M is definable if its distance predicate
inf{d(x, y) : y ∈ D} is equivalent to a formula. (We take formulas to be closed
under uniformly convergent limits.) These are precisely the sets that admit relative
quantification in the sense that for any formula φ(x, y), there is a formula equivalent to
infy∈D φ(x, y). We will conflate a definable set D ⊆ M with the corresponding closed
set of types {tp(a) : a ∈ DN , N ⪰ M} in S1(T), and we will abuse terminology by
referring to such sets as definable as well.
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2 James E. Hanson

While definable sets are useful things to have, they are not always plentiful. There are
non-trivial metric structures M in which the only definable sets (without parameters)
are ∅ and M . Similarly, while definable sets in discrete logic enjoy the structure of
a Boolean algebra, only the union of two definable sets is guaranteed to be definable
in continuous logic. The complement of a definable set is generally not even closed
and the intersection of two definable sets may fail to be definable. This means that
the partial order of definable subsets of a metric structure is generally only a bounded
join-semilattice.1 In situations like this, logicians typically find irresistible the question
of which semilattices arise in this manner. We will address some aspects of this question
in this paper.

The easiest restriction to establish is on cardinality. The collection of definable subsets
of M is always closed in the Hausdorff metric. This means that it can only ever have
the cardinality of a complete metric space. Basic set-theoretic topology then establishes
that if M is a metric structure whose language L has cardinality κ, then the collection
D of definable subsets of M has either |D | ≤ κ or |D | = κℵ0 . If L is countable, then
D is a Polish space and (D,E) 7→ D ∪ E is a Borel function, whereby descriptive set
theory comes to bear. That said, the author is not aware of any results regarding Polish
semilattices that aren’t special cases of results regarding Polish partial orders.

A more specialized question one might ask is whether various model-theoretic properties
impose restrictions on the semilattices of definable sets that might appear. Aside from
discreteness itself, only a handful of such restrictions are known. In his thesis [6,
Chapters 2.4, 2.5, and 5.5], the author studied an abundance condition for definable sets
and established conditions under which it occurs, which he referred to as dictionaricness.
While this condition seems to have been identified folklorically, at the time there were
no published systematic studies of it. A type space Sx̄(A) is dictionaric if it has a basis
of definable neighborhoods (where a neighborhood is not required to be open). A theory
is dictionaric if all of its type over any set of parameters are dictionaric. There are
only three broad classes of theories that are known to be dictionaric: theories whose
type spaces are all totally disconnected,2 theories for which Sn(ā) is CB–analyzable for
every n < ω and finite tuple ā, and randomizations (of discrete or continuous theories,

1Recall that a partial order (L,≤) is a bounded join-semilattice if L has a greatest and least
element and any two x, y ∈ L have a least upper bound or join, written x ∨ y . (L,≤) is a
bounded meet-semilattice if L has a greatest and least element and any two x, y ∈ L have a
greatest lower bound or meet, written x ∧ y . (L,≤) is a bounded lattice if it is both a bounded
join-semilattice and a bounded meet-semilattice.

2This occurs if and only if the theory is bi-interpretable with a (possibly many-sorted) discrete
theory.
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Some semilattices of definable sets in continuous logic 3

regardless of whether the original theory is dictionaric). The second class of theories
includes ω–stable theories, implying that all ω–stable theories are dictionaric.

On the other hand, the author showed in [7, Theorem 7.1] that every compact topometric
space (X, τ, d) with d adequate3 is isometrically homeomorphic (ie, isomorphic in the
sense of topometric spaces) to S1(T) for a strictly stable theory T . This means that
stability alone imposes no restrictions on the semilattice of definable sets.

This leaves a gap though. ω–stability imposes radical restrictions. Mere stability
imposes none. What, if anything, does superstability impose? Many of the explicitly
constructed counterexamples in [6, Section C.1] are superstable, which bodes ill for
the prospect that superstability entails anything in this regard. For instance, there is a
weakly minimal theory T with trivial geometry for which S1(T) is homeomorphic to
[0, 1] but has only ∅ and S1(T) as definable sets.4 Nevertheless, it is entirely possible
that there are subtle restrictions on the class of definable sets entailed by superstability.

In this paper we will give evidence that superstability does not entail any such restrictions.
We will show that for every non-trivial finite semilattice L , there is a weakly minimal
theory T with trivial geometry such that the semilattice of definable subsets of S1(T)
is isomorphic to L. Note that since finite semilattices are always complete, they are
always lattices, so our result shows that the finite semilattices of definable sets are
precisely the finite lattices.5 This does mean that our result is limited in the sense that
superstability might impose restrictions on the semilattice of definable sets that are
weaker than the restrictions already imposed by finiteness.

1 Finite semilattices of definable sets

First, we will recall the definition of the term ‘topometric space.’

Definition 1.1 A topometric space (X, τ, ∂) is a set X together with a topology τ and
a metric ∂ such that the metric refines the topology and is lower semi-continuous (ie,
has {(x, y) ∈ X2 : ∂(x, y) ≤ ε} closed for every ε > 0).

3 d is adequate if U<r :=
⋃

x∈U B<r(x) is open for every open U and r > 0. This property
was originally identified in Ben Yaacov [1] and referred to provisionally there as ‘openness,’ but
later renamed to adequacy in Ben Yaacov and Melleray [5].

4 T can be taken to be the theory of N with a discrete metric and cos(x) as a predicate.
5If T is the inconsistent theory, then a pedantic reading of definitions gives that S1(T) is ∅ ,

which has the trivial lattice as its semilattice of definable sets.
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4 James E. Hanson

The relevance of this concept to continuous logic is the fact that every type space S1(T)
has a natural topometric space structure induced by the metric:

∂(p, q) := inf{d(a, b) : a |= p, b |= q}

The following facts will be useful to keep in mind during the construction. Topological
operators such as the interior, int A, are always computed in the compact logic topology.
We take superscript operators to bind more tightly than prefix and infix operators, so
int A<ε is int(A<ε), cl(A ∩ B)<ε is cl((A ∩ B)<ε), and A ∩ B<ε is A ∩ (B<ε).

Fact 1.2 For any type space S1(T), a closed set D ⊆ S1(T) is definable if and only if
D ⊆ int D<r for every r > 0.

For any topometric space X and set Q ⊆ X , the following are equivalent.

(1) Q ⊆ int Q<r for every r > 0.
(2) Q ⊆ int Q<r for arbitrarily small r > 0.

If the metric on X is adequate, then 1 and 2 are also equivalent to 3.

(3) Q<r is open for every r > 0.

Proof The statement regarding definable sets is equivalent to [4, Proposition 9.19].

(1) clearly implies (2). Assuming (2), then for any r > 0, we can find positive s < r
such that Q ⊆ int Q<s , but int Q<s ⊆ Q<s ⊆ Q<r , whence Q ⊆ int Q<r .

(3) clearly implies (1) and (2), so assume the metric is adequate. For any x ∈ Q<r , let
s = d(x,Q) < r . We now have that x ∈ Q<s ⊆ (int Q<r−s)<s ⊆ Q<r by the triangle
inequality. Since (int Q<r−s)<s is open, x ∈ int Q<r . Since we can do this for every
x ∈ Q<r , Q<r is open.

Given Fact 1.2, we will use the following definition.

Definition 1.3 In any topometric space (X, τ, d), a closed set D ⊆ X is definable if
D ⊆ int D<r for every r > 0.

In Section 2, we will use Definition 1.3 even when X is not compact.

Perhaps generalizing the term ‘definable set’ to arbitrary topometric spaces like this
is ill-advised, but at the moment it doesn’t seem that there are any applications of
Definition 1.3 outside of the context of type spaces in continuous logic.
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Some semilattices of definable sets in continuous logic 5

1.1 Circuitry

We will start our construction by building the type space S1(T) as an explicit topometric
space. We will then argue that what we have built actually is S1(T) for some weakly
minimal T with trivial geometry. The construction proceeds by building something
reminiscent of a logical circuit consisting of ‘wires’ and ‘gates.’ Unfortunately the
metaphor is somewhat backwards in that it will make sense to regard a wire as ‘on’ if it
is disjoint from the definable set in question.

Definition 1.4 Given a topometric space (X, τ, d), a set A ⊆ X is crisply embedded in
X if d(a, x) = 1 for any a ∈ A and x ∈ X \ A. If {x} is crisply embedded in X , we
may also say that the point x is crisply embedded.

A point a ∈ X is metrically ε–isolated if d(a, x) ≥ ε for any x ∈ X \ {a}.

Throughout the paper all metrics will be [0, 1]–valued. Note that a is crisply embedded
if and only if it is metrically 1–isolated.

Definition 1.5 Given topometric spaces X and Y , the coproduct of X and Y , written
X ⊕Y is the topometric space with underlying topological space X ⊔Y where the metric
is extended so that d(x, y) = 1 for any x ∈ X and y ∈ Y .

Given a topometric space X and two crisply embedded points x and y, the topometric
space produced by soldering x and y together is the topometric space whose underlying
topological space is X with x and y topologically glued and in which the metric is
defined so that d(z,w) is unchanged for any z and w in X with {z,w} ≠ {x, y}. Given
a finite set of crisply embedded points X0 ⊆ X , we define soldering together the points
of X0 similarly.

