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Abstract: We study a degree structure on representations of irrational numbers.
(Typical examples of representations are Cauchy sequences, Dedekind cuts and
base–10 expansions.) We prove that the structure is a distributive lattice with a least
and a greatest element. The maximum degree is the degree of the representation by
continued fractions. The minimum degree is the degree of the representation by
Weihrauch intersections.
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1 Introduction

The goal of this article is to prove some properties of a degree structure introduced in
Ben-Amram et al [1]. We will to a certain extent provide motivations, examples and
intuitive explanations, but for additional background, the readers might have to turn
to the first section of [1] and maybe also introductory sections of earlier papers, eg,
Kristiansen [8, 9] and Georgiev et al [3].

Different ways of representing real numbers are discussed in very early work on
computable analysis. Both Mazur [12] and Specker [17] consider representations by
Cauchy sequences, numerical expansions (eg, in base 2 or 10) and Dedekind cuts.1

They conclude that these three representations yield the same class of computable real
numbers, but they do also realise that the representations do not yield the same class of
primitive recursive real numbers. Specker proves the strict inclusions2

PD ⊂ P10 ⊂ PC(1)

1Specker’s paper [17] is published in 1949. Mazur’s book [12] was not published until 1963,
but the book gives a systematic exposition of results obtained by Banach and Mazur in the
period 1936–39 and, moreover, results obtain by Mazur in the first few years that follow the
Second World War (before 1950). See the foreword of the book for more details.

2In Mazur [12], (1) is proved in detailed for non-strict inclusions. When the proof is
completed, it is commented that Specker [17] has proven that the three classes are different.
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where PD , P10 and PC , respectively, denotes the class of real numbers that have
a primitive recursive Dedekind cut, a primitive recursive base–10 expansion and a
primitive recursive Cauchy sequence. Other early work on computable analysis, by
Mostowski [13, 14], Lehman [11] and others, complements the insights won by Mazur
and Specker. Eg, the representation by continued fractions yields the same class of
computable real numbers as the representations above, but the class of real numbers
that have a primitive recursive continued fraction is strictly included in PD ; see [11].
For more on primitive recursive representation of real numbers, see Skordev [16] and
Chen et al [2].

The early founders of computable analysis seemed to have realised that the class of
computable real numbers is a natural and robust class: any reasonable representation that
works in a computable setting yields the same class of computable real numbers. But
they did also realise that it might not always be all that easy to convert one representation
into another: sometimes it cannot be done primitive recursively (otherwise every
representation would yield the same class of primitive recursive reals). The degree
structure we define in the next section is motivated and inspired by these profound
insights.

We will define an ordering relation ⪯S over the representations. This ordering relation
will induce a degree structure on the representations. We prove that this structure is
a distributive lattice. Moreover, we prove that the structure has a least and a greatest
element. The maximum degree is the degree of the representation by continued fractions.
The minimum degree is the degree of the representation by Weihrauch intersections.

2 The Degree Structure

We identify an irrational number α with its Dedekind cut. The Dedekind cut of an
irrational α is the function α : Q −→ {0, 1} where

α(q) =

{
0 if q < α

1 if q > α.

Our subject in this paper is representations of irrational numbers and we take a
computability-theoretic viewpoint. A Dedekind cut has been defined as a function
with this in mind. We shall discuss other representations, which are also functions
with countable domain and codomain. We require of a representation to be not just
a mapping of functions to real numbers (there are too many such mappings to be of
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interest), but one that is computationally equivalent, in a sense defined below, to the
Dedekind cut. Next, we give the necessary definitions, followed by a few examples.

We will work with oracle Turing machines, and Φf
M denotes the function computed by

the Turing machine M using the function f as an oracle; in particular, when α is an
irrational number, then Φα

M denotes the function computed by M using the Dedekind
cut of α as an oracle.

Definition 2.1 A class of functions R is a representation (of the irrational numbers) if:

(1) There exists a Turing machine M with the following property: For every f ∈ R
there exists irrational α in the interval (0, 1) such that α = Φf

M . When α = Φf
M ,

we say that f represents α and that f is an R–representation of α .
(2) There exists a Turing machine N with the following property: For every irrational

α in the interval (0, 1) there exists an R–representation f of α such that f = Φα
N .

We say that an oracle Turing machine M converts an R1 –representation into an R2 –
representation if for any f ∈ R1 representing α there exists g ∈ R2 representing α

such that g = Φf
M .

We will use R,Q,P (possibly decorated) to denote representations.

Note that a representation will not contain representations of irrationals outside the
interval (0, 1). That is convenient when working with certain representations. Observe
that it follows from our definitions that any representation can be converted (by an
algorithm) to and from the representation by Dedekind cuts. This is the space which we
intend to explore by dividing it into “degrees”.

Example We define a Cauchy sequence for α as a function C : N+ −→ Q with the
property |C(n)−α| < n−1 . Let C be the class of all Cauchy sequences for all irrational
numbers in the interval (0, 1). Then C is a representation according to the definition
above.

