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On ordered groups of regular growth rates

VINCENT MAMOUTOU BAGAYOKO

Abstract: We introduce an elementary class of linearly ordered groups, called
growth order groups, encompassing certain groups under composition of formal
series (eg transseries) as well as certain groups GM of infinitely large germs at
infinity of unary functions definable in an o-minimal structure M. We study
the algebraic structure of growth order groups and give methods for constructing
examples. We show that if M expands the real ordered field and germs in GM are
levelled in the sense of Marker & Miller, then GM is a growth order group.
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Introduction

How do two quantities that grow regularly toward infinity behave under composition?
How to characterise the order of growth of such magnitudes?

Hardy introduced [19] L-functions, which are real-valued functions obtained as com-
binations of the exponential function, the logarithm and semialgebraic functions. They
naturally form a differential ring under pointwise operations. More remarkably, Hardy
showed that any two such functions can always be compared on small enough neighbor-
hoods of +∞. That is, germs at +∞ of L-functions are linearly ordered. For instance,
the inequalities

exp(t) > tn > · · · > t2 > nt > · · · > 2t > t + n > · · · > t + 1 > t

hold on positive half lines (a,+∞) ⊆ R. Differential-algebraic equations and inequalit-
ies, and indeed the whole first-order theory of fields of germs in the language of ordered
valued differential fields, are well understood [3, 4].

The compositional theory of such quantities, however, is unknown. If f , g are two
real-valued functions and g eventually exceeds all constant functions, then the germ of
f ◦ g only depends on that of f and that of g. This induces a law of composition of
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2 Vincent Mamoutou Bagayoko

germs. Even short and simple functional equations, involving germs of even regular
commonplace functions... turn out to be particularly difficult to analyse. In particular,
when is the simple inequality

(1) f ◦ g > g ◦ f

satisfied for two germs f , g of L–functions? We will define a first-order theory of
ordered groups of abstract regular growth rates, that describes in particular the solutions
of (1) in said groups.

Let us see how the informal notion of regular growth rate can be instantiated. The most
concrete example is that of elements in Hardy fields [10], ie ordered differential fields
of germs. If a Hardy field H is closed under compositions, and if its subset H>R of
germs that lie above all constant germs is closed under functional inversion, then H>R

is an ordered group.

Given an o-minimal structure M, the set M∞ of germs at +∞ of unary definable
functions in M is also linearly ordered by eventual comparison. Its subset GM of germs
of functions that tend to +∞ at +∞ is an ordered group for the induced ordering
and the composition of germs, and the asymptotic growth of germs in GM is strongly
related [29] to the algebra of definable sets in M. Whereas M∞ is model theoretically
tame provided M has definable Skolem functions (see Section 3.4), the ordered group
GM is not interpretable in M in general, and its first-order theory in the language
Log of ordered groups is not tame in general. Thirdly, consider an ordered field K of
generalised power series [18] over an ordered field of constants C , whose set K>C of
series lying above all constants is non-empty. In certain cases, there is a composition
law ◦ : K×K>C −→ K such that (K>C, ◦, <) is an ordered group. Examples include
fields of transseries [21, 13], fields of hyperseries [5], and, conjecturally [6, Conclusion,
1], Conway’s field of surreal numbers [11]. Groups of the form H>R , GM and K>C

share important first-order properties in Log . No systematic study of this resemblance
has been done yet, and this paper can be taken as a primer on that matter.

We propose a first-order theory Tgog in Log whose models are ordered groups of abstract
regular growth rates. We call them growth order groups. Simple examples include
Abelian ordered groups, and, for instance, ordered groups of strictly increasing affine
maps on an ordered vector space. We will show that models of Tgog comprise both
groups of o-minimal germs, groups of formal series and more abstract examples, and
that Tgog is sufficiently strong to provide insight on these groups that is not readily
deducible from their concrete presentations.

In the first section, we give our conventions and notations for ordered groups, that are
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On ordered groups of regular growth rates 3

always linearly left-ordered and right-ordered. We state well-known basic facts about
such groups, taking from [16, 25, 31].

In Section 2, we introduce the three axioms GOG1–GOG3 for growth order groups,
starting with GOG1 and GOG2 (Section 2.1). Section 2.2 focuses on the existence
of a non-commutative valuation, in the sense of [40], on ordered groups satisfying
GOG1. We then define scaling elements (Section 2.3), which form scales along which
elements in the group have asymptotic expansions as in classical valuation theory. In
Section 2.4, we introduce the final axiom GOG3 and we show that growth order groups
are commutative transitive [15], that is:

Theorem 1 [Theorem 2.21] The centraliser of a non-trivial element in a growth order
group is Abelian.

We also discuss the existence of asymptotic expansions in growth order groups, and
embeddings of growth order groups into groups of non-commutative formal series
(Section 2.6).

Section 3 gives methods for constructing growth order groups. We give conditions
under which the quotient of a growth order group is a growth order group (Section 3.2).
We then define the ordered groups GM of germs in an o-minimal structure M and give
examples where GM is, or is not a growth order group (Section 3.4).

In Section 4, we give conditions on an o-minimal expansions R of the real ordered
field for GR to be a growth order group. Let R be an o-minimal expansion of the
real ordered field. Given a real-valued germ g at +∞ and n ∈ N, we write g[n] for
the n–fold compositional iterate of g. With [27, 39], we say that R is levelled if for
all positive elements f of the ordered group GR , there is an l ∈ N such that for all
sufficiently large k ∈ N, we have

−1 ⩽ log[n] ◦f − log[n−l] ⩽ 1.

For example, l = 0 for the germ of the identity or the function 0 < t 7→ exp(log(t)2),
and l = 1 for the germ of exp or exp2 . The main theorem is as follows:

Theorem 2 Let R be an o-minimal expansion of the real ordered field. If R is levelled,
then GR is a growth order group. Moreover, centralisers of non-trivial elements in GR

are Archimedean.

Many o-minimal expansions of R are levelled, including expansions of R by generalised
analytic classes and the exponential [35, 36] (see Theorem 4.35), and the Pfaffian closure
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of the real ordered field [41] (see Theorem 4.33). In fact, no o-minimal expansion of R
is known not to be levelled.

Our proof heavily relies on the fact that the elementary extension R∞ of R is closed
under derivation of germs, and that as an ordered valued differential field, it is an H-field
[1]. In Section 4.1, we introduce a first-order theory of H-fields K over an ordered
field of constants C with a composition law ◦ : K × K>C −→ K and a compositional
identity x ∈ K>C , such that (K>C, ◦, x, <) is an ordered group. A crucial feature of
such fields is that they satisfy the axiom scheme of Taylor expansions (HFC5). We
prove in Section 4.2 that certain Hardy fields closed under composition have Taylor
expansions. Say that a real-valued function f is transexponential if the germ of f lies
above exp[n] for each n ∈ N. We show in particular that:

Theorem 3 [Theorem 4.17] Let R be an o-minimal expansion of an ordered field.
Assume that R has an elementary substructure R0 with underlying ordered field R
and that R0 defines no transexponential function. Then R∞ has Taylor expansions.

Using Taylor expansions, we derive conjugacy relations in H-fields with composition
and inversion (Sections 4.3 and 4.4). In the case when C = R, this allows us to prove
a general result (Theorem 4.6) giving conditions under which K>R is a growth order
group. Theorem 2 follows from applications of Theorem 4.6. We rely on Miller’s first
dichotomy result [28] stating that either each germ in R∞ is bounded by the germ
of a polynomial function, or R defines the exponential function. The polynomially
bounded and exponential cases are treated in Sections 4.5 and 4.6 respectively.

1 Ordered groups

1.1 Ordered groups

Definition 1.1 An ordered group is a group (G, ·, 1) together with a linear (ie total)
ordering < on G such that

(2) ∀f , g, h ∈ G, (g > h =⇒ (fg > fh ∧ gf > hf )).

We write ⩽ for the large relation corresponding to <, ie f ⩽ g ⇐⇒ (f < g ∨ f = g).
Our first-order language of ordered groups is Log := ⟨·, 1,⩽, Inv⟩ where the unary
function symbol Inv is to be interpreted as the inverse map g 7→ g−1 . We write Tog for
the expected Log –theory of ordered groups. Homomorphisms should be understood
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On ordered groups of regular growth rates 5

in the model theoretic sense: a homomorphism of ordered groups is a nondecreasing
group morphism, whereas an embedding, of ordered groups is a strictly increasing
group morphism.

Remark 1 An ordered group G can be seen as a group of automorphisms of a linearly
ordered set (X, <) ordered by universal pointwise comparison

φ < ϕ ⇐⇒ (∀x ∈ X, (φ(x) < ϕ(x))).

Indeed, let G act on (G, <) by translations on the left. This intuition is particularly
relevant in the case of growth order groups.

Given an ordered group G, we write

G> := {f ∈ G : f > 1} and G̸= := {f ∈ G : f ̸= 1}.

An ordered group (G, ·, 1, <) is said Archimedean if for all f , g ∈ G̸= , there is an n ∈ Z
such that f n ⩾ g. Recall by Hölder’s theorem (see [16, Section IV.1, Theorem 1]) that
G is Archimedean if and only if it embeds into (R,+, 0, <). In particular, Archimedean
ordered groups are Abelian.

If (H, ·, 1) is a group and f , g ∈ H , then we write

[f , g] := f−1g−1fg.

We recall that the centraliser of an element g ∈ H is the subgroup

C(g) := {h ∈ H : [g, h] = 1} = {h ∈ H : hg = gh}.

For each h ∈ H , we have

(3) C(hgh−1) = hC(g)h−1.

1.2 Powers

Let (G, ·, 1, <) be an ordered group. Let us make a few comments on powers of elements
in G. The axioms for ordered groups imply that G is torsion-free, ie f n = 1 =⇒ f = 1
for all f ∈ G and n ∈ Z \ {0}.

Lemma 1.2 [31, Lemma 1.1] For all f , g ∈ G and n > 0, we have

[f n, g] = 1 =⇒ [f , g] = 1.

Corollary 1.3 [31, Corollary 1.2] Let f , g ∈ G and m, n ∈ N> with f ngm = gmf n .
Then fg = gf .
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6 Vincent Mamoutou Bagayoko

Corollary 1.4 Let g ∈ G. Let m, n ∈ Z \ {0} and f ∈ G with f m = gn . Then f is
unique to satisfy f m = gn , and we have [f , g] = 1.

Proof That f is unique follows from the fact that G is torsion-free. We have [f , g] = 1
by Theorem 1.3.

2 Growth order groups

We now introduce growth order groups by defining a first-order theory Tgog ⊇ Tog

thereof.

2.1 Growth axioms

Let (G, ·, 1, <) be an ordered group. Consider the following sentences in Log (after an
obvious rewriting).

GOG1 Given f , g ∈ G> with f ⩾ g and g0 ∈ C(g), there is an f0 ∈ C(f ) with
f0 ⩾ g0 .

GOG2 For f , g ∈ G> , we have

(4) f > C(g) =⇒ fg > gf .

Any ordered Abelian group automatically satisfies GOG1, and vacuously satisfies
GOG2. We say that G has Archimedean centralisers if for each g ∈ G̸= , the ordered
group C(g) is Archimedean.

Proposition 2.1 If G has Archimedean centralisers, then GOG1 holds.

Proof Let f , g ∈ G> with f ⩾ g and let g0 ∈ C(g). We have g−n ⩽ g0 ⩽ gn for a
certain n ∈ N, so f n is an element of C(f ) with f n ⩾ gn ⩾ g0 .

2.2 Some non-commutative valuation theory

In Sections 2.2 and 2.3, we fix an ordered group (G, ·, 1, <) satisfying GOG1. For
f , g ∈ G, we write f ≼ g if g ̸= 1 and there are g0, g1 ∈ C(g) such that g0 ⩽ f ⩽ g1 ,
ie if f lies in the convex hull of C(g). We also set 1 ≼ g for all g ∈ G.

Journal of Logic & Analysis 17:4 (2025)



On ordered groups of regular growth rates 7

Proposition 2.2 The relation ≼ is a linear quasi-ordering on G.

Proof Throughout the proof, we consider generic elements f , g, h ∈ G.

We first prove that the relation is total. We have

f ≼ g ⇐⇒ f−1 ≼ g ⇐⇒ f ≼ g−1 ⇐⇒ f−1 ≼ g−1.

Thus we may assume that f , g > 1. We either have f ⩽ g, in which case f ≼ g, or
g ⩽ f , in which case g ≼ f .

