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Abstract: Nonstandard mathematics furnishes a remarkable connexion between
analytic and algebraic geometry. We describe this interplay for the most basic
notions like complex spaces/algebraic schemes, generic points, differential forms
etc. We obtain - by this point of view - in particular new results on the prime
spectrum of a Stein algebra.
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Introduction

The methods of nonstandard mathematics are in general ignored in analytic and al-
gebraic geometry. Only some very specific applications of model theory are used to
be known as for instance the Lefschetz principle, the theorem of Tarski-Seidenberg or
some simple proofs of Hilbert’s Nullstellensatz. Our Leitmotif is quite different and
can be summarized by the following statements

• holomorphic functions (or convergent power series) should be (the standard part of)
polynomials of infinite (or hyperfinite) degree

• complex spaces should be seen as hyperalgebraic schemes

• generic points of irreducible complex spaces/schemes should be certain nonstandard
points

• describe differential forms as functions taking infinitesimal values (Leibniz’ vision)

• replace always “countable” by “hyperfinite”.

This program is achieved in our paper. Clearly, other more specific problems and
conjectures in analytic/algebraic geometry can be reformulated by our “nonstandard”
point of view, especially those which involve the word “infinity”.
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We briefly describe the essential content of this paper. One of our fundamental con-
structions is that of a category of certain ringed spaces, called bounded schemes, which
contains the category of algebraic C- schemes and which admits an essentially sur-
jective functor, called the standard part functor, to the category of complex spaces.
We thus generalize the usual passage from a nonstandard (bounded) real number to its
standard part (a non constructive and non trivial procedure). The advantage of this new
more algebraic category is that it allows us to apply many constructions of standard
algebraic geometry which are not evident in the analytic context. We obtain analytic
results just by taking the standard part functor. The essential surjectivity of the last
one means, roughly speaking, that we replace holomorphic functions by nonstandard
polynomials (also called internal polynomials) of some hyperfinite degree (which we
can fix a priori). The polynomials obtained in this way are called bounded since they
map bounded (nonstandard points) into themselves. Analogously to the classical al-
gebraic case, we can extend sometimes holomorphic maps to compactifications in our
nonstandard algebraic setting.

By a new version of what should be the meaning of a point in a complex space, namely
a nonstandard one, we are able to prove that any prime ideal (not necessarily closed)
of a Stein algebra which satisfies a Nullstellensatz, involving nonstandard points, is
the zero set of some (non unique) nonstandard point. Especially, we can describe
geometrically all maximal ideals of a Stein algebra and determine their residue fields,
which are C or a nonstandard complex number field ∗C

• every maximal ideal in a Stein algebra is the vanishing ideal of a (nonstandard)
point.

Another fact which we obtain is a geometric visualisation of generic points in irre-
ducible complex spaces. They are found to be certain nonstandard (but bounded)
points. The evaluation map in such a point defines an inclusion

M(X) ↪→ ∗C

of the field M(X) of meromorphic functions on X to the field ∗C of nonstandard
complex numbers.

Finally, in the tradition of G.W.Leibniz, we propose a “real” infinitesimal interpretation
of the symbol dx in our context and, more generally, the notion of a differential form.
Such a dx is an infinitesimal variable; that is (an equivalence class of) a function which
maps near standard points to infinitesimal ones. This notion is rigorously defined
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Complex spaces and nonstandard schemes 3

in Section 6. We show that our differential forms on X identify naturally with the
holomorphic ones on the associated complex space Xan .

In many of our constructions (in fact, in the most interesting ones), we work with so-
called external sets (like for instance, the set of infinitesimal internal polynomials).
This means in particular that the transfer principle of nonstandard mathematics - its
most powerful tool - does not work directly here. But it is still important for interme-
diate steps in our arguments. The reader should notice that, in contrast to the language
used in some books on nonstandard analysis, we always use in this paper the expres-
sion “bounded” point instead of a “limited” one and similarly also for other objects, as
internal polynomials for example.