First we observe that we can compute the Dedekind cut of an irrational α in any
Cauchy sequence for α . In order to compute α(q), we search for the least n such
that |C(n) − q| > n−1 . This search terminates as q is rational and α is irrational (the
algorithm might not terminate if α is rational). If q < C(n), it will be the case that
α(q) = 0 (we have q < α), otherwise, we have q > C(n), and then it will be case that
α(q) = 1 (we have q > α). Thus there will be an oracle Turing machine M such that
α = Φf

M whenever f is a Cauchy sequence for α . Now, M has the following property:
For every f ∈ C there exists irrational α such that α = Φf

M . This shows that clause (1)
of Definition 2.1 is satisfied.
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In order to verify that clause (2) of the definition is satisfied, we observe that we can
compute a Cauchy sequence C for α if we have access to the Dedekind cut of an
irrational α in the interval (0, 1). We can, eg, use the equations

C(1) =
1
2

and C(i + 1) =

{
C(i) − 2−i−1 if C(i) > α

C(i) + 2−i−1 if C(i) < α

to compute C(n) for arbitrary n. Hence, there exists a Turing machine N with the
following property: For every irrational α ∈ (0, 1) there exists a C–representation f of
α such that f = Φα

N . This shows that also clause (2) is satisfied, and we conclude that
C is a representation according to Definition 2.1.

Example Let α be an irrational number in the interval (0, 1), and let Eα
2 : N+ −→

{0, 1} be the function that yields the ith digit of the base–2 expansion of α; more
precisely, let Eα

2 be such that α =
∑∞

i=1 Eα
2 (i)2−i . The representation by base–2

expansions is the set E2 , where:

E2 = { Eα
2 | α is an irrational in the interval (0, 1) }

The representation by base-b expansions Eb is defined similarly for any b ≥ 2. We
leave to the reader to verify that Eb indeed is a representation according to Definition
2.1.

Definition 2.2 A function t : N −→ N is a time bound if (i) n ≤ t(n), (ii) t is
increasing and (iii) t is time-constructible: there is a multi-tape Turing machine that, on
input 1n , computes t(n) in Θ(t(n)) steps.

Definition 2.3 Let t be a time-bound and let R be a representation. Then, O(t)R denotes
the class of all irrational α in the interval (0, 1) such that at least one R–representation
of α is computable by a Turing machine running in time O(t(n)) (where n is the length
of the input).

Let R1 and R2 be representations. The relation R1 ⪯S R2 holds if for any time-bound t
there exists a time-bound s such that

O(t)R2 ⊆ O(s)R1 .

If the relation R1 ⪯S R2 holds, we will say that the representation R1 is subrecursive in
the representation R2 .

Intuitively, if we can convert an R2 –representation f2 of α into an R1 –representation
f1 of α , while satisfying a time-bound, then the relation R1 ⪯S R2 will hold. If such
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a conversion exists, then there exists a time-bounded oracle Turing machine M such
that f1 = Φf2

M , and thus, if f2 is computable in time O(t), then f1 is computable in
time O(s) for some time-bound s (and the inclusion O(t)R2 ⊆ O(s)R1 holds). Note
that the complexity bound s is not specified but only required to exist. Informally,
this means that the conversion does not make use of unbounded search. The case of
converting the representation E2 , that is, the representation by base–2 expansions, into
the representation by Dedekind cut may serve to illustrate this notion. Let D denote the
representation by Dedekind cuts. Consider an irrational whose base–2 expansion starts
by 0.0101010101 . . . . Clearly the number is close to 1/3. But in order to determine
on which side of 1/3 it falls we have to search for the first pair of bits which is not 01.
Thus unbounded search is unavoidable, and we have D ̸⪯S E2 , On the other hand, if we
have access to the Dedekind cut of α , unbounded search is not needed to generate the
ith bit of the base–2 expansion of α (to compute the value of Eα(i)). Thus, we have
E2 ⪯S D . Indeed, we have Eb ⪯S D for any b ≥ 2. It is easy to see that we can use the
Dedekind cut of α to generate the digits D1, D2, D3, . . . of the base-b expansion of α
one by one. First we use the Dedekind cut to determine D1 ; then we use the Dedekind
cut to determine D2 ; and thus we proceed up to the desired position.

To show that the relation R1 ⪯S R2 holds, the natural way is to exhibit a reduction in the
form of an time-bounded oracle Turing machine which computes the R1 representation
given the R2 representation.

Definition 2.4 Let R and Q be representations. The relation R ≡S Q holds when
R ⪯S Q and Q ⪯S R. If the relation R ≡S Q holds, we will say that the representation
R is subrecursively equivalent to the representation Q.

The relation R ≺S Q holds when R ⪯S Q and Q ̸⪯S R.

It is obvious that ≡S is an equivalence relation, and thus the next definition makes sense.

