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Kuratowski’s problem in constructive Topology'

FRANCESCO CIRAULO?

Abstract: A classical result by Kuratowski states that there are at most seven
different combinations of the operators of interior and closure in a topological
space, which become fourteen if one consider also complement. Two (and hence,
usually, more) of these operators can coincide in some special classes of spaces; for
instance, Boolean spaces have only six different combinations. This is the classical
picture. What happens to this picture if it is looked at from a constructive point
of view? The present paper provides an answer to this question, while leaving
some problems open. The first part of the paper provides a constructive account
of the closure—interior problem and discusses some special classes of spaces. The
role of the set-theoretic (pseudo)complement is considered in the second part. The
paper ends by showing what the Kuratowski’s problem looks like in a pointfree
framework, that is, within the theory of locales. This last part of the paper is
independent from the underlying metatheory, although it is obtained by applying
the constructive results in the previous parts.
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1 Introduction (and the classical Kuratowski’s problem)

In classical topology, Kuratowski’s closure—complement result says that there are at
most 14 distinct combinations of the operators of closure ¢ and complement — on the
subsets of a topological space; in this context, the operator of interior i appears as the
composition —c—. Such fourteen operators form an ordered monoid (with respect to
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2 F. Ciraulo

composition and pointwise ordering), whose Hasse diagram is the following:
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(Here 1 is the identity operator).

The proof of this well-known result will follow from the constructive results below
(Proposition 3.1) and from the identities i— = —c and ¢— = —i that hold when
classical logic is assumed. Note that there are 7 distinct operators involving ¢ and i
only (that is, with an even number of occurrences of —); the other 7 are obtained by
complement. The number of operators cannot be reduced, in general. For instance,
the subset {—2} U (—1,0) U (0,1) U ((2,3) N Q) of the real line R (with its usual
topology) has 14 different images along the 14 operators.

A topological space where two or more of the operators in (1) collapse is typically
“almost” discrete. (See [6, Theorem 2.1] for a precise statement; see also Section 2.7
below.)

The main aim of this paper is to find and discuss a constructive version of these results.

Here by “constructive" we simply mean that we use neither the Axiom of Choice nor
the full Law of Excluded Middle (LEM), unless explicitly indicated, so that all our
arguments will be intuitionistically (and topos-theoretically) valid.

One of the main consequences of adopting such a foundational standpoint is that the
interior operator i cannot be expected to be defined in terms of closure and complement
as —c—,> and hence it will appear explicitly in our treatment. Moreover, we have to
deal with at least two non equivalent definitions of closure in a topological space: one
“negative”, in terms of complement and interior, and the other “positive”, in terms of
adherent points.

*In a discrete space this would imply —— = 1, that is, LEM.
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The constructive Kuratowski’s problem 3

The following section provides a constructive account of the closure—interior problem
and some related results (about almost discrete spaces, for instance); here the closure
operator is understood in its positive form, and the set-theoretic (pseudo)complement
plays no role.

The pseudocomplement will appear in Section 3, where the negative closure operator
is considered. There the interior—complement problem is studied, as opposed to the
closure—complement problem of the classical approach.

In the last section we will study what the Kuratowski’s problem looks like in a pointfree
framework, that is, within the theory of locales. Mathematically, such a problem is quite
different from that on topological spaces. The reason, roughly speaking, is that there
are “more” (in a precise sense) locales than (sober) topological spaces; in particular,
the lattice of all sublocales of any given space is richer than the lattice of its subspaces
(because there exist non-trivial sublocales with no points). The sublocales of a given
locale form a co-frame, rather than a frame; so a co-pesudocomplement has to be
considered.* The fact that not all sublocales are complemented makes the pointfree
version of the Kuratowski’s problem closer, although in a dual sense, to the constructive
than the classical problem for spaces. This is why the main result of the last section,
although independent from the underlying logic, is derived from the constructive results
in the previous ones.

Our work has been deeply influenced by the approach to constructive mathematics that
Giovanni Sambin has been proposing for the past three or four decades and that will be
extensively described in the oncoming book [10]: part of the material and ideas in this
paper is due to him and will appear therein.

2 The closure-interior problem

In this section we study the closure—interior problem, that is, we consider all possible
compositions of the two operators of closure ¢ and interior i, and we order them
pointwisely. In this way we obtain an ordered monoid (generated by ¢ and i), which

*A frame [9] is a complete lattice in which binary meets distribute over arbitrary joins; every
frame is an Heyting algebra and hence it has a pseudocomplement. A co-frame is a complete
lattice in which binary joins distribute over arbitrary meets; in other words, it becomes a frame
when its order is reversed. Here we are considering the natural order on sublocales, that is, their
category-theoretic order as subobjects; such an order is the opposite of the pointwise order on
nuclei (as functions).
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4 F. Ciraulo

we could call the general Kuratowski monoid.> For the sake of generality (and also in
view of the application in the last section) we consider here operators on an arbitrary
poset rather than simply on the powerset of a topological space.