The classical text on nonstandard mathematics is Robinson’s book [15] and also that
of Stroyan and Luxemburg [18]. For a more recent introduction into hyperreals see
[8] and for an account to hyper categories [1]. Other interesting rings of nonstandard
numbers, motivated by asymptotic expansions, are considered in [13].
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1 Algebras of internal polynomials

Let I be an infinite set and let U be a fixed non-principal ultrafilter on I .

1.1 Ultraproduct of rings

Let (Ai)i∈I be a family of sets indexed by I . We write ∗AI = ΠUAi for the ultraproduct
of the Ai ’s with respect to the ultrafilter U . An element x of ∗AI is an equivalence class
of (xi). We write x = [xi]. If Ai = A for each i ∈ I , then ∗A = ΠUAi is the ultrapower
of A with respect to U . Let fi : Ai −→ Bi be a family of maps between Ai and Bi . It
induces a map ∗f : ∗AI −→ ∗BI , defined by ∗f ([ai]) = [fi(ai)]. Such map is called an
internal map and we write ∗f = [fi].
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Now, we consider algebraic structures on the Ai ’s. If (Ai)i is a family of rings, then
∗AI is again a ring. In fact ∗AI = Πi∈IAi/I, where I is the ideal in Πi∈IAi defined
by I = {x ∈ Πi∈IAi, V(x) ∈ U} where V(x) := {i ∈ I | xi = 0}. Rings of this
form are called *-rings or internal rings. Let ∗AI and ∗BI be two internal rings. An
internal homomorphism of *-rings between ∗AI and ∗BI is given by ∗f = [fi] where
fi : Ai −→ Bi are morphisms of rings. *-rings and internal morphisms of *-rings
constitute a category of *-rings. The operator “*” gives a functor between the category
of rings, parametrized by the index set I , and the category of *-rings. If A is an internal
ring, (Algint

A ) denotes the category of internal A-algebras.

1.2 Internal algebras

Let ∗SI = ΠUSi be an internal ring and n = [ni] ∈ ∗N.

The ring of polynomials in indeterminates X1, . . . ,Xni over the ring Si is denoted by
Si[X1, . . . ,Xni] and S[X1, . . . ,Xn]int denotes the ultraproduct of the polynomial rings
Si[X1, . . . ,Xni] with respect to the ultrafilter U ; that is,

S[X1, . . . ,Xn]int =
∏
U

Si[X1, . . . ,Xni].

Given B ∈ (Algint
S ), we say that B is a *-algebra of hyperfinite type over S (resp.

*-algebra of finite type over S), if there exist an integer n ∈ ∗N (resp. a finite
n ∈ N) and a surjective internal morphism u : S[X1, . . . ,Xn]int −→ B. Let I =
Ker u, then I is an internal ideal of S[X1, . . . ,Xn]int and B is internally isomorphic
to S[X1, . . . ,Xn]int/I. Furthermore, the morphism u is completely determined by the
internal sequence (u(X1), . . . , u(Xn)). Conversely, any hyperfinite family (t1, . . . , tn) ∈
Bn determines a unique internal morphism u : S[X1, . . . ,Xn]int −→ B such that u(Xi) =
ti for each i = 1, . . . , n.
If the ring ∗SI is *-noetherian (that is, {i ∈ I, Si is noetherian } ∈ U ), then the ideal I

is hyperfinitely generated by a family of nonstandard polynomials.

Let B and C be two *-algebras of hyperfinite type over ∗SI . Then there exist n,m ∈
∗N and surjective morphisms u : S[X1, . . . ,Xn]int −→ B, v : S[Y1, . . . ,Ym]int −→ C ,
such that we have internal isomorphisms B ' S[X1, . . . ,Xn]int/I , C ' S[Y1, . . . ,Ym]int/J.

Let w : B −→ C be a morphism of *-algebras. Then the morphism w lifts to a mor-
phism of *-algebras w̃ : S[X1, . . . ,Xn]int −→ S[Y1, . . . ,Ym]int , sending the ideal I

into the ideal J.