Now suppose that f ≼ g and g ≼ h. We may assume that f , g, h ̸= 1. So there are
g0, g1 ∈ C(g) and h0, h1 ∈ C(h) with g0 ⩽ f ⩽ g1 and h0 ⩽ g ⩽ h1 . We may choose
g0, h0 ∈ G< and g1, h1 ∈ G> . By GOG1, there are h2, h3 ∈ C(h) with g1 ⩽ h3 and
g−1

0 ⩽ h2 , whence g0 ⩾ h−1
2 . We thus have h−1

2 ⩽ f ⩽ h3 , ie f ≼ h. So ≼ is transitive.
It is clearly reflexive.

We have an equivalence relation f ≍ g ⇐⇒ f ≼ g ∧ g ≼ f on G or G̸= . Given f ∈ G,
we write v(f ) for the equivalence class of f for ≍, called its valuation and we write
v(G) for the quotient set

v(G) = G̸= /≍ = {v(f ) : f ∈ G̸=}.

We write f ≺ g if f ≼ g and g ̸≍ f .

Lemma 2.3 Let f , g ∈ G with g ̸= 1. We have g ≺ f if and only if C(g) <

max(f , f−1).

Proof If f ̸= 1, then this is immediate by definition of ≼. Since g ̸≺ 1 and C(g) ̸< 1,
this yields the result.

Proposition 2.4 For all g, h ∈ G, we have:

(1) g−1 ≍ g.
(2) gh ≼ g or gh ≼ h.
(3) 1 ⩽ g ⩽ h =⇒ g ≼ h.

Proof The statement 1 follows from the fact that g−1 ∈ C(g). Assume for con-
tradiction that gh ≻ g and gh ≻ h. We must have g, h ̸= 1. By Lemma 2.3, we
deduce that gh > C(g) or that gh < C(g). So h > C(g) or h < C(g). But then
max(h, h−1)−2 < gh < max(h, h−1)2 . This contradicts gh ≻ h. This shows 2. For 3
we have h−1 ⩽ g ⩽ h where h, h−1 ∈ C(h).
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This shows that the function v : G̸= −→ v(G) is a valuation in the sense of [16,
Section 4.4] and of [40, Definition 2.1]. We call v the standard valuation on G.

Proposition 2.5 For g, h ∈ G, we have g ≺ h =⇒ gh ≍ hg ≍ h.

Proof We have gh ≼ h by Proposition 2.4(2). Assume for contradiction that gh ≺ h.
By Proposition 2.4(1), we have h = g−1(gh) ≼ g−1 ≍ g ≺ h, or h = g−1(gh) ≼ gh ≺ h,
which is a contradiction. Thus gh ≍ h. The proof of hg ≍ h is symmetric.

Proposition 2.6 For f ∈ G̸= , the set v(f ) ∩ G> is convex.

Proof Let g, h ∈ G> with g, h ≍ f and let j ∈ Gwith g ⩽ j ⩽ h. We have g ≼ j and
j ≼ h by Theorem 2.4(3). So f ≼ j and j ≼ f by Theorem 2.2, whence j ≍ f .

We can thus define a linear ordering < on v(G), where for g, h ∈ G̸= , we set v(g) < v(h)
if and only if g ≺ h, ie if v(g) ∩ G> < v(h) ∩ G> .

Definition 2.7 The value set of G is the (order type of the) linearly ordered set
(v(G), <).

One sees that G has value set 0 if and only if it is trivial, and that non-trivial Abelian
ordered groups have value set 1.

Example 2.8 Let R denote the real ordered field. It will follow from Theorem 2
that GR satisfies GOG1 and has Archimedean centralisers. Therefore, the convex hull
of C(g) for g ∈ GR is simply the convex hull of the set g[Z] of iterates of g and its
inverse. Definable functions in R are semialgebraic. Any non-trivial semialgeraic
function f satisfies lim

t→+∞
f (t)
rtq = 1 for an (r, q) ∈ R× ×Q (as it has a Puiseux series

expansion). Therefore the valuation of the square function is maximal in c(G) and
v(2 id) is maximal in v(GR) \ {v(id2)}. Applying the same idea to f − id for f ∈ G,
we see that

{q ∈ Q : q < 1} −→ v(G) \ {v(id2), v(2 id)}
q 7−→ v(id+ idq)

is an isomorphism of ordered sets. In other words, the value set of GR is the rational
interval ((−∞, 1] ∪ {2}, <).

Lemma 2.9 For f , g ∈ Gwith g ≺ f , we have fgf−1 ≺ f .
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On ordered groups of regular growth rates 9

Proof The conjugation by f is an automorphism of G and ≺ is ∅–definable in the
language of ordered groups.

Given g, h ∈ G̸= , we write

g ∼ h if and only if gh−1 ≺ g.

Lemma 2.10 For all g, h ∈ G̸= , the following are equivalent:
(1) g ∼ h
(2) gh−1 ≺ h
(3) hg−1 ≺ g
(4) h ∼ g.

Proof Suppose that g ∼ h, ie gh−1 ≺ g. We cannot have h−1 ≺ g by Theorem 2.5,
so we also have gh−1 ≺ h−1 ≍ h by Theorem 2.2. We deduce that 1 and 2 are
equivalent. Likewise 3 and 4 are equivalent. Since gh−1 ≍ hg−1 by Proposition 2.4(1),
the statements 1 and 3 are equivalent. This concludes the proof.

Corollary 2.11 For g, h ∈ G̸= , we have g ∼ h ⇐⇒ g−1 ∼ h−1 .

Note that for g, h ∈ Gwith g ∼ h, we have g ≍ h. We have gh−1 ≺ h by Theorem 2.10,
so g = (gh−1)h ≍ h by Theorem 2.5.

Lemma 2.12 The relation ∼ is an equivalence relation on G̸= .

Proof For all g ∈ G̸= , we have 1 ≺ g whence g ∼ g. Theorem 2.10 implies that
∼ is symmetric. Let f , g, h ∈ G̸= with f ∼ g and g ∼ h. So f ≍ g ≍ h. We have
fh−1 = (fg−1)(gh−1) where (fg−1), (gh−1) ≺ f so fh−1 ≺ f by Theorem 2.4(2). So
f ∼ h, ie ∼ is transitive.

Given a g ∈ G̸= , we write res(g) for the equivalence class of g for ∼ in G̸= . We call
res(g) the residue of g.

Proposition 2.13 For g ∈ G̸= , the set res(g) is convex.

Proof Let f , h ∈ G̸= with f ∼ g ∼ h and j ∈ G̸= with f ⩽ j ⩽ h. In view of
Theorem 2.11, we may assume that g > 1. Consider an s0 ∈ C(jg−1). Suppose that
jg−1 ⩾ 1. Since hg−1 ⩾ jg−1 , we find by GOG1 an h0 ∈ C(hg−1) with h0 ⩾ s0 .
Now hg−1 ≺ g so h0 < g, so s0 < g. This shows that jg−1 ≺ g, whence j ∼ g in that
case. Suppose now that jg−1 ⩽ 1. So 1 ⩽ gj−1 ⩽ gf−1 . But gf−1 ≺ g so the same
arguments for gj−1 show that s0 < g, whence j ∼ g. So res(g) is convex.
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We can thus define a linear ordering ⋖ on res(G) := G̸=/ ∼ given by

res(f ) ⋖ res(g) ⇐⇒ f < g ∧ f ≁ g.

We set res(1) = {1} and {1}⋖ res(f ) for all f ∈ G̸= . We also write f ⋖ g whenever
res(f ) ⋖ res(g). Although we will not rely on this fact, this is also strict ordering on G

Lemma 2.14 Let g, h ∈ G̸= with g ∼ h−1 or g ≺ h. Then [g, h] ≺ h.

Proof First suppose that g ∼ h−1 . Theorem 2.10 gives g−1h−1, gh ≺ h. So [g, h] ≺ h
by Proposition 2.4(2). Suppose now that g ≺ h. So δ := h−1gh ≺ h. We obtain

[g, h] = g−1h−1gh = g−1δ ≺ h

by Proposition 2.4(2).

2.3 Scaling elements

Recall that G is an ordered group satisfying GOG1.

Definition 2.15 We say that an element s ∈ G> is scaling if C(s) is Abelian, and for
all f ∈ Gwith f ≍ s, there is a g ∈ C(s)̸= with g ∼ f .

Given a scaling s and f ≍ g, the element g is unique in C(s). Indeed, for h ∈ C(s)\{g},
writing j := hg−1 we have f (jg)−1 ≍ h ≍ f by Theorem 2.4(1, 2), so we do not have
h = jg ∼ f . Note that each positive element in an Abelian ordered group is scaling.

Definition 2.16 We say that G has scaling elements if for all ρ ∈ v(G), there is an
s ∈ ρ which is scaling.

Proposition 2.17 Let s ∈ G> such that (C(s), ·, 1, <) is isomorphic to (R,+, 0, <).
Then s is scaling.

Proof Let f ∈ G̸= with f ≍ s. If f ∈ C(s), then we are done. Assume that f ̸∈ C(s)
and set h := sup{g ∈ C(s) : g ⩽ f}. For ε ∈ C(s) ∩ G> , we have

ε−1h, hε−1 < h < εh, hε,

because (G, ·, 1, <) is an ordered group. We deduce that

(5) C(s) ∩ G< < h−1f < C(s) ∩ G>.
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Assume for contradiction that h−1f ≽ f . We have h ∈ C(s) so h ≍ s ≍ f . By
Theorem 2.4(1, 2) we have h−1f ≍ f . Since h ∈ C(s) and f ̸∈ C(s), there are f0, f1
which have the same sign, with f0 < h−1f < f1 . By GOG1, there are g0, g1 ∈ C(s)
which have the same sign as well, with g0 < h−1f < g1 . This contradicts (5). We
deduce that h−1f ≺ f , ie h ∼ f .

Lemma 2.18 Suppose that s ∈ G> is scaling. Then for all f , g ∈ G̸= with f ≍ g ≍ s,
we have [f , g] ≺ f .

Proof If f ∼ g−1 , then this follows from Theorem 2.14. Assume that f ≁ g−1 . Let
t, u ∈ C(s)̸= with t ∼ f and u ∼ g. We have t ≁ u−1 by Theorem 2.13, so
Proposition 2.4(2) implies that tu≍ t≍ s. Set

ε := t−1f ≺ s

δ := gu−1 ≺ s.

Recall that C(s) is Abelian, so [t, u] = 1. We have

[f , g] = f−1g−1fg

= ε−1t−1u−1δ−1tεδu

= ε−1[t, u](u−1(t−1δ−1t)εδu)

= ε−1(u−1(t−1δ−1tεδ)u).

Now δ ≺ t so t−1δ−1t≺ t by Lemma 2.9, so t−1δ−1tεδ ≺ t by Proposition 2.4(2),
so u−1(t−1δ−1tεδ)u≺ t by Lemma 2.9, whence finally [f , g] ≺ t≍ f by Proposi-
tion 2.4(2).

Proposition 2.19 If s ∈ G> is scaling, then the centraliser of each f ≍ s is
commutative.

Proof Let f ≍ s and let g, h ∈ C(f ). Assume for contradiction that [g, h] ̸= 1. Then,
since [g, h] ∈ C(f ), we have [g, h] ≍ f . This contradicts Theorem 2.18.

2.4 Growth order groups

Given an ordered group (G, ·, 1, <), we consider the following axiomatic property:

GOG3 G has scaling elements.
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Using the Log –definable abbreviations ∼ and ≍, a natural first-order formulation of
GOG3 is ∀a∃b∀c∃d(a ̸= 1 → ((c ≍ a) → ([d, b] = 1 ∧ c ∼ d))).

Definition 2.20 We say that an ordered group (G, ·, 1, <) is a growth order group if
it satisfies GOG1, GOG2 and GOG3.

All Abelian ordered groups are growth order groups. We write Tgog for the Log –
theory Tog ∪ {GOG1,GOG2,GOG3}. A CT-group is a group in which centralisers
of non-trivial elements are Abelian. As corollaries of Theorem 2.19, we have:

Corollary 2.21 Growth order groups are CT-groups.

Corollary 2.22 Any non-Abelian growth order group has trivial center.

2.5 Skeletons

Let G be a growth order group. Fix a ρ ∈ v(G) and consider the set

Cρ := {res(f ) : v(f ) = ρ ∨ f = 1}.

Recall that (Cρ,⋖) is linearly ordered. For all res(f ), res(g) ∈ Cρ , we set

res(f ) + res(g) := res(fg)

if fg ≍ f and res(f ) + res(g) := res(1) if fg ≺ f .