2.1 The closure-interior problem on a poset

Given a poset (L, <), a closure operator on L is an idempotent, monotone (that is,
non-decreasing) function ¢: L — L such that 1 < ¢. So a function ¢c: L — Lisa
closure operator if and only if

2) cx<cy & x<cy

for all x,y € L. Dually, an interior operator on L is an idempotent, monotone function
i: L— Lsuchthati <1;andi: L — L is an interior operator if and only if

3) ix<iy & ix<y
forall x,y € L.

It turns out that the left-hand side of picture (1), namely (4) below, applies also in this
general framework.

“4) c

cic

7\
N

ici

i

Proposition 2.1 Let (L, <) be a poset, ¢ a closure operator on L, and i an interior
operator on L. Then there are 7 different combinations of ¢ and i, which are related as
shown in (4) with respect to pointwise ordering. No other relation holds in general.

5In [6] the term ‘Kuratowski monoid’ refers to the ordered monoid generated by c, i
and —, possibly subject to some extra condition. Classically this makes no big difference:
adding — amounts in adding a flipped copy of the ordered monoid generated by ¢ and i alone.
Intuitionistically, of course, the pseudocomplement — greatly increases the complexity of the
generated monoid, as we will see in Section 3.
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The constructive Kuratowski’s problem 5

Proof (The statement follows from [5, Lemma 2.6] and a sketchy proof is given here
only for the sake of self-containedness.) Since ¢ and i are idempotent, there are only two
combinations of ¢ and i of length 2, namely ic and ci; clearly i < ic,ci < c. Similarly,
there are two combinations of length 3, namely ici and cic, and ici < ic,ci < cic.
Moreover, i < ici since it is equivalent to i < c¢i (by 3); and cic < ¢ by a dual
argument.® Finally, any combination of length n > 4 is equivalent to a shorter one; the
reason is that ic and ci are idempotent. Indeed ic < icic because it is equivalent to
ic < cic (by 3); and icic < ic follows from cic < ¢ as i is monotone. In a dual way, it
is ci = cici.

Showing that no further inequality holds (in the most general case of a poset with
operators) is pretty tautological. Let L be a formal copy of the 7-element poset (4); for
convenience, we write the 7 different elements of L as a, with x = i, ici, ic, ci, 1, cic, ¢
in the obvious way. Let i and ¢ be the operators on L defined as i(a,) = a;, and
c(ay) = ac. Then it is straightforward to check that i and ¢ are an interior and a
closure operator on L, respectively, and that the images of a; along i, ici, ic, ci, cic,
c and 1 are related precisely as prescribed by (4) (trivially); in particular, they are all
different. O

A more deep way to show that the 7 combinations in (4) are different, and that remain
different even if further topological assumptions are made (such as those that we will
add in the sequel), is to look for a topological interpretation, of course: the subset
{2} U (-1,00 U (0,1) U ((2, 3N Q) of the real line has 7 different images along
the 7 operators (where i and ¢ are interpreted as the usual topological interior and
closure in R).

Perhaps surprisingly, Proposition 2.1 depends neither on LEM nor on topological
notions as strictly understood (for instance, ¢ need not preserve finite joins); moreover,
no link at all is required between ¢ and i (besides the fact that they operate on the same
poset, of course).

From an algebraic point of view, (4) is the Hasse diagram of the idempotent, ordered
monoid on two generators i and ¢ subject to the relations i < 1 < c.

In Section 3 we will see what can be said constructively when we introduce the
set-theoretic pseudocomplement. In what follows, instead, we shall investigate some
classes of spaces in which some of the operators in (4) collapse.

SClearly, there is a duality at work here. Indeed, every interior (closure) operator on a poset
(L, <) is a closure (interior) operator on its opposite (L, >).
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6 F. Ciraulo

2.2 Kuratowski monoids

All possible Kuratowski monoids are obtained from (4) by imposing some extra
condition on the 7 operators (in the form of some inequality between them). So, in
order to understand the shapes of such quotient monoids, one needs to understand the
implications among the several inequalities.

If i and c are the interior and closure operators on a topological space, and if classical
logic is assumed, then there are only 6 possible Kuratowski monoids [6, Theorem 2.1].
Here we try to address the general case of a poset. So, in particular, we assume no link
between i and c. In Section 2.3, on the contrary, we shall add some link that holds true
in constructive topology.

By inspecting diagram (4), one sees that there are, a priori, 26 additional inequalities
which could be imposed, namely:

c=1i c=ici c=1ic c=ci ¢ = cic c=1
cic=1 cic = ici cic = ic cic = ci cic <1 1 < cic
ic=1 ic = ici ic <ci ic<1 1 <ic

ci=1 ci = ici ci <ic ci <1 1 <ci

ici=1 ici <1 1 <ici

1=

In the above list, we have preferred using equations in all those cases in which one
of the inequalities holds by (4). Actually, all inequalities above can be replaced by
equations, thanks to the following lemma.