Definition 2.5 Let R be a representation. We define the S–degree of R, denoted
degS(R), as the equivalence class given by:

degS(R) = { Q | Q ≡S R }

The set of all S–degrees, denoted S , is given by:

S = { degS(R) | R is a representation }

We will use a, b, c (possible decorated) to denote S–degrees. We will use ≤ and < to
denote the ordering relations induced on the S–degrees by ⪯S and ≺S , respectively.
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Weihrauch intersections

Cauchy sequences

Base-b expansions Base-b′ expansion

Dedekind cuts
Base-b sum approx.
from below

Base-b′ sum approx.
from above

Best approx.
from below

Best approx.
from above

Continued fractions

Figure 1: Overview.

The directed graph in Figure 1 gives an overview of the relationship between some
natural degrees. The nodes depict degrees of representations, and each degree is labeled
with one of the most well known representations in the degree. For two representations
R1 and R2 , there is a directed path from a node labeled R1 to a node labeled R2 if and
only if R2 ⪯S R1 . (The paths in the graph also tell us when it is possible, and when it is
not possible, to convert one representation into another without resorting to unbounded
search. If there is a directed path from R1 to R2 , unbounded search is not needed in
order to convert an R1 –representation into an R2 –representation, and if there is no
directed path from R1 to R2 , unbounded search is needed.) This implies that Figure 1
shows an upside-down picture of the degree structure, that is, if a degree a lies below a
degree b, then a is depicted above b in the figure. The least degree shown in the figure
is the degree of the Weihrauch intersections. The greatest degree shown in the figure is
the degree of the continued fractions. We will prove that there are no degrees below the
degree of the Weihrauch intersections and above the degree of the continued fractions.

Some explanation may be called for regarding the degrees of base–b expansions. The
figure shows two such degrees, with bases b and b′ . In fact, the relation between two
such degrees depends on the relation of b to b′ . This is specified by the next theorem.
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Theorem 2.6 (Kristiansen [9]) Eb ⪯S Eb′ if and only if every prime that divides b
also divides b′ .

The same rule applies to the degrees of base-b sum approximations (also studied in [9]).

For more on the degrees and the representations appearing in Figure 1, see Ben-Amram
et al [1], Kristiansen [8, 9], Georgiev et al [3], Kristiansen [10], Georgiev [4, 5] and
Hiroshima & Kawamura [6].

3 The Structure is a Lattice

Definition 3.1 For strings x, y, we denote by ⟨x, y⟩ an encoding of the pair (x, y).

The precise encoding does not matter, but we require one where pairing and unpairing
can be done efficiently (within quadratic time) on a Turing machine. For example, we
could use x#y where # is a special symbol.

Definition 3.2 Let f and g be functions with the signatures f : A1 −→ B1 and
g : A2 −→ B2 . We define the function f × g : A1 × A2 −→ B1 × B2 by:

f × g(⟨x, y⟩) = ⟨ f (x), g(y)⟩

Let R and Q be representations. We define join[R,Q] by:

join[R,Q] = { f × g | f is an R–representation of α and

g is a Q–representation of α }

Lemma 3.3 Let R0 and R1 be representations. Then join[R0,R1] is a representation.

Proof Since Ri (for i = 0, 1) is a representation, we have Turing machines Mi and Ni

such that:

• For every f ∈ Ri there exists irrational α ∈ (0, 1) such that α = Φf
Mi

.
• For every irrational α ∈ (0, 1) there exists Ri –representation f of α such that

f = Φα
Ni

.

Let ε be the first oracle query performed by M1 on input 1/2 (this is just an arbitrary
choice). Let M be the oracle Turing machine that simulates M0 , while replacing any
oracle query with input w by code that

• writes ⟨w, ε⟩ on the query tape;
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• queries the oracle, obtaining a result in the form ⟨x, y⟩; and
• extracts x and uses it as the result of the query.

It should be obvious that the following claim holds.

(Claim 1) For every f ∈ join[R0,R1], there exists irrational α ∈ (0, 1)
such that α = Φf

M .

We have constructed M from M0 . It is easy to see that we might as well have constructed
M from M1 .

Let N be the oracle Turing machine given by:

Nf = on input ⟨x, y⟩ do:

Run Nf
0 on input x and store the output z0.

Run Nf
1 on input y and store the output z1.

Give output ⟨z0, z1⟩.

It should be obvious that the following claim holds.

(Claim 2) For every irrational α ∈ (0, 1) there exists a join[R0,R1]–
representation of α such that f = Φα

N .

It follows straightforwardly from Definition 2.1 and the two claims that join[R0,R1] is
a representation.

Lemma 3.4 We have

R ⪯S R′ and Q ⪯S Q′ ⇒ join[R,Q] ⪯S join[R′,Q′]

for any representations R,R′,Q,Q′ .