In the sequel, let n be a fixed finite integer.
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1.3 The ring of internal polynomials

Let ∗SI = ΠUSi be an internal ring. Elements of S[X1, . . . ,Xn]int are called internal
polynomials or nonstandard polynomials. Suppose now we are given d ∈ ∗N. An
internal polynomial P ∈ S[X1, . . . ,Xn]int of degree at most d , will be written in the
unique form

P =
∑
|ν|≤d

aν Xν , where aν ∈ ∗SI and d ∈ ∗N.

Here the sum ranges over all multi-indices ν = (ν1, . . . , νn) ∈ ∗Nn with |ν| =
ν1 + . . . + νn ≤ d and as usual Xν is stands for Xν1

1 . . .Xνn
n . We have a canoni-

cal injective morphism of (∗SI)-algebra (∗SI)[X1, . . . ,Xn] −→ S[X1, . . . ,Xn]int , where
(∗SI)[X1, . . . ,Xn] denotes the ring of polynomials in indeterminates X1, . . . ,Xn over
the internal ring ∗SI . Furthermore, let P ∈ S[X1, . . . ,Xn]int be an internal polynomial
of degree d , then P ∈ (∗SI)[X1, . . . ,Xn] if and only if, d is finite.

We denote by (∗SI)[[X1, . . . ,Xn]] the ring of power series over the internal ring ∗SI in
indeterminates X1, . . . ,Xn .

Proposition 1.1 There is a canonical surjective ring homomorphism

θ : S[X1, . . . ,Xn]int −→ (∗SI)[[X, . . . ,Xn]]

given by “forgetting monomials of infinite degree”.

Proof Let P ∈ S[X1, . . . ,Xn]int . Then P =
∑
|ν|≤d aν Xν , where aν ∈ ∗SI and d ∈

∗N. Let θ be the restriction map

θ(P) =
∑
ν∈Nn

aν Xν ∈ (∗SI)[[X, . . . ,Xn]];

that is, θ(P) is the standard power series with coefficients in ∗SI . It is clear that the
map θ is a ring homomorphism and θ maps onto (∗SI)[[X, . . . ,Xn]]. In fact, given
Q ∈ (∗SI)[[X, . . . ,Xn]], Q = Σν∈Nnaν Xν , by comprehensiveness (see for example
[13] Ch.2§ 6), the sequence (aν)ν∈Nn extends to an internal sequence, also denoted
by (aν)ν∈ ∗Nn . Fix any d ∈ ∗N∞ and put P =

∑
|ν|≤d aν Xν . Then clearly we have

θ(P) = Q. -
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1.4 The ring of bounded internal polynomials

Let ∗C be an enlargement of the field of complex numbers. Elements of the ring
C[X1, . . . ,Xn]int can be considered as internal functions between ∗Cn and ∗C. In
the sequel, we will not distinguish between internal polynomials and their associated
internal functions. As mentioned above, each P ∈ C[X1, . . . ,Xn]int can be written in
the form P = Σ|ν|≤daν Xν , where aν ∈ ∗C and d ∈ ∗N. We associate to P the
internal polynomial |P| defined by

|P| :=
∑
|ν|≤d

|aν |Xν

where |a| is the (nonstandard) absolute value of a ∈ ∗C.

Let us fix some notations: bC stands for the set of bounded points of ∗C and iC for
the set of infinitesimal points of ∗C . We denote by ∗N∞ the set of infinite integers.
If n,m∈ ∗N with n ≤ m, [[n . . .m]] := {k ∈ ∗N, n ≤ k ≤ m}. It is evident that
b(Cn) = (bC)n and i(Cn) = (iC)n .

Definition 1.2 Let P ∈ C[X1, . . . ,Xn]int be an internal polynomial. We call P

i) a bounded polynomial if P(bCn) ⊂ bC, that is, P sends bounded points of ∗Cn to
bounded points of ∗C,

ii) an absolutely bounded polynomial if |P|(bCn) ⊂ bC, that is, |P| sends bounded
points of ∗Cn to bounded points of ∗C,

iii) an infinitesimal polynomial (resp. absolutely infinitesimal polynomial) if P(bCn) ⊂
iC (resp. |P|(bCn) ⊂ iC).

In fact, we will prove in 1.5 that these two notions of boundedness defined above
coincide.