Lemma 2.2 Let (L, <) be a poset, ¢ a closure operator on L, and i an interior operator

on L. Then the conditions listed in the same row of Table (5) are equivalent to each
other.
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The constructive Kuratowski’s problem 7

cic <1 cic=1
1 < cic c = cic
ic<ci cic = ci ic = ici
ic<1 ic=1
1 <ic c=ic
&)
ci <ic cic = ic ci = ici
ci <1 ci=1
1 <ci c=ci
ici <1 ici=1
1 <ici c=ici

Proof In the whole proof we make free use of the facts we already know from
Proposition 2.1 and its proof.

The following equivalences follow directly from the fact that i is an interior operator
and c is a closure operator, that is, from (3) and (2).

* 1 <cic ifand only if ¢ < cic if and only if ¢ = cic

* jc =ici ifand only if ic <ici if and only if ic < ¢i if and only if cic < ci if
and only if cic = ci

* jc <1 ifandonlyif ic <i ifandonlyif ic =i

e 1 <ci ifandonlyif ¢ <ci ifandonlyif ¢ = ci

e jci <1 ifand only if ici <i if and only if ici =i

The inequality cic < 1 implies both ic = icic < i and ci = cici < i, thatis, ic =i = ci;
therefore cic < 1 implies cic = i, and vice versa. Similarly, 1 < ici implies both
¢ <icand ¢ < ci, that is, ic = ¢ = ci; so it is equivalent to ¢ = ici.

The inequality 1 < ic implies ¢ < icc = ic, that is, ¢ = ic which implies back 1 < ic.
Similarly, ci < 1 implies ci < i, thatis, ci = i which implies back ci < 1.

Finally, ci < ic implies cic < ic, that is, cic = ic which implies back ci < ic. Also,
ci < ic implies ci < ici, that is, ci = ici which implies back ci < ic. O

Thus we can delete the 10 inequalities from our 26—item list. Moreover, we now know
that cic = ci is equivalent to ic = ici, and cic = ic is equivalent to ci = ici. So we are

Journal of Logic & Analysis 17:FDSI (2025)



8 F. Ciraulo

left with the following 14 equations: ¢ =i, ¢ = ici, ¢ = ic, c =ci, c =cic,c =1,
cic = i, cic = ici, ic = i, ic = ici, ci = i, ci = ici, ici=1i,and 1 = i.”

Proposition 2.3 Let (L, <) be a poset, ¢ a closure operator on L, and i an interior
operator on L. Then the implications which hold in general between the 14 conditions
above are shown in (6).

(6) ici =1 ic = ici =ici c = cic
R |
ic=1i ci=1 cic = ici c=ci c=ic
cic=1 c=ici
| |
c=1 1=i

Proof Some of the implications in (6) are direct consequences of the ordering shown
in (4); for instance, ¢ = i clearly implies all others, since in that case the poset (4)
collapse to a one-point poset. Some others are straightforward; for instance, if i = 1,
then all combinations with at least one occurrence of ¢ become equivalent to c. Less
trivial implications are proven as follows. From cic = i one gets ic = icic = ii = i and
ci = cici = ii = i. Similarly, ici = ¢ implies both c¢i = ¢ and ic = c. Therefore both
cic =i and ici = c yield cic = ici. Finally cic = ici implies ic = icic = iici = ici and
ci = cici = icii = ici. |

One could also be interested in equations which are not explicitly shown in (6) as they
arose by putting together two (or more) of those shown in the diagram. However, every
such compound equation is already present, up to equivalence, in the diagram. A couple
of notable examples follow.

e c¢c=i ifandonlyif cic=1 ifandonlyif ic=1 ifandonlyif ci=1 if and
only if ici =1

"We will not claim that this number cannot be reduced further, although we have some reason
(see Section 2.6) to think it cannot.
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The constructive Kuratowski’s problem 9

Every equation of the form cx = 1 implies ¢ = 1 (because c =cl = ccx =cx = 1),
and hence also x = 1. Similarly, every equation of the form ix = 1 implies i = 1 = x.
So ic = 1 yields i = 1 = ¢ and hence it is equivalent to ¢ = i. Similarly, ci = 1 is
equivalent to ¢ = i too. Also, ici = 1 yields i = 1 = ¢i and hence i = 1 = c; so, again,
it is equivalent to ¢ = i. And similarly for cic = 1.

e cic = ici if and only if ic = ci

The equation cic = ici yields ic = ici = ci by (6); conversely, if ic = ci, then
cic = cci = ci = cil = ici.

For instance, the classical Sierpiniski space satisfies ic = ci, and hence its Kuratowski
monoid has the following form.

ic = ici = cic = ci 1

7

1

This provides also some counterexamples: it shows that ic = ici = cic = ci implies
neither ic = i nor ¢i = i nor c¢i = ¢ nor ic = c.

2.3 Approaching the topological case: posets with overlap

In this section we gradually approach the topological case, but without actually reaching
it, that is, we shall still work in a pretty general order-theoretic framework. So, we
gradually require additional properties (and structure) on the poset L and the operators
i and c: topological spaces as constructively understood will always be the motivating
examples.

From now on let us suppose that L is equipped with an overlap relation according to

the following definition.?