Lemma 2.23 The structure (Cρ,+, res(1),⋖) is an ordered Abelian group. Moreover,
given a scaling element s in G, the function φs : C(s) −→ Cv(s) ; f 7→ res(f ) is an
isomorphism.

Proof The operation + : Cρ × Cρ −→ Cρ is well-defined. For res(h) ∈ Cρ where
v(h) = ρ, since s is scaling, there is a unique f ∈ C(s) with h ∼ f , whence
res(f ) = res(h). So φs is surjective. Let f , g ∈ C(s). Note that fg ∈ C(s), so fg = 1 or
fg ≍ s. We thus have fg = 1 ⇐⇒ fg ≺ f ⇐⇒ v(fg) < ρ. So res(fg) = res(f ) + res(g).
If 1 < f , then 1⋖ f , so res(1)⋖ res(f ). Altogether this shows that φs is an isomorphism
between the Log –structures (C(s), ·, 1, <) and (Cρ,+, res(1),⋖). In particular, the
latter is a an ordered Abelian group.
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We call (Cρ)ρ∈v(G) the skeleton of G. If H is a growth order group, then each ordered
group homomorphism Φ : G −→ H induces a homomorphism of skeletons, ie a
nondecreasing map

Φv : v(G) −→ v(H) ; v(g) 7−→ v(Φ(g))

and, for each ρ ∈ v(G), an ordered group homomorphism

Φρ : Cρ −→ CΦv(ρ) ; res(f ) 7→ res(Φ(f )).

2.6 On the structure of growth order groups

Any ordered group is [22, Theorem 1] a quotient by a convex normal subgroup of an
ordered free group. However that description is far from being as precise and concrete as
the Hahn embedding theorem [18] (see [17, Theorem 4.C]) for Abelian ordered groups,
which construes them as lexicographically ordered groups of formal commutative series
with real coefficients. We expect that a similar description exists for growth order
groups, as we next explain.

Let G be a growth order group, and let S be a set of unique scaling representatives
for each valuation. Given s ∈ S and c = res(g) ∈ C̸

=
v(s) , we let s[c] denote the unique

element of C(s) with s[c] ∼ g. We also write s[0] := 1. Given f0 ∈ G̸= , there are a
unique s0 ∈ S with s0 ≍ f0 and a unique c0 ∈ Cv(s0) with f0 ∼ s

[c0]
0 . Define

(6) f1 := s[−c0]f0.

Reiterating the process for f1 if f1 ̸= 1 and continuing further, we obtain an ℓ ⩽ ω ,
a strictly ≺–decreasing sequence (sn)n<ℓ in S and a sequence (cn)n<ℓ ∈

∏
n<ℓ Cv(sn)

with
f0 ≈ s

[c0]
0 s

[c1]
1 s

[c2]
2 · · ·s[cn]

n · · · ,

in the sense that (s[c0]
0 s

[c1]
1 s

[c2]
2 · · ·s[cn]

n )−1f0 ≺ sn whenever n < ℓ. If ℓ = ω , then there
may exist several elements of G̸= with the same expansion as f0 (consider for instance
an ultrapower of G), so describing f0 in full entails extending this process inductively.
This points to the existence of an embedding of G into an ordered group of formal
non-commutative series

(7) g[c0]
0 g[c1]

1 · · · g[cγ ]
γ · · · , γ < λ

where (cγ)γ<λ ∈
∏

γ<λ Cgγ , (gγ)γ<λ ∈ v(G)λ is strictly decreasing and λ is an ordinal.
In other words, it is conceivable that there is a non-commutative version of the Hahn
embedding theorem for growth order groups.
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14 Vincent Mamoutou Bagayoko

The construction of such an ordered group is difficult, and it requires additional
information besides the skeleton. Moreover, several issues that are absent in the Abelian
case appear here.

First, the choice in (6) of expanding f0 systematically on the right is arbitrary. One could
expand f0 on the left, or even alternate choices. Indeed, given an infinite limit ordinal κ
and a function N : κ −→ {left, right}, one may expand f0 on the side prescribed by
N(γ) at each stage γ < κ. This induces a linear ordering on κ which we call tree-like.
How can one describe series with tree-like support?

Secondly, studying examples of groups of transseries shows that in certain cases,
extending G with transfinite expansions as in (7) forces the existence of valuations
that are not comparable to elements in G. More precisely, there can be series
s := g[c0]

0 g[c1]
1 · · · g[cγ ]

γ · · · and elements g ∈ v(G) such that the valuation of sg[c]s−1

should lie in an unfilled cut in (v(G),≺). So an embedding theorem must involve
constraints on the skeleton of G.

Question 1 Embedding problem. For a linearly ordered set (I, <) and a family
(Ci)i∈I of Abelian ordered groups, under what conditions can one define a group
law ∗ on the set Hi∈I Ci of functions f ∈ Πi∈I Ci with anti-well-ordered support
supp f = {i ∈ I : f (i) ∈ Ci \ {0}}, ordered lexicographically, such that

• (Hi∈I Ci, ∗, 1, <) is a growth order group with skeleton ≃ (Ci)i∈I ,
• for all growth order groups Gwith skeleton ≃ (Ci)i∈I , there is an embedding of

ordered groups G−→ Hi∈I Ci ?

As a first step toward answering this question, we showed [7] that certain groups of
transseries can be represented as groups (Hi∈I Ci, ∗, 1, <).

3 Constructions of growth ordered groups

We now give methods for constructing growth order groups.

Example 3.1 We constructed [5] an ordered field of formal series L̃ equipped
with a composition law ◦ : L̃ × L̃>R −→ L̃ and showed [5, Propositions 9.23
and 10.25] that (L̃>R, ◦, <) is a growth order group with Archimedean centralisers [5,
Proposition 10.24].
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On ordered groups of regular growth rates 15

3.1 Semidirect products

Let (G, ·, 1, <), (G,+, 0, <) be ordered groups. For clarity, we will use additive
denotation for G, but we do not assume that (G,+, 0) is Abelian. Let a morphism
ρ : (G, ·, 1) −→ Aut(G,+, 0) be given with the following properties:

MGA1 Each ρ(g), g ∈ G is strictly increasing.

MGA2 For f , g ∈ Gwith f < g and a ∈ G> we have ρ(f )(a) < ρ(g)(a).

For (g, a) ∈ G× G, we write
g ∗ a := ρ(g)(a).

We consider the lexicographically ordered semidirect product G⋊ρ G, ie the Cartesian
product G× G equipped with the operation

∀(f , a), (g, b) ∈ G× G, (f , a) · (g, b) := (fg, (f ∗ a) + b),

and the lexicographic ordering

∀(g, a), (h, b) ∈ G× G, (g, a) < (h, b) ⇐⇒ (g < h or (g = h and a < b)).

Note that the inverse of an (f , a) ∈ G⋊ρ G is given by

(f , a)−1 = (f−1, f−1 ∗ (−a)).

Proposition 3.2 The structure (G⋊ρ G, ·, (1, 0), <) is an ordered group, and the
functions

G −→ G⋊ρ G; a 7→ (1, a) and G−→ G⋊ρ G; f 7→ (f , 0)

are embeddings.

Proof The lexicographic ordering is linear, so we need only show that G⋊ρ G is an
ordered group. Assume that (g, b) > (h, c). If g > h, then fg > fh and gf > hf , so
(f , a) · (g, b) > (f , a) · (h, c) and(g, b) · (f , a) > (h, c) · (f , a). Otherwise g = h and
b > c, so f ∗ b > f ∗ c, whence

(f , a) · (g, b) = (fh, f ∗ b + a) > (fh, f ∗ c + a) = (f , a) · (h, c).

Likewise f ∗ a + b > f ∗ a + c so

(g, b) · (f , a) = (hf , f ∗ a + b) > (hf , f ∗ a + c) = (h, c) · (f , a).

This shows that G⋊ρ G is an ordered group. It is easily checked that the two functions
above are embeddings.
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16 Vincent Mamoutou Bagayoko

We consider two further conditions on (G,G):

MGA3 For all g ∈ G and b ∈ G, for sufficiently large g′ ∈ C(g), there is a b′ ∈ G
with

g ∗ b′ + b = g′ ∗ b + b′.

MGA4 For all a ∈ G, f ∈ G> and b ∈ G> , we have

f ∗ b > a + b − a.

Remark 2 Let (g, b) ∈ (G⋊ρ G) ̸= . For (f , a) ∈ G⋊ρ G, we have (f , a) · (g, b) =
(g, b) · (f , a) if and only if

fg = gf and f ∗ b + a = g ∗ a + b.

The first condition means that f ∈ C(g). Now given h ∈ C(g)> sufficiently large, by
MGA3, there is an a ∈ G with g ∗ a − a = h ∗ b − b, hence (h, a) ∈ C(g, b).

Remark 3 If G is Abelian, then MGA4 follows from MGA2.

Proposition 3.3 Let ρ satisfy MGA1–MGA4. If G and G are growth order groups,
then so is (G⋊ρ G, ·, (1, 0), <).

Proof We first prove GOG1. Let (f , a), (g, b) ∈ G> with (f , a) > (g, b), and let
(g′, b′) ∈ C(g, b). Assume first that g = 1, so b > 1. Assume for contradiction that
g′ > 1. then we have (g′, g′ ∗ b + b′) = (g′, b′) · (1, b) = (1, b) · (g′, b′) = (g′, b′ + b),
so g′ ∗ b = b′+ b− b′ . But this contradicts MGA4. If g′ < 1, then (f , a) > (g′, b′). So
we may assume that g′ = 1. If f > 1, then (f , a) > (g′, b′). Otherwise, we must have
f = 1 and thus a > b. Now GOG1 in G gives an a′ ∈ C(a) with a′ > b′ , whence
(1, a′) ∈ C(1, a) and (1, a′) > (1, b′). We now treat the case when g > 1. We have
g′ ∈ C(g) where f ⩾ g, so by GOG1 in G there is an f ′ ∈ C(f ) with f ′ ⩾ g′ . In
view of Remark 2, we may choose f ′ sufficiently large so that f ′ > g′ and that there be
an a′ ∈ G with (f ′, a′) ∈ C(f , a). We have (f ′, a′) > (g′, b′), hence GOG1 holds in
G⋊ρ G.

Let (g, b), (f , a) ∈ G⋊ρ G with (f , a) > C(g, b) and (g, b) > (1, 0). Assume that
g = 1, so b > 0 and f ⩾ 1. We have

(f , a) · (1, b) · (f , a)−1 = (f , a) · (1, b) · (f−1, f−1 ∗ (−a))

= (1, f ∗ (f−1 ∗ (−a) + b) + a)

= (1, (−a) + f ∗ b + a).
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If f = 1, then the condition (1, a) > C(1, b) amounts to a > C(b), so GOG2 in G
gives (−a) + b + a > b. That is,

(f , a) · (1, b) · (f , a)−1 > (1, b).

If f > 1, then MGA4 gives (−a) + f ∗ b + a > b, whence again

(f , a) · (1, b) · (f , a)−1 > (1, b).

Assume now that g > 1. So we must have f > C(g), whence fgf−1 > g by GOG2 in
G. This implies that (f , a) · (g, b) · (f , a)−1 > (g, b). Therefore GOG2 is satisfied.

We now prove GOG3. Let (g, b) ∈ G⋊ρ G with (g, b) ̸= (1, 0) and let (f , a) ≍ (g, b).
If g = 1, then we must have f = 1 and a ≍ b in G. Given a scaling element s in G
with s≍ b, we see that (1,s) is scaling in G⋊ρ G with (1,s) ≍ (f , a). If g ̸= 1, then
we must have f ≍ g. Let t∈ G be scaling with t≍ g and let u ∈ C(t) with u∼ f .
Then (u, 1) ∼ (f , a) in G⋊ρ G, which implies that (t, 1) is scaling. So GOG3 holds
in G⋊ρ G.

This shows that G⋊ρ G is a growth order group.

Example 3.4 Positive affine maps. Consider an ordered field K and an ordered
vector space (G,+, 0, <, .) over K . The ordered groups (K>, ·, 1, <) and (G,+, 0, <)
are growth order groups, as they are Abelian. We have an action ρ of K> on G by
scalar multiplication. That is ρ(λ)(a) := λ . a for all λ ∈ K> and a ∈ G. Then
K> ⋊ρ G is naturally isomorphic to the group of strictly increasing affine functions
K −→ G ; x 7→ λ . x + a for (λ, a) ∈ K> × G, under composition, and where the
ordering is given by

(x 7→ λ . x + a) > x iff λ . b + a > b for sufficiently large b ∈ G.