Let bC[X1, . . . ,Xn] denote the set of bounded internal polynomials. It is a subring of
C[X1, . . . ,Xn]int . The subset iC[X1, . . . ,Xn] of infinitesimal internal polynomials is
an ideal of bC[X1, . . .Xn].

NOTATION. Let bsC[X1, . . . ,Xn] := {P = Σaν Xν ∈ bC[X1, . . . ,Xn] | aν ∈
C for every standard ν}. Trivially it is a subring of bC[X1, . . . ,Xn].

If the degree of an internal polynomial is finite, we can immediately characterize
bounded or infinitesimal polynomials by their coefficients and the notions of bound-
edness and absolutely boundedness coincide.
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Remark Let P = Σ|ν|≤daν Xν be an internal polynomial of bounded degree d , where
aν ∈ ∗C. Then

i) P is a bounded polynomial if and only if aν ∈ bC for each ν ∈ Nn , such that
|ν| ≤ d ,

ii) P is an infinitesimal polynomial if and only if aν ∈ iC for each ν ∈ Nn , such that
|ν| ≤ d .

We have the inclusions

(bC)[X1, . . . ,Xn] ( bC[X1, . . . ,Xn] ( C[X1, . . . ,Xn]int.

Now, we consider the general case

Proposition 1.3 Let P ∈ C[X1, . . . ,Xn]int be an internal polynomial; that is

P =
∑
|ν|≤d

aν Xν , where aν ∈ ∗C and d ∈ ∗N∞.

Then P is absolutely bounded if and only if the following two conditions are satisfied

i) aν ∈ bC for bounded |ν| (that is, ν ∈ Nn),

ii) |aν |
1
|ν| ∈ iC for infinite |ν| such that |ν| ≤ d .

Proof Let P = Σ|ν|≤daν Xν be an absolutely bounded internal polynomial, then for
each ν ∈ Nn , we have |aν | ≤ |P|(1, . . . , 1) so we conclude that aν ∈ bC for finite
|ν|. Suppose that there exists a standard positive real m, such that

|aν |
1
|ν| ≥ m for some infinite |ν| such that |ν| ≤ d.

Let q be a standard real such that q > 1 and ξ be a standard positive real such that
ξ > q

m . Then,
|P|(ξ, . . . , ξ) ≥ |aν | ξ|ν| ≥ (m ξ)|ν| ≥ q|ν|

hence, |P|(ξ, . . . , ξ) will be infinite, which is a contradiction.

Now, let ε > 0 be a standard positive real. We set

Aε = {|ν| ∈ ∗N , |aν |
1
|ν| ≤ ε}.
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Then Aε is an internal subset of ∗N which contains {n ∈ ∗N∞, n ≤ d}. By the
permanence principle, there exists a finite integer n0 ∈ N, such that [[n0..d]] ⊂ Aε .
This means that,

|aν |
1
|ν| ≤ ε for every ν ∈ ∗Nn : |ν| ∈ [[n0..d]].

Let x = (x1, . . . , xn) be a bounded point in ∗Cn , such that |xi| ≤ 1
2ε for each i ∈

[[1 . . . n]]. Then, we have

|aν xν | ≤ ε|ν||xν | ≤
(

1
2

)|ν|
for each ν ∈ ∗Nn : |ν| ∈ [[n0..d]].

The two internal polynomials Σn0≤|ν|≤d|aν |Xν and Σ|ν|<n0 |aν |X
ν are bounded for

each x = (x1, . . . , xn), such that |xi| ≤ 1
2ε .

Now, let x = (x1, . . . , xn) be a bounded point in ∗Cn . Then there exists a standard
positive real ε such that |xi| ≤ 1

2ε for each i ∈ [[1 . . . n]]. Hence |P|(x1, . . . xn) is
bounded.

Proposition 1.4 Let P ∈ C[X1, . . . ,Xn]int be an internal polynomial, so

P =
∑
|ν|≤d

aν Xν where aν ∈ ∗C and d ∈ ∗N∞.

Then P is absolutely infinitesimal if and only if |aν |
1
|ν| ∈ iC for each ν ∈ ∗Nn \ {0},

|ν| ≤ d , and a0 infinitesimal.