Definition 2.4 A poset with overlap is a poset (L, <) equipped with a binary relation
3¢ such that:

8As far as we know, the recognition of the importance of the overlap relation in constructive
mathematics, its axiomatization, and its very notation are due to Giovanni Sambin. For more
about posets, lattices, and frames equipped with an overlap relation we refer the reader to
[5, 4, 3, 2, 10] and to the other works on overlap algebras cited therein.
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10 F. Ciraulo

e ifxxy, thenyxx (symmetry)
e ifxxyandy <z, thenxxz (monotonicity)
e if,forall z € L, z = x implies z % y, then x <y (density)

forall x,y,z € L.

When L is a powerset, x 3 y means that x Ny is inhabited (classically, x Ny # (), that
is, x and y overlap.

When we consider interior i and closure ¢ on a poset with overlap, we always assume
that i and ¢ are linked by the following condition:

e ifixxcy,thenix xy (compatibility)

for all x,y € L. (So, for the first time, we require a link between i and c; and, being
such a link asymmetric, we break the duality that has applied till now.)

In a topological space, compatibility follows from the usual (constructive) definition of
¢ in terms of adherent points. Indeed, if a point belongs to the open set ix, so that ix is
one of its open neighbourhoods, and, at the same time, it belongs to the closure ¢y of y,
then y and the open neighbourhood ix has to overlap each other by the very definition
of c.

Lemma 2.5 Let L be a poset with overlap, and let i and c be interior and closure
operators on L. If i and c are linked by compatibility, then ¢ = cic implies ici = i.

Proof Assume ¢ = cic. We have to check that icix < ix for every x € L (the converse
inequality being trivial). By density, it is sufficient to check that z 3 icix implies z 3 ix
forall z € L. So let z % icix. By (symmetry and) monotonicity, we have cz x icix,
and hence cicz ¥ icix by assumption. So icz ¥ icix by (symmetry and) compatibility
and hence icz ¥ cix by monotonicity. By applying compatibility again we get icz 3¢ ix
and hence cz x ix by (symmetry and) monotonicity. A last application of (symmetry
and) compatibility gives z 3 ix as wished. a

Proposition 2.6 Let L be a poset with overlap, and let i and c be interior and closure
operators on L linked by compatibility. Then the following hold:

e ifc=1ic,thenci=1i

e ifc=ci,thenic =i

e ifc=ici,thenc =i

Proof All items follow easily from the implications in (6) together with the previous
lemma. For instance, if ¢ = ic, then ¢ = cic and hence ici = i;soci = (ic)i=i. O
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The constructive Kuratowski’s problem 11

Under the present assumptions, therefore, (6) can be simplified and redrawn as follows

@) ici =i

ic = ici c = cic ci = ici

ic=1 cic = ici ci=1
T T
c=ci cic=1 c=ic
c=1
i=1

where ¢ = ici and ¢ = i are now equivalent to i = 1.

2.4 Closure and interior on a semilattice with overlap

Let L be a poset with overlap. We now assume that L has all finite meets; we write
x Ay for the meet of x and y, and T for the top element. Also, we assume a further
condition on the overlap relation, namely

xxyifandonlyif xAy) = T
for all x,y € L. In this case, we call L a semilattice with overlap.
Moreover, we require that i fixes T,
iT=T
and we show that, in this case, we can contract diagram (7) further.’
Proposition 2.7 Let L be a semilattice with overlap, i an interior operator on L such

that iT = T, and c a closure operator on L compatible with i. Then, in addition to the
properties in Proposition 2.6, we also have:

* ¢ = cic implies (and so it is equivalent to) ¢ = ic;

“Requiring i(x A y) = ix A iy would be quite natural too, although it does not seem to lead to
further simplification.
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12 F. Ciraulo

* ¢ = ci implies (and so it is equivalent to) i = 1.

Proof The second item follows from the first; indeed, ¢ = c¢i implies both ic = i and
¢ = cic; so we have ¢ = ic = i by the first item, and hence i = 1. The first item can be
proven as follows. First, by (5), we rewrite the premise as 1 < cic and the conclusion
as 1 < ic. Then we check that x < icx by means of density. Assume z 3 x, that is,
(z Ax) = T. By our premise, this gives cic(z A x) 3 T. Since T = iT, we have
ic(z A x) % T by compatibility, and hence (cz A icx) = T by monotonicity.!® This
means cz ¥ icx and, by compatibility again, we get z 3 icx and we can conclude. O

Under the present assumptions, therefore, (7) becomes (8).

(8) ic = ici ici=1 ci = ici
| > >
ic=1i cic = ici ci=1
~. 1 ]
cic=1i c=ic
c=1
i=1

Classical Kuratowski monoids. We pause here and derive the classical result for
topological spaces. In that case, in fact, we have —i = ¢— and —c¢ = i— so that
¢ = —i— and i = —c—; here — can be modelled as an involutive, antitone map on L.
Under such assumptions, one has the following implications:

e if ici =i, then ¢ = ic;

e ific=1i,theni=1.
Indeed, these are just the two items in Proposition 2.7, although written in a classically
equivalent form (ici = i is equivalent to —ici— = —i—, that is, cic = c; and ic =i is
equivalent to —ic— = —i—, thatis, ¢i = ¢).