The axioms MGA1 and MGA2 follow from the fact that (G,+, 0, <, .) is an ordered
vector space over K . We write Aff+K (G) for the ordered group K> ⋊ρ G given by
Theorem 3.2. Since (G,+, 0) is Abelian, the axiom MGA4 is satisfied. Lastly,
given λ, λ′ ∈ K> with λ > 1 and a ∈ G, we have ρ(λ)(a) − a = ρ(λ − 1)(a) so
ρ(λ′)(b) = ρ(λ)(a) − a for b := λ−1

λ′ . a ∈ G. In particular MGA3 holds. Therefore
Aff+K (G) is a growth order group.

3.2 Quotients

Given an ordered group (G, ·, 1, <) and a normal and convex subgroup N P G, the
quotient G/N is an ordered group (see [16, Section 1.4] or [25, page 260]) for the
relation

(8) gN < hN ⇐⇒ g < h.
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18 Vincent Mamoutou Bagayoko

Lemma 3.5 [25, page 260] The quotient map G −→ G/N is an ordered group
homomorphism.

The ordering on G is lexicographic with respect to the orderings on G/N and N . That
is, we have

(9) G> = {g ∈ G : (gN > N) ∨ (g ∈ N>)}.

When the short exact sequence 0 → N → G → G/N → 0 splits, and given a
complement H of N in G, we have an ordered group isomorphism G≃ G/N ⋊ρ N for
the morphism ρ : G/N −→ Aut(N) given by

∀g ∈ G, ∀f ∈ N, ρ(gN)(f ) := hfh−1

for the unique h ∈ H ∩ gN , and where G/N ⋊ρ N is lexicographically ordered.

We shall now adapt these ideas to the case of growth order groups. If we want both N
and G/N to be growth ordered groups, we have to impose further conditions on (G,N).
This leads to the following definition:

Definition 3.6 Let G be a growth order group. A ≼–initial subgroup of G is a non-
empty subset N ⊆ G such that for all f ∈ N and g ∈ G, we have g ≼ f =⇒ g ∈ N .

That an ≼–initial subgroup is indeed a subgroup follows from Proposition 2.4(1, 2).
For the sequel of Section 3.2, we fix a growth order group (G, ·, 1, <) and a normal and
≼–initial subgroup N ⊆ G.

Proposition 3.7 Let H ⊆ G be a ≼–initial subgroup. Then H is a growth order group
which is convex in G.

Proof That H is convex follows from Theorem 2.6. We note by ≼–initiality that the
centraliser in H of an h ∈ H is simply its centraliser in G. This is easily seen to imply
that H is a growth order group.

Proposition 3.8 Assume that the following holds

(10) ∀f , g ∈ G\ N, [f , g] ∈ N =⇒ f ≍ g.

Then G/N , with the ordering given by (8), is a growth order group.
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Proof Let f , g ∈ G with fN > gN > N . In particular f , g ∈ G> and f > g. Let
g0N ∈ C(gN), so [g0, g] ∈ N . We have g0 ≍ g by (10). GOG1 in G, gives an
f0 ∈ C(f ) with f0 ⩾ g0 , hence f0N ⩾ fN . We have [f0, f ] = 1 ∈ N so f0N ∈ C(fN).
This shows that GOG1 holds in G/N .

We next derive GOG2. Let f , g > N with (fN) ≻ (gN). We have C(g)N ⊆ C(gN), so
fN > C(g)N , which is equivalent to f > C(g)N . In particular, we have f > C(g), so
f−1 ≻ g−1 . By (10), we obtain [f−1, g−1] ̸∈ N . But [f−1, g−1] > 1 by GOG2 in G,
so [f−1, g−1] > N . That is, we have fgf−1N > gN , whence GOG2 holds in G/N .

Finally, let g ∈ G\N . Let s be scaling in Gwith s≍ g, and let f ∈ Gwith (fN) ≍ (gN)
in G/N . From (10), we deduce that there are g′, g′′ ∈ C(g) with g′ ⩽ f ⩽ g′′ . This
implies that f ≍ g, so there is a t ∈ C(s) with t ∼ f . We have tN ∈ C(sN) and
(fN)(tN)−1 = (f t−1)N ≺ fN . We claim that C(sN) = {uN : u ∈ C(s)}. Indeed,
let g ∈ G with gN ∈ C(sN), so [g,s] ∈ N . We have g ≍ s so there is a t ∈ C(s)
with g ∼ t. Writing δ := t−1g, we have [g,s] = δ−1t−1s−1tδs= [tδ,s]. Since t

and s commute, we obtain [g,s] = [δ,s] ∈ N . As δ ≺ s, we deduce with (10) that
δ ∈ N , so gN = tN as claimed. Recall by Corollary 2.21 that C(s) is Abelian. Thus
{uN : u ∈ C(s)} is Abelian, and sN is scaling in G/N . So GOG3 holds.

Given two linearly ordered sets (A, <) and (B, <), we write A ⨿ B for the disjoint
union A × {0} ⊔ B × {1} ordered so that A × {0} < B × {1} and that a 7→ (a, 0) and
b 7→ (b, 1) are ordered embeddings A −→ A ⨿ B and B −→ A ⨿ B respectively. In the
next proof, we use the notation vG for the standard valuation on a growth order group
G, in order to distinguish between various growth order groups.

Proposition 3.9 Assume that (10) holds. We have an isomorphism of ordered sets

Φ : vG(G) −→ vN(N) ⨿ vG/N(G/N)

defined by Φ(v(g)) := v(gN) if g ̸∈ N and Φ(v(g)) = vN(g) if g ∈ N ̸= .

Proof Let g, h ∈ G̸= with g ≍ h. If g ̸∈ N , then we have g ≻ N , and hN ≍ gN by
Theorem 3.5, whence Φ(vG(g)) is well defined. If g ∈ N , then h ∈ N . Since N is
≼–initial, we have vN(g) = vG(g) = vG(h) = vN(h), so Φ is well-defined. It is clear
that Φ is surjective.

Now let f , g ∈ Gwith f ≺ g. We want to prove that Φ(vG(f )) < Φ(vG(g)). If f ̸∈ N
and g ̸∈ N , then v(fN) < v(gN) by Theorem 3.5. So

Φ(vG(f )) = vG/N(f ) < vG/N(g) = Φ(vG(g)).

If f ∈ N and g ̸∈ N , then f ≺ g and Φ(vG(f )) < Φ(vG(g)) by definition. If f , g ∈ N ,
then Φ(vG(f )) = vN(f ) < vN(g) = Φ(vG(g)). This concludes the proof.
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3.3 Growth order groups of finite value set

We fix a non-trivial growth order group G such that v(G) has a maximal element v(f0).
Let s be scaling with s≍ f0 . Write G≺s := {g ∈ G : g ≺ s}. Note that G≺s ̸= ∅.

Proposition 3.10 The set G≺s is a normal and ≼–initial subgroup of G.

Proof This set is ≼–initial by definition. It is normal by Theorem 2.9.

By Theorem 3.7, the subgroup G≺s is a growth order group.

Proposition 3.11 The subgroup C(s) is a complement of G≺s.

Proof We have G≺s∩ C(s) = {t∈ C(s) : t≺ s} = {1}. For g ∈ G, we either have
g ≺ s, and then g ∈ G≺s, or g ≍ s, and then given t ∈ C(s) with t∼ g, we have
gt−1 ≺ s, whence g = (gt−1)t∈ G≺sC(s).

Thus the sequence 0 → G≺s → G → G/G≺s → 0 splits, and we have a natural
isomorphism G≺s ⋊ C(s) −→ G. If follows by induction that if v(G) = {ρ1, . . . , ρn}
is finite with ρ1 > · · · > ρn , then G is an iterated semidirect product

(11) G≃ (· · · (Cρn ⋊ Cρn−1) ⋊ · · · ) ⋊ Cρ1 .

This can be taken as a conclusion to our discussion in Section 2.6 in the case of finite
value set, ie a positive answer to Question 1 in that case.

Proposition 3.12 Suppose that G has value set n > 0 and let t be scaling with
v(t) = min v(G̸=). If C(t) is Archimedean, then n ⩽ 2.

Proof Assume for contradiction that n > 2. Using the above decomposition n − 3
times, we may assume that n = 3. Fix two scaling elements s1,s2 with t≺ s1 ≺ s2 .
So G≃ G1 ⋊ C(s2) where G1 = C(t) ⋊ C(s1). Let σ ∈ Aut(G1) be the conjugation
by s2 and let χ ∈ Aut(C(t)) be the conjugation by s1 . Since t ≺ s1 in G1 , we
have σ(t) ≺ σ(s1), whence σ(t) ≍ t. But then σ(t) ∈ C(t). For n ∈ N we have
sn

1 ≺ s2 , so σ(t) > χ[n](t) by GOG2. Since C(t) is Archimedean, this contradicts
[30, Theorem 1.5.1].
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3.4 O-minimal germs

Let M = (M, . . .) be a first-order structure in a language L. Assume that M has
definable Skolem functions (allowing parameters). This is the case for instance if M is
an o-minimal expansion of an ordered group in a language expanding Log .

Let n > 0 and let p be an n–type in M over M whose finite subsets are realised in
M. Let p(M) := {φ(Mn) : φ ∈ p} be the corresponding ultrafilter on the Boolean
algebra of definable subsets of Mn . Consider the set Fn of functions Mn −→ M that
are definable in M with parameters, and the set Mp of germs at p

[f ]p := {g ∈ Fn : ∃X ∈ p(M), f and g coincide on X}

of such functions. If R is a relation symbol of arity k ∈ N in the corresponding language
(including function symbols and constant symbols), then R is interpreted on Mp as
the well-defined subset of tuples ([f1], . . . , [fk]) for which there is an X ∈ p(M) with
M ⊨ R [f1 (m) , . . . , fn (m)] for all m ∈ X .

It is a folklore result that Mp is an elementary extension of M for the natural inclusion
Ψ : M−→ Mp sending m0 ∈ M to the germ of the constant function m 7→ m0 . This
follows from the following lemma:

Lemma 3.13 For all L–formulas φ(v1, . . . , vk) with parameters in M and f1, . . . , fk ∈
Fn , we have

{m ∈ Mn : M ⊨ φ(f1(m), . . . , fp(m))} ∈ p(M)

if and only if Mp ⊨ φ([f1], . . . , [fk]).

Suppose that L contains a binary relation symbol < and that M = (M, <, . . .) is
o-minimal. The set of formulas m < v0 , in one free variable v0 , where m ranges in
M induces a unique type p∞ over M called the type at infinity. The germ [f ] at p∞
of an f ∈ Fn is simply its germ at +∞. We write M∞ := Mp∞ . The ordering on
M∞ is given by [f0] < [f1] ⇐⇒ f0(m) < f1(m) for all sufficiently large m ∈ M . By
the monotonicity theorem [12, Chapter 3, (1.2)] a definable function f : M −→ M is
strictly monotonic on some neighborhood of +∞. A germ [f ] lies above each m ∈ M
under the embedding M−→ M∞ if and only if f tends to +∞ at +∞. We define GM

as the subset of M∞ of germs [f ] with [f ] > M . A germ in GM cannot be constant or
strictly decreasing, so it is strictly increasing. We write id for the identity function on
M , so [id] ∈ GM.

Since M is o-minimal, for any [f ], [g] ∈ F∞ , there is an m ∈ M such that f ((m,+∞))
is a neighbourhood of +∞. We may choose m so that f ((m,+∞)) = (f (m),+∞).
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So f induces a strictly increasing bijection between two neighbourhoods of +∞. The
germ of f ◦ g lies in GM. Since this germ does not depend on f , g we may define
[f ] ◦ [g] := [f ◦ g]. Note that [f ] ◦ [id] = [id] ◦ [f ] = [f ]. Writing f inv for the inverse
of f : (m,+∞) −→ (f (m),+∞), we see that [f inv] only depends on [f ], and we have
[f ] ◦ [f inv] = [f inv] ◦ [f ] = [id]. Thus (GM, ◦, [id]) is a group. The ordering on GM

induced by that on M∞ is a left-ordering because the germs are strictly increasing. It is
a right-ordering by definition. So (GM, ◦, [id], <) is an ordered group.