Proof Assume R ⪯S R′ and Q ⪯S Q′ . Then, by the definition of ⪯S , for any time
bound t there exist time bounds s1, s2 such that:

(2) O(t)R′ ⊆ O(s1)R and O(t)Q′ ⊆ O(s2)Q

We prove join[R,Q] ⪯S join[R′,Q′]. By the definition of ⪯S , we have to prove that for
any time bound t there exists time bound s such that:

(3) O(t)join[R′,Q′] ⊆ O(s)join[R,Q]

Fix t and assume α ∈ O(t)join[R′,Q′] (we will find a time bound s such that α ∈
O(s)join[R,Q] ). By this assumption, we have an O(t)–time Turing machine M such that
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ΦM = f ×g where f ×g is some join[R′,Q′]–representation of α . From M we can easily
construct O(t)–time Turing machines M1,M2 such that ΦM1 is an R′–representation of
α and ΦM2 is a Q′–representation of α . Thus, we have α ∈ O(t)R′ and α ∈ O(t)Q′ , and
by (2), we have time bounds s1, s2 such that α ∈ O(s1)R and α ∈ O(s2)Q . Thus, there
exists an O(s1)–time Turing machine N1 such that ΦN1 is an R–representation of α , and
there exists an O(s2)–time Turing machine N2 such that ΦN2 is an Q–representation of
α . Let s(n) = max(s1(n) + s2(n), n2). From N1 and N2 we can construct an O(s)–time
Turing machine N such that ΦN is a join[R,Q]–representation of α (see Figure 2), and
thus, α ∈ O(s)join[R,Q] . This proves that (3) holds.

N = “On input ⟨x, y⟩ do:

Run N1 on input x, store the output z1.

Run N2 on input y, store the output z2.

Give output ⟨z1, z2⟩.”

Figure 2: A Sipser-style construction of N from N1 and N2 .

Lemma 3.5 We have

R ≡S R′ and Q ≡S Q′ ⇒ join[R,Q] ≡S join[R′,Q′]

for any representations R,R,Q,Q′ .

Proof This follows straightforwardly from Lemma 3.4 and the definition of ≡S .

Lemma 3.5 shows that the next definition makes sense.

Definition 3.6 We define the join of the S–degrees a and b, written a ∪ b, by

a ∪ b = degS(join[R,Q])

where R and Q are any representations such that a = degS(R) and b = degS(Q).

We are now ready to prove that the set of S–degrees is an upper semi-lattice, that is,
every pair of degrees has a least upper bound (lub).

Theorem 3.7 Let a, b be S–degrees. The degree a ∪ b is the lub of a and b.
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Proof It is obvious that a ≤ a∪ b and b ≤ a∪ b. Let c be any degree such that a ≤ c
and b ≤ c. We prove that a ∪ b ≤ c (and thus a ∪ b will be the least degree that lies
above both a and b).

Let c = degS(R). Furthermore, let a = degS(Q) and b = degS(P). As a ≤ c and b ≤ c,
we have Q ⪯S R and P ⪯S R, and then, Lemma 3.5 yields join[Q,P] ⪯S join[R,R]. It
is easy to see that join[R,R] ≡S R. Thus, we have join[Q,P] ⪯S R. By Definition 2.5
and Definition 3.6, we have a ∪ b ≤ c.

In order to prove that every pair of degrees also has a greatest lower bound (glb), we
will define a meet operator.

Definition 3.8 Let ⊥ ̸∈ A (just pick a value that is not in A). Fix an arbitrary value y
in the set B (this y will act as a dummy, and it does not matter which y we pick). For
any function f : A −→ B, let

inl0(f ), inl1(f ) : A ∪ {⊥} −→ {0, 1} × B

be the functions given by

inl0(f )(x) =

{
⟨0, f (x)⟩ if x ∈ A

⟨0, y⟩ if x = ⊥

inl1(f )(x) =

{
⟨1, f (x)⟩ if x ∈ A

⟨1, y⟩ if x = ⊥ .
and

For any representations R and Q, we define meet[R,Q] by:

meet[R,Q] = { inl0(f ) | f is an R–representation } ∪
{ inl1(f ) | f is a Q–representation }

Lemma 3.9 Let R0 and R1 be representations. Then meet[R0,R1] is a representation.

Proof Since Ri (for i = 0, 1) is a representation, we have Turing machines Mi and Ni

such that:

• For every f ∈ Ri there exists an irrational α ∈ (0, 1) such that α = Φf
Mi

.
• For every irrational α ∈ (0, 1) there exists an Ri –representation f of α such that

f = Φα
Ni

.
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For any Turing machine M with oracle f : A −→ B, let M̂ denote a Turing machine
with oracle f : A ∪ {⊥} −→ {0, 1} × B such that:

Φf
M = Φinl0f

M̂
= Φinl1f

M̂

The oracle Turing machine M̂ works like M , but M̂ ’s oracle will give answers of the
form ⟨i, y⟩ ∈ {0, 1} × B and M̂ simply ignores the left component i. Let M be the
oracle Turing machine given by:

Mf = on input w do:

Check if f (⊥) = ⟨0, y⟩ for some y (otherwise, f (⊥) = ⟨1, y⟩ for some y).