Given two topometric spaces X and Y with crisply embedded x ∈ X and y ∈ Y , the
topometric space produced by soldering x and y together is the topometric space
produced by soldering x and y together in X ⊕ Y .

It is easy to verify that the objects described in Definition 1.5 are in fact topometric
spaces.

A fact that we will frequently use implicitly is this: If X is a metric space and D,E ⊆ X ,
then for any r > 0, (D ∩ E)<r ∩ E =

⋃
x∈D∩E BE

<r(x), where BE
<r(x) is the open ball of

radius r around x in the metric space (E, d). In other words, (D∩E)<r ∩E is (D∩E)<r

‘computed in E .’
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6 James E. Hanson

Lemma 1.6 Let X and Y be topometric spaces.

(1) D ⊆ X ⊕ Y is definable if and only if D ∩ X is definable in X and D ∩ Y is
definable in Y .

(2) X ⊕ Y has an adequate metric if and only if X and Y have adequate metrics.

Let Z be topometric spaces, let z0 and z1 be crisply embedded points in Z , let W be Z
with z0 and z1 soldered together, let w ∈ W be the point corresponding to z0 and z1 ,
and let π : Z → W be the quotient map.

(3) For any closed D ⊆ Z , π[D] ⊆ W is definable if and only if either
• {z0, z1} ∩ D = ∅ and D is definable, or
• {z0, z1} ∩ D ̸= ∅ and D ∪ {z0, z1} is definable.

(4) W has an adequate metric if and only if Z has an adequate metric.

Proof (1) and (2) follow immediately from the fact that for any positive r ≤ 1 and any
A ⊆ X ⊕ Y , A<r = (X ∩ A)<r ∪ (Y ∩ A)<r .

For (3), suppose π[D] is definable. If w /∈ π[D], then we have that π[D] is definable
as a subset of W \ {w}, which is open. Since π↾

(
Z \ {z0, z1}

)
is an isometric

homeomorphism, this is enough to establish that D is definable in Z \ {z0, z1} and
therefore also in Z . Every step in this argument is reversible, so we also have that if
{z0, z1} ∩ D = ∅ and D is definable, then π[D] is definable.

If w ∈ π[D], then π−1[D] = D ∪ {z0, z1}. For every r > 0, we now have that
π−1[D<r] =

(
D ∪ {z0, z1}

)<r . Therefore D ∪ {z0, z1} is definable. Again, this
argument is reversible, so we have that if D∪{z0, z1} is definable, then π

[
D ∪ {z0, z1}

]
is definable.

For (4), if Z has an adequate metric, then for any U ⊆ W and any r > 0, we
clearly have that U<r = π

[
π−1[U]<r

]
is open. On the other hand, if W has an

adequate metric, then for any U ⊆ Z \ {z0, z1} and any r > 0, we have that
U<r = π−1

[
π[U]<r

]
. If U contains one of z0 and z1 , then for any positive r ≤ 1, we

have that U<r = (U ∩ {z0, z1}) ∪ π−1
[
π[U \ {z0, z1}]<r

]
. Since U is a neighborhood

of the points in U ∩ {z0, z1}, this set is always open. Furthermore, for any r > 1, we
have U<r = Z . Therefore Z has an adequate metric.

Note that Lemma 1.6 implies that if x is crisply embedded in X and y is crisply
embedded in Y and W is the result of soldering x and y together, then

• for any closed D ⊆ W , D is definable if and only if D ∩ X is definable in X and
D ∩ Y is definable in Y ; and

• W has an adequate metric if and only if X and Y have adequate metrics.
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Some semilattices of definable sets in continuous logic 7

We may write ordered tuples of numbers with angle brackets to avoid confusion with
open intervals.

Definition 1.7 The AND gate space is the topometric space (&, τ, d) where & is the
subset of R2 given by

([−2, 1] × {−1, 1}) ∪ {⟨x,±x⟩ : −1 ≤ x ≤ 1} ∪ ([0, 2] × {0})

(see Figure 1), τ is the subspace topology, and d is the unique metric satisfying:

• if ⟨x, y⟩ ∈ ([−2, 1]×{−1, 1})∪ ([1, 2]×{0}) and ⟨z,w⟩ ≠ ⟨x, y⟩ (see Figure 2),
then d(⟨x, y⟩, ⟨z,w⟩) = 1;

• if x ̸= z, then d(⟨x, y⟩, ⟨z,w⟩) = 1; and
• if ⟨x, y⟩ and ⟨z,w⟩ are both in the set {⟨x,±x⟩ : −1 ≤ x ≤ 1} ∪ ([0, 1] × {0}),

x = z, and y ̸= w, then d(⟨x, y⟩, ⟨z,w⟩) = max(|y|, |w|).

The points ⟨−2, 1⟩ and ⟨−2,−1⟩ are the input vertices of &, and the point ⟨2, 0⟩ is
the output vertex.

Note that the vertices of & are crisply embedded.

In

In

Out

Figure 1: &, the AND gate space Figure 2: Region with discrete metric

Lemma 1.8 Fix a topometric space X . For any ε > 0, if U ⊆ X is a connected open
set such that every x ∈ U is metrically ε–isolated, then for any definable set D ⊆ X ,
either U ⊆ D or U ∩ D = ∅.

Proof Fix a connected open set U and an ε > 0 such that every x ∈ U is metrically
ε–isolated. Fix a definable set D. We have that U ∩ D< 1

2 ε = U ∩ D, so

U ∩ D ⊆ U ∩ int D< 1
2 ε ⊆ U ∩ D< 1

2 ε = U ∩ D

and U ∩ D is open and therefore relatively clopen in U . Therefore either U ∩ D = ∅
or U ∩ D = U , as required.

The name of the AND gate space is justified by the following proposition.
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8 James E. Hanson

Proposition 1.9 The only non-empty definable proper subsets of & are

(1) {⟨x, y⟩ ∈ & : y > 0} ∪ {⟨0, 0⟩},
(2) {⟨x, y⟩ ∈ & : y < 0} ∪ {⟨0, 0⟩},
(3) the union of (1) and (2),
(4) the union of (1) and (0, 2] × {0}, and
(5) the union of (2) and (0, 2] × {0}.

In particular, a definable subset D ⊆ & is uniquely determined by its intersection
with {⟨−2, 1⟩, ⟨−2,−1⟩, ⟨2, 0⟩}, and the only restriction is that if ⟨−2, 1⟩ /∈ D and
⟨−2,−1⟩ /∈ D, then ⟨2, 0⟩ /∈ D.

Figure 3: The definable subsets of &

Proof In order to verify that the listed sets are definable, it is sufficient by symmetry
and unions to check it only for (1) and (4). Let D1 be the set described in (1). For
any positive r ≤ 1, we have that D<r

1 is D1 ∪ {⟨x,−|x|⟩ : |x| < r} ∪ {⟨x, 0⟩ : x < r},
which is an open set. Therefore D1 is definable. If D4 is the set described in (4), then
D<r

4 is D<r
1 ∪ D4 , which is also open. Therefore D4 is definable.

Now suppose that D ⊆ & is definable. & is a topological graph. By an edge of &
we mean a maximal open subset homeomorphic to (0, 1). There are 9 edges in &
corresponding to the graph theoretic edges. Each edge U of & can be written as a union⋃

n<ω Un of connected open sets such that any x ∈ Un is metrically 2−n−1 –isolated.
Therefore by Lemma 1.8 and since each U is connected, we have that either U ⊆ D or
U ∩ D = ∅.

Since D is closed, it must contain the closure of any edge it contains. Now suppose
that D contains one of the four points ⟨±1,±1⟩. Call this point ⟨x, y⟩ Suppose that
⟨x, y⟩ /∈ int D. We can then find an r > 0 small enough that for some open neighborhood
V ∋ ⟨x, y⟩, D<r ∩ V = D ∩ V , which again is a contradiction.
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Some semilattices of definable sets in continuous logic 9

What we have established now is enough to show that D must be a (possibly empty)
union of D1 , D2 (the definable set in (2)), and [0, 2] ×{0}. If D is ∅ or & or is on the
list in the statement of the proposition, then we are done. The only other possibility is
that D = [0, 2] × {0}, but if this is the case then D< 1

2 = D ∪ {⟨z,±z⟩ : 0 ≤ z < 1
2},

which is not open. So D cannot be this set and we are done. The ‘in particular’ statement
follows immediately.

So we see that & functions like an AND gate in the following sense: given a definable
set D ⊆ &, we think of a vertex as being ‘on’ if it is not contained in the definable set
in question. We then have by Proposition 1.9 that if the input vertices are on, the output
vertex must be on as well, but there are no other restrictions on the configuration of the
gate.

Strictly speaking, real-world AND gates usually don’t have specified behavior for states
analogous to (1), (2), or (3) in Proposition 1.9, since normally the output is meant to be
thought of as a function of the inputs. This means that there are two ways to interpret
what configurations should be possible. Here we have interpreted the operation of an
AND gate in an ‘if, then’ manner, where the output is on if the inputs are both on. The
other way would be to interpret it in an ‘if and only if’ manner, where the output is on if
and only if the inputs are both on. It is actually easier to build a topometric space that
accomplishes this, but in the end we would need to implement something that behaves
like & and the resulting construction is ultimately more complicated.