The last condition is equivalent to aν ∈ iC, if |ν| is finite (that is, ν ∈ Nn) and

|aν |
1
|ν| ∈ iC, if |ν| ≤ d and |ν| is infinite.

Proof Let us define
A := {|aν |

1
|ν| , 0 < |ν| ≤ d}.

Then A is an hyperfinite set and therefore has a greatest element. Let M = max A, so
M ∈ A and M ∈ iC.

Let x = (x1, . . . , xn) be a bounded point of ∗Cn . Then there exists a standard positive
real R > 0 such that |xi| ≤ R for each i ∈ [[1 . . . n]]. We get

||P|(x1, . . . , xn)| ≤ |a0|+
∑

1≤|ν|≤d

(M R)|ν| ≤ |a0|+
MR

(1−MR)n ∈
iC.

In order to show the other implication, we note that the internal polynomial P is in

particular absolutely bounded, so by Proposition 1.3, we have |aν |
1
|ν| ∈ iC for infinite

|ν|. For each ν ∈ Nn , we have |aν | ≤ |P|(1, . . . , 1). Then, we conclude that aν ∈ iC
for finite |ν|.
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10 A. Khalfallah and S. Kosarew

Proposition 1.5 Let P ∈ C[X1, . . . ,Xn]int be an internal polynomial. We have

i) P is a bounded polynomial if and only if P is an absolutely bounded polynomial,

ii) P is an infinitesimal polynomial if and only if P is an absolutely infinitesimal
polynomial.

Proof Let x = (x1, . . . , xn) ∈ ∗Cn , we have |P(x1, . . . , xn)| ≤ |P|(|x1|, . . . , |xn|).
So, it is clear that every absolutely bounded (resp. infinitesimal) polynomial is a
bounded (resp. an infinitesimal) polynomial. Now we verify the converse. Let P =
Σ|ν|≤daν Xν be a bounded polynomial and R be a standard positive real. By Proposi-

tion 1.3, we have to prove that aν is bounded for finite |ν| and |aν |
1
|ν| is infinitesimal

for infinite |ν|. We denote by TR = {(ξ1, . . . ξn) ∈ ∗Cn, |ξ1| = . . . = |ξn| = R}.
Applying transfer to the Cauchy formula, we obtain

aν =
1

(2πi)n

∫
TR

P(ξ1, . . . , ξn)

ξν1+1
1 . . . ξνn+1

n
dξ1 . . . dξn.

Again, by transfer, the polynomial P attains its maximum on the Shilov boundary
of the polydisc at some point ξR ∈ TR . But since P is bounded, we have |P(ξR)| a
bounded number. Hence, there exists a standard positive real MR such that

|aν | ≤
MR

R|ν|
, ∀ ν ∈ ∗Nn, |ν| ≤ d.

So, if |ν| is bounded then aν is bounded and if |ν| is infinite, then M
1
|ν|
R ≈ 0 and we

have

|aν |
1
|ν| ≤ 2

R
for each ν such that |ν| ∈ ∗N∞, |ν| ≤ d.

Since R is an arbitrary standard positive real, we get |aν |
1
|ν| ∈ iC for infinite |ν|.

Corollary 1.6 The rings bC[X1, . . . ,Xn] and iC[X1, . . . ,Xn] are invariant by any
partial derivative ∂α for α ∈ Nn .

Remark There is a more general version of the preceding results (including Cauchy’s
formula for the coefficients), assuming only that the given internal polynomial takes
bounded/infinitesimal values on a polydisc with appreciable multiradius.
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2 Comparing holomorphic functions and internal polynomi-
als

We have already defined the ring of bounded internal polynomials over ∗C. Let P be a
bounded internal polynomial. Then P can be seen as an internal function from the set
of bounded points of ∗Cn to the set of bounded points of ∗C. First, we prove that ◦P,
the standard part of P, is an entire holomorphic function on Cn . This result is an easy
corollary of the theorem of Robinson-Callot which we extended to several complex
variables.

