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Time complexity of the Analyst’s Traveling Salesman
algorithm
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Abstract: The Analyst’s Traveling Salesman Problem asks for conditions under
which a (finite or infinite) subset of RN is contained on a curve of finite length.
We show that for finite sets, the algorithm constructed in Schul [22] and Badger,
Naples and Vellis [3] that solves the Analyst’s Traveling Salesman Problem has
polynomial time complexity and we determine the sharp exponent.
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1 Introduction

The (Euclidean) Traveling Salesman Problem (TSP) (Lawler, Lenstra and Rinnooy
Kan [16], Gutin and Punnen [12], and Applegate, Bixby, Chvátaland and Cook [1])
asks to find the shortest path through a set V of n points in RN that starts and ends at a
given vertex v0 of V . Apart from its natural applications in itinerary design, and its
influence on operations research, and polyhedral theory, in the last 50 years the TSP
has gained great prominence in computer science due to its immense computational
complexity. For example, it is well known that the TSP is NP–hard, see Garey, Graham,
and Johnson [8] and Papadimitriou [20]; that is, it is at least as difficult as the hardest
problems in NP (the class of all problems that can be solved by a non-deterministic
Turing machine in polynomial time O(nk) for some k ∈ N).

What is the minimum amount of time (depending on n) which is required to obtain
a solution of the TSP? Can it be polynomial (ie O(nk) for some k ∈ N)? Obviously,
one could simply try all possible paths but that would require time comparable to
(n − 1)! which is far from being polynomial. The Bellman–Held–Karp algorithm
[6, 13] improves the latter bound to O(n22n). However, it is still unknown whether a
polynomially complex algorithm exists.
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In lieu of the above discussion, “nearly-optimal" algorithms have been explored. That
is, algorithms that produce a path which may not be the optimal one but is comparable
(or even arbitrarily close) in length to the optimal one. The nearest insertion algorithm
(Rosenkrantz, Stearns and Lewis [21]) computes in O(n2) a path which is at most twice
in length of the optimal one; see also Golden, Bodin, Doyle and Stewart [9] and Lin
and Kernighan [17] for heuristics of similar time complexity. Christofides heuristic [7]
computes in O(n3) time a path that is at most 3/2 times the length of the optimal one.
Grigni, Koutsoupias and Papadimitriou [10] designed an algorithm for planar graphs
that for all ϵ > 0 provides in O

(
nO(1/ϵ)

)
time a tour of length at most (1 + ϵ) times the

optimal one. A similar result of O(nO(1/ϵ)) time was also obtained later by Mitchel [18].
In his celebrated work, Arora [2] constructed an algorithm which, for each ϵ > 0, gives
with probability more than 1/2 a path which is at most (1 + ϵ) times the length of the
optimal one in O (n(log n)(O(

√
N/ϵ))N−1

) time. Arora’s algorithm can be derandomized
by increasing the running time by O(nN). See also Bartal, Gottlieb and Krauthgamer
[5] for relevant results.

The Analyst’s Traveling Salesman Problem (ATSP) (Jones [15]) is a generalization of
the TSP where it is asked to find a curve of finite length that contains a given (finite
or infinite) set V ⊂ RN . While the TSP (which is the finite case of ATSP) always
admits a solution, the same is not true in general for the ATSP. For instance, if V is
an unbounded set, then clearly every curve that contains V must be unbounded itself,
hence with infinite length. Perhaps less intuitively, smaller, but still infinite, sets may
not admit a solution. For example, if V is the set of all points in the unit square [0, 1]2

with rational coordinates, it is not hard to see that V is bounded and countable but there
exists no rectifiable curve that contains V .

The classification of sets in RN for which the ATSP can be solved, was done by Jones
[15] (for R2 ) and by Okikiolu [19] (for higher dimensional spaces). Ever since, this
classification has played a crucial role in the development of geometric measure theory,
and has found applications in many facets of analysis including complex analysis,
dynamics, harmonic analysis and metric geometry. The work of Jones and Okikiolu
provides an algorithm that, for any finite set V ⊂ RN yields a tour that is at most C(N)
times longer than the optimal path. Here C(N) is a constant that depends only on the
dimension N . The Jones–Okikiolu algorithm is based on a local version of the Farthest
Insertion algorithm (Johnson and McGeoch [14]).

Later, Schul [22] provided a modification of the algorithm so that the ratio of the length
of the yielded path over the length of the optimal path is bounded by a constant C
independent of the dimension N . Variation of this algorithm also appears in the work
of Badgers, Naples and Vellis [3]. Here and for the rest of this paper, we refer to any of
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these two variations as the ATSP algorithm. The purpose of this note is to show that the
ATSP algorithm, in the case that V is finite, has polynomial time complexity.

Theorem 1.1 The time complexity of the ATSP algorithm is O(n3).