1.2 Building type spaces

Now we will use & to build type spaces with arbitrary finite lattices as their semilattices
of definable sets.

Definition 1.10 For any bounded lattice L , write L− for the set L \ {1L} (where 1L is
the top element of L).

For a finite lattice L , we write X(L) for the topometric space constructed in the following
manner: For each triple (a, b, c) ∈ (L−)3 satisfying a ∧ b ≤ c, take a copy of & with
the two input vertices labeled a and b and the output vertex labeled c. For each
a ∈ L− , solder together all vertices labeled a. X(L) is the resulting space. We write xa

for the point in X(L) corresponding to the vertices labeled a, and we write N(L) for
{xa : a ∈ L−}.

Journal of Logic & Analysis 16:3 (2024)



10 James E. Hanson

Figure 4: X(N5) (with unnecessary copies of & removed)

Note that Definition 1.10 will include many unnecessary copies of &, such as copies
corresponding to triples of the form (a, a, a). It is only really necessary to include
copies corresponding to some presentation of the lattice. N−

5 , for instance, has 42
ordered triples (a, b, c) satisfying a ∧ b ≤ c, but only 4 of these are needed to produce
a topometric space whose semilattice of definable sets is isomorphic to N5 , as depicted
in Figure 4.

This example also establishes that even if a type space is ‘planar’ (as in, embeddable in
R2 ) and has finitely many definable sets, the lattice of definable sets might fail to be
modular.

Lemma 1.11 Fix a finite lattice L and a definable set D.

(1) Any definable set D ⊆ X(L) is uniquely determined by D ∩ N(L).
(2) For any a, b, c ∈ L− with a ∧ b ≤ c, if a /∈ D and b /∈ D, then c /∈ D. In

particular, the set {a ∈ L− : xa /∈ D} ∪ {1L} is a filter of the lattice L .
(3) For any non-empty filter F ⊆ L, there is a definable set D ⊆ X(L) such that

F = {a ∈ L− : xa /∈ D} ∪ {1L}.

Proof (1) and (2) follow from Lemma 1.6 and Proposition 1.9.

For (3), given a non-empty filter F , let D ⊆ X(L) be the unique set satisfying
D ∩ N(L) = {xa : a ∈ F−} such that for each copy A of & in X(L), D ∩ A is definable
in A. This set is definable by Lemma 1.6 and Proposition 1.9.

Proposition 1.12 For any finite lattice L , the semilattice of definable sets in X(L) is
isomorphic to L .

Journal of Logic & Analysis 16:3 (2024)



Some semilattices of definable sets in continuous logic 11

Proof For any a ∈ L, let Fa = {b ∈ L : b ≥ a} and let Da be the corresponding
definable set in X(L). Clearly Da = Db if and only if a = b, since F−

a = F−
b if and

only if a = b, so the map a 7→ Da is an injection. Furthermore, Fa∨b = Fa ∩Fb and the
definable set corresponding to Fa ∩ Fb is Da ∪ Db , so the map a 7→ Da preserves joins.
F1L is clearly X(L) and F0L is clearly ∅. Therefore a 7→ Da is a bounded semilattice
homomorphism. Finally, since L is finite, every non-empty filter is of the form Fa , so
we have that a 7→ Da is a surjection and hence a lattice isomorphism.

Note that for each a ∈ L , Da is the unique maximal definable set not containing xa .6

In Figure 4, the left-hand element of N5 maps to the definable set containing the two
right-hand copies of & and the right-hand side of the center copy of &, for instance.

1.3 Weak minimality

At this point Hanson [7, Theorem 7.1] is enough to conclude that the topometric space
given in Definition 1.10 is actually the type space of a stable theory,7 but given the
special form of the type space involved, we can do better.

There is a common pattern among the example given here and many of the examples
constructed in Hanson [6, Section C.1], which is that theory corresponding to the type
space in question has the type space itself as a model in the following sense.

Definition 1.13 For any compact topometric space (X, τ, d), we write LX for the
metric language containing a predicate symbol Pf for each continuous f : X → [0, 1],
where the modulus of uniform continuity αPf of Pf is chosen so that f is αPf –uniformly
continuous on X . (Furthermore, if f is Lipschitz and r is the optimal Lipschitz constant
for f , we take αPf (x) to be rx .)

We write MX for the LX –structure whose underlying metric space is (X, d) and in
which PMx

f (a) = f (a) for all Pf ∈ LX and a ∈ M . We write TX for Th(Mx).

It follow from Ben Yaacov [2, Lemma 1.15, Proposition 1.17] that any continuous
function from a compact topometric space to R is automatically uniformly continuous.
(See also [6, Proposition 2.1.2(v)] for a direct proof of the relevant special case.)
Therefore LX is always well defined.

6 D1L = X(L) as x1L does not exist and is therefore not contained in any definable set.
7Provided that we verify that the metric on & is adequate, which is straightforward enough.
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12 James E. Hanson

For any compact topometric space X , we have a natural projection map πX : S1(TX) → X .
(This follows from the fact that a point x in X is uniquely determined by the its quantifier-
free 1–type in MX .) For most X , this will fail to be a homeomorphism, but in some
special cases it is.

Definition 1.14 We say that a compact topometric space X is autological if πX : S1(TX)
→ X is an isometric homeomorphism (ie, an isomorphism of topometric spaces).

Although we find autologicality quite amusing, it seems unlikely that it plays any broad
role.

To complete our result, we will show that for any finite non-trivial lattice L, X(L)
is autological and TX(L) is weakly minimal with trivial geometry (implying that it is
superstable).

Proposition 1.15 A compact topometric space X is autological if and only if every
type in S1(TX) is realized in MX .

Proof If X is autological, then for any p ∈ S1(TX), there is an x ∈ X such that
tp(x) = p, which is precisely the required statement.

Conversely, suppose that every type in S1(TX) is realized in MX . Since πX(tp(x)) = x ,
every type in S1(TX) is realized by at most one element of MX . Since every type
is realized, they must all be realized by precisely one element of MX . Therefore
πX : S1(TX) → X is a bijection. Since S1(TX) and X are compact Hausdorff spaces,
this implies that πX is a homeomorphism.

Finally, we need to establish that πX is isometric. We clearly have that for any
p, q ∈ S1(T), d(p, q) ≤ d(πX(p), πX(q)) (since tp(πX(r)) = r for all r ∈ S1(T)). On
the other hand, by Ben Yaacov [3, Theorem 1.6] we have that, for any positive r <

d(πX(p), πX(q)), there is a 1
r –Lipschitz function f : X → [0, 1] such that f (πX(p)) = 0

and f (πX(q)) = 1. Therefore Pp
f = 0 and Pq

f = 1, implying that d(p, q) > r . Since we
can do this for any positive r < d(πX(p), πX(q)), we have that d(p, q) ≥ d(πX(p), πX(q)).
Therefore d(p, q) = d(πX(p), πX(q)), as required.

Proposition 1.16 For any finite non-trivial lattice L , X(L) is autological.

Proof Find an ultrafilter U (on some index set I ) such that the ultrapower MU
X(L) is

|LX(L)|+–saturated. Identify MX(L) with its image under the diagonal embedding. In
particular, MU

X(L) realizes all types in S1(TX(L)). Fix a ∈ MU
X(L) . We need to argue that

a ≡ πX(L)(tp(a)).
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There are three kinds of points in X(L):

• points x for which d(x, y) = 1 for all y ̸= x;
• points x for which there is precisely one y with 0 < d(x, y) < 1; and
• points x for which there are precisely two points, y and z, such that 0 < d(x, y) < 1

and d(x, y) = d(x, z) = d(y, z).

The set of points of the first kind is closed and the sets of points of the second two
kinds are open. Clearly if a ∈ MU

X(L) is a limit of points of the first kind, it will satisfy
the same property in MU

X(L) . Therefore the map that switches a and πX(tp(a)) is an
automorphism of MU

X(L) and we have that a ≡ πX(tp(a)).

Suppose that a = (xi)i∈I/U is some element of MU
X(L) where xi is a point of the second

kind for a U –large set of indices i ∈ I . The family (xi)i∈I must eventually concentrate
in a single copy of &, and in that copy it will be in the region {⟨x,±x⟩ : −1 < x < 0}.
For each i ∈ I for which xi is a point of the second kind, let yi be the unique point
in X such that d(xi, yi) < 1. Let b = (yi)i∈I/U . There are three possibilities. Either
limi→U d(xi, yi) = 0, limi∈U d(xi, yi) ∈ (0, 1), or limi∈U d(xi, yi) = 1. In the first and
third case we have that πX(tp(a)) is a point of the first kind, and once again the map
that switches a and πX(tp(a)) is an automorphism of MU

X(L) . In the second case we
similarly have that the map that switches a and πX(tp(a)) and switches b and πX(tp(b))
is an automorphism of MU

X(L) . Therefore in any case we have that a ≡ πX(tp(a)).

The argument when xi is a point of the third kind for a U –large set of indices is essentially
the same, so we have that for all a ∈ MU

X(L) , a ≡ πX(L)(tp(a)). Therefore all 1–types
over ∅ are realized in MX and we have that X(L) is autological by Proposition 1.15.

Theorem 1.17 For any finite non-trivial lattice L , there is a weakly minimal theory T
with trivial geometry such that the semilattice of definable subsets of S1(T) is isomorphic
to L .