In this section, we define the so-called standard part functor from the category of
bounded polynomial algebras to the category of Stein algebras of finite embedding di-
mension. We prove that this functor is essentially surjective. This fact can be regarded
as a nonstandard algebraization of Stein spaces.

2.1 Stein Algebras

We recall some known facts about Stein algebras. Let (X,OX) be a complex space.
Then X is called Stein space, if it is holomorphically separable and holomorphically
convex. The algebra Γ(X,OX) of all holomorphic functions on X is a Fréchet algebra.
A topological algebra A (over C) is called a Stein algebra, if there exists a Stein space
(X,OX) such that A is morphically isomorphic to Γ(X,OX).

Stein algebras form a category where morphisms are morphisms of topological C−
algebras. The functor of global sections defines a contravariant functor from the cat-
egory of Stein spaces to the category of Stein algebras. In fact, this functor is an
anti-equivalence between these categories, see Forster[6] for the algebro-topological
theory of Stein algebras.

We recall some results due to H.Cartan. Let A = Γ(X,OX) be a Stein algebra, and
a is a closed ideal of A. Then OX.a is a coherent sheaf of ideals and Γ(X,OX.a)
is isomorphic to a. Conversely, let M be a coherent sheaf of ideals of OX . Then
Γ(X,M) is a closed ideal of A and OX.Γ(X,M) identifies with M.

Let A be a Stein algebra of finite embedding dimension. Then A = Γ(X,OX), where
X is Stein space of finite embedding dimension. It follows from the proper embedding
theorem that X can be embedded as a closed complex subspace of Cn for some n ∈ N.

Journal of Logic & Analysis 2:9 (2010)



12 A. Khalfallah and S. Kosarew

2.2 Internal holomorphic functions

By the enlargement construction, one can define the set of internal holomorphic func-
tions on an internal open subset of ∗C. Robinson studied internal holomorphic func-
tions and proved some external properties of these functions.

Let U be an ultrafilter defined on N and let ∗C = ΠUC be an enlargement of C. Let
D = [Di] be an internal subset of ∗Cn and let f = [fi] : D −→∗ C be an internal
function. We say that f is an internal holomorphic function on D if

{i ∈ N | Di ⊂ Cnopen and fi holomorphic on Di} ∈ U .

It is well known, by Osgood’s theorem, that a function f is holomorphic on Ω, an open
subset of Cn , if and only if f is continuous on Ω and partially holomorphic on Ω.

Theorem 2.1 Let B be an S-open subset of ∗Cn . We fix a bounded point a in B and
f : B−→ ∗C an internal holomorphic function on B. We assume that f is bounded on
µ(a), the halo of a. Then there exists V an S-open neighbourhood of a such that

i) f is S-continuous in V .

ii) There exists ◦f : ◦V −→ C a holomorphic function in ◦V , such that ◦f ≈ f and
◦(∂αf ) = ∂α(◦f ) for each α ∈ Nn .

iii) If ◦f is not constant in ◦V , then f is S-open in a, that is, f (µ(a)) = µ(f (a)).

This theorem is an easy generalization of the theorem of Robinson-Callot known in
single complex variables, see Robinson[15], Callot[3], Fruchard[7] and Lutz-Goze([14]:
lesson 11, p:123).

NOTATION. For ν = (ν1, . . . , νn) ∈ Nn and z = (z1, . . . , zn) ∈ Cn define |ν| = Σn
i=1νi

and zν = zν1
1 . . . zνn

n . Let r = (r1, . . . , rn) ∈ ∗Rn , all ri > 0, z0 = (z(0)
1 , . . . , z(0)

n ) ∈
∗Cn . Then Pn(z0, r) = {z∈ ∗Cn | |zi − z(0)

i | < ri for i = 1, . . . , n} is called the *-
open polydisk with polyradius r and center z0 and Pn(a, r) = {z∈ ∗Cn | |zi − z(0)

i | ≤
ri for i = 1, . . . , n} the *-closed polydisk. The Shilov boundary of the *-polydisk
Pn(z0, r) is the set Tn(z0, r) = {z∈ ∗Cn | |zi − z(0)

i | = ri for i = 1, . . . , n}. If r > 0
and r = (r, . . . , r), we write Pn

r (z0) (resp. Tn
r (z0)) instead of Pn(z0, r) (resp. Tn(z0, r)).