OClearly, ic(z A x) < icz < cz and ic(z A x) < icx.
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The constructive Kuratowski’s problem 13

Therefore, under the present assumptions (so, in particular, in every topological space
within a classical metatheory), diagram (8) reduces to

9 ic =ici | = ici

S N

cic = ici ici=1
i=1

and no other implications hold in general. For instance, the Sierpiniski space satisfies
ci = ic, thatis, cic = ici while ici # i.

Each of the 5 conditions shown in the diagram (9) corresponds to a particular class of
spaces and gives rise to a corresponding Kuratowski monoid. For instance, the monoid

corresponding to a Boolean space (ici = i) has just three elements, namely i < 1 < ¢,
because ¢ = cic = ic and ci = ici = i. We refer the reader to [6] for further details.

2.5 Kuratowski’s problem for Kolmogorov spaces

In this section, in order to simplify diagram (8), we restrict our attention to Ty
(Kolmogorov) spaces. Throughout this section, therefore, L will be the powerset of
X, with X a topological space, and i and ¢ will be the topological interior and closure
operators on it. Here X is said to be a Kolmogorov space if

cfxp =c{y} 2 x=y (To)
forall x,y € X.
We are going to show that in this case ¢ = ic becomes equivalent to i = 1.!! Actually,

we can prove a bit more. First, let us consider the following separation properties for a
space X:

e xec{y} > yec{x}, forallx,y e X (Ro)
e cfx}=uxforallx e X (Ty)

Clearly T is the conjunction of Ty and Ry. Then we have the following (see [2]):

(1) for any topological space, ci = i implies Ry

"Classically, the restriction to Kolmogorov spaces is perhaps undesirable as it makes even
the condition ici = i (Booleanness) boil down to i = 1 (discreteness).
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14 F. Ciraulo

(2) for any Kolmogorov space, ci = i implies 7} '

(3) for any Kolmogorov space, ¢ = ic implies i = 1
Indeed, item (3) follows from item (2) because ¢ = ic implies c¢i = i and hence, by
T), we have i{x} = i(c{x}) = c¢{x} = {x}. Item (2) follows from item (1) since Ry
is equivalent to 7 in the presence of Tj. Lastly, item (1) can be proven as follows.
Assume x € ¢{y} and let A be any open neighbourhood of y; then x € c¢{y} CcA =A
(because ci = i). Thus every open neighbourhood of y overlaps {x}, thatis, y € c¢{x}.

In the case of a Kolmogorov space, therefore, diagram (8) becomes

(10) ic = ici ici=1 ci = ici
| > >
ic=1i cic = ici ci=1
cic=1i
c=1
i=1

because ¢ = ic is now equivalentto i = 1.

2.6 A Brouwerian counterexample

In [2], a family of topologies (2, 7,) on the set 2 = {0, 1} is constructed, with p ranging
over the collection of intuitionistic truth values €2. There it is shown that ¢ = 1 holds
in every such space, so that they are 7 (and even T,). Moreover, (2, 7,) is discrete if
and only if p V —p holds. So assuming that ¢ = 1 implies i = 1 for all topological
spaces is equivalent to LEM:

(c=1—-i=1)<= LEM

"2Although it is not strictly related to the thread of our discussion, it is perhaps worth noting
that ci = i, for a Tj space, implies even that the space is Hausdorff (75 ), provided that 7 is
defined as follows: if A and B overlap for all opens A > x and B 3 y, then x = y (which is
classically equivalent to the usual formulation of 7,, of course). Indeed, the premise of 7,
means that x € ¢(B) for all open B > y; under the assumption ci = i, this becomes x € B for
all open B 3 y, that is, y € ¢{x}; therefore y = x because T; follows from ci = i.
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The constructive Kuratowski’s problem 15

We refer the interested reader to [2] for the construction of (2, 7,) and the proof of its
properties. Here we just recall the definition of 7, for the readers who want to try to
work out the details themselves: put P = {x € 2 | p} and consider the topology 7,
whose basic (sic) open sets are {0} NP, {1} NP, {0} UP,and {1} UP.

As a consequence, none of the 8 conditions different from i = 1 in (10) can imply i = 1
constructively (some, of course, cannot imply it either classically).

2.7 On discrete and almost discrete spaces.

A consequence of the discussion in the previous sections of this chapter is that there are
a number of conditions on ¢ and i which force a Kolmogorov space to be discrete and
so they are all equivalent to i = 1. For convenience, we collect them all here: i = 1,
c=1l,ici=1,ic=1,ci=1,cic=1,1<ici, 1 <ic,1<ci, 1 <cic, c = cic,
¢ =ic, ¢ = ci, ¢ = ici. On the contrary, as we know from the counterexample above,
there are other conditions that cannot imply i = 1 constructively, although they hold in
all discrete spaces, an example being ¢ = 1.