Proof By Proposition 1.12, we know that there is a topometric space X(L) whose
semilattice of definable sets is isomorphic to L. By Proposition 1.16, we know that
S1(TX) is isometrically homeomorphic to X , so their semilattices of definable sets are
isomorphic.

The proof of Proposition 1.16 makes it clear that a stable forking relation can be defined
on models of TX by saying that B ̸ |⌣A

C if and only if there are b ∈ B and c ∈ C such
that d(b,A) = 1, d(c,A) = 1, and d(b, c) < 1. Furthermore, whenever d(b, c) < 1, we
have that b ∈ acl(c). Therefore the only way for a 1–type to fork is for it to become
algebraic, which implies that the theory is weakly minimal.
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14 James E. Hanson

2 Some infinite semilattices of definable sets

Using some of the technology from Section 1, we are able to realize some particular
infinite lattices as the semilattice of definable subsets of a type space. The idea is to
build an infinitely large circuit out of copies of & and then compactify in an appropriate
way (eg Figure 5), possibly continuing the construction further (eg Figure 6). Since we
use [7] the resulting theories are all stable, but superstability is unclear. The issue is that
the resulting type spaces are not autological and so we cannot build the corresponding
theory in the same way that we did in Theorem 1.17. This naturally leaves a question.

Question 2.1 Are the type spaces constructed in Propositions 2.8 and 2.9 and Theo-
rem 2.19 the type spaces of superstable theories? If not, are there superstable theories
with the same semilattices of definable sets?

2.1 Crisp one-point compactifications

Definition 2.2 Given a topometric space (X, τ, d), the crisp one-point compactification
of X is the topometric space whose underlying topological space is the one-point
compactification of X , X ∪ {∞}, and whose metric is d extended so that ∞ is crisply
embedded (ie, d(∞, x) = 1 for all x ∈ X ).

We denote the crisp one-point compactification of (X, τ, d) by (X∗, τ∗, d∗) if it exists.

(Recall that we are taking all metrics to be [0, 1]–valued.) Note that while the object
described in Definition 2.2 always exists, it can in general fail to be a topometric space.
For instance, an infinite discrete space with a discrete {0, 1

2}–valued metric has no crisp
one-point compactification.

Lemma 2.3 Fix a topometric space (X, τ, d). If X has an adequate metric and X∗

exists, then d∗ is adequate as well.

Proof Recall that a subset of the topological one-point compactification (X∗, τ∗) is
open if and only if it is an open subset of X or is the complement (in X∗ = X ∪ {∞})
of a closed compact subset of X . Since X is a topometric space, it is automatically
Hausdorff and thus all compact subsets of it are closed.

If U ⊆ X is open, then for any r ≤ 1, we have that U<r ⊆ X and so U<r is an open
set. For r > 1, U<r = X∗ is also an open set.
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If U ⊆ X∗ is the complement of a compact subset F of X , then for any r ≤ 1, we
have that U<r = (U ∩ X)<r ∪ {∞}, F \ U<r is therefore the same as F \ (U ∩ X)<r ,
which is a closed subset of a compact set and therefore compact itself. Thus U<r is the
complement of a closed compact set and so is an open subset of X∗ . If r ≥ 1, then
again U<r = X∗ .

Proposition 2.4 Fix a topometric space (X, τ, d) such that X∗ exists. A closed set
D ⊆ X∗ is definable if and only D ∩ X is definable in X and either

• D is compact and D ⊆ X , or
• for every r > 0, X \ (intτ (D ∩ X)<r) is compact.

Proof Assume that D ⊆ X∗ is definable. For any positive r ≤ 1, we have that
D<r ∩ X = (D ∩ X)<r , so D ∩ X ⊆ (intτ∗ D<r) ∩ X ⊆ (D ∩ X)<r and therefore
D ∩ X ⊆ intτ (D ∩ X)<r . Therefore D ∩ X is definable in X .

If ∞ /∈ D, then D must be compact, since D is a closed subset of X∗ not containing ∞
(and since X is a topometric space and therefore Hausdorff).

If ∞ ∈ D, then for every r > 0, we have that intτ∗ D<r is an open neighborhood of ∞.
Therefore, by the definition of the topology on X∗ , intτ (D ∩ X)<r is co-compact in X .

Now assume that D ∩ X is definable. If the first bullet point holds, then for any positive
r ≤ 1, we have that D<r ∩ X = (D ∩ X)<r , so D ⊆ intτ D<r = intτ∗ D<r . Therefore
D is definable in X∗ .

If the second bullet point holds, then for any positive r ≤ 1 and x ∈ D, we either
have that x ∈ X , in which case x ∈ intτ (D ∩ X)<r ⊆ intτ∗ D<r , or x = ∞, in which
case {∞} ∪ intτ (D ∩ X)<r ⊆ D<r is an open neighborhood of ∞. So in either case,
x ∈ intτ∗ D<r . Therefore D ⊆ intτ∗ D<r and since we can do this for any sufficiently
small r > 0, D is definable in X∗ .

2.2 Directed systems of topometric spaces

We need the following definition and technical lemmas to deal with the fact that direct
limits (also called directed colimits) seem to be rather delicate in the category of
topometric spaces.

Definition 2.5 Fix a directed set I , a family (Xi, τi, di)i∈I of topometric spaces, and
isometric topological embeddings fij : Xi → Xj for each pair i ≤ j ∈ I . Suppose that
this data forms a directed system. Let (XI, τI, dI) be the direct limit of this system (in
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the sense that (XI, τI) = limi∈I(Xi, τi) and (XI, dI) = limi∈I(Xi, di)) and let fjI : Xj → XI

be the induced inclusion maps.

We say that the directed system of topometric spaces ((Xi, τi, di)i∈I, (fij)i≤j∈I) is crisp if
fij[Xi] is crisply embedded in Xj for any i ≤ j ∈ I . We say that it is eventually open if
for any x ∈ XI , there is a j ∈ I such that x ∈ intτI fjI[Xj].

Lemma 2.6 Let ((Xi, τi, di)i∈I, (fij)i≤j∈I) be a crisp directed system of topometric
spaces satisfying that limi∈I(Xi, τi, di) = (XI, τI, dI) is a topometric space. Fix a closed
set D ⊆ XI .

(1) If D is definable in XI , then D ∩ Xj is definable in Xj for every j ∈ I .
(2) If dj is adequate and D∩Xj is definable in Xj for every j ∈ I , then D is definable

in XI .

Proof We may assume without loss of generality that each Xj is a subset of XI and
fjI : Xj → XI is the identity map.

For (1), fix r ∈ (0, 1] and consider D<r . Since each Xj is crisply embedded in XI , we
have that D<r ∩ Xj = (D ∩ Xj)<r . Let U = intτI D<r . By assumption, D ⊆ U . By the
definition of the direct limit topology, U ∩ Xj is τj –open. Therefore

D ∩ Xj ⊆ U ∩ Xj ⊆ D<r ∩ Xj ⊆ (D ∩ Xj)<r,

whence D∩Xj ⊆ intτj(D∩Xj)<r . Since we can do this for any sufficiently small r > 0,
D ∩ Xj is definable in Xj .

For (2), it’s clear that for any r > 0, D<r =
⋃

i∈I(D ∩ Xj)<r . Furthermore, just as
before, we have that if r ≤ 1, then (D ∩ Xj)<r = D<r ∩ Xj for every j ∈ I . Therefore,
since each (D ∩ Xj)<r is τj –open, we have that D<r is τI –open. For r ≥ 1, D<r is
either ∅ or XI , so D<r is open in every case, and D is definable in XI .

Lemma 2.7 Suppose that ((Xi, τi, di)i∈I, (fij)i≤j∈I) is a crisp and eventually open
directed system of topometric spaces.

(1) limi∈I(Xi, τi, di) = (XI, τI, dI) is a topometric space.
(2) If di is adequate for every i ∈ I , then dI is adequate.
(3) If Xi is compact for every i ∈ I , then (XI, τI, dI) has a crisp one-point compacti-

fication.

Proof Without loss of generality we may identify each Xi with its image fiI[Xi] ⊆ XI ,
so that the maps fij and fiI are identity maps. It is immediate that Xi is crisply embedded
in XI for every i ∈ I .
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Recall that a set U ⊆ XI is τI –open if and only if U ∩Xi is τi –open for every i ∈ I . Fix
x ∈ XI and an open neighborhood U ∋ x . Find i ∈ I such that x ∈ Xi . Find an ε > 0
with ε < 1 such that B<ε(x) ∩ Xi ⊆ U ∩ Xi (which exists since di refines the topology
τi ). Since Xi is crisply embedded in XI , we have that B<ε(x) ∩ Xi = B<ε . Therefore
B<ε(x) ⊆ U . Since we can do this for any x and U ∋ x , we have that dI refines τI .

Fix x, y ∈ XI and r > 0 such that dI(x, y) > r . We may assume without loss of
generality that r < 1. Find j ∈ I such that x and y are elements of intτI Xj . (We can
do this because of the fact that if x ∈ intτI Xj and y ∈ intτI xk , then for any ℓ ≥ j, k ,
{x, y} ⊆ intτI Xℓ .) Since Xj is a topometric space, there are neighborhoods U ∋ x and
V ∋ y in Xj such that for any x′ ∈ U and y′ ∈ V , dj(x′, y′) > r .