We remark that although time-wise this algorithm is fast, the ratio constant of the yielded
path over the optimal path has not been computed and is much larger that Christofides’
3/2 ratio. In fact, in our algorithm, the yielded path has length at most (300)9/2 log 300
times the length of the smallest spanning tree. Moreover, the exponent 3 in our theorem
is sharp and can not be lowered; see Section 5.4.

An interesting connection to the Jones-Scul algorithm was given by Gu, Lutz and
Mayordomo [11] who classified the sets V that admit a solution to a computable
extension of the ASTP. This variant of the problem characterizes the sets which are
contained in a rectifiable computable curve. As we are concerned only with finite sets
here, our algorithm already produces computable curves.

1.1 Outline of the ATSP algorithm

Fix a set V = {v1, . . . , vn} ⊂ RN . The algorithm (described in detail in Section 5)
computes connected graphs Gk = (Vk,Ek) with k = 1, . . . ,m for some m ≤ n, so that
the last graph satisfies Vm = V . First, we compute R0 = 5 max{|v| : v ∈ V} which
takes O(n) time. It is clear that V ⊂ [−R0,R0]N . The construction of graphs now is
roughly as follows.

Step 1:
For the first graph we have V1 = {v1} and E1 = ∅. We set n1 = 1 and U1 = V \ V1 .
If U1 = ∅, then proceed to the Final Step. Otherwise proceed to the next step.

Step k + 1:
Inductively, we assume that for some k ∈ N, we have defined an integer nk ∈ N, two
sets Vk,Uk ⊂ V , and a graph Gk = (Vk,Ek) such that Uk = V \ Vk , Uk ̸= ∅, and Vk

is a maximal (2−nk R0)–separated set. We use results in Section 3 to define an integer
nk+1 > nk , a set Vk+1 that contains Vk and is contained in V , and a set Uk+1 = V \Vk+1

such that Vk+1 is a maximal (2−nk+1R0)–separated set and distH(Vk,Vk+1) < 2−nk+1R0 .
Here and for the rest of this paper, distH(A,B) denotes the Hausdorff distance between
closed sets A,B ⊂ RN :

distH(A,B) = max

{
sup
x∈A

inf
y∈B

|x − y|, sup
y∈B

inf
x∈A

|x − y|

}
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Next, using results in Section 4, we define for each v ∈ Vk a number α that measures
how “flat” the set Vk+1 is around the point v. This notion of flatness is inspired by the
Jones beta numbers in the work of Jones [15] and Schul [22].

Next, following the constructions in Schul [22] and Badger, Naples and Vellis [3], we
create a connected graph Gk+1 = (Vk+1,Ek+1). Roughly speaking, if around some
node v of Gk , the set Vk+1 looks flat (ie the number α is small), then the graph Gk+1

around v should also be flat; otherwise, we add new edges around v so that the new
graph is connected. We take care so that the total number of new edges is at most twice
the total number of new points.

Final Step:
Arriving at this step, we have created a graph Gm = (Vm,Em) with Vm = V . Since each
Vk is different than Vk−1 , we arrive at the final step in at most n steps. We show that
each step above takes O(n2) time, and therefore, we obtain Gm in O(n3) time. Now we
use an algorithm in Section 2.2 to parameterize Gm in O(n3) time.

1.2 Hölder curves

It should be noted that the work of Jones [15], Okikiolu [19], and Schul [22] provides
the sets for which a solution exists but not the solution itself when the set is infinite.
That is, they classify the sets which are contained in curves of finite length, but do
not provide the parametrization of the curves. Recently, the second named author
with Badger and Naples [3] constructed an algorithm that, for those sets V that have
a solution in ATSP, produces a solution path f : [0, 1] → RN which is at most C
times longer than the optimal path with C independent of N . In this algorithm, one
obtains parameterizations ( fk) for all graphs Gk and not just one of them. Moreover,
the parameterizations obtained satisfy the inequality ∥ fk − fk+1∥∞ ≤ 2−nk+1 for all
k . Although this approach is more complicated than the one of Jones and Okikiolu, it
comes very handy in designing Hölder parameterizations of sets such as the space-filling
Peano curve. For finite sets, the algorithm of constructing ( fk) has also polynomial
complexity (and in fact with the same exponent) but we will not pursue this direction
here.

2 Preliminaries on graphs

A (combinatorial) graph is a pair G = (V,E) of a finite vertex set V and an edge set:

E ⊂ {{v, v′} : v, v′ ∈ V and v ̸= v′}

Journal of Logic & Analysis 16:2 (2024)
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A graph G′ = (V ′,E′) is a subgraph of G = (V,E) (and we write G ⊂ G′ ) if V ′ ⊂ V
and E′ ⊂ E . A path in G is a set γ = {{v1, v2}, . . . , {vn−1, vn}} ⊂ E ; in this case
we say that γ joins v1 , vn . A combinatorial graph G = (V,E) is connected, if for
any distinct v, v′ ∈ V there exists a path γ in G that joins v with v′ . A connected
component of a combinatorial graph G is a maximal connected subgraph of G.