Proof i) By the permanence principle, there exists a standard positive real r such that
Pn(a, r) ⊂ B and the internal holomorphic function f is bounded on Pn(a, r). Let ρ be
a standard positive such that ρ < r and

V := {z∈ ∗Cn | ◦|zi − ai| < ρ for i = 1, . . . , n}.
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V is an S-open neighbourhood of a and ◦V is the open polydisk with polyradius ρ
and center ◦a. Let z, ξ ∈ V such that z ≈ ξ . Applying transfer to Cauchy’s formula,
we have

f (z) =
1

2πi

∫
Tn

r (a)

f (w)
w− z

dw and f (ξ) =
1

2πi

∫
Tn

r (a)

f (w)
w− ξ

dw

where w− z = (w1 − z1) . . . (wn − zn) and w− ξ = (w1 − ξ1) . . . (wn − ξn).

Again, by transfer, the function f attains its maximum on Tn
r (a), the Shilov boundary

of the polydisk Pn(a, r). Since f is bounded on Pn(a, r), then M := supw∈Tn(a,r)|f (w)|
is bounded. So,

|f (z)− f (ξ)| ≤ M
(2π)n

∫
Tn

r (a)
| 1

w− z
− 1

w− ξ
| dw.

It is easy to see that w − z ≈ w − ξ and, since w − ξ is appreciable, 1
w−z ≈

1
w−ξ .

Moreover, there exists η a positive infinitesimal such that | 1
w−z −

1
w−ξ | ≤ η for every

w ∈ Tn
r (a). It follows that

|f (z)− f (ξ)| ≤ Mrnη.

This shows that f (z) ≈ f (ξ) for z ≈ ξ which is equivalent to S-continuity of f in z,
see Appendix C Nonstandard Topologies.

ii) Let ◦a = (◦a1, . . . ,
◦ an) be the standard part of a. The standard part ◦f of the

function f exist on ◦V , the standard polydisk with polyradius ρ and center ◦a. We de-
duce from the first assertion that ◦f is continuous on ◦V (see Appendix C Nonstandard
Topologies). By Osgood’s theorem, it suffices to prove that f is partially holomorphic.
But this follows directly from Robinson [15]( Theorem 6.2.3 p. 156) and for each
α ∈ Nn , we have ◦(∂αf ) = ∂α(◦f ).

iii) The S-continuity of f implies that f (µ(a)) ⊂ µ(f (a)). Let w ≈ f (a). By hypothesis,
◦f , the standard part of f , is not constant, hence, there exists b 6= a, such that ◦f (b) 66=
◦f (a). Let D be the *-complex line passing through a and b. Let f1 denote the
restriction of f on D ∩ µ(a). f1 is an internal holomorphic map and not a constant
function. Then, by Robinson’s theorem [15] Theorem 6.2.8 p. 158, there exists z ∈
D ∩ µ(a) such that f (z) = w.

Remark The condition that ◦f is not constant is essential to deduce that f is S-open.
For a counterexample, it suffices to consider the trivial example of constant infinitesi-
mal maps. Moreover, this condition cannot be weakened by “f is non constant”: Let
ε be an infinitesimal and f (z) = εz. Then we have f (µ(0)) ( µ(0).
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14 A. Khalfallah and S. Kosarew

2.3 Internal holomorphic maps into complex hyperbolic spaces

In Theorem 2.1, we note that the condition that f is bounded in every point of µ(a),
the halo of a, is essential and cannot be replaced by the condition that f (a) is bounded
as this example shows. Let ω be an infinite real and f (z) = ωz be the internal holo-
morphic function on ∗C. We have f (0) = 0 but f is not bounded on every point of
µ(0). Hence, we could think of imposing additional assumptions on the target space,
but keeping a weak condition on f . In this direction A. Robinson proved (see [15]
Theorem 6.3.2 p.160)

Theorem 2.2 [15] Let B be an S-domain in ∗C and f : B → ∗C \ {0, 1} be an
internal holomorphic function. Suppose that f takes a bounded value at some point
z0 ∈ B. Then f is bounded and S−continuous in B.