We now restrict our attention to the condition ici = i. Classically, a space that satisfies
ici = i is Boolean (see page 22); that is, its open sets form a complete Boolean algebra
with respect to the usual set-theoretic operations.'> And a Boolean, Kolmogorov space
is just a discrete space [2]; hence a Boolean space can be considered almost discrete.
Constructively, the picture is not so trivial. . .

The open sets of a space such that ici = i form a (spatial) overlap algebra [2], a
constructive variation on the notion of a Boolean locale.'* So it makes sense to study
Kolmogorov spaces where ici = i. Constructively, there are (at most) 6 possible
Kuratowski monoids for such a space. One is the discrete case (i = 1) in which all
operators coincide: this is the only possibility under classical logic. The other 5Sare
shown below.

=1 c

o

cic=ic=ci=ici=1i 1

cic=ic=ci=ici=1

“Boolean spaces are also known as partition spaces [6].

'“Qur personal motivation in studying the condition ici = i lies precisely in the fact that it is
connected to our work on overlap algebras [5, 4, 3, 2]. In view of the theory of overlap algebras,
one could claim that ici = i is a natural constructive counterpart to Booleanness.
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C C C

NN
N

ici =1

cic = ci 1 cic = ic 1

e

ic=1ici=1i ci=ici=i i

In view of the counterexample recalled above, we know that the first of the 5 monoids
shown above cannot collapse to the discrete case.

We end this section with a brief look at another condition, namely ¢ = ic. Classically
this is just another equivalent way to define a Boolean space. One feature that makes
this condition interesting from a constructive point of view is that a Kolmogorov space
satisfying it has to be discrete (like in the classical case), as shown in Section 2.5 above.
Constructively, therefore, there can be only two Kuratowski monoids satisfying ¢ = ic
(without assuming Ty of course): one is shown below,

c=cic=1ic

1

ci=ici=1

and the other is the one-point monoid corresponding to the discrete case.

3 The interior-(pseudo)complement problem

Aim of this section is to address the issue of dealing with the pseudocomplement. Again,
we prefer working in an abstract algebraic setting.'> Accordingly, throughout this
section we assume our poset L to be equipped with a pseudocomplement operator —,
that is, a function — : L — L such that

x < —yifandonlyify < —x

'5The difficult problem of studying all possible combinations of i, ¢ and — in an abstract
setting, and under various assumptions, was tackled in [1]; there several cases are classified by
means of a substantial use of computer-aided methods.
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for all x,y € L. Standard arguments show that the following properties hold in every
poset with pseudocomplement:

¢ X< ——x 1<—)
e ifx<y,then —y < —x (— 1is antitone)
s - x=x (-—=-=-)
e y<——yifandonlyif - —x< ——y (—— is a closure operator)

(for x,y € L). In particular, — defines an antitone Galois connection on L.
As usual, let i be an interior operator on L. We put b = —i—.

It is easy to check that b is a closure operator.'® So we can apply Proposition 2.1 to i
and b and get (at most) 7 possible combinations of i and b (with no further occurrence
of —) which are arranged as in diagram (4) (where ¢’s have to be replaced by b’s, of
course).

The problem is now to understand what happens when further occurrences of — are
allowed. We claim that the possible combinations amount to 31, at most, as listed in
table (11) below: 17 are monotone (and they include the 7 combination of i and b just
mentioned), while 14 are antitone.

'°Tn constructive topology, b is different from the closure operator ¢ defined via adherent
points; actually it is ¢ < b, but not the other way around. Note also that —b— cannot coincide
with i constructively; in fact, it is not even an interior operator, as —b— < 1 does not hold in
general (think of the case i = 1).
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(1)

monotone antitone
1 _
__ i—
i —b
i—— —i
— b—
—b— i—1i
i——i ib—
b —bi
ib —bi — —
——1ib —ib
bi ibi—
bi — — —bib
ibi —ibi
ibi — — —ibi — —
— — ibi 14
— —ibi — —
bib
17

F. Ciraulo

Some combinations can be written in different ways; here are two examples: —ibi — —
=—i—i—i— — =bib—; —ib=—i—i— = bi—. Classically it makes sense to require
also —— = 1; combinations which coincide under such classical assumptions are put
within the same box in the table above.

To show that there is no other combination which is different from those shown in the
table, we can explicitly construct the Cayley graph of the monoid generated by i and
—, provided that we understand what relations have to be imposed on the generators.
Clearly, we know that ii = i and — — — = —, together with the other equations from
Proposition 2.1 such as ibib = ib and bibi = bi. Moreover, we can prove the following
few facts, which will prove essential in reducing the number of possible combinations.

i—-b=i——i—=i—
(This is a weak version of the classical equation —b = i—.) Since b is a closure
operator (and — is antitone), i — b < i— is clear. As for the other direction, we
have i— < i— b if and only if i— < —b if and only if b < —i— which is trivial.
b—i=—i——i=—i
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(This is a weak version of b— = —i.) As above, —i < b — i holds because
1 < b; while b —i < —i follows from i < i — —i, which is true because 1 < ——
and i is monotone.

s b—i=i—i=i—bi
This is a direct consequence of the previous two facts.

s i—i—i—i=i—i
The composition i— works as a pseudocomplement on the sub-poset of i-fixed
elements!” of L; indeed ix < i— iy if and only if ix < —ijy if and only if iy < —ix
if and only if iy < i — ix. In particular, (i—)® = (i—) when applied to i-fixed
elements.

s i —ibi=i—i=1ibi—i
This is another way to write the previous fact.

o iwi = i — i for every word w written in the alphabet {i, —} and containing
precisely three occurrences of —.
This follows by putting together the previous facts.