If YES, run M̂0
f

on input w (and give the same output as M̂0
f
).

If NO, run M̂1
f

on input w (and give the same output as M̂1
f
).

(Claim 1) For every f ∈ meet[R0,R1], there exists irrational α ∈ (0, 1)
such that α = Φf

M .

In order to see that the claim holds, pick an arbitrary f in the set meet[R0,R1]. Then,
we either have f = inl0(f0) for some f0 ∈ R0 , or f = inl1(f1) for some f1 ∈ R1 . Let us
say that f = inl1(f1) where f1 ∈ R1 (do a symmetric argument if f = inl0(f0) where
f0 ∈ R0 ). By the construction of M , we have Φf

M = Φf1
M̂1

= α where α ∈ (0, 1) is the
irrational number represented by f1 . Hence, the claim holds.

Let N be the oracle Turing machine given by:

Nf = on input w do:

If w = ⊥, give output ⟨0, y⟩ (where y is some fixed value).

If w ̸= ⊥, run Nf
0 on input w and store the output z.

Give output ⟨0, z⟩.

We have constructed N from N0 . We may also construct N from N1 . Let N be the
oracle Turing machine given by

Nf = on input w do:

If w = ⊥, give output ⟨1, y⟩ (where y is some fixed value).

If w ̸= ⊥, run Nf
1 on input w and store the output z.

Give output ⟨1, z⟩.

and our proofs will still go through.

Journal of Logic & Analysis 17:FDS2 (2025)



12 Amir M. Ben-Amram and Lars Kristiansen

(Claim 2) For every irrational α ∈ (0, 1) there exists a meet[R0,R1]–
representation f of α such that f = Φα

N .

In order to verify the claim, pick an arbitrary irrational α in the interval (0, 1). Then
there exists an R0 –representation f0 of α . Let f = inl0(f0). Then f ∈ meet[R0,R1]
and, moreover, f is a meet[R0,R1]–representation of α since α = Φf

M . It is easy to see
that we have f = Φα

N . Thus, we conclude that the claim holds.

It follows straightforwardly from Definition 2.1 and the two claims that meet[R0,R1] is
a representation.

Lemma 3.10 Let f : A −→ B be any function, and let t be a time-bound such that
t(n) ≥ n2 . The following three assertions are equivalent: (1) There exists an O(t)–time
Turing machine M such that ΦM = f . (2) There exists an O(t)–time Turing machine
M0 such that ΦM0 = inl0(f ). (3) There exists an O(t)–time Turing machine M1 such
that ΦM1 = inl1(f ).

Proof Each of these machines can be converted to each of the others with little effort.
The assumption t(n) ≥ n2 ensures that the process of stripping the first component from
⟨0, x⟩ or ⟨1, x⟩, or adding such a component, remains within O(t) time.

Lemma 3.11 We have

R ≡S R′ and Q ≡S Q′ ⇒ meet[R,Q] ≡S meet[R′,Q′]

for any representations R,R′,Q,Q′ .

Proof It is sufficient to prove that:

R ⪯S R′ and Q ⪯S Q′ ⇒ meet[R,Q] ⪯S meet[R′,Q′](4)

The proof of (4) is rather straightforward, and we leave the details to the reader.

Lemma 3.11 shows that the next definition makes sense.

Definition 3.12 We define the meet of the S–degrees a and b, written a ∩ b, by

a ∩ b = degS(meet[R,Q])

where R and Q are any representations such that a = degS(R) and b = degS(Q).
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By the next theorem, every pair of degrees has a greatest lower bound, and thus our
degree structure is a lattice. Moreover, it is a distributive lattice as we have:

(5) a ∪ (b ∩ c) = (a ∪ b) ∩ (a ∪ c)

It is straightforward, but rather tedious, to prove that (5) holds, and we leave the details
to the reader. (When the join operator distributes over the meet operator in a lattice,
then the meet operator will also distribute over the join operator.)

Theorem 3.13 Let a, b be S–degrees. The degree a ∩ b is the glb of a and b.

Proof We have a ∩ b ≤ a and a ∩ b ≤ b by Lemma 3.10. Let c be any S–degree that
lies below both a and b, that is, c ≤ a and c ≤ b. We have to prove c ≤ a ∩ b (thus,
a ∩ b will be the greatest degree that lies below both a and b).

Let c = degS(Q), let a = degS(R0) and let b = degS(R1). Fix an arbitrary time-bound
t . Since c ≤ a, there exists time-bound s0 such that

O(t)R0 ⊆ O(s0)Q(6)

and, since c ≤ b, there exists time-bound s1 such that:

O(t)R1 ⊆ O(s1)Q(7)

Let s(n) = max(s0(x), s1(x)). Then s is a time-bound. We will prove that:

O(t)meet[R1,R2] ⊆ O(s)Q(8)

It follows straightforwardly from (8) and our definitions that c ≤ a ∩ b.