2.1 Components of a graph

Given a graph G = (V,E) we describe an algorithm that returns the connected
components of G.

Lemma 2.1 There exists an algorithm that determines the components of G in
O
(
(card V)(card E)2

)
time.

Proof We fix v0 ∈ V and let (V1,1,E1,1) = ({v0}, ∅). Assuming that for some
i ≤ card E − 1 we have defined (V1,i,E1,i), there are two possible cases.

(1) If there exists e ∈ E \ E1,i such that e has an endpoint in V1,i , then we set
V1,i+1 = V1,i ∪ e and E1,i+1 = E1,i ∪ {e}.

(2) If there does not exist e ∈ E \ E1,i such that e has an endpoint in V1,i , then we
stop the procedure and set V1 = V1,i and E1 = E1,i .

For each i, we make sure in O(card V1) that no vertex appears twice. The time needed
for the calculation of V1 is at most a constant multiple of:

card E1∑
i=1

(card V1,i) card E = O
(
(card V1)(card E)2)

If V1 ̸= V , we replace (V,E) by (V \ V1,E \ E1) and we repeat the process again to
obtain (V2,E2). We continue this way until we exhaust all points of V . Since the Vi ’s
are disjoint, the sum of their cardinalities is card V . Thus, the total time needed for the
algorithm to complete is at most a constant multiple of:

O((card V1)(card E)2) + O((card V2)(card E)2) + · · · = O((card V)(card E)2)

2.2 Two-to-one tours on connected graphs

Given a connected graph G = (V,E), we describe here an algorithm that gives a tour
over all edges of G so that each edge is traversed exactly twice and once in each
direction.
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Lemma 2.2 Let G = (V,E) be a finite connected graph and let v0 ∈ V . There exists
an algorithm which in O((card V)(card E)2) time produces a finite sequence (ai)2M+1

i=1
of points in V with M = card E that satisfies the following properties.

(1) We have {a1, . . . , a2M+1} = V with a1 = a2M+1 = v0 .
(2) For any i ∈ {1, . . . , 2M}, {ai, ai+1} ∈ E .
(3) For any e ∈ E there exist exactly two distinct i, j ∈ {1, . . . , 2M} such that

{ai, ai+1} = {aj, aj+1} = e.

Moreover, ai = aj+1 and aj = ai+1 .

Proof Set a0,1 = v0 and E0 = E .

Assume that for some odd k ∈ {0, 1, . . . ,M − 1} we have defined a set Ek ⊂ E and a
finite sequence (ak,i)2k+1

i=1 with the following properties.

(1) The set {ak,1, . . . , ak,2k+1} ⊂ V with ak,1 = ak,2k+1 = v0 .
(2) For any i ∈ {1, . . . , 2k}, {ak,i, ak,i+1} ∈ E \ Ek .
(3) For any e ∈ E \Ek there exist exactly two distinct i, j ∈ {1, . . . , n− 1} such that

{ak,i, ak,i+1} = {ak,j, ak,j+1} = e.

Moreover, ai = aj+1 and aj = ai+1 .

Find e ∈ Ek and j ∈ {0, 1, . . . , 2k+1} such that ak,j ∈ e. Since G is assumed connected,
such j and e exist and the search for them would take at most O(card E card V) time.
Let v be the unique element of e \ {ak,j}. Define now Ek+1 = Ek \ {e} and:

ak+1,i =


ak,i if 1 ≤ k ≤ j

v if i = j

ak,i−2 if j + 2 ≤ i ≤ 2k + 3

The construction of Ek+1 and the sequence (ak+1,i)2k+3
i=1 takes O(card E) time. By

design and the inductive hypothesis, each edge in E \ Ek+1 is traversed exactly twice.
In particular, the properties (1)–(3) above are true for k + 1.

This process terminates when k = M . The total time required is a constant multiple of:

card E (O(card E) + O(card E card V)) = O(card V(card E)2)

For i = 1, . . . , 2M + 1 set ai = aM,i . Note that EM = ∅. By induction, every edge of
E = E \ EM is traversed twice, once in each direction. Since we traverse every edge of
E , we have that {a1, . . . , a2M+1} = V and the proof is complete.
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3 Construction of scales and nets

Given ϵ > 0, we say that a set X ⊂ RN is ϵ–separated if for any x, y ∈ X we have
|x − y| ≥ ϵ. Given a set V ⊂ RN and ϵ > 0, we say that a set X ⊂ V is an ϵ–net if it is
a maximal ϵ–separated subset of V .