We should note that this theorem is not true if f takes values in ∗C \ {0} as the
following example shows: put f (z) := expωz, where ω is an infinite real; f (0) is
bounded, but f is not S-continuous in 0.

We want to generalize the above theorem of Robinson, motivated by the fact that the
space C \ {0, 1} is complete hyperbolic and, moreover, hyperbolically embedded in
P1

C .

NOTATION. ∆r stands for the disc with radius r > 0 in the complex plane C. If
r = 1, we simply denote ∆ instead of ∆1 . Let X be a reduced complex space and
Hol(∆,X) the set of all holomorphic maps from ∆ to X . We will denote by dX the
Kobayashi pseudo-distance of X .

Theorem 2.3 Let X be a hyperbolic complex space and f : ∗∆→ ∗X be an internal
holomorphic map. Then

i) f is S-continuous in ∗∆.

ii) Suppose that f takes a bounded value at some point z0 such ◦|z0| < 1. Then f is
bounded in every point of {z ∈ ∗∆ | ◦|z| < 1}, the S-interior of ∗∆.

For the definition of bounded points in a metric space, see Appendix C: Metric spaces

Proof For every g ∈ Hol(∆,X), we have dX(g(x), g(y)) ≤ d∆(x, y) for any x, y ∈ ∆.
Hence by transfer, we obtain

∗dX(f (x), f (y))≤ ∗d∆(x, y) for each x, y∈ ∗∆.
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As a consequence, if x, y ∈ ∗∆ such that x ≈ y, then ∗dX(f (x), f (y)) ≈ 0 and f is
S-continuous on ∗∆. The assertion (ii) is immediately deduced from the following
lemma, due to Robinson (see [15], Theorem 4.5.9 p.114)

Lemma 2.4 [15] Let h be an S-continuous map, defined on an S-connected set D.
Then the points of h(D) belong to the same galaxy.

Next, we consider the case of complete hyperbolic complex spaces.

Theorem 2.5 Let f : ∗∆ → ∗X be an internal holomorphic map where X is a com-
plete hyperbolic complex space. Then

i) f is S-continuous in ∗∆.

ii) Suppose that f takes a near-standard value at some point z0 such ◦|z0| < 1. Then f
is near-standard in every point of {z ∈ ∗∆ | ◦|z| < 1}, the S-interior of ∗∆ and
there exists a holomorphic map ◦f : ∆ → X , the standard part of f verifying
◦f ≈ f .

We recall the following definition

Definition 2.6 Let (X, d) be a metric space. We say that (X, d) is strongly complete
or finitely compact if every closed ball B(x, r) = {y ∈ X |d(x, y) ≤ r} with x ∈ X and
r > 0 is compact.

Comparing different notions of completeness, Kobayashi proved (see [11], Proposition
1.1.9 p.4)

Proposition 2.7 [11] Let d be a distance on a locally compact space X . Then

i) If (X, d) is strongly complete then (X, d) is complete.

ii) If d is inner distance then completeness implies strong completeness.

It is straightforward, using a nonstandard characterization of compactness, to check
the following proposition

Proposition 2.8 Let (X, d) be a metric space. Then (X, d) is strongly complete if and
only if bd(∗X) = ns(∗X), where bd(∗X) denotes the set of bounded points in ∗X (see
Appendix C: Metric spaces).
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16 A. Khalfallah and S. Kosarew

Proof of Theorem 2.5 Using Theorem 2.3, we only have to prove assertion (ii). Since
the Kobayashi distance dX is an inner distance, we conclude that X is in fact strongly
complete for dX . As a consequence, bounded points of ∗X coincide with near standard
points. Now let z∈ ∗∆, such ◦|z| < 1. By S-continuity, we get f (µ(z)) ⊂ µ(f (z)). Let
W be an S-neighborhood of f (z) in ∗Cn . Applying the permanence principle, there
exists a standard positive real r > 0 such that f (∗∆r) ⊂