In order to prove (8), assume α ∈ O(t)meet[R0,R1] . Then there exists an O(t)–time Turing
machine M such that ΦM is a meet[R1,R2]–representation of α . Either we have (i)
ΦM = inl0(f0) where f0 is an R0 –representation of α , or we have (ii) ΦM = inl1(f1)
where f1 is an R1 –representation of α . In case (i), we apply Lemma 3.10 and get
an O(t)–time Turing machine N such that ΦN = f0 . Thus, we can conclude that
α ∈ O(t)R0 , and then by (6), we have α ∈ O(s0)Q . In case (ii), we apply Lemma 3.10
and get an O(t)–time Turing machine N′ such that ΦN′ = f1 . Now we can conclude
that α ∈ O(t)R1 , and by (7), we have α ∈ O(s1)Q .

This proves that we for any α ∈ O(t)meet[R0,R1] , have α ∈ O(s0)Q or α ∈ O(s1)Q .
Hence, (8) holds when s is given by s(n) = max(s0(n), s1(n)).
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4 Minimum and Maximum Degrees

It turn outs that our lattice has a top element and a bottom element.

Definition 4.1 A function I : N −→ Q×Q is a Weihrauch intersection for the real
number α if the left component of the pair I(i) is strictly less than the right component
of the pair I(i) (for all i ∈ N) and

{ α } =

∞⋂
i=0

IO
i

where IO
i denotes the open interval given by the pair I(i).

We define the representation by Weihrauch intersections, denoted W , by:

W = { I | α is an irrational in the interval (0, 1)

and I is a Weihrauch intersection for α}

Let us verify that W indeed is a representation according to Definition 2.1. If we
have access to the Dedekind cut of α , then we can obviously compute a Weihrauch
intersection for α (unbouded search will not be needed). If we have access to a
Weihrauch intersection I for an irrational α , then we can compute the Dedekind cut of
α if we use unbounded search. In order to decide if a rational number q lies above or
below α , we search for the least i such that q lies outside the interval I(i). The search
will terminate as q is rational and α is irrational. If q is less than or equal to the left
component of I(i), we know that q lies below α; otherwise, q lies above α . This shows
that W is a representation.

The representation of reals by Weihrauch intersections is more or less the representation
by nested intervals which is known from Weihrauch’s seminal book on computable
analysis [18]. For the sake of simplicity, we do not want the intervals to be nested, but
any Weihrauch intersection can be easily converted to a nested one. For some related
representations, see Skordev [16].

Theorem 4.2 (Minimum Degree) Let 0 = degS(W). For any S–degree a, we have
0 ≤ a.

Proof Let R be a representation of degree a. Let f denote any R–representation of α .
There is a Turing machine M0 such that

W0 = Φf
M0
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where W0 ∈ W represents α . Our definitions ensure that such an M0 exists: M0

computes the Dedekind cut of α from f , and M0 uses the Dedekind cut to compute W0

(note that M0 might carry out unbounded search). Now let

W(x) =


Φf

M0
(y) where y is the greatest y such that

y < x and Mf
0 on input y halts within x steps;

(0, 1) if no such y exists.

Now, W is a Weihrauch intersection for α . Moreover, W can be computed subrecursively
in f . Specifically, if f can be computed by a Turing machine running in time O(t), then
W can be computed by a Turing machine running in time O(s) (for some s depending
on t). Thus, for any time bound t there exists time bound s such that O(t)R ⊆ O(s)W .
Thus, by our definitions, we have W ⪯S R. It follows that 0 ≤ a.

Let a0, a1, a2, . . . be an infinite sequence of integers where a1, a2, a3 . . . are positive.
The continued fraction [a0; a1, a2, . . .] is defined by:

[ a0; a1, a2, a3, . . . ] = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·

We assume that the readers are familiar with continued fractions (those who are not may
consult Khintchine [7] or Richards [15]). The continued fraction of the real number α
is the unique sequence a0, a1, a2, . . . such that α = [a0; a1, a2, . . .].

It is well known that we can compute the Dedekind cut of α if we have access to the
continued fraction of α , and vice versa, we can compute a continued fraction of α if
we have access to the Dedekind cut of α (this will require unbounded search). It is
also well known that every irrational number α in the interval (0, 1) can be written
uniquely in the form [0; a1, a2, . . .] where a1, a2, a3, . . . are positive integers. Moreover,
if a1, a2, a3, . . . are positive integers and α = [0; a1, a2, . . .], then α is an irrational
number in the interval (0, 1) (all rational numbers have finite continued fractions).
Hence, if we map each irrational in the interval α to the unique f : N+ −→ N+ such
that α = [0; f (1), f (2), . . .], then we have a bijection between the irrational numbers in
the interval (0, 1) and the total functions from N+ into N+ . This implies that the set
C[ ] given by

C[ ] = { f | f is a total function from N+ into N+ }(9)

is a representation according to Definition 2.1.
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Definition 4.3 The representation by continued fractions is the set C[ ] given by (9).