This raises the naive question: is GM always a growth order group? The answer is
negative. Indeed, it is known [8, Theorem 8] that given any ordered group (G, ·, 1, <),
the structure M := (G, <, (tg)g∈G) where each tg for g ∈ G is the unary function
G −→ G ; h 7→ gh eliminates quantifiers and has a universal axiomatisation. In
particular, it is o-minimal, and g 7→ [tg] is an isomorphism between (G, ·, 1, <) and
(GM, ◦, [id], <). If G is not a growth order group, then neither is GM. We may still ask
whether GM is a growth order group when M expands the real ordered field. We will
answer this question in the positive in a particular case in the next section. We finish
with a positive answer to the naive question for pure ordered groups:

Example 3.14 Let M := (G,+, 0, <) be a non-trivial o-minimal ordered group. This
is a divisible, Abelian ordered group [33], so it has Skolem functions. Recall [34] that
the Log –theory Tdaog of non-trivial divisible Abelian ordered group is complete and
has quantifier elimination in Log . It has a universal axiomatisation in the language
Ldoag := ⟨·, 1, <, Inv, (µq)q∈Q⟩ where each µq, q ∈ Q is interpreted as the scalar
multiplication x 7→ q . x . This implies that the germ at +∞ of each definable function
G −→ G is that of a term in Ldoag . So each element of M∞ is the germ of

G −→ G ; x 7→ q . x + y

for fixed q ∈ Q and y ∈ G. In other words GM is isomorphic to the growth order group
Aff+Q(G) of Theorem 3.4.

4 H-fields with composition and inversion

An H-field [1, 2] is an ordered valued field (K,+,×, 0, 1, <,O) with convex valuation
ring O and maximal ideal thereof o, equipped with a derivation ∂ : K −→ K such that
the following conditions are satisfied:

HF1 ∀a ∈ O,∃c ∈ Ker(∂), a − c ∈ o.

HF2 ∀a ∈ K, a > Ker(∂) =⇒ ∂(a) > 0.
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We usually denote Ker(∂) by C . This is a subfield of K called the field of constants. We
write K>C := {a ∈ K : ∀c ∈ C, a > c}. For a ∈ K , we often write a′ = ∂(a), and we
use the Landau notations O(a) := Oa = {δa : δ ∈ O} and o(a) := oa = {εa : ε ∈ o}.
So O(1) = O and o(1) = o. For a ∈ K× , we write

a† :=
a′

a
∈ K.

Note that (ab)† = a† + b† and (ca)† = a† for all b ∈ K× and c ∈ C× . We have the
following important valuative inequality [1, Lemma 1.1]:

(12) ∀a, b ∈ o, b′ ∈ o(a†).

Furthermore, we have [37, Corollary 1] l’Hospital’s rule

(13) ∀f , g ∈ H, ((f ∈ o(g) ∧ g ̸∈ Θ(1)) =⇒ f ′ ∈ o(g′)).

4.1 H-fields with composition

We now expand H-fields with a composition law.

Definition 4.1 An H-field with composition (over C = Ker(∂)) is an H-field
(K,+, ·, 0, 1, <,O, ∂) with a fixed x ∈ K>C such that x′ = 1, and a binary oper-
ation ◦ : K × K>C −→ K satisfying the following conditions:

HFC1 For all b ∈ K>C , the function K −→ K ; a 7→ a ◦ b is a C–linear morphism
of ordered rings.

HFC2 For all a ∈ K and b, d ∈ K>C , we have a ◦ (b ◦ d) = (a ◦ b) ◦ d .

HFC3 For all a ∈ K>C , the function K>C −→ K>C ; b 7→ a ◦ b is strictly increasing.

HFC4 For all a ∈ K and b ∈ K>C , we have

a ◦ x = a and x ◦ b = b.

HFC5 Let a, δ ∈ K and b ∈ K>C with δ ∈ o(b) and (a† ◦ b)δ ∈ o. For all n ∈ N,
we have

a ◦ (b + δ) −
∑
k⩽n

a(k) ◦ b
k!

δk ∈ o((a(n) ◦ b)δn),

where a(k) denotes the k–th derivative of a.
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Consider the language Lhfc expanding the language of ordered valued differential fields
with a constant symbol x and a binary function symbol ◦. We interpret x on K as
expected and extend ◦ to K × K by setting a ◦ b := 0 if b ̸∈ K>C . Thus K is an
Lhfc –structure, and the class of H-fields with composition is elementary in Lhfc .

The axioms HFC1–HFC4 imply that (K>C, ◦, x, <) is an ordered monoid that acts
by automorphisms on (K,+, ·, 0, 1, <,O), by post-composition. In order to avoid
confusion between compositions and products in K , given an a ∈ K>C and an n ∈ N,
we write a[n] for the n–fold iterate of a (ie its n–th power in the monoid K>C ). If a has
an inverse in K>C , then we denote it by ainv and we set a[−n] := (ainv)[n] = (a[n])inv .

Example 4.2 Let C be an ordered field. Let C(x) be a purely transcendental simple
extension, ordered so that x > C . Write O for the convex hull of C in C(x), which is
the set of fractions with degree ≤ 0.

We have a derivation ∂ : C(x) −→ C(x) with respect to x, which is determined by
C = Ker(∂) and ∂(x) = 1. And (C(x),+, ·, 0, 1, ∂,O, <) is an H-field. For P ∈ C(x)
and Q ∈ C(x)>C , since Q lies above each pole of P, the compositum P ◦ Q is
well-defined. It is easy to see that HFC1–HFC4 are satisfied. Les us now justify
that HFC5 holds. Let F ∈ C(x) and b, δ, n as in HFC5. We have F′ ∈ Ox−1F , so
(F(k+1)◦b)δk+1 ∈ O(F(k)◦b)δk δ

b ⊆ o(F(k)◦b)δk for each k ∈ N. We have formal identity
F ◦ (b + y) =

∑
k∈N

F(k)◦b
k! yk in C[[x, y]], and the previous argument entails that plugging

δ for y gives a convergent sum for the valuation topology on C[[x]]. It also entails that
F ◦ (b + δ) −

∑
k⩽n

F(k)◦b
k! δk =

∑
k>n

F(k)◦b
k! δk ∈ O((F(n+1) ◦ b)δn+1) ⊆ o((F(n) ◦ b)δn).

Note that each H-field with composition over C contains C(x) as an Lhfc –substructure.

Example 4.3 Consider the field Tg of grid-based transseries [14, 20]. We have a
derivation and composition law [21] on Tg such that it is an H-field with field of
constants R and that HFC1, HFC2, HFC4 and HFC5 are satisfied. As for HFC3, it
follows from the inclusion of Tg in the field of finitely nested hyperseries of [5], where
it holds. By [21, Section 5.4], this field has inversion.

We will see other, more analytic examples in the next section (see Theorem 4.16). We
now state a few simple consequences of the axioms.

Remark 4 If ε ∈ o, then ε′ ∈ o((x−1)†) = o(x−1) by (12). In particular ε′ ∈ o, so
the derivation on K is small as per [3, page 7].
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As an ordered field, any H-field has a field topology, called the order topology, for
which the family of (−ε, ε), ε ∈ K> is a fundamental system of neighbourhoods of 0.
We understand limits in that sense.

Lemma 4.4 Let K be an H-field with composition. For a ∈ K and b ∈ K>C , we have

a′ ◦ b = lim
δ→0
δ ̸=0

a ◦ (b + δ) − a ◦ b
δ

.

Proof Let δ ∈ K be sufficiently small in absolute value, so that δ ∈ o(b) and
(a†◦b)δ ∈ o. By HFC5 for n = 1, we have a◦(b+δ)−a◦b−(a′◦b)δ ∈ o((a′′◦b)δ2),
so ∣∣∣∣a ◦ (b + δ) − a ◦ b

δ
− (a′ ◦ b)δ

∣∣∣∣ < |(a′′ ◦ b)δ|.

Letting δ tend to 0, we obtain the desired result.

Lemma 4.5 Let K be an H-field with composition. Let a ∈ K and b ∈ K>C . We have

(a ◦ b)′ = (a′ ◦ b)b′.

Proof Write τ (δ) := δ−1((a ◦ b) ◦ (x + δ) − a ◦ b) for all δ ̸= 0, so

(a ◦ b)′ = lim
δ→0
δ ̸=0

τ (δ).

By HFC5 for (b, x, δ), we can have b ◦ (x + δ) − b ∈ b′δ + O(b′′δ2) arbitrarily small
by choosing δ small enough. In turn, applying HFC5 for (a, b, b ◦ (x + δ) − b) we
obtain δτ (δ) − (a′ ◦ b)b′δ ∈ O((a′ ◦ b)b′′δ2) provided δ is sufficiently small. We thus
have τ (δ) − (a′ ◦ b)b′ ∈ O((a′ ◦ b)b′′δ), hence the result.

We say that K is an H-field with composition and inversion if furthermore (K>C, ◦, x)
is a group. Then in view of HFC1–HFC4, the structure (K>C, ◦, x, <) is an ordered
group. We will give conditions for it to be a growth order group. More precisely,
consider the following conditions on an ordered pair (G0, G1) of subgroups of K>C :

(⋆) The subset G0 ⊆ K>C is a normal convex subgroup of K>C containing x +C , the
subset G1 ⊆ K>C is a complement of G0 in K>C which is a growth order group
with Archimedean centralisers, and {a ◦ (ainv + 1) : a ∈ G1} is cofinal in G0 .

We will obtain Theorem 2 as a consequence of the following theorem.

Theorem 4.6 Let (K,+, ·, 0, 1, ∂,O, <, ◦, x) be an H-field over R with composition
and inversion and let (G0, G1) be as in (⋆). Then K>R is a growth order group with
Archimedean centralisers, and G0 is a growth order group which is ≼–initial in K>R .

This will be proved in Section 4.4 below.
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4.2 Taylor approximations in Hardy fields

Let C<∞ denote the set of all germs [f ] at +∞ of real-valued functions f defined
on positive half-lines (a,+∞), a ∈ R such that for each k ∈ N, there is a positive
half-line on which f is k–times differentiable. We identify constants with the germs of
the corresponding constant functions. Then C<∞ is an R–algebra under pointwise
sum and product. Moreover, it is equipped with a partial R–algebra ordering given by
[f ] < [g] if and only f (t) < g(t) for all sufficiently large t ∈ R. It is a differential ring
under derivation of germs [f ]′ := [f ′] whenever f : (a,+∞) −→ R is differentiable.
Finally, if [g] > R in C<∞ , ie if g tends to +∞ at +∞, then for all [f ] ∈ C<∞

where f ◦ g is defined on a positive half-line, the germ [f ] ◦ [g] := [f ◦ g] only depends
on [f ] and [g].

We will identify germs with given representatives, trying not to confuse the reader in
the process. Given a germ g ∈ C<∞ , we write

o(g) := {f ∈ C<∞ : ∀r ∈ R>, |f | < r|g|}
O(g) := {f ∈ C<∞ : ∃r ∈ R, |f | < r|g|}, and

Θ(g) := {f ∈ C<∞ : f ∈ O(g) ∧ g ∈ O(f )}.

We simply write o,O and Θ for o(1),O(1) and Θ(1) respectively.

Recall that a Hardy field is a differential subfield of C<∞ containing all constant germs.
The induced ordering on such fields is linear [10, page 107].

Definition 4.7 A Hardy field with composition is a Hardy field H which is closed
under composition of germs. We say that it has inversion if H>R is closed under
inversion.

Example 4.8 If R is an o-minimal expansion of the real ordered field, then R∞ is a
Hardy field [12, Section 7.1] with composition and inversion.

Example 4.9 The intersection of all ⊆–maximal Hardy fields is a Hardy field with
composition [9]. It is unknown whether it has inversion.

We will show that certain Hardy fields with composition and inversion are H-fields with
composition and inversion. This mainly entails deriving the Taylor axiom HFC5 in
those fields. If H is a Hardy field, then O(1) ∩ H is a valuation ring on H for which it
is an H-field. The notations above are consistent with that introduced for H-fields. The
derivation on H is small, ie

(14) o′ ⊆ o.
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See [38, Section 2] or [3, Proposition 9.1.9] for proofs. Toward proving HFC5, we
need a mean value theorem for germs.

Lemma 4.10 Let Hbe a Hardy field with composition and inversion and let f ∈ H and
g, h ∈ H> with g < h. There is a c ∈ Hwith g < c < h and f ◦h− f ◦g = (h−g)f ′◦c.

Proof Assume first that f ′ ∈ R. So f is the germ of an affine function f = a id+b,
and we have f ◦ h − f ◦ g = (h − g)a = (h − g)f ′ ◦ c where c := g+h

2 ∈ (g, h).

Assume now that f ′ ̸∈ R. So f ′ is the germ of a strictly monotonic function. Let t ∈ R
be large enough so that h(s) > g(s) for all s ⩾ t , that f is differentiable on [t,+∞)
and that f ′ is strictly monotonic on [t,+∞). The mean value theorem for f gives
f (h(t)) − f (g(t)) = (h(t) − g(t))f ′(ct) for a certain ct ∈ (g(t), h(t)). Since f ′ is strictly
monotonic on [t,+∞), the number ct is unique, and we have a function t 7→ ct whose
germ c satisfies c ∈ (g, h) and f ◦ h − f ◦ g = (h − g)f ′ ◦ c.