We now have that U ∩ intτI Xj ∋ x and V ∩ intτI Xj ∋ y are neighborhoods in XI with
the same property. Since we can do this for any x, y ∈ XI , we have that dI is lower
semi-continuous and so (1) holds (ie, XI is a topometric space).

For (2), fix an open set U . For each x ∈ U , find a j(x) ∈ I such that x ∈ intτI Xj(x) and
let Vx = U ∩ intτI Xj(x) . We clearly have that U =

⋃
x∈U Vx . Fix r > 0. If r > 1, then

U<r = XI is an open set, so assume that r ≤ 1. We have that U<r =
⋃

x∈U V<r
x . Since

Xj(x) is crisply embedded in XI , we have that V<r
x ⊆ Xj(x) . Furthermore, since dj(x) is

adequate, V<r
x is τj(x) –open.

We now need to argue that V<r
x is open. Fix y ∈ V<r

x . Find k ∈ I such that k ≥ j(x)
and y ∈ intτI Xk . We now have that Xj is crisply embedded in Xk , so V<r

x computed in
Xk is the same set as V<r

x computed in Xj . Since dj is adequate, we have that V<r
x is

open as a subset of Xj . So now we have that V<r
x ∩ intτI Xk is an open neighborhood of

x in Xk (note that intτI Xk is open in Xk ). Therefore it is an open neighborhood in XI as
well. Since we can do this for any y ∈ V<r

x , we have that V<r
x is open. Finally, since

V<r
x is open for any x ∈ U , U<r is open as well.

For (3), Since XI is a topometric space, it is Hausdorff and has that all of its compact sets
are closed. As discussed after Definition 2.2, it is immediate that d∗

I refines τ∗I , so all
we need to verify is that d∗

I is lower semi-continuous. If x, y ∈ XI and d(x, y) > r > 0,
then since XI is a topometric space, there are open sets U ∋ x and V ∋ y such that
inf{d(x′, y′) : x′ ∈ U, y′ ∈ V} > r . The only other case to check is x ∈ XI and ∞.
Find j ∈ I such that x ∈ intτI Xj . Since Xj is crisply embedded, we have that for any
x′ ∈ intτI Xj and any y′ ∈ X∗

I \ Xj , d(x′, y′) = 1. Note that since Xj is compact and XI

is Hausdorff, Xj is a closed compact set and so X∗
I \ Xj is τ∗I –open. Since we can do

this for any x ∈ XI , we have that d(x, y) is lower semi-continuous and hence XI has a
crisp one-point compactification.
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Lemma 2.7 is far from optimal, but it is unclear how far the techniques in this section
can go, so we have not put much effort into sharpening it.

We now have the tools we need to build certain special lattices of definable sets.

2.3 Successor ordinals

Here we will build type spaces in which the semilattices of definable sets correspond to
arbitrary successor ordinals.

Proposition 2.8 For any ordinal α , there is a stable theory T in a language of cardinality
ℵ0 + |α| such that the semilattice of definable subsets of S1(T) is isomorphic to α+ 1.
Furthermore, the same is true of the reverse order (α+ 1)∗ .

Proof Let &† be & with its input vertices soldered together. Refer to the soldered
point as g ∈ &† . Let E be the unique non-empty definable proper subset of &† (ie, the
set corresponding to {⟨x, y⟩ : y ̸= 0} ∪ {⟨0, 0⟩} in &).

Let (X0, τ0, d0) be the one-point topometric space, and let x0 be the unique element of
X0 . Let f00 : X0 → X0 be the identity map. Note that d0 is adequate.

For each successor ordinal α+ 1, given a point xα ∈ Xα and the directed system of
compact topometric spaces (Xβ, τβ, dβ)β≤α (and (fβγ)β≤γ≤α where Xβ has an adequate
metric for every β ≤ α), let (Xα+1, τα+1, dα+1) be Xα and a new copy of &† soldered
together at xα ∈ Xα and g ∈ &† . Write &†

α for this copy as a subset of Xα+1 , and
write Eα for &†

α ’s copy of E . Let fα,α+1 : Xα → Xα+1 be the natural inclusion map of
Xα into Xα+1 . For each β ≤ α , let fβ,α+1 : Xβ → Xα+1 be fα,α+1 ◦ fβα . Note that by
Lemma 1.6 parts (2) and (4), the metric dα+1 is adequate as well. Furthermore, Xα+1

is clearly compact.

For a limit ordinal λ, given (Xβ)β<λ and (fβγ)β≤γ<λ , we need to argue that this
is a crisp and eventually open directed system of topometric spaces. Crispness is
obvious from Definition 1.5. Furthermore, we clearly have that for any β ≤ γ < λ,
fβγ[Xβ+1 \ {xβ+1}] is an open set containing Xβ , so the system is eventually open.
Therefore by Lemma 2.7, limβ<λ(Xβ, τβ, dβ) is a topometric space with an adequate
metric and a crisp one-point compactification. Let (Xλ, τλ, dλ) be the crisp one-point
compactification. By Lemma 2.3, dλ is an adequate metric. For any β < λ, let
fβλ : Xβ → Xλ be the natural inclusion map produced by composing the inclusion from
Xβ into limγ<λ Xγ and the inclusion from limγ<λ Xγ into Xλ .
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Figure 5: ω + 1 and (ω + 1)∗

Figure 6: ω + ω + 1

Now for any ordinal α , consider (Xα, τα, dα). We have by induction that this is a
compact topometric space with an adequate metric. (Note that if a directed system of
topometric spaces has a last element, then it is trivially eventually open, so Lemma 2.7
applies even at successor stages.) We need to argue that the partial order of definable
subsets of Xα is order-isomorphic to α+ 1. For β < α , we will regard Xβ as a subset
of Xα . For any β < α , consider the set Dβ := Xβ ∪ Eβ . For γ ≤ β , Dβ ∩ Xγ = Xγ ,
which is definable in Xγ . For γ = β + 1, Dβ ∩ Xγ is definable by Lemma 1.6. We now
need to argue that Dβ ∩Xγ = Dβ is definable in Xγ for each γ > β+1 by induction. If
Dβ ∩ Xγ is definable in Xγ , then Dβ ∩ Xγ+1 = Dβ is definable in Xγ+1 by Lemma 1.6.
For a limit λ > β + 1, we have that Dβ is definable in limγ<λ Xγ =

⋃
γ<λ Xγ by

Lemma 2.6. Therefore Dβ is definable in Xλ by Proposition 2.4. Therefore, by
induction, we have that Dβ is definable in Xα .

It is clear that if β < γ < α, then Dβ ⊂ Dγ . Furthermore Dβ /∈ {∅,Xα} for every
β < α . Therefore the family of definable sets {∅} ∪ {Dβ : β < α} ∪ {Xα} has order
type 1 + α+ 1 = α+ 1.

Now finally, we just need to argue that these are the only definable subsets of Xα . Let
D ⊆ Xα be a non-empty definable set that is not Xα . Let β < α be the smallest such
that &†

β ̸⊆ D. By Lemmas 1.6 and 2.6, it must be the case that either D ∩ &†
β is empty

or D ∩ &†
β = Eβ . Since &†

γ ⊆ D for every γ < β and since D is closed, it must be

the case that D contains xβ ∈ &†
β , so the first case cannot happen and it must be that

D ∩ &†
β = Eβ . Now, for the sake of contradictions, assume that there is a γ ∈ (β, α)

such that D ∩ &†
γ ̸= ∅. Let γ be the least such. By Lemmas 1.5 and 2.6, it must be the

case that xγ ∈ D. We know that xβ+1 /∈ D, so it must be the case that γ > β + 1. If γ
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is a successor ordinal, then we must have that D ∩ &†
γ−1 ≠ ∅, which is a contradiction.

Therefore we must have that γ is a limit ordinal. But now D ∩ Xγ contains xγ (the
point at infinity in Xγ ) as an isolated point, which is impossible by Proposition 2.4.
Therefore no such γ can exist. Therefore D = Dβ . Since we can do this for every
non-empty, proper definable subset D, we have that the semilattice of definable subsets
of Xα is order-isomorphic to α+ 1. The result then follows by [7, Theorem 7.1].

For the reverse order, perform the above construction with the orientation of &† reversed.
(See Figure 5.) We will write X∗

α , x∗α , &†∗
α , and E∗

α for the corresponding objects in this
construction. (In particular, note that for any α , x∗α is the element of &†∗

α corresponding
to the point ⟨2, 0⟩ in &.) Now, fix an α and for any β < α, write D∗

β for the set
(X∗

α \ X∗
β) ∪ E∗

β . By essentially the same argument as before, we have that D∗
β is a

definable subset of α for any β < α . Furthermore each D∗
β is neither empty nor all of

Xα and for any β < γ < α , Dβ ⊃ Dγ , so we have that there is a family of definable
sets of order type 1 + α∗ + 1 = (α+ 1)∗ in X∗

α .

Again we need to argue that every definable D ⊆ X∗
α is either ∅, X∗

α , or D∗
β for some

β < α . Suppose that D is a non-empty definable proper subset of X∗
α . Let β < α be

the smallest such that D ∩ &†∗
β ̸= ∅. If β is a successor ordinal, it is immediate that

D ∩ &∗
β = E∗

β (otherwise D would contain x∗β and so D ∩ &δ∗
β−1 would be non-empty).