Recall the definition of Hausdorff distance from Section 1.1. In the next lemma we
describe an algorithm that gives nets for a given set V .

Lemma 3.1 Let V ⊂ RN be a set of n elements, let ϵ > 0, let X be an ϵ–net of V ,
and let U = V \ X . Assume that U ̸= ∅. Then, in O(n2) time we can compute an
integer k ∈ N, a (2−kϵ)–net X′ of V , and a set U′ = V \ X′ such that X ⊊ X′ ⊂ V and:

(3–1) 2−kϵ ≤ distH(X,X′) < 21−kϵ

Proof Assume that X = {x1, . . . , xl} and U = {u1, . . . , un−l}, with l ∈ {1, . . . , n},
such that U = V \ X . We first calculate:

d = max
i=1,...,n−l

min
j=1,...,l

|xj − ui|

Since both sets X,U have cardinalities at most n, the computation of d takes at most
O(n2) time. Let k be the smallest integer such that 2−kϵ ≤ d ; the computation of k
clearly takes O(1) time. By minimality of k we have that 21−kϵ > d .

We initiate the construction by setting ai = xi for i ∈ {1, . . . , l}, cj = uj for
j ∈ {1, . . . , n − l}. We also set X′

1 = {a1, . . . , al}, U′
1 = ∅, and U′′

1 = {c1, . . . , cn−l}.
This requires O(n) time.

Inductively, assume that after m steps, with m ∈ {1, . . . , n − l}, we have defined three
disjoint sets

X′
m = {a1, . . . , ap}, U′

m = {b1, . . . , bl+m−p−1}, U′′
m = {c1, . . . , cn−l−m+1}

such that (X′
m \ X) ∪ U′

m ∪ U′′
m = U . Conventionally, if l + m − p − 1 = 0, then we

assume U′
m = ∅. If

(3–2) min
i=1,...,p

|cn−l−m+1 − ai| ≥ 2−kϵ

then we set ap+1 = cn−l−m+1 and:

X′
m+1 = X′

m ∪ {ap+1}, U′
m+1 = U′

m, U′′
m+1 = U′′

m \ {cn−l−m+1}

Otherwise, we set bl+m−p = cn−l−m+1 and:

X′
m+1 = X′

m, U′
m+1 = U′

m ∪ {bl+m−p}, U′′
m+1 = U′′

m \ {cn−l−m+1}

Journal of Logic & Analysis 16:2 (2024)
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Note that the calculation of (3–2) as well as the definition of sets X′
m+1,U′

m+1 and U′′
m+1

requires O(n) time to complete.

Set X′ = Xn−l+1 and U′ = U′
n−l+1 . The construction of X′,U′ takes O(n2) time to

complete. It remains to verify the conclusions of the lemma.

By the definition of d , there exists at least one element u in U such that |x − u| ≥ 2−kϵ

for all x ∈ X . Therefore, the set X′ \ X is nonempty. Moreover, it is clear that X′

is a (2−kϵ)–separated set. To show that X′ is maximal, assume for a contradiction
that there exists v ∈ V such that |x − v| ≥ 2−kϵ for all x ∈ X′ . Then, there exists
m ∈ {1, . . . , n − l} such that x = cn−l−m+1 . But then, by (3–2), x would end up in
X′ which is false. The lower bound of (3–1) follows from the 2−kϵ–separability of X′

and the fact that X′ \ X ̸= ∅. For the upper bound of (3–1) assume for a contradiction
that there exists x′ ∈ X′ such that |x′ − x| ≥ 21−kϵ for all x ∈ X . Then, clearly
x′ ∈ V \ X ⊂ U and it follows that d ≥ 21−kϵ. But that contradicts the minimality of k
since k − 1 could also work.

4 Flatness modules and flat pairs

In this section we examine a notion of local flatness introduced by Jones [15] and further
developed by Schul [22] and Badger and Schul [4]. For the rest of this section we
fix C0 = 300, a finite set V ⊂ RN consisting of n elements, an ϵ–net X ⊂ V , and a
(2−kϵ)–net X′ ⊂ V such that X ⊂ X′ and:

2−kϵ ≤ distH(X,X′) < 21−kϵ

In [22] Schul defined for each v ∈ X a number that measures the (normalized) thickness
of the thinnest cylinder that contains the set:

Bv,X′ := B(v,C02−kϵ) ∩ X′

In our case, the numbers that we define measure the same thing with one difference; we
will only consider a finite set of cylinders that contain Bv,X′ (as opposed to all cylinders)
and we will choose the thinnest one. Nevertheless, the two flatness modules are close to
each other; see Lemma 4.2.