Note that f ′ ◦c = f◦h−f◦g
h−g ∈ H. Our hypothesis that f ′ ̸∈ R means that f ′ is the germ of

a strictly monotonic function, which thus induces a bijection φ : (t0,+∞) −→ (t1, t2)
for some t0 ⩾ t and t1, t2 ∈ R ∪ {±∞} with t1 < t2 . By considering translations,
homotheties and inversions if necessary, we may assume that t2 = +∞, so

c = φinv ◦ f ◦ h − f ◦ g
h − g

lies in H.

Lemma 4.11 For all f ∈ H>R with f † ∈ O(id−1), we have (f ′)† ∈ O(id−1).

Proof We have f ′ id ∈ O(f ) where f ̸∈ Θ(1), so (f ′′ id+f ′) ∈ O(f ′) by (13). We recall
that O is a valuation ring on H. Since f ′ ∈ O(f ′), we must have f ′′ id ∈ O(f ′), ie
(f ′)† ∈ O(id−1).

Lemma 4.12 For all f ∈ H>R with f † ̸∈ O(id−1), we have (f ′)† ∈ O(f †).

Proof By [38, Theorem 2], there is a Hardy field H∗ containing H and which is
closed under composition on the left of strictly positive germs with the germ log of
the natural logarithm. Note that f † = (log ◦f )′ . We have id−1 ∈ o(f †) in H∗ ie
log′ ∈ o((log ◦f )′). So (13) gives log ∈ o(log ◦f ). This means that N log < log ◦f , so
idN < f . In particular id2 ∈ o(f ) so (13) yields 2 id ∈ o(f ′), whence 2 < f ′′ by HF2.

Now − f ′

f 2 = (f−1)′ ∈ o by (14), which means that f ′ ∈ o(f 2). We deduce with [1,
Lemma 1.4] that (f ′)† < (f 2)† = 2f † . Since f ′′ > 0 and f ′ > 0, we have (f ′)† > 0, so
this entails that (f ′)† ∈ O(f †).
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Proposition 4.13 Let H be a Hardy field with composition. Then H satisfies HFC5
if and only if for all f , g ∈ H>R and δ ∈ o(g) with (f † ◦ g)δ ∈ o, we have

(15) f ◦ (g + δ) ∈ Θ(f ◦ g).

Proof The relation in (15) is implied by HFC5 at n = 0. Assume that (15) holds. Let
f , g, δ be as in the statement of the proposition. We claim that

(16) ∀n ∈ N, (f (n+1) ◦ g)δn+1 ∈ o((f (n) ◦ g)δn).

Indeed, for n = 0, this follows from the assumption on δ . Let n ∈ N such that (16)
holds at n. Suppose that (f (n))† ∈ O(id−1). Then (f (n+1))† ∈ O(id−1) by Theorem 4.11,
ie f (n+2) ∈ O(id−1 f (n+1)). Composing with g and then multiplying by δn+2 , we obtain

(f (n+2) ◦ g)δn+2 ∈ δ

g
O((f (n+1) ◦ g)δn+1).

But δ ∈ o(g) so (f (n+2) ◦ g)δn+2 ∈ o((f (n+1) ◦ g)δn+1) as claimed. Suppose now that
(f (n))† ̸∈ O(id−1). Then Theorem 4.12 gives

(f (n+1))† ∈ O((f (n))†)

so ((f (n+1))† ◦ g)δ ∈ O(((f (n))† ◦ g)δ) ⊆ o by the induction hypothesis. Therefore
(f (n+2) ◦ g)δδn+1 ∈ o((f (n+1) ◦ g)δn+1). We conclude by induction that (16) holds.

Let us now derive HFC5 at a given n ∈ N. Suppose δ ⩾ 0. Let r0, r1 ∈ R> and
let t0 ∈ R be large enough so that f is Cn+1 on [t0,+∞), that δ is non-negative on
[t0,+∞), and that f (n+1) is monotonic on g(t0,+∞). By (15) for f (n+1) , we may also
assume that

r0|f (n+1)(g(t))| ⩽ |f (n+1)(g(t) + δ(t))| ⩽ r1|f (n+1)(g(t))|

for all t ∈ (t0,+∞). By Taylor’s theorem, for t > t0 , the integral

I(t) :=
∫ g(t)+δ(t)

g(t)

(g(t) + δ(t) − s)n

n!
f (n+1)(s)ds

satisfies f (g(t)+ δ(t)) =
∑n

k=0
f (k)(g(t))

k! δ(t)k + I(t). Now |I(t)| is bounded by the integral∫ g(t)+δ(t)

g(t)

(g(t) + δ(t) − s)n

n!
r1|f (n+1)(g(t))|ds =

|f (n+1)(g(t))|
(n + 1)!

δ(t)n+1.

Thus HFC5 at n follows from (16). The case when δ ⩽ 0 is similar.

Lemma 4.14 Let H be a Hardy field with composition and inversion. Then for x = id,
the axioms HFC1–HFC4 are satisfied.
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Proof Note that H is an H-field with x′ = 1. The monotonicity of germs in H yields
HFC3, whereas HFC1, HFC2 and HFC4 are immediate.

Proposition 4.15 Let H be a Hardy field with composition and inversion. If there is
no f ∈ H with f > exp[n] for all n ∈ N, then H satisfies HFC5.

Proof By [38, Theorem 2], there is a Hardy field H∗ containing H and which is
closed under exp and log. We will partly work inside H∗ so that we may compare
our germs f ∈ H with elements of the form exp[n], n ∈ Z. Let f , g ∈ H>R and
δ ∈ H∩ o(g) with (f † ◦ g)δ ∈ o. Let c ∈ C<∞ with f ◦ (g + δ) − f ◦ g = δf ′ ◦ c as
in Theorem 4.10. We will show that f ◦ (g + δ) ∈ Θ(f ◦ g) by distinguishing two cases.

Case 1: ∃p > 0, f ∈ O((log)p) in H∗ . Then f † ∈ O
(

1
id log

)
so f ′ ∈ O

(
f

id log

)
. Pick

r ∈ R> with |f ′| ⩽ r f
id log . Consider a real number s ∈ (0, 1). Recall that δ ∈ o(g), so

−− s < c
g − 1 < s. Lastly f ′ is the germ of a monotonic function. Combining all this,

for sufficiently large t > 1, we have (1 − s)g(t) < c(t)(1 + s), and

|f ′(c(t))| ⩽ r max(f (g(t) + δ(t)), f (g(t)))
(1 − s)g(t) log(g(t))

.

Since δ ∈ o(g) we get |δ(t)|
g(t) < 1−s

r for sufficiently large t > 1. We deduce that

|δ(t)f ′(c(t))| ⩽ max(f (g(t) + δ(t)), f (g(t)))
log(g(t))

for sufficiently large t > 1. Since log ◦g ̸∈ O, we deduce that δf ′ ◦ c ∈ o(f ◦ (g + δ))
or δf ′ ◦ c ∈ o(f ◦ g). In particular f ◦ (g + δ) ∈ Θ(f ◦ g).

Case 2: logN ⊆ O(f ) in H∗ . Our assumption on H implies that there are an n ∈ N and
a p ∈ N with exp[n−2] ∈ O(f ) and f ∈ O((exp[n−1])p) in H∗ . We prove by induction
on k ⩽ n that for all h ∈ H∗ with h > R and p ∈ N with p > 0, we have

(17) (exp[k−2] ∈ O(h) ∧ h ∈ O((exp[k−1])p) =⇒ h ◦ (g + δ) ∈ Θ(h ◦ g)),

where exp[−2] = log[2] and exp[−1] = log. Note that for k < n, p ∈ N> and
h ∈ (H∗)>R with exp[k−2] ∈ O(h) and h ∈ O((exp[k−1])p) we have h ∈ O(f ) so
h† ∈ O(f †), so

(18) (h† ◦ g)δ ∈ o(1).

Thus if k = 0, then (17) follows from Case 1. Let k < n such that (17) holds at k .
Let h ∈ (H∗)>R and p ∈ N> with exp[k−1] ∈ O(h) and h ∈ O((exp[k])p). We again
write h ◦ (g + δ) − h ◦ g = δh′ ◦ c where c lies strictly between g and g + δ . It
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suffices to show that δh′ ◦ c ∈ o(h ◦ g) or that δh′ ◦ c ∈ o(h ◦ (g + δ)). Note that
h′ ◦ c ∈ O(h′ ◦ g) or h′ ◦ c ∈ O(h′ ◦ (g+ δ)) by monotonicity of h′ . If h′ ◦ c ∈ O(h′ ◦ g),
then (18) yields the result. So we may assume that h′ ◦ c ∈ O(h′ ◦ (g + δ)). We have
h ∈ O((exp[n])p), so log ◦h ∈ O(exp[n−1]), so h† ∈ O((exp[n−1])′) ⊆ o((exp[n−1])2).
The induction hypothesis at n − 1 for h† yields h† ◦ (g + δ) ∈ Θ(h† ◦ g), whence
(h† ◦ (g + δ))δ ∈ o, whence (h′ ◦ c)δ ∈ o(h ◦ (g + δ)) as desired. By induction, the
statement (17) holds for k = n, whence in particular f ◦ (g + δ) ∈ Θ(f ◦ g).

We conclude with Theorem 4.13 that H satisfies HFC5.

Corollary 4.16 Let H be a Hardy field with composition and inversion. Assume that
there is no germ f ∈ H with f > exp[n] for all n ∈ N. Then H is an H-field with
composition and inversion.

This result may extend to transexponential Hardy fields with composition and inversion,
provided one has some control on the growth of elements of said fields. For instance,
we believe it holds in Padgett’s transexponential Hardy field with composition [32],
provided it has inversion. In general, H>R should be contained in a single T –level as
per [42] (see also [43]), for some o-minimal theory T .

Corollary 4.17 Let R be an o-minimal expansion of the real ordered field in a
first-order language L. Assume that each f ∈ R∞ lies below a germ exp[k], k ∈ N
in (C<∞, <). Let R∗ = (R∗, . . .) be an elementary extension of R. Consider the
ordered field R∗

∞ with its canonical [12] derivation ∂ , with the convex hull O∗ of R∗ as
a valuation ring, and composition of germs. Then R∗

∞ is an H-field with composition
and inversion.

Proof The result holds, by Theorem 4.16, if R∗ = R. The structure (R∗
∞, ∂) is

a differential field by [12, Chapter 7, Section 1.3]. Each element h of the valuation
ring of R∗

∞ is the germ of a definable bounded monotonic function on R∗ , so by
o-minimality of R∗ , it has a limit c ∈ R∗ . We have h − c ∈ o∗ by definition, so HF1
holds. If h ∈ R∗

∞ lies above R∗ , then by the monotonicity theorem h must be the
germ of a strictly increasing function. We deduce with [12, Chapter 7, (2.5), Lemma 1]
that h′ > 0. So HF2 holds and R∗

∞ is an H-field. Except for HFC1 which refers to
Ker(∂) = R∗ , all statements in Theorem 4.1 can be turned, after specialisation of the
universally quantified variables, into sentences in L. Since they hold for R∞ , they
hold for R∗

∞ . The existence of compositional inverses for elements in GR∗ has already
been established. This leaves the axiom HFC1 to justify, but that follows immediately
from the definition of R∗ .
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4.3 Conjugacy in H-fields with composition and inversion

We fix an H-field with composition and inversion (K,+, ·, 0, 1,O, <, ∂, ◦, x) over R
and we write G for the group K>R under composition.

Lemma 4.18 Let g = x + r0 + ε where r0 ∈ R and ε ∈ o ∩ K> . Then C(g) is
Archimedean and each h ∈ C(g) has the form h = x + r + δ for an r ∈ R and a δ ∈ o.

Proof For n ∈ Z, we claim that (g[n] − (x + nr0)) ∈ o. Indeed this holds for n = 0.
Given n ∈ Z such that g[n] = x + nr0 + εn where εn ∈ o, we have

g[n+1] = x + nr0 + εn + r0 + ε ◦ (x + nr0 + εn) = x + (n + 1)r0 + εn+1

where εn+1 := ε ◦ (x + nr0 + εn) ∈ o by HFC1. So we have the result for all n ∈ N
by induction. Write ε−1 := g[−1] − x + r0 . We have

x = g ◦ (x − r0 + ε−1) = x + ε−1 + ε ◦ (x − r0 + ε−1)

where ε ◦ (x− r0 + ε−1) ∈ o by HFC1. So we must have ε−1 ∈ o, and we can use the
same arguments as in the case n ⩾ 0, to show by induction that (g[n] − (x + nr0)) ∈ o

for all n ∈ −N.