* iwi =i — i for every word w written in the alphabet {i, —} and containing an
odd number of occurrences of —.
By repeatedly applying the previous fact.

 jwi is either i or i — —i or ibi for every word w written in the alphabet {i, —}
and containing an even number of occurrences of —.
By the previous fact.

The following is our Cayley graph under the current assumptions. An arc with label /
(with [ =i or [ = —) connects the vertex w to the vertex wl; in this way, any w is the
sequence of labels of the path from 1 to w. In order to increase readability, we have not
drawn i-labelled loops on words of the form wi; moreover, we have written as a single
left-right arrow what should be, in fact, a pair of opposite arcs, both labelled with —,
between w— (=w — ——) and w — —.

"Equivalently, this sub-poset is the image of the map i.
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The corresponding 31—element ordered monoid is shown below (as expected, its Hasse
diagram has two disconnected components): all inequalities are quite straightforward
and we would give no detail. Summing up we have the following result.

Proposition 3.1 Let (L, <,—) be a poset with pseudocomplement and let i be an

interior operator on L. Then there are at most 31 different combinations of i and —,
which are related as shown below (where b = —i— ).
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We have used a double line to connect two operators when they are equal classically,
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that is, under the extra assumption —— = 1. By collapsing such double lines one gets
the classical picture (1).

Constructively, many of the inequalities between monotone operators (first half of the
diagram) are seen to be strict because in the case i = 1 they would imply —— = 1.

Note that the first half of the diagram contains a copy of (4) for ¢ = ——, as expected
since —— is a closure operator. We see no reason to expect some of these 7 operators
to coincide. Why should there be any special link between i and —— in general? So,
for instance, we do not expect i — — < — — i to hold in general; and hence we do not
expect —i < b— either. Similarly for other inequalities.

Some issue, however, is still open and further work is required to find proper Brouwerian
counterexamples and check that all shown inequalities are strict, if that is the case.

Constructively, Boolean spaces are ... trivial! In a Boolean space every open set
is complemented in the lattice of opens, so that ibi = i holds. However, since the
lattice of opens is a sublattice of the lattice of subsets (joins and meets are computed
in the same way, namely, as set-theoretic unions and intersections), every open is also
complemented in the lattice of subsets; so — — i = i. As a consequence, the two
complements of an open set (as an open and as a subset) have to coincide, that is,
i—i= —i.'"® In particular we have —b = — —i— =i—, ib=i—i— = —i— = b and
bi = —i—i = — —i=1i. InaBoolean space, therefore, the number of combinations of
i and — reduces significantly; the corresponding monoid is shown below (only some
notable equations appear explicitly).

b=bib=ib —i

|
PN
e

—bh—

i—=—b

8Here we are using the following simple fact, which holds in every Heyting algebra: an
element x is complemented, that is, there exists y with x Ay = 1 and xVy = T if and only if
xV —x =T (that implies — — x = x). So the complement of x, when it exists, is unique and
coincides with its pseudocomplement —x.
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However pleasant such a picture might look, it is pretty much useless! Indeed, in a
sense, Boolean spaces are uninteresting from a constructive point of view (this is why
other variants of Booleanness are considered in Section 2.7), because of the following
fact [2, Proposition 2.1]: if there exists an inhabited Boolean space, then LEM holds.

To show this, assume (X, 7) is an inhabited Boolean space with @ € X. Let € be the
set of truth values (the powerset of a singleton) and put:

F: 7 — Q G: Q — 71
A — acA p — {xeX]|p}

(The subset B := {x € X | p} is open; indeed, if y € B, then p is true and hence
B = X; so B is open and, in particular, y belongs to the interior of B.) Note that F(X)
is true (because a € X) and that F(A U B) is F(A) V F(B). Moreover, F(G(p)) means
a € {x € X | p} and so it is equivalent to p. Similarly, F(—G(p)) is —p. Putting all
these things together one gets p VV —p if and only if F(G(p)) V F(—G(p)) if and only if
F(G(p) U —G(p)) if and only if F(X) because 7 is Boolean by assumption. So p V —p
is true.

In constructive topology, therefore, Boolean spaces are morally empty.!® So, despite
the fact that Boolean locales play a fundamental role in constructive pointfree topology
(Isbell’s density theorem [8]), Boolean spaces can only have a marginal role in
constructive pointwise topology. For this reason, other variants of Booleanness (such as
those mentioned in Section 2.7) are worthy of being studied.