Theorem 4.4 (Maximum Degree) Let 1 = degS(C[ ]). For any S–degree a, we have
a ≤ 1.

The proof of Theorem 4.4 requires some preliminary work, and the next section is
dedicated to proving this result, including the auxiliary definitions and facts.

5 The Proof of the Maximum Degree Theorem

Let us first give a precise description of the function-oracle Turing machines that we
use.

Definition 5.1 A (parameterized) function-oracle Turing machine is a (multi-tape)
Turing machine M = (Q, q0,F,Σ,Γ, δ) with initial state q0 ∈ Q, final states F ⊆ Q,
input and tape alphabets Σ and Γ (with Σ ⊆ Γ and { } ⊆ Γ \ Σ), and transition
function δ such that M has a special query tape and two distinct states qq, qa ∈ Q (the
query and answer states).

To be executed, M is provided with a total function f : (Γ \ { })∗ −→ (Γ \ { })∗ (the
oracle) prior to execution on any input. We write Mf for M when f has been fixed. We
use Φf

M to denote the function computed by Mf .

The transition relation of Mf is defined as usual for Turing machines, except for the
query state qq : If M enters state qq with the word x on its query tape, then (i) the
contents of the query tape are instantaneously changed to f (x), (ii) the query-tape head
is reset to the origin, while other heads do not move, and (iii) M moves to state qa . The
time- and space complexity of a function-oracle machine is counted as for usual Turing
machines, with the transition between qq and qa taking ∥ f (x)∥ time steps, the length of
the string f (x).

In general, ∥w∥ denotes the number of symbols in the string w. Numbers are represented
in binary. If i ∈ N, then ∥i∥ denotes the length of the binary representation of i.

The input size of a query is the number of non-blank symbols on the query tape when
M enters state qq .
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5.1 Canonical Standard Versions of Oracle Machines

Let Mf be a function-oracle Turing machine that for any given total oracle f : N+ −→
N+ terminates on every input w. Thus, Φf

M(w) is a total computable function whenever
f is a computable oracle. For any total and computable f : N+ −→ N+ , we construct a
deterministic non-oracle Turing machine M̂f which computes Φf

M . We will say that
M̂f is the canonical standard version of the oracle Turing machine Mf .

We need some notation. Let Mf = (Q, q0,F,Σ,Γ, δ), and let qq and qa , respectively,
denote the query and the answer state of Mf . We assume some standard representation
of the configurations of Mf , eg

#uqv#u′-v′#(10)

where q ∈ Q, u, v, u′, v′ ∈ Γ∗ may represent the configuration where M is in state q;
the content of the work tape is uv ∗ and the head scans the first symbol of v; the content
of the query tape is u′v′ ∗ and the head scans the first symbol of v′ .

For any configuration C of Mf

• state(C) denotes the state of C

eg, if C is the configuration (10), then state(C) = q.

If state(C) = qq , that is, if Mf is in a query state, then:

• query(C) denotes the element of N+ represented on the query tape (natural
number are written in binary notation) in the configuration C .

• Cy denotes the configuration Mf will be in if the oracle returns the natural number
y.

Example: Let C be the configuration #uqqv#100-#. Then query(C) = 4 as 100
represent number 4; moreover, C17 is

#uqav#-10001#

as 10001 is 17 written in binary and the head of the query tape scans the first symbol of
10001.

If state(C) ̸∈ F ∪ {qq}, that is, if Mf is not in a final state or in the query state, then

• next(C) denotes (the unique) configuration that follows C when Mf carries out
one transition.

Now we have all the notation we need to describe the canonical standard version M̂f of
the oracle machine Mf .
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M̂f = on input w do:
Construct the start configuration C1 of Mf on input w.
Execute the recursive procedure EXE(C : configuration) given by pseudo
code in Figure 3 with input C1 , that is, execute EXE(C1).
The execution will generate a finite sequence of configurations C1, . . . ,Cm

(one configuration Ci each time the procedure makes a recursive call
EXE(Ci)); use Cm to compute Φf

M(w).
Give the output Φf

M(w).

It is obvious that the canonical standard version M̂f of the oracle machine Mf computes
the function Φf

M for each computable f . Next we will construct a time-bound s with
the following property: if f is computable in time O(t), then M̂f will run in time O(s)
on all but finitely many inputs.

Recall that we assumed Mf to terminate on every input, provided f is total. For the next
step we need a stronger assumption, namely that Mf terminates even for a “cheating”
oracle that can answer differently when posed the same query twice. This assumption
implies no loss of generality, since we could instrument procedure EXE to record oracle
queries and answers, and pull the answer from the record in case a query is repeated.
For simplicity we have left this out of the code in Figure 3.

proc EXE(C : configuration)
if state(C) = qq then

begin

y:= f (query(C));EXE(Cy)
end

else if state(C) ̸∈ F then EXE(next(C))
else return C
end proc

Figure 3: A recursive procedure given in pseudo code. The parameter is called by value.