Now let h ∈ C(g)> and assume for contradiction that δ := h − x > R. Since
g ◦ h = h ◦ g, we have x + δ + r0 + ε ◦ h = x + r0 + ε+ δ ◦ g. So

(19) δ + ε ◦ h = ε+ δ ◦ g.

From ε ∈ o and ε > 0, we deduce by HFC3 that ε ◦ h < ε, whereas δ ◦ g > δ . This
contradicts (19). So h = x + r + ι for a certain r ∈ R and a certain ι ∈ o. Combining
these two results, we deduce that C(g) is Archimedean.

Lemma 4.19 Let f , g ∈ G> with f > x + R, and assume that g = x + 1 + ε for a
certain ε ∈ o with ε > 0. Then f ◦ g > g ◦ f .

Proof Recall that K is an H-field, so f − x > R entails that (f − x)′ > 0, whence
f ′ > 1. We distinguish three cases.

Assume that f − x ∈ o(x). So f = x + δ where δ > R. We have

f ◦ g − g ◦ f = x + 1 + ε+ δ ◦ (x + 1 + ε) − x − δ − 1 − ε ◦ (x + δ)

= (δ ◦ (x + 1 + ε) − δ) + (ε− ε ◦ (x + δ)).

Now δ ◦ (x+ 1+ ε)− δ > 0 because δ > R and x+ 1+ ε > x , and ε− ε ◦ (x+ δ) > 0
because ε ∈ K> ∩ o, ε > 0 and x + δ > x . So f ◦ g > g ◦ f in that case.
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Assume now that f ∈ Θ(x). Then let r ∈ R with f − rx ∈ o(x). So r > 1. Write
δ := f − rx , so δ ∈ o(x). This time, we have

f ◦ g − g ◦ f = (r − 1) + (δ ◦ (x + 1 + ε) − δ) + (rε− ε ◦ (x + δ)).

As in the previous case, the term ε − ε ◦ (x + δ) is strictly positive. We deduce
since r > 1 that rε − ε ◦ (x + δ) > 0. Since r − 1 > 0, it suffices to show that
δ ◦ (x + 1 + ε) − δ ∈ o. This is immediate if δ ∈ O. Indeed then we find by HF1 an
r0 ∈ R and a ι ∈ o with δ = r0 + ι. Thus

δ ◦ (x + 1 + ε) − δ ∈ Θ(ι ◦ (x + 1 + ε) − ι),

whence δ ◦ (x + 1 + ε) − δ ∈ o by HFC1.

Assume that δ ̸∈ O. Recall that δ ∈ o(x), so in view of (13), we have δ′ ∈ o.
Therefore δ′(1 + ε) ∈ o. By HFC5, we have

δ ◦ (x + 1 + ε) − δ − δ′(1 + ε) ∈ o(δ′(1 + ε)).

Since δ′(1 + ε) ∈ o, we must have δ ◦ (x + 1 + ε) − δ ∈ o as claimed.

We finally treat the remaining case when f/x > R. We have f > xR> , so f inv < R>x .
Since f inv > R, we deduce with HF2 that 0 < (f inv)′ < R> , ie (f inv)′ ∈ o. It
suffices to show that ginv ◦ f inv < f inv ◦ ginv . Recall as in the proof of Lemma 4.18
that ginv = x − 1 − δ for a certain δ ∈ o ∩ K> . We have (f inv)† = (f inv)′

f inv ∈ o. Since
(f inv)†1 ∈ o, the axiom HFC5 gives

f inv ◦ (x − 1 − δ) ∈ f inv − (f inv)′(1 + δ) + o((f inv)′).

Therefore f inv ◦ ginv − f inv ∈ o. We have

ginv ◦ f inv − f inv = (x − 1 − δ) ◦ f inv − f inv = −1 − δ ◦ f inv ∈ −1 + o.

Thus ginv ◦ f inv − f inv < f inv ◦ ginv − f inv , so ginv ◦ f inv < f inv ◦ ginv .

We next need to find approximate primitives of elements in K . These are large enough
that this does not require any further assumption on K (such as having asymptotic
integration, see [2, page 8]).

Lemma 4.20 Given δ ∈ O(x−2), there is an h ∈ K with h′ − δ−1 ∈ o(δ−1) ∩ K> .

Proof In view of [38, Theorem 1], it suffices to show that x−2 ∈ o(f †) for all
f ∈ o \ {0}. Let f ∈ o \ {0}. By (12), we have g′ ∈ o(f †) for all g ∈ o. In particular
(x−1)′ = −x−2 ∈ o(f ), hence the result.
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Lemma 4.21 Let g ∈ G> be of the form g = x + δ where δ ∈ K> ∩ O(x−2). There
are an h ∈ G and an ε ∈ o with ε > 0 and h ◦ g ◦ hinv = x + 1 + ε.

Proof By Theorem 4.20, the condition on δ implies that there is an h ∈ K such that
the germ ι := h′− δ−1 satisfies ι ∈ o(δ−1) and ι > 0. Since δ ∈ K> ∩o, the element
δ−1 is positive infinite. Note that O′ = o′ ⊆ o by (14), while f ′ < 0 for all negative
infinite elements by HF1. So h ∈ G. We have δ ◦ hinv ∈ o(h) because δ ∈ O whereas
h ̸∈ O. Finally, we have

δh† ∈ Θ

(
δ

hδ

)
and

1
h
∈ o,

so δh† ∈ o. Consider by HFC5 the Taylor approximation

h ◦ g ◦ hinv = h ◦ (hinv + δ ◦ hinv)

= x + (h′ ◦ hinv)(δ ◦ hinv) +
1
2

(h′′ ◦ hinv)(δ ◦ hinv)2 + δ1

where δ1 ∈ o((h′′ ◦ hinv)(δ ◦ hinv)2). Note that

(h′ ◦ hinv)(δ ◦ hinv) = (1 + ιδ) ◦ hinv = 1 + (ιδ) ◦ hinv

where (ιδ) ◦ hinv is positive by HFC1. We have h′′ = (δ−1)′ + ι′ . Now L’Hospital’s
rule (13) entails that the sign of h′′ is that of (δ−1)′ , which is positive because δ−1 > R.
So h′′δ2 > 0, so 1

2 (h′′ ◦ hinv)(δ ◦ hinv)2 > 0 whence

ε := (ιδ) ◦ hinv +
1
2

(h′′ ◦ hinv)(δ ◦ hinv)2 + δ1 > 0.

We have h ◦ g ◦ hinv = x + 1 + ε as desired.

4.4 Ordered groups in H-fields with composition and inversion

We now prove Theorem 4.6. Let (K,+, ·, 0, 1, ∂,O, <, ◦, x), G0 and G1 be as in
the statement of Theorem 4.6. Consider the projections π0 : K>R −→ G0 and
π1 : K>R −→ G1 with π0π1 = IdK>R .

Lemma 4.22 For all g ∈ G>
0 , there are a φ ∈ G1 and an ε ∈ K> ∩ o with

φ ◦ g ◦ φinv = x + 1 + ε.

Proof Let φ ∈ G1 such that φ > x3+R and g ⩽ φ◦(φinv+1). Thus φinv◦g◦φ ⩽ x+1.
We have so x ⩽ φ[−3] ◦ g ◦ φ[3] because g is positive in the ordered group G0 . So
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x ⩽ φ[−2] ◦ (φ[2] +1). Note that φ > x+R, so φ′ > 1 by HF2. We have (φinv)† ◦φ =
1
φ′x ∈ o(1). HFC5 for (φinv, φ, 1) gives φinv ◦ (φ+1)−x− (φinv)′ ◦φ ∈ o((φinv)′ ◦φ),
so

φinv ◦ (φ+ 1) − x ∈ O

(
1
φ′

)
.

But φ > x3 + C so φ′ > 3x2 , so δ := φinv ◦ (φ+ 1) − x lies in O(x−2). We deduce
that Theorem 4.21 applies and yields the result.

Lemma 4.23 For g ∈ G̸
=
0 , we have C(g) ⊆ G0 .

Proof We may assume that g > x. Let φ ∈ G1 be given by Lemma 4.22 with
φinv ◦ g ◦φ = x + 1 + ε for an ε ∈ K> ∩ o. We have C(g) = φ ◦ C(x + 1 + ε) ◦φinv ,
so it suffices to show that C(x + 1 + ε) ⊆ G0 . This follows from Theorem 4.18 and the
fact that G0 is a convex subgroup of K>R .

We will use the identity C(g) = C(g) ∩ G0 for g ∈ G0 without mention.

Corollary 4.24 The subgroup G0 ⊆ K>R is ≼–initial in K>R .

Proposition 4.25 The group K>R has Archimedean centralisers.

Proof Let g ∈ K>R with g > x. If g ∈ G0 , then by Lemma 4.22 the ordered group
C(g) is isomorphic to C(x + 1 + ε) for an ε ∈ K> ∩ o, whence C(g) is Archimedean
by Theorem 4.18.

If g ̸∈ G0 , then we must have g > G0 by convexity. For f , h ∈ K>R , we have
[f , h] = 1 =⇒ [π1(f ), π1(h)] = π1(1) = 1, so the morphism π1 ↿ C(g) : C(g) −→ G1

ranges in C(π1(g))∩G1 . It is nondecreasing by (9). For h ∈ Ker(π1)∩C(g) = G0∩C(g),
since g ̸∈ G0 , we cannot have h ∈ G̸

=
0 by Theorem 4.23. Therefore π1 ↿ C(g) is an

embedding of ordered groups C(g) −→ C(π1(g)) ∩ G1 . We deduce since its codomain
is Archimedean that C(g) is Archimedean.

Corollary 4.26 The axiom GOG1 holds in G0 and in K>R .

Proof For K>R this follows from Propositions 4.25 and 2.1. For G0 , we know by
Propositions 4.25 and Theorem 4.23 that it has Archimedean centralisers. We conclude
with Proposition 2.1.

Lemma 4.27 The axiom GOG2 holds in G0 and in K>R .
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Proof Let f , g ∈ K>R with f , g ⩾ x. Suppose first that g ∈ G0 and f > C(g). We
may assume by Theorem 4.22 that g = x + 1 + ε for an ε ∈ K> ∩ o. We must have
f > x +R by Theorem 4.18, whence f ◦ g > g ◦ f by Theorem 4.19. Applying this for
f ∈ G0 , we see that GOG2 holds in G0 .

Suppose now that f > C(g). If g ∈ G0 , then the arguments above apply and yield
f ◦ g > g ◦ f . If not, we have π1(g) > x since G0 is a convex subgroup of K>R .
Recall that C(π1(g)) ∩ G1 is Archimedean, so π1(g)[N] is cofinal in it. We have
π1(f ) > π1(C(g)) ⊇ π1(g[N]) = π1(g)[N] , so π1(f ) > C(π1(g)) ∩ G1 . Thus GOG2 in
G1 yields

π1(f ◦ g) = π1(f ) ◦ π1(g) > π1(g) ◦ π1(f ) = π1(g ◦ f ).

By (9) and by convexity of G0 , we have f ◦ g > g ◦ f . So GOG2 holds.

Lemma 4.28 The axiom GOG3 holds in G0 and in K>R .

Proof Let g ∈ K>R with g > x. Suppose first that g ∈ G0 . Let φ ∈ G1 with
φinv ◦g◦φ = x+1+ ε for some ε ∈ K>∩o. By Theorem 2.17 and Theorem 4.18, the
the element x+ 1 is scaling in K>R with x+ 1 ≍ φinv ◦ g ◦φ in K>R . The conjugation
by φ is an automorphism of (G0, ◦, x, <), so the element s := φ ◦ (φinv + 1) ∈ G0 is
scaling in G0 with s≍ g. Thus G0 has scaling elements. In view of Theorem 4.23, we
also obtain that s is also scaling in K>R with s≍ g in K>R .