Suppose that β is a limit ordinal and that &†∗
β ∩ D ̸= E∗

β . It must be the case that
x∗β ∈ D, but this implies that D ∩ X∗

β = {x∗β}, which is not a definable subset of X∗
β .

This contradicts Proposition 2.4. Therefore we must have that D ∩ &†∗
β = E∗

β . Now
suppose for the sake of contradiction that there is a γ ∈ (β, α) such that &†∗

γ ̸⊆ D. Let
γ be the least such. Since it is the least, we must have that x∗γ ∈ D, but by Lemma 1.6
and Propositions 1.9 and 2.4, this implies that &†∗

γ ⊆ D, which is a contradiction.
Therefore no such γ can exist and we have that D = D∗

β , as required. Since we can do
this for any non-empty definable proper subset D ⊂ X∗

α , we have that the semilattice of
definable sets in X∗

α is order-isomorphic to (α+ 1)∗ . The result again follows by [7,
Theorem 7.1].

To get the cardinality bound on the language of the theory T , note that a basic inductive
argument shows that for any α , Xα has a base of cardinality at most ℵ0 + |α|. This
implies that there is a reduct T0 of T in a language of cardinality at most ℵ0 + |α| such
that S1(T0) and S1(T) are isometrically homeomorphic. The argument for the reverse
order case is the same.

It is possible to solder the type spaces in Figure 5 together in such a way that the
resulting semilattice of definable sets is isomorphic to 1 +Z+ 1. We will not write this
out explicitly however, as we prove a more general statement in Section 2.5.
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2.4 A semilattice that is not a lattice

In this section we will give an example of a type space in which the semilattice of
definable sets is not a lattice, which, while an expected phenomenon, is seemingly a bit
hard to come by.

Recall that in a semilattice L, an exact pair above an ideal I is a pair of elements a
and b such that I = {x ∈ L : x ≤ a ∧ x ≤ b}. If I has no largest element, this state of
affairs entails that {a, b} does not have a greatest lower bound.

Let Xω and xω be as in the proof of Proposition 2.8. Solder three copies of & to xω in
the configuration seen in Figure 7 and call the resulting space Y . It is straightforward
to verify that the lattice of definable subsets of (Y \ Xω) ∪ {xω} is isomorphic to the
two-element Boolean algebra. Let A and B be the two non-empty proper definable
subsets of (Y \ Xω) ∪ {xω}.

Proposition 2.9 The non-empty definable proper subsets of Y are precisely Dα for
α < ω (as defined in the proof of Proposition 2.8), Xω ∪ A, and Xω ∪ B. In particular,
Xω ∪ A and Xω ∪ B form an exact pair above the ideal {∅} ∪ {Dα : α < ω} and so
have no meet.

Proof By the same reasoning as in the proof of Proposition 2.8, we can establish that
Dα is definable in Y for any α < ω . Furthermore, it follows from Lemma 1.6 that
Xω ∪ A and Xω ∪ B are definable.

It follows from the proof of Proposition 2.8 that the only sets D ⊆ Xω that are definable
in Xω are ∅, Xω , and the sets {Dα : α < ω}.

It is straightforward to verify that if D ⊆ (Y \ Xω) ∪ {xω} is non-empty and definable
in (Y \ Xω) ∪ {xω}, then xω ∈ D.

Therefore, by Lemma 1.6, we have that the definable subsets of Y are precisely ∅, Y ,
{Dα : α < ω}, Xω ∪ A, and Xω ∪ B, and the result follows.

We have included this proposition not because it resolves an outstanding question about
stable theories in continuous logic,8 but more because it shows that the techniques
presented here can be used to build semilattices that are not lattices. Note that every
other semilattice of definable sets presented in this paper is actually a complete lattice.

8Even in the strongly minimal theory of R with the metric d(x, y) = min(|x − y|, 1), the
semilattice of definable sets fails to be a lattice. It is possible to concoct two definable sets D0

and D1 in S1(R) satisfying that D0 ∩ D1 is Z together with the strongly minimal type. This is
not definable but every finite subset of Z is, which establishes that D0 and D1 have no meet.
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Figure 7: An exact pair above ω

2.5 Lattices of filters on countable meet-semilattices

Here we will show that for any countable meet-semilattice (L,∧), there is a type space
S1(T) whose join-semilattice of definable sets is isomorphic to the lattice of filters on L
(ie, upwards-closed sets closed under meets).9 This is in some sense an extension of
Theorem 1.17 (and in particular Lemma 1.11 part (2)), but as with the rest of the results
in this section, we are only able to build a stable theory.

The lattices of filters in countable meet-semilattices are the same thing as the complete
lattices with countable meet-dense subsets.10 This includes any countable complete
lattice, such as 1+Z+ 1 and the Rieger–Nishimura lattice (ie, the free Heyting algebra
over one generator), and many partial orders familiar from analysis, such as ([0, 1],≤)
and the Boolean algebra of measurable subsets of [0, 1] modulo Lebesgue measure 0.

There are five steps to the construction.

(1) We will build a non-compact, locally compact topometric space Y0(L) (with an
adequate metric) whose semilattice of definable sets is the required lattice. This
space will be locally compact and have a continuous function ν to R≥0 with the
property that for every r > 0, ν−1[[0, r]] is compact. Every element a of L will
correspond to an open subset Ua of Y0(L), which will satisfy a < b ⇒ Ua ⊃ Ub .
This will be conceptually similar to the construction in Section 1, but we will
need to stretch out the nodes corresponding to each element to avoid soldering
infinitely many wires to a single point. A filter F will map to the definable set
Y0(L) \

⋂
a∈F Ua .

9In fact, it will be the case that arbitrary unions of definable subsets of S1(T) are themselves
definable, which is not a direct consequence of the semilattice of definable sets being complete.
Consider, for example, a discrete theory T with the property that S1(T) is extremally disconnected.
The Boolean algebra of clopen subsets of S1(T) is complete, but not all unions of clopen sets
are clopen, because not all open sets are closed.

10A set A ⊆ L is meet-dense if every element of L is the meet of some (possibly infinite or
empty) subset of A .
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Ξ(0)

Ξ(1)

Ξ(2)

Ξ(3)

Ξ(4)

Ξ(5)

&(0, 0, 1) &(0, 0, 7)

&(1, 2, 3)

&(5, 2, 4) &(1, 8, 4)

Figure 8: Y0(L) with some copies of & shown

(2) We add two additional copies Y1(L) and Y2(L) of Y0(L) which take turns getting
arbitrarily close to Y0(L) in the limit as ν(x) → ∞. While one copy is close to
Y0(L), the other will retreat to a distance of 1, so that we can safely solder points
together in it without spoiling adequacy of the metric.

(3) We periodically solder points together in each of the two extra copies of Y0(L)
(in positions where they have retreated to a distance of 1) in order to ‘short
circuit’ the behavior of definable sets in Y1(L) and Y2(L). In particular, for any
definable set D and either i ∈ {1, 2}, either Yi(L) ⊆ D or Yi(L) ∩ D = ∅.

(4) We solder points in Y1(L) and Y2(L) to some point in Y0(L) corresponding to
L’s bottom, 0L . This will ensure that any non-empty definable subset of the space
contains all of Y1(L) and Y2(L).

(5) We take the crisp one-point compactification of the space, adding the point ∞.
Any non-empty definable set will necessarily contain ∞. We then argue that the
semilattice of definable sets is unchanged.

In particular, we should note that this does not give us a general method of embedding
a non-compact, locally compact topometric space into a compact topometric space
while preserving the semilattice of definable sets, as our method will rely heavily on the
special form of Y0(L).

2.5.1 Step 1: The space Y0(L)

Definition 2.10 We write Ξ for the set {⟨x, y⟩ ∈ R× N : x ≥ y}, which we regard as
a topometric space with the induced topology and a discrete metric.

Let (L,∧) be a countable meet-semilattice with a given enumeration (ℓn)n<ω . We will
always assume that ℓ0 = 0L (ie, the bottom element of L). We write Y0(L) for the
topometric space consisting of Ξ together with, for each triple ⟨a, b, c⟩ ∈ N3 satisfying
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ℓa ∧ ℓb ≤ ℓc , a copy of & with the input vertices soldered to ⟨max(a, b, c), a⟩ and
⟨max(a, b, c), b⟩ and the output vertex soldered to ⟨max(a, b, c), c⟩.

We write Ξ(a) for the set {⟨x, a⟩ : x ≥ a}, and we write &(a, b, c) for the copy of & in
Y0(L) corresponding to (a, b, c), provided that it exists. (See Figure 8.)

For any filter F ⊆ L , we write D0(F) for the subset of Y0(L) that is the union of

• Ξ(a) for each a with ℓa /∈ F and

• for each triple ⟨a0, a1, a2⟩ with ℓa0 ∧ ℓa1 ≤ ℓa2 , the unique subset of &(a0, a1, a2)
that is definable in &(a0, a1, a2) and that, for each i < 3, contains the vertex
soldered to Ξ(ai) if and only if ℓai /∈ F .