4.1 Flatness modules

For the rest of this section, L is an integer with L ≥ 40C0
√

N − 1 and G =

{−2L, . . . , 2L}N . Given two distinct points y1, y2 ∈ RN , we denote by ℓ(y1, y2)
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the unique line that passes through y1, y2 and define the normalized distance:

D(y1, y2) = max
z∈Bv,X′

2kϵ−1 dist(z, ℓ(y1, y2))

Given v ∈ X , define
αv,X′ = min

x∈ϕ(G)
min

y∈ϕ(G)\{x}
D(x, y)

where ϕ(z) = C02−kϵL−1z + v. Essentially, αv,X′ measures the smallest distance of
the set Bv,X′ to all lines going through a fine grid of the cube v + C021−kϵ[−1, 1]N

normalized by 2−kϵ. We set ℓv,X′ to be the line passing through points x, y ∈ ϕ(G) with
x ̸= y that minimize the quantity D(x, y).

Lemma 4.1 Number αv,X′ and line ℓv,X′ can be computed in O(card X′) time.

Proof We start by constructing the sets Bv,X′ . We check over all points u ∈ X′ whether
or not |v − u| < C02−kϵ. Then the total time needed to construct the set Bv,X′ is
O(card X′). Since the set G is finite and independent of n, the calculation of αv,X′ and
of ℓv,X′ takes O(1) time. This completes the proof of the lemma.

Remark 4.1 Since for each v ∈ X we have to go through the entire set X′ in order to
construct Bv,X′ , the computations of the preceding lemma are sharp; that is, there exists
universal C > 0 such that it takes at least C card X′ time to compute Bv,X′ .

Lemma 4.2 If there exists a line ℓ such that maxx∈Bv,X′ dist(x, ℓ) ≤ (1/20)2−kϵ, then
αv,X′ ≤ 1/16.

Proof Suppose that ℓ is a line with maxx∈Bv,X′ dist(x, ℓ) ≤ (1/20)2−kϵ. Without loss
of generality, we may assume that ℓ intersects the cube v + C02−kϵ[−1, 1]N ; otherwise
we replace ℓ by a line parallel to ℓ that intersects the boundary of the cube and is closer
to the set Bv,X′ . Then, ℓ intersects the boundary of the cube v+C021−kϵ[−1, 1]N on two
points p1, p2 which have distance at least 23/2C02−k . Now, we can find p′1, p′2 ∈ ϕ(G)
such that for i = 1, 2:

|pi − p′i| ≤ 1
2

√
N − 1C02−kϵL−1 ≤ 1

80 2−kϵ

By the choice of L , we have that p′1 ̸= p′2 .

Fix x ∈ Bv,X′ . Then, by the choice of L:

dist(x, ℓ(p′1, p′2)) ≤ dist(x, ℓ) + max
i=1,2

|pi − p′i| ≤ 1
16 2−kϵ

Therefore, αv,X′ ≤ 2kϵ−1 maxx∈Bv,X′ dist(x, ℓ(p′1, p′2)) ≤ 1/16.
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4.2 Flat Pairs

Following Badger, Naples, and Vellis [3, Definition 2.4], for each v ∈ X we define the
set of flat pairs Flat(v,X,X′) to be the set of {v, v′} ⊂ X such that

(1) ϵ ≤ |v − v′| < C02−k−1ϵ, and
(2) αv,X′ < 1/16 and there exists an orientation of the line ℓv,X′ such that v′ is the

first point of X ∩ B(v,C02−k−1ϵ) to the left or to the right of v with respect to
the given orientation.

Note that if k is large, then the first condition fails immediately and no flat pairs exist.
Here and for the rest of the paper, given a point x ∈ RN , we denote the first coordinate
of x by ⟨x⟩1 .

Lemma 4.3 The set Flat(v,X,X′) can be computed in O(card X′) time.

Proof We first compute the set

B′
v,X := X ∩ B(v,C02−k−1ϵ)

and as in Lemma 4.1, it is easy to see that B′
v,X can be computed in O(card X′) time.

Next we compute αv,X′ which also takes O(card X′) time.

If B′
v,X contains only v, or if αv,X′ > 1/16 then we set Flat(v,X,X′) = ∅.

Assume now that B′
v,X contains more than v and that αv,X′ ≤ 1/16. Having the line

ℓv,X′ from the previous subsection, we apply an isometric affine transformation

Ψ : RN → RN , Ψ(x) = A(x − v)

such that A is an orthogonal matrix, Ψ(v) = 0, and Ψ maps the line generated by
ℓv,X′ onto the line passing trough the origin that is parallel to the x1 –axis. The matrix
A can be generated in O(1) time. We compute the set {⟨Ψ(v′)⟩1 : v′ ∈ B′

v,X} and
enumerate them from lowest to highest. By Badger and Schul [4, Lemma 8.3] no two
first coordinates can be equal.