5.2 Time-Bounds for Canonical Standard Versions

Let M̂f be a canonical standard version where f : N+ −→ N+ is computable in time
O(t). The recursive procedure in Figure 4 is constructed from M and t along the lines
the recursive procedure in Figure 3 is constructed from M and f . The reader should
note the similarities and the differences between the two procedures.
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proc TB(C : configuration; step : integer)
if state(C) = qq then

begin

for i:= 1 to 2t2(step) do TB(Ci, step + ∥i∥)
end

else if state(C) ̸∈ F then TB(next(C), step + 1)
end proc

Figure 4: A recursive procedure given in pseudo code. The two parameters are called by value.

Next we describe a standard Turing machine M̃t that computes a time-bound.

M̃t = on input 1n do:
Set a binary counter count to n; the machine later increases the counter as
further explained below.
Let w1,w2, . . . ,wk be all potential inputs to Mf such that ∥wi∥ ≤ n (for
i = 1, . . . k), moreover, let Ci

1 be the start configuration of Mf on input wi .
For i = 1, . . . , k , execute TB(Ci

1, n).
When all the calls to TB(. . . ) have terminated, let the output be count2 (the
square of the final value of the counter).

We should elaborate on how count is maintained. We maintain it so that count2 , at
the end of computation, will be an upper bound on the number of transitions actually
performed (including those that maintain count). During the computation, count is
represented in binary on its own tape. Moreover, we increase it at every step (ie,
whenever step is incremented). The time it takes to increase the counter up to a value of
i is O(i).

(Claim) Let f : N+ −→ N+ be any function computable in time O(t), and
let s be the function computed by M̃t . Then (i) s is a time-bound, and (ii)
there exists a natural number K such that s(∥w∥) bounds the running-time
of M̂f on input w whenever ∥w∥ ≥ K .

We prove the claim. First we argue that function s is a time-bound. To this end we have
to verify that:

• n ≤ s(n): this is immediate since we have a main loop that already causes count
to be incremented at least n times.
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• s is increasing: this is the case because the computation of M̃t on input n includes
everything that it does on input n − 1, and more; note that count is continually
incremented while simulating calls to TB on different inputs.

• s is time-constructible: it is so because the machine M̃t itself computes s(n) in
O(s(n)) time.

Thus, we conclude that the first clause of the claim holds.

Next, we argue that the second holds. Since f is computable in time O(t), there exist
constants k0, k1 such that k0t(n) + k1 bounds the number of steps in a computation of f
on any input of length n. Thus, for any query q, we have ∥ f (q)∥ ≤ k0t(∥q∥) + k1 , and
thus also f (q) ≤ 2k0t(∥q∥)+k1 since natural numbers are represented in binary. Pick K
such that t2(n) > k0t(n) + k1 for every n ≥ K .

The machine M̃t uses the counter step to bound the possible size of the oracle queries,
and it simulates Mf over all oracle answers of length bounded by t2(step). Now, fix
some oracle f and fix some input w with length n ≥ K . Then, M̃t on input 1n will
perform a set of simulations which includes one that precisely simulates M̂f on input
w; the simulation of M̂f on input w corresponds to one of the branches in the recursion
tree created by calling the procedure TB. This makes it easy to see that clause (ii) of
the claim holds.

5.3 The Proof

We can now give the proof of Theorem 4.4. Let R be any representation. It is sufficient
to prove that R ⪯S C[ ] where C[ ] is the representation by continued fractions. Thus,
by the definition of ⪯S , we have to prove that for any time-bound t there exists a
time-bound s such that O(t)C[ ] ⊆ O(s)R .

Assume α ∈ O(t)C[ ] (we will prove that there exists a time-bound s such that α ∈ O(s)R )
. Let f ∈ C[ ] be the continued fraction of α . By Definition 2.3, f is computable in
time O(t). By Definition 2.1, we have an oracle Turing machine Mf such that Φf

M is
an R–representation of α ∈ (0, 1) (this is true for any representation R, convert via
the Dedekind cut if necessary). Now, C[ ] is simply the set of total functions from N+

into N+ , and hence, we can construct the canonical standard version M̂f of the oracle
machine Mf , moreover, we can construct the Turing machine M̃t . By the first clause of
the claim above, M̃t computes a time-bound, and by the second clause, there exists a
fixed number K such that s(∥w∥) bounds the running-time of M̂f on input w whenever
∥w∥ ≥ K . Let M0 be the Turing machine given by
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M0 =on input w do:
Check if ∥w∥ < K .
If ∥w∥ < K : give the output w′ where w′ is the output of the oracle Turing
machine Mf on input w (use a hard-wired table).
If ∥w∥ ≥ K : run the Turing machine M̂f on input w; give the same output
as M̂f .

Now, M0 computes an R–representation of α , moreover, M0 runs in time O(s). By
Definition 2.3, we have α ∈ O(s)R .
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