We write νL for the function from Y0(L) to R≥0 that takes each element ⟨x, y⟩ of Ξ to
x and each element of each &(a, b, c) to max(a, b, c).

Definition 2.11 Given a topometric space X , a crisp slicing of X is a continuous
function ν : X → R≥0 such that for any x, y ∈ X , if ν(x) ̸= ν(y), then d(x, y) = 1.

Lemma 2.12 Fix a countable meet-semilattice L .
(1) Y0(L) is well defined and is a topometric space with an adequate metric.
(2) Y0(L) is locally compact. In particular, ν−1

L [[0, r]] is compact for any r ≥ 0.
(3) For any filter F ⊆ L , D0(F) is well defined and closed.
(4) The function νL : Y0(L) → R≥0 is continuous.
(5) νL is a crisp slicing of Y0(L).

Proof (1) follows from Lemmas 1.6 and 2.7, where we think of Y0(L) as the direct limit
of the crisp directed system (

⋃
n<k Ξ(ℓn)∪

⋃
{&(a, b, c) : a, b, c < k, ℓa ∧ ℓb ≤ ℓc})k<ω

with the natural inclusion maps.

(2) follows from the fact that for any r ≥ 0 only finitely many Ξ(a)’s and copies of &
have points x with ν(x) ≤ r .

For (3), we first need to verify that for each &(a, b, c), the prescribed definable-in-
&(a, b, c) set actually exists. Fix ⟨a, b, c⟩ with ℓa ∧ ℓb ≤ ℓc . By Proposition 1.9, the
only restriction on definable subsets of &(a, b, c) is that if they do not contain the
vertices corresponding to a and b, then they must not contain the vertex corresponding
to c. So suppose that ℓa ∈ F and ℓb ∈ F (so that the vertices corresponding to a and b
in &(a, b, c) need to be not contained in D0(F)). Then, since F is a filter, ℓa ∧ ℓb ∈ F
and so ℓc ∈ F as well. Therefore the vertex corresponding to c in &(a, b, c) is not
contained in D0(F), and the required definable set exists. The resulting set is closed
since it is a locally finite union of closed sets.

(4) and (5) are immediate.
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Proposition 2.13 For any countable meet-semilattice L and filter F ⊆ L, D0(F) is
a definable subset of Y0(L). Furthermore, the map F 7→ D0(F) is a complete lattice
isomorphism from the lattice of filters in L (with join taken to be intersection) to the
join-semilattice of definable subsets of Y0(L).

Furthermore, the join of any collection of definable subsets of Y0(L) is its set-theoretic
union.

Proof Fix a filter F in L . Let (Yk)k<ω be the directed system described in the proof of
Lemma 2.12 (ie, Yk =

⋃
n<k Ξ(ℓn) ∪

⋃
{&(a, b, c) : a, b, c < k, ℓa ∧ ℓb ≤ ℓc}).

Since this system is crisp, we just need to verify that D0(F) ∩ Yk is definable for each
k < ω , but this is immediate from Lemma 1.6 and the fact that Ξ(a) is clopen in Ξ.

By definition, it is clear that F 7→ D0(F) is order preserving and injective, so to establish
that it is a complete lattice isomorphism, we just need to verify that it is surjective.

Fix a definable set D ⊆ Y0(L). Each Ξ(a) has a connected open neighborhood U such
that each x ∈ U is crisply embedded. Therefore, by Lemma 1.8, we have that for each
ℓa ∈ L , either Ξ(a) ⊆ D or Ξ(a) ∩ D = ∅. Let F(D) = {ℓa ∈ L : Ξ(a) ∩ D = ∅}. We
just need to argue that F(D) is a filter and D = D0(F(D)). To see that F(D) is a filter,
suppose that ℓa and ℓb are in F(D). For any ℓc ∈ L with ℓa ∧ ℓb ≤ ℓc , we must have
that D ∩ &(a, b, c) contains neither of its input vertices. Therefore by Lemma 1.6 and
Proposition 1.9, D ∩ &(a, b, c) = ∅, whereby D ∩ Ξ(c) = ∅ and ℓc ∈ F(D). Since we
can do this for any ℓa, ℓb ∈ L, we have that F(D) is a filter. It is also easy to see that
D0(F(D)) = D.

The ‘Furthermore’ statement follows from the fact that clearly for any family (Fi)i∈I of
filters in L , D0

(⋂
i∈I Fi

)
=

⋃
i∈I D0(Fi).

2.5.2 Step 2: Taking turns

Now we will develop some machinery that we will use in this step of the construction.

Definition 2.14 Given a topometric space (X, τ, d) with a crisp slicing ν and two
continuous functions f1, f2 : R≥0 → (0, 1], we write W(X, ν, f1, f2) for the topometric
space X × 3 (where 3 = {0, 1, 2} has the discrete topology and X × 3 is given the
product topology) with the unique metric dW satisfying that

• dW extends d on each copy of X ,
• the function ν extended to X × 3 by ν((x, i)) = ν(x) is a crisp slicing,
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• for any (x, 0) and (y, 1) with ν(x) = ν(y), dW(x, y) = max(d(x, y), f1(ν(x))),
• for any (x, 0) and (y, 2) with ν(x) = ν(y), dW(x, y) = max(d(x, y), f2(ν(x))), and
• for any (x, 1) and (y, 2) with ν(x) = ν(y), dW(x, y) = max(d(x, y),min(f1(ν(x))+

f2(ν(x)), 1)).

Given any two sets A and B in a metric space (X, d), we’ll write dinf(A,B) for the
quantity inf{d(a, b) : a ∈ A, b ∈ B}. Recall that the lower semi-continuity condition in
the definition of topometric space is equivalent to the following: For any x, y ∈ X with
d(x, y) > r , there are open neighborhoods U ∋ x and V ∋ y such that dinf(U,V) > r .

Lemma 2.15 Let X be a topometric space with a crisp slicing ν and let f1, f2 : R≥0 →
(0, 1] be continuous functions.

(1) The metric dW is well defined.
(2) W(X, ν, f1, f2) is a topometric space.
(3) For both i ∈ {1, 2}, if x ∈ X × {i} and fi(ν(x)) = 1, then x is crisply embedded

in X × {i} if and only if it is crisply embedded in W(X, ν, f1, f2).
(4) A closed subset D ⊆ W(X, ν, f1, f2) is definable if and only if D ∩ (X × {i}) is

definable in X × {i} for each i < 3.
(5) dW is an adequate metric if and only if d is an adequate metric.

Proof For (1), since ν is a crisp slicing and the metric is [0, 1]–valued, we only need
to check the triangle inequality for triples (x, y, z) with ν(x) = ν(y) = ν(z), but this
follows easily from the fact that on ν−1(r), the metric dW is the metric max(d, d3),
where d3 is the metric on 3 satisfying d3(0, 1) = f1(ν(x)), d3(0, 2) = f2(ν(x)), and
d3(1, 2) = min(f1(ν(x)) + f2(ν(x)), 1). Since f1 and f2 are always positive, this is a
metric.

For (2), the fact that dW refines the topology is obvious, so we only need to check lower
semi-continuity. Fix (x, i) and (y, j) in W(X, ν, f1, f2). If i = j, then for any r < d(x, y),
we can obviously find open neighborhoods U ∋ x and V ∋ y with dinf(U,V) > r ,
since X is a topometric space. So assume that i ̸= j. If ν(x) ̸= ν(y), then we can
assume that ν(x) < s < t < ν(y). We then have x ∈ ν−1[[0, s)], y ∈ ν−1[(t,∞)],
and dinf

W (ν−1[[0, s)], ν−1[(t,∞)]) = 1 > r , so we have the required neighborhoods. So
assume that ν(x) = ν(y).

Let g(u) be f1(u) if {i, j} = {0, 1}, f2(u) if {i, j} = {0, 2}, and min(f1(u) + f2(u), 1) if
{i, j} = {1, 2}. Note that g(u) is always continuous. If dW((x, i), (y, j)) = g(ν(x)) > r ,
then by continuity of ν , there will be neighborhoods U ∋ (x, i) and V ∋ (y, j) with
U ⊆ X × {i} and V ⊆ X × {j} such that dinf

W (U,V) > r . If on the other hand,
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dW((x, i), (y, j)) > r ≥ g(ν(x)), then it must be the case that dW((x, i), (y, j)) = d(x, y).
Find U,V ⊆ X with x ∈ U , y ∈ V , and dinf(U,V) > r . We then clearly have that
dinf
W (U × {i},V × {j}) > r , so we are done.

(3) is obvious. (4) follows from the fact that definability is a local property.

For (5), first note that adequacy passes to open subspaces, so if dW is an adequate
metric, then d is an adequate metric. Now assume that d is an adequate metric. Fix an
open set U ⊆ W(X, ν, f1, f2) and an r > 0. Assume that (x, i) ∈ U<r . We need to show
that x ∈ int U<r . This is trivial if r > 1, so assume that r ≤ 1. If there is a (y, i) ∈ U
such that d(x, y) < r , then we are done by adequacy of d , so assume that there is no
such (y, i) ∈ U . There must be a (y, j) ∈ U with j ̸= i such that dW((x, i), (y, j)) < r .
Since r ≤ 1, this implies that ν(x) = ν(y). Let g(u) be defined as before. Note that by
definition, we have that g(ν(x)) < r ≤ 1. Find an interval (s, t) ∋ ν(x) such that for
any u ∈ (s, t), g(u) < r . Now we have that

x ∈ {(z, i) : (∃(w, j) ∈ U)d(z,w) < r} ∩ ν−1[(s, t)] ⊆ U<r.