• If there exists v′ ∈ B′
v,X with ⟨Ψ(v′)⟩1 < 0, then choose the point v′ ∈ B′

v,X′ with
the highest first coordinate that is negative, and place {v, v′} in Flat(v,X,X′).

• If there exists v′ ∈ B′
v,X with ⟨Ψ(v′)⟩1 > 0, then choose the point v′ ∈ B′

v,X with
the lowest first coordinate that is positive, and place {v, v′} in Flat(v,X,X′).

Since αv,X′ ≤ 1/16 and since B′
v,X′ \ {v} is nonempty, at least one of the two cases

above must hold. If both hold, then we perform both actions.

Since X is ϵ–separated, the cardinality of B′
v,X depends only on N , and the above

computations can be done in O(1) time. Hence, the computation of Flat(v,X,X′) can
be done in O(card X′) time and the proof is complete.
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5 ATSP algorithm and proof of Theorem 1.1

Before starting the algorithm, we calculate R0 = 5 max{|v| : v ∈ V}. This takes O(n)
time. Here and for the rest of this section, all constants depend only on the dimension
N .

5.1 Step 1:
We set n1 = 1, V1 = {v1}, and U1 = V \ {v1}. These definitions take O(n) time. If
U1 = ∅, then we move to the Final Step; see Section 5.3. Otherwise, we apply the
algorithm of Lemma 3.1 for X = V1 and ϵ = 2−1R0 and we obtain in O(n2) time an
integer n2 > 1 and a (2−n2R0)–net V2 along with a set U2 = V \ V2 . Now, we apply
the algorithm of Lemma 4.1 to obtain in O(n) time a number αv1,V2 . If αv1,V2 > 1/16,
then we set N1 = {v1} and F1 = ∅. Otherwise, we set F1 = {v1} and N1 = ∅. We
also set E1 = ∅ and G1 = (V1,E1). Step 1 takes O(n2) time.

5.2 Step k + 1:
Suppose that for some k ∈ N we have produced

• an integer nk ≥ 1,
• a (2−nk R0)–net Vk and a nonempty set Uk = V \ Vk ,
• two disjoint sets Nk,Fk ⊂ Vk with Nk ∪ Fk = Vk ,
• a connected graph Gk = (Vk,Ek) such that card Ek ≤ 2 card Vk ,
• an integer nk+1 > nk , and
• a (2−nk+1R0)–net Vk+1 and a set Uk+1 = V \ Vk+1 .

If Uk+1 = ∅, then this paragraph can be skipped. Otherwise, we apply the algorithm of
Lemma 3.1 with X = Vk+1 and ϵ = 2−nk+1R0 and we obtain in O(n2) time an integer
nk+2 > nk+1 , a (2−nk+2R0)–net that contains Vk+1 , and a set Uk+2 = V \ Vk+2 .

Next, we produce three new families Fk+1,Nk+1,Ek+1 .

5.2.1 Families Nk+1 and Fk+1

We perform this part of Step k + 1 only if Uk+1 ≠ ∅, otherwise we omit it. For each
v ∈ Vk+1 we compute αv,Vk+2 and

• if αv,Vk+2 > 1/16, then we place v in Nk+1 ;
• if αv,Vk+2 ≤ 1/16, then we place v in Fk+1 .

By Lemma 4.1, the constructions of sets Nk+1,Fk+1 , takes a total of O(n2) time.

It remains to construct Ek+1 . The new edges will come from three sources; from old
edges in Ek , around points in Fk , and around points in Nk .
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5.2.2 Edges coming from Ek

Recall from Section 4 that C0 = 300. For each element e = {u, u′} ∈ Ek , we compute
|u − u′| and the two numbers αu,Vk+1 and αu′,Vk+1 .

If |u − u′| ≥ C02−nk+1−1R0 , or if both αu,Vk+1 and αu′,Vk+1 are more than 1/16, then
we place e in E(1)

k+1 . This case takes O(n) time. We set Vk+1(e) = ∅; this set will not
play a role in the algorithm but we define it for consistency.

If |u − u′| < C02−nk+1−1R0 and at least one of αu,Vk+1 , αu′,Vk+1 (say αu,Vk+1 ) is less or
equal to 1/16, then we calculate Bu,Vk+1 ∪ Bu′,Vk+1 and ℓu,Vk+1 . We also calculate an
isometric affine map Ψ that takes u to the origin, takes u′ to a point with positive first
coordinate, and takes the line ℓu,Vk+1 onto the x1 –axis. Then we determine those points
u1, . . . , ul ∈ Bu,Vk+1 ∪ Bu′,Vk+1 such that the first coordinates satisfy:

0 = ⟨Ψ(u)⟩1 < ⟨Ψ(u1)⟩1 < · · · < ⟨Ψ(ul)⟩1 < ⟨Ψ(u′)⟩1

By Badger and Schul [4, Lemma 8.3] we know that no distinct points Ψ(ui),Ψ(uj)
have equal first coordinates so the inequalities above are justified. We set Vk+1(e) =
{u1, . . . , ul} and we add the edges {u, u1}, . . . , {ul, u′} in E(1)

k+1 . The calculation of
αu,Vk+1 and αu′,Vk+1 , as well as the calculation of Bu,Vk+1 , Bu′,Vk+1 takes O(n) time.
The calculation of ℓu,Vk+1 , Ψ, and the subsequent ordering takes O(1). (However, l is
bounded by a constant independent of N ; see [3, Remark 3.2]). Therefore, this case
takes O(n) time.