Now suppose that g ̸∈ G0 , so g > G0 by convexity. Let t ∈ G1 be scaling in G1

with t ≍ π1(g) in G1 . Since C(π1(g)) ∩ G1 is Archimedean, we have π1(g)[−n] ⩽
t⩽ π1(g)[n] for some n ∈ N, so g[−n−1] ⩽ t⩽ g[n+1] , whence t≍ g in K>R . We
claim that t is scaling in K>R . Indeed let f ∈ K>R with f ≍ g. By Theorem 4.25,
we have g[−n] ⩽ f ⩽ g[n] for some n ∈ N, so π1(g[−n]) ⩽ π1(f ) ⩽ π1(g[n]), whence
π1(f ) ≍ t in G1 . Let u ∈ C(t) ∩ G1 with π1(f )u−1 ≺ π1(f ) in G1 . Since G1 has
Archimedean centralisers, this means that π1((f u−1)[Z]) = (π1(f )u−1)[Z] < π1(f ),
whence (f u−1)[Z] < f . We deduce with Theorem 4.25 that f ∼ u in K>R . Thus t is
scaling in K>R . Therefore GOG3 holds in K>R .

This concludes the proof of Theorem 4.6.

4.5 Application in the polynomially bounded case

Let R be an o-minimal expansion of (R,+, ·, <). We recall a fundamental dichotomy
for the asymptotic growth of germs in GR :
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Miller’s dichotomy [28] If there is an f ∈ R∞ with f > idn for all n ∈ N, then the
exponential function is definable in R.

If exp is not definable, then R is said polynomially bounded. Let us first work on that
smaller side of the dichotomy, that is, suppose that R is polynomially bounded. Let E
denote the set of real numbers e such that the germ ide of the e–power function is in
R∞ . It is easy to see that E is a subfield of R.

By [28, Proposition], for each f ∈ R∞ , there is a unique (ef , cf ) ∈ E × R such that
f − cf idef ∈ o(f ). If f > R, then we must have ef > 0 and cf > 0. Note that R> is
an ordered vector space over E , and thus we have a growth order group AffE(R>) as in
Theorem 3.4. We set G1 := R> idE>

. Note that the function

(e·, c·) : GR −→ AffE(R>)

f 7−→ (ef , cf )

is a homomorphism of ordered groups which restricts to an isomorphism

G1 −→ AffE(R>).

Therefore G1 ≃ AffE(R>) is a growth order group. Let G0 denote the kernel of (e·, c·).
So G0 is a normal subgroup of GR and G1 is a complement of G0 in GR . Here
G0 corresponds to germs that are tangent to the identity, whereas G1 is a group of
non-monic monomials.

Proposition 4.29 The ordered pair (G0, G1) satisfies (⋆) for GR .

Proof We have G0 = {g ∈ GR : g − x ∈ o(id)}, so G0 is a convex subgroup of
GR which contains id+1. For c ∈ R> \ {1}, the centraliser of (1, c) in AffE(R>) is
{1} × R> ≃ R> . In Theorem 3.4, we saw that given e ∈ E> with e ̸= 1 and c ∈ R> ,
for all q ∈ E> , there is a unique c0 ∈ R> such that (q, c0) and (e, c) commute. Thus
the projection on the first variable is an isomorphism between C((e, c)) and E> . Note
that E> embeds into the Archimedean ordered group (R>, ·, 1, <) ≃ (R,+, 0, <), it is
Archimedean. Therefore G1 has Archimedean centralisers.

It remains to show that L := {f ◦(f inv+1) : f ∈ G1} is cofinal in G0 . Let g = x+δ ∈ G0 ,
so δ ∈ o(id). We have δ − cxe ∈ o(δ) for a certain (e, c) ∈ E × R. The condition
δ ∈ o(id) implies that e < 1, so we find an n ∈ N with 2n−1

2n > e. Note that

id2n ◦(id2−n
+1) ∈ id+2n id

2n−1
2n +o(id

2n−1
2n ).

Therefore id2n ◦(id2−n
+1) > g. This implies that L is cofinal in G0 .
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As R is polynomially bounded, Theorem 4.16 applies and entails that R∞ is an H-field
with composition and inversion. Theorem 4.6 gives:

Corollary 4.30 Let R be a polynomially bounded o-minimal expansion of the real
ordered field. Then GR is a growth order group with Archimedean centralisers.

4.6 Applications in the exponential case

In order to deal with the exponential case, we introduce a notion of H-field with an
exponential function. We will also give additional applications of Theorem 4.6.

Definition 4.31 An exponential H-field is an H-field K over R together with an
isomorphism log : (K>, ·, 1, <) −→ (K,+, 0, <), whose reciprocal is denoted exp,
such that

log(1 + o) = o and(20)

∀a ∈ K>, a† = (log a)′.(21)

Thus (K,+, ·, 0, 1, <, exp) is an ordered exponential field as per [24]. We fix an
exponential H-field K . Consider a Hardy field with composition H containing log and
a morphism of ordered valued differential fields Φ : H−→ K . For all f ∈ H> , we
have Φ(f ) > 0 and

(logΦ(f ))′ =
Φ(f )′

Φ(f )
=

Φ(f ′)
Φ(f )

= Φ(
f ′

f
) = Φ((log ◦f )′) = Φ(log ◦f )′

by (21). So logΦ(f ) − Φ(log ◦f ) ∈ R. For all a ∈ K>R and δ ∈ o(a), we have
log(a+δ)− log(s) ∈ o. Indeed log(a+δ) = log(a(1+δa−1)) = log(a)+ log(1+δa−1)
where log(1 + δa−1) ∈ o by (20). An induction gives

(22) log[k] Φ(f ) − Φ(log[k] ◦f ) ∈ o

for all f ∈ H>R and k > 1.

Proposition 4.32 Let H be a Hardy field with composition and inversion containing
exp and let Φ : H −→ K be embedding of ordered valued differential fields. Set
x := Φ(id) and suppose that for all a ∈ K>R , there is an l ∈ Z such that for all
sufficiently large k ∈ N, we have

(23) log[k](a) − log[k−l](x) ∈ o.

Then H>R is a growth order group with Archimedean centralisers.

Journal of Logic & Analysis 17:4 (2025)



38 Vincent Mamoutou Bagayoko

Proof We will write oK := o(1) ⊆ K and oH := o(1) ⊆ H. Consider the subgroup
G1 := exp[Z] of H>R . This is a growth order group with Archimedean centralisers as it
is itself Archimedean. Let G0 denote the subset of H>R of elements g with g[Z] < exp.
This is a convex subgroup of H>R containing id+R. We claim that (G0, G1) satisfies
(⋆). We have G1 ∩ G0 = {id} by definition. Let us show that H>R = G0G1 .

Let f ∈ Hwith f ⩾ id. By (22) and (23), we find an l ∈ Z such that for large enough k >

1, the element log[k](Φ(f ))− log[k](exp[l](x)) lies in oK . We claim that g := f ◦ log[l] ∈
G0 . By (22), given k > 1 large enough, we have Φ(log[k] ◦f ) − Φ(log[k−l](id)) ∈ oK ,
whence log[k] ◦f − log[k−l](id) ∈ oH. Thus log[k] ◦f ◦ exp[k] − exp[l] and log[k] ◦g ◦
exp[k] − id lie in oH. But then log[k] ◦g ◦ exp[k] ⩽ id+1 so g[n] < exp[k] ◦(id+n) ◦
log[k] ⩽ exp[k] ◦ exp ◦ log[k] = exp for all n ∈ N, ie g ∈ G0 .

For h ∈ G1 , g ∈ G0 and n ∈ N, we have (h◦g◦hinv)[n] = h◦g[n]◦hinv < h◦exp ◦hinv =

exp. So h◦ G0 ◦hinv ⊆ G0 . It follows since H>R = G0G1 that G0 is a normal subgroup
of H>R .

Finally, assume for contradiction that g > exp[k] ◦(log[k] +1) for some g ∈ G0 , for all
k > 1. By (22), for each k > 1, we have a δk ∈ oK with log[k](Φ(g))+δk > log[k](x)+1.
In particular log[k] Φ(g) > log[k](x) + 1

2 , whence Φ(g) > exp[k](log[k](x) + 1
2 ), for all

k > 1. Let ℓ ∈ Z and k0 > 1 with log[k0](Φ(g)) − log[k0−ℓ](x) ∈ oK . We have ℓ > 0
since log[k0](x) + 1

4 < log[k0−ℓ](x). Now (22) gives Φ(log[k0](g) − log[k0−ℓ]) ∈ oK , so
log[k0](g) − log[k0−ℓ] ∈ oH. In particular log[k0](g) − log[k0−ℓ] ⩾ −1, thus

g[2] = exp[k0](log[k0](g)) ◦ exp[k0](log[k0](g))

⩾ exp[k0] ◦(id−1) ◦ log[k0−ℓ] ◦ exp[k0] ◦(id−1) ◦ log[k0−ℓ]

⩾ exp[k0] ◦((id−1) ◦ exp[ℓ] ◦(id−1) ◦ exp[ℓ]) ◦ log[k0] .

We have (id−1) ◦ exp[ℓ] ◦(id−1) ◦ exp[ℓ]) = h ◦ exp[2ℓ] , where

h := (id−1) ◦ (exp[ℓ] ◦(id−1) ◦ log[ℓ]).

Now h ∈ G0 by our previous arguments, so h ⩾ log, so

g[2] ⩾ exp[k0] ◦h ◦ exp[2ℓ] ◦ log[k0] ⩾ exp[2ℓ−1] .

This contradicts the assumption that g ∈ G0 , and thus concludes out proof that
{f ◦ (f inv + 1) : f ∈ G1} is cofinal in G0 . So (⋆) holds. We conclude with
Theorem 4.6.

Corollary 4.33 Let P be the Pfaffian closure of the real ordered field [41]. Then GP

is a growth order group with Archimedean centralisers.
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Proof The field TLE of logarithmic-exponential transseries is an exponential H-field
(see [13, 3]). The property (23) holds [27, Claim, page 248] in TLE . We have an
embedding of ordered valued differential fields [4, Corollary 7.3.4] of P∞ into TLE .
So Theorem 4.32 applies.

Let us complete our proof of Theorem 2. Let R be a levelled expansion of the real
ordered field that is not polynomially bounded. We have exp, log ∈ GR by Miller’s
dichotomy. This yields an isomorphism of ordered groups

log : R>
∞ −→ R∞

f 7−→ log ◦f

and (R∞, log) is an exponential H-field (see [24, Section 6.2]). Since R is levelled
and in view of (22), the condition (23) holds. Theorem 4.32 gives:

Corollary 4.34 Let R be a levelled o-minimal expansion of the real ordered field that
is not polynomially bounded. Then GR is a growth order group with Archimedean
centralisers.

Remark 5 Any reduct of a levelled o-minimal expansion of the real ordered field
that defines the sum and product is clearly a levelled o-minimal expansion of the real
ordered field, therefore it also induces a growth order group.

Corollaries 4.30 and 4.34 imply Theorem 2. By [23, Theorem 1], we have:

Corollary 4.35 Let R be an o-minimal expansion of the real ordered field by the
exponential and a generalised quasianalytic class [35] containing the restricted analytic
exp and log. Then GR is a growth order group with Archimedean centralisers.

Acknowledgments We thank Lou van den Dries, Françoise Point and Tamara Servi
for their answers to our questions. We thank Sylvy Anscombe for her precious advice.

References

[1] M Aschenbrenner, L van den Dries, H-fields and their Liouville extensions, Mathem-
atische Zeitschrift 242 (2002) 543–588; http://doi.org/10.1007/s002090000358

[2] M Aschenbrenner, L van den Dries, Liouville closed H-fields, Journal of Pure and
Applied Algebra 197 (2003) 1–55; http://doi.org/10.1016/j.jalgebra.2023.03.019

Journal of Logic & Analysis 17:4 (2025)

http://doi.org/10.1007/s002090000358
http://doi.org/10.1016/j.jalgebra.2023.03.019


40 Vincent Mamoutou Bagayoko

[3] M Aschenbrenner, L van den Dries, J van der Hoeven, Annals of Mathematics
studies 195, Princeton University Press (2017)

[4] M Aschenbrenner, L van den Dries, J van der Hoeven, Maximal Hardy fields (2023);
arXiv:/2304.10846

[5] V Bagayoko, Hyperexponentially closed fields (2022)

[6] V Bagayoko, Hyperseries and surreal numbers, PhD thesis, UMons, Ecole Polytech-
nique (2022)

[7] V Bagayoko, Groups with infinite linearly ordered products (2024); arXiv:

2403.07368

[8] B Baizhanov, J Baldwin, V Verbovskiy, Cayley’s theorem for ordered groups: o-
minimality, Sibirskie Elektronnye Matematicheskie Izvestiya [electronic only] 4 (2007)
278–281

[9] M Boshernitzan, New "orders of infinity", Journal d’Analyse Mathématique 41 (1982)
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[14] J Écalle, Introduction aux fonctions analysables et preuve constructive de la conjecture
de Dulac, Actualités Mathématiques, Hermann (1992)
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