4 The pointfree Kuratowski’s problem

In this section, we look at the Kuratowski’s problem from a pointfree perspective, that
is, we consider sublocales of a given locale and the operators on them.”’ Accordingly,
the role of our poset L is here played by the co-frame of sublocales (= the frame of
nuclei) of a given locale/frame X.

From a foundational point of view, this section is quite independent from the underlying
logic. Nevertheless, we here see an advantage of the constructive approach adopted

To put it more formally, in a topos in which LEM fails (such as, for instance, the topos of
sheaves over the Sierpinski space), the only Boolean space is the empty space.

2We refer the reader to [9, Chapter II] for a detailed introduction to locales. Apparently, the
literature on the localic version of the Kuratowski’s problem is quite poor. In [1] it is reported
that the problem is studied in [7], but we were unable to retrieve that bibliographic source.
Anyway, the result in this section agrees with what is reported in [1] of the work in [7], namely,
that there are 21 combinations of the operators in the localic case.
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above: the results obtained in the previous sections will come in handy here, since not
all sublocales are complemented (so that the classical approach to the Kuratowski’s
problem does not apply).

Since sublocales form a co-frame, this time we have to deal with a co-pseudocomplement,
that is, a map — on L such that
e —x<yifandonlyif —y <x

(that is, a pseudocomplement on the opposite order). It follows (see Section 3) that:

[ —— S 1

e — is antitone

°* _— _ _ = _

* —— is an interior operator on L

Recall from [9] that a nucleus j is just a closure operator that preserves binary meets in
X the (frame corresponding to the) sublocale defined by j is X; = {x € X | x = jx}.
For instance, the identity map corresponds to X itself, and the constant map x — T
(where T is the top element in X) corresponds to the smallest sublocale of X. An
other important example is the double negation nucleus x — ——x (where — is the
pseudocomplement in X, not to be confused with the co-pseudocomplement in L),
which defines the smallest dense sublocale X, of X.

Nuclei of the form x — a — x, for a € X, define open sublocales; nuclei of the form
x — x V a define closed sublocales. It is well known that open and closed sublocales
are complemented in L: the open and closed sublocales defined by the same a € X
are each other’s complement. Given a sublocale Xj, its closure is the smallest closed
sublocale containing it, and its interior is the greatest open sublocale contained in it.
We write ¢ and i for the operators that map each sublocale to its closure and interior,
respectively; these are a closure operator and an interior operator on the co-frame of
sublocales.

The facts about open and closed sublocales that we have just recalled imply — — i =i
and — — ¢ = ¢ (because open and closed sublocales are complemented). Also we have
¢ —i= —iand i — ¢ = —c because the complement of an open sublocale is closed and
the complement of a closed sublocale is open. As a consequence we get c— < —i and
—c<i—.Soc——<—-i—<candi=——-i< —c— <i——. Moreover, i — — < i
because —— < 1;80i = —c— =i— —,hence —i = c— and —i— = ¢ — —. All these
properties are collected in the following two items.

« ——imi=—c—=i——<-——<c——=—i—<c=——c

e —(¢<i—<—-<c¢c—=-i
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Formally, the Kuratowski’s problem in this case is a special case of the interior-
pseudocomplement problem studied in Section 3. . . provided that one is careful enough!
Indeed, since now — is a co-pseudocomplement, one has to apply Proposition 3.1 with
respect to the opposite order, so that the roles of the interior and closure operators
are switched. Indeed, a closure on (L, <) is an interior on (L,>), and an interior
on (L, <) is a closure on (L, >); similarly, a co-pseudocomplement on (L, <) is a
pseudocomplement on (L, >). As one of the above properties says that i = —c—, we
fall under the assumption about b in Section 3 (where the closure b was supposed to be
—i—). In view of this, we can take the diagrams in Section 3, reverse them (because the
order is now reversed), write ¢ in place of 7, then (in this order!) write i in place of b,
and apply all simplification implied by the above properties. Eventually, we get the
following 21-element monoid.

A counterexample to i— = —c and —i— = c¢. As before, we are not going to seek
for all counterexamples to the above inequalities. However, we will make an exception:
we check that i— £ —c and so ¢ £ —i— (= ¢ — —), as opposite to the fact that both
—i = c— and i = —c— hold. In what follows we can adopt a classical metatheory; in
fact, we want to show i— and —c to be different even classically.

First, we need some extra detail about sublocales. Given a sublocale Xj, its closure is
given by the nucleus x — x V j_L, while its co-pseudocomplement in the co-frame of
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sublocales is given by the nucleus x — A{jy — y | x < y}.%!

We can now come back to our problem. Let X be the opposite of the ordinal w + 1;
more explicitly, X is obtained by taking the natural numbers N, then reversing their
natural order and, finally, adding a bottom element L (the top element T is now 0).
This is easily seen to be a frame. Here we consider the sublocale X—.,. Since it is dense,
we have cX-— = X; so —cX__, is the smallest sublocale of X. On the contrary, we
claim that —X_, = X so that also i — X~ = X. Indeed, we have -n = L for every
n € N.?2 Therefore ——y — y is T if y = L, while it is y otherwise. From this one
can easily see that A{——y — y | x <y} is always equal to x.
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