In total, the computation of E(1)
k+1 takes O(n) card Ek = O(n2) time, with the associated

constants depending only on N . Moreover:

(5–1) card E(1)
k+1 ≤ card Ek + 2

∑
e∈Ek

card Vk+1(e)

Remark 5.1 Let e, e′ ∈ Ek satisfy the assumptions of the second case. Then by [3,
Lemma 3.3], Vk+1(e) ∩ Vk+1(e′) = ∅.

5.2.3 Edges coming from points in Fk

For each element u in Fk we calculate the closed ball Bu,Vk+1 and the associated line
ℓu,Vk+1 which takes O(n) time. Calculate an isometric affine map Ψ : RN → RN that
takes the line ℓu,Vk+1 to the x1 –axis, and u to a point with zero first coordinate. This takes
O(1) of time. If there exists u′, u′′ ∈ Bu,Vk+1 ∩ Vk such that ⟨Ψ(u′)⟩1 < 0 < ⟨Ψ(u′′)⟩1 ,
then no new edges are obtained from u and we move to the next element of Fk .
Otherwise, we work as follows.
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(1) If there exists no u′ ∈ Bu,Vk+1 ∩ Vk such that ⟨Ψ(u′)⟩1 < 0, then enumerate the
points u1, . . . , ul ∈ B(u, 21−nk+1R0) such that

⟨Ψ(u1)⟩1 < · · · < ⟨Ψ(ul)⟩1 < 0 = ⟨Ψ(u)⟩1

and add the edges {u1, u2}, · · · , {ul, u} in E(2)
k+1 .

(2) If there exists no u′ ∈ Bu,Vk+1 ∩ Vk such that ⟨Ψ(u′)⟩1 > 0, then enumerate the
points u1, . . . , ul ∈ B(u, 21−nk+1R0) such that

⟨Ψ(u1)⟩1 > · · · > ⟨Ψ(ul)⟩1 > 0 = ⟨Ψ(u)⟩1

and add the edges {u1, u2}, · · · , {ul, u} in E(2)
k+1 .

If none of the above is true, then no new edges are obtained from u and we move to the
next element of Fk . If both are true, we perform both of them. By [3, Remarks 3.4 and
3.5], we have that l ≤ 6. Therefore, the computation of points ui , their enumeration,
and addition of edges takes O(1) time. The set of all the points in Vk+1 \ Vk coming
from both of these cases above (if any) is denoted by Vk+1(u).

We repeat the same process for all points in Fk and the construction of E(2)
k+1 is done in

(cardFk)O(n) = O(n2) time. Moreover:

(5–2) card E(2)
k+1 ≤ 2

∑
u∈Fk

card Vk+1(u)

Remark 5.2 By Badger, Naples, and Vellis [3, Lemma 3.6], if u, u′ ∈ Fk , then
Vk+1(u) ∩ Vk+1(u′) = ∅. Moreover, if e ∈ Ek and u ∈ Fk , then Vk+1(u) ∩ Vk+1(e) = ∅.

Before proceeding to the final set E(3)
k+1 we enumerate:

Nk = {u1, . . . , ul}

5.2.4 Edges coming from Nk : first step

Define the set:
V ′

k+1(u1) = B(u1,C02−nk+1R0) ∩ Vk+1

The construction of this set requires O(n) time and its cardinality is O(1). We now go
over the set E(1)

k+1 ∪ E(2)
k+1 formed above and if a point v ∈ V ′

k+1(u1) is contained in an
edge of E(1)

k+1 ∪ E(2)
k+1 , then we remove it from the set V ′

k+1(u1) and in this way we form
the set Vk+1(u1) in O(n) time. By the doubling property of RN , card Vk+1(u) = O(1).
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Moreover, from the previous subsections we already have that every point in Vk is
already contained in an edge of E(1)

k+1 ∪ E(2)
k+1 . Therefore:

Vk+1(u1) ⊂ Vk+1 \

Vk ∪
⋃

e∈Ek

Vk+1(e) ∪
⋃

u∈Fk

Vk+1(u)


If the set Vk+1(u1) is empty, then we are done with u1 and we move to u2 . Otherwise,
we construct the set:

Flat(k + 1, u1) =
⋃

u∈Vk+1(u1)

Flat(u,Vk,Vk+1)

Since there are O(1) points in Vk+1(u), by Lemma 4.3 it takes a total of O(n) time
to determine

⋃
u∈Vk+1(u1) Flat(u,Vk,Vk+1). We make sure that the latter set does not

contain the same edge twice and we denote it by Flat(k+ 1, u1). Since the cardinality of
Flat(k + 1, u1) is O(1), this can be done in O(1) time. Define Ṽk+1(u1) to be the union
of V ′

k+1(u1) and the set of all points in Vk+1 that belong to an edge in Flat(k + 1, u1).