The set {(z, i) : (∃(w, j) ∈ U)d(z,w) < r} is open by adequacy of d , and the set
ν−1[(s, t)] is open by continuity of ν . The fact that their intersection is a subset of U<r

is immediate from the definition of dW , so x ∈ int U<r as required.

Fix two continuous functions h1, h2 : R≥0 → (0, 1] satisfying that

• h1(0) = 1,
• for every odd n ∈ N, h1(n) = 1,
• for every even n ∈ N, h2(n) = 1, and
• for every x with x ≥ 1, min(h1(x), h2(x)) = 1

x .

It is clear that such functions exist.

Definition 2.16 We write Y012(L) for the space W(Y0(L), νL, h1, h2) (Figure 9). We
will identify Y0(L) with Y0(L) × {0} and we will write Yi(L) for Y0(L) × {i} for both
i ∈ {1, 2}.

2.5.3 Steps 3-5: Completing the construction

Definition 2.17 We write Y(L) to represent Y012(L) with the following sets of points
soldered together:

(1) For each odd n, we solder the points {(⟨n,m⟩, 1) : ⟨n,m⟩ ∈ Ξ, m ≤ n} ⊆ Y1(L)
together (Figure 10).
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Y0(L)

Y1(L)

Y2(L)

Figure 9: Y012(L)

Figure 10: The soldering described in Definition 2.17 part (1)

(2) For each even n, we solder the points {(⟨n,m⟩, 2) : ⟨n,m⟩ ∈ Ξ, m ≤ n} ⊆ Y2(L)
together.

(3) We solder the points {(⟨0, 0⟩, i) : i < 3} together.

We write π012 for the quotient map from Y012(L) to Y(L). We also regard ν as a
function on Y(L), satisfying ν(π012(x)) = ν(x) for any x ∈ Y012(L).

Note that the points being soldered are all crisply embedded by the definition of dW
and our choice of h1 and h2 . Also note that while we are soldering together infinitely
many points, for each r > 0, we are only soldering finitely many points in ν−1[[0, r]].
Finally, note that ν : Y(L) → R≥0 is well defined.

Lemma 2.18 Fix a countable meet-semilattice L with a given enumeration (ℓn)n<ω

satisfying ℓ0 = 0L .

(1) Y(L) is a well-defined topometric space with an adequate metric.
(2) A closed set D ⊆ Y(L) is definable if and only if either D = ∅ or D∩π012[Y0(L)]

is definable in π012[Y0(L)] and π012[Y1(L) ∪ Y2(L)] ⊆ D.
(3) Y(L) has a crisp one-point compactification.

Proof (1) follows from Lemma 1.6 and Lemma 2.7, where we regard Y(L) as the limit
of the directed system of topometric spaces ({x ∈ Y(L) : ν(x) ≤ k})k<ω .
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For (2), we have that if D ⊆ Y(L) is definable, then by Lemmas 1.6 and 2.6, we have
that D∩ π012[Y0(L)] is definable. By Proposition 2.13, we have that if D∩ π012[Y0(L)]
is non-empty, then π012[Ξ(0)] ⊆ D (because we have assume that ℓ0 = 0L ). On the
other hand, the same is true of Y1(L) and Y2(L) (relative to their copies of Ξ(0)), but
given the points that have been soldered together in these, we have that if a relatively
definable set D ⊆ π012[Yi(L)] (for some i ∈ {1, 2}) contains Yi(L)’s copy of Ξ(0),
then it must contain all of Yi(L)’s copy of Ξ and so by Proposition 1.9, it must contain
all of Yi(L). Therefore, since we soldered together points in all three copies of Ξ(0),
we have that the following are equivalent:

• D ⊆ Y(L) is non-empty
• D ∩ π012[Yi(L)] ̸= ∅ for some i < 3
• D ⊇ π012[Ξ(0)]
• D ⊇ π012[Yi(L)] for some i ∈ {1, 2}
• D ⊇ π012[Yi(L)] for both i ∈ {1, 2}

Therefore the required statement follows by Lemma 1.6.

(3) follows from Lemma 2.7.

Theorem 2.19 For any countable meet-semilattice L, there is a stable theory T in
a countable language such that the join-semilattice of definable subsets of S1(T) is
isomorphic to the lattice of filters in L. Furthermore, for any family D of definable
subsets of S1(T), the join of D is the set-theoretic union.

Proof Fix an enumeration (ℓn)n<ω of L with ℓ0 = 0L . Let Y∗(L) be the crisp one-point
compactification of Y(L) (computed with the enumeration (ℓn)n<ω ), which exists by
Lemma 2.18 part (3). Let ∞ denote the point at infinity in Y∗(L).

Let D ⊆ Y∗(L) be a definable set. Since no non-empty definable subsets of Y(L) are
compact (as they must contain all of π012[Ξ(0)]), we have by Proposition 2.4 that if D
is non-empty, it must contain ∞ and must have that D ∩ Y(L) is definable in Y(L).

Now let D ⊆ Y(L) be a non-empty definable subset of Y(L). We need to argue that
D ∪ {∞} is a definable subset of Y∗(L). Clearly (D ∪ {∞}) ∩ Y(L) is definable in
Y(L), so by Proposition 2.4, we just need to verify that Y∗(L) \ (int D<r) is compact
for every r > 0. By Lemma 2.18 part (2), D contains all of π012(Y1(L) ∪ Y2(L)). By
the definition of the metric, we have that for any x ∈ Y012(L) with ν(x) > 1

r , there
is a y ∈ Y1(L) ∪ Y2(L) such that d(π012(x), π012(y)) < r . Therefore, if x ∈ Y(L) has
x /∈ D<r , then ν(x) ≤ 1

r . The set of such x’s is compact, so we have that Y(L)\ (int D<r)
is compact. Since we can do this for any r > 0, we have that D ∪ {∗} is definable in
Y∗(L) by Proposition 2.4.

Journal of Logic & Analysis 16:3 (2024)



30 James E. Hanson

Therefore the semilattices of definable sets in Y(L) and Y∗(L) are isomorphic. The fact
that arbitrary joins are set-theoretic unions follows immediately from Proposition 2.13.

Finally, Y∗(L) is compact and has an adequate metric by Lemma 2.3. Therefore by [7,
Theorem 7.1], there is a stable theory T such that S1(T) is isometrically homeomorphic
to Y∗(L). Since Y∗(L) has a countable topological base, we can find a countable reduct
T ′ of T with the same space of 1–types if necessary. Therefore we may assume that T
has a countable language.

References

[1] I Ben Yaacov, On perturbations of continuous structures, Journal of Mathematical
Logic 08 (2008) 225–249; https://doi.org/10.1142/S0219061308000762

[2] I Ben Yaacov, Topometric spaces and perturbations of metric structures, Logic and
Analysis 1 (2008) 235; https://doi.org/10.1142/S0219061308000762

[3] I Ben Yaacov, Lipschitz functions on topometric spaces, Journal of Logic and Analysis
(2010); https://doi.org/10.4115/jla.2013.5.8

[4] I Ben Yaacov, A Berenstein, C W Henson, A Usvyatsov, Model theory for met-
ric structures, from: “Model Theory with Applications to Algebra and Analysis”,
(Z Chatzidakis, D Macpherson, A Pillay, A Wilkie, editors), London Mathemat-
ical Society Lecture Note Series 2, Cambridge University Press (2008) 315–427;
https://doi.org/10.1017/CBO9780511735219.011

[5] I Ben Yaacov, J Melleray, Grey subsets of Polish spaces, The Journal of Symbolic
Logic 80 (2015) 1379–1397; https://doi.org/10.1017/jsl.2014.60

[6] J Hanson, Definability and categoricity in continuous logic, PhD thesis, University of
Wisconsin–Madison (2020)

[7] J Hanson, Topometric characterization of type spaces in continuous logic (2021);
arXiv:2106.13261

Department of Mathematics, University of Maryland, College Park, MD 20742, USA

jhanson9@umd.edu

Received: 2 October 2023 Revised: 24 March 2024

Journal of Logic & Analysis 16:3 (2024)

https://doi.org/10.1142/S0219061308000762
https://doi.org/10.1007/s11813-008-0009-x
https://doi.org/10.1142/S0219061308000762
https://doi.org/10.4115/jla.2013.5.8
https://doi.org/10.1017/CBO9780511735219.011
https://doi.org/10.1017/jsl.2014.60
http://arxiv.org/abs/2106.13261
mailto:jhanson9@umd.edu

	1 Finite semilattices of definable sets
	1.1 Circuitry
	1.2 Building type spaces
	1.3 Weak minimality

	2 Some infinite semilattices of definable sets
	2.1 Crisp one-point compactifications
	2.2 Directed systems of topometric spaces
	2.3 Successor ordinals
	2.4 A semilattice that is not a lattice
	2.5 Lattices of filters on countable meet-semilattices
	2.5.1 Step 1: The space Y0(L)
	2.5.2 Step 2: Taking turns
	2.5.3 Steps 3-5: Completing the construction


	Bibliography