Next, we form the graph Gk+1(u1) = (Ṽk+1(u1),Flat(k+1, u1)). We apply the algorithm
of Lemma 2.1 which in O(1) time returns the components of Gk+1(u1). If there is only
one component, then we set Ek+1(u1) := Flat(k + 1, u1) (making sure in O(1) time
that no edge appears twice) and we add all edges of Ek+1(u1) (if any) in E(3)

k+1 and we
move to u2 . If there are p components with p ≥ 2, then we fix a point u1,i in each
component and we set

Ek+1(u1) := {{u1,1, u1,2}, . . . , {u1,1, u1,p}} ∪ Flat(k + 1, u1)

and we add all edges of Ek+1(u1) in E(3)
k+1 .

Recall that each point in Vk+1(u1) can be in at most 2 edges of Flat(k+1, u1). Therefore,
it is not hard to see that:

card(Ek+1(u1)) ≤ 2 card(Vk+1(u1))

If l = 1, then the definition of E(3)
k+1 is complete we move to Section 5.2.6; otherwise

and we move to u2 .

5.2.5 Edges coming from Nk : inductive step

Suppose that we have already added edges to E(3)
k+1 from vertices u1, . . . , up−1 with

p ≤ l. The definition of the set Vk+1(up) is the same as with Vk+1(u1) with one
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important exception: this time we go over the set E(1)
k+1 ∪ E(2)

k+1 ∪ E(3)
k+1 instead of just

E(1)
k+1 ∪ E(2)

k+1 . Therefore,

(5–3) Vk+1(u1) ⊂ Vk+1 \

Vk ∪
⋃

e∈Ek

Vk+1(e) ∪
⋃

u∈Fk

Vk+1(u) ∪
p−1⋃
i=1

Vk+1(ui)

 .

The rest of the construction is verbatim the same as before and we add to E(3)
k+1 a new

(possibly empty) set of edges Ek+1(up) with

(5–4) card(Ek+1(up)) ≤ 2 card(Vk+1(up)).

5.2.6 Definition of Ek+1

Going over the entire set of Nk , we finally define E(3)
k+1 in O(n2) time. From Remark 5.1,

Remark 5.2, and (5–3), we have that the three sets E(1)
k+1 , E(2)

k+1 , E(3)
k+1 are mutually

disjoint and by estimates (5–1), (5–2) and (5–4):

card(E(1)
k+1 ∪ E(2)

k+1 ∪ E(3)
k+1) ≤ card Vk + 2 card(Vk+1 \ Vk) ≤ 2 card Vk+1

We now set Ek+1 = E(1)
k+1 ∪ E(2)

k+1 ∪ E(3)
k+1 (the enumeration takes O(n) time) and the

inductive step is complete.

5.3 Final Step:
To finish the proof of Theorem 1.1, we remark that for the final graph Gm = (Vm,Em)
that we obtained, we have that Vm = V and card Em = O(n). Therefore, the algorithm
of Lemma 2.2, produces the desired tour in O(n3) time. This completes the proof of
Theorem 1.1.

5.4 Sharpness of exponent 3
Here we discuss why the time complexity O(n3) is sharp. We will do this by analyzing
the computations of the flat pairs and flatness modules. Note that the complexity of
O(n3) appears during many other steps of the algorithm as well (e.g. Lemma 2.1 and
Lemma 2.2).

Let n be a positive integer and suppose that for all i ∈ {1, . . . , n} , card Vi = i.
At step k , we perform the calculation of sets Flat(v,Vk,Vk+1) for each v ∈ Vk

which, by Remark 4.1, requires C card Vk+1 time for each such v, and for some
fixed constant C > 0. Therefore, the computation of all flat pairs at step k requires
C(card Vk)(card Vk+1) computations. Therefore, our total computations over all steps
are:

C
n−1∑
k=1

(card Vk)(card Vk+1) = C
n−1∑
k=1

k(k + 1) ≥ C
(n

2

)2 n
2
= C

n3

8
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Since the calculation of the flatness modules for each net Vi is but a part of the algorithm,
the total computation time is at least a fixed multiple of n3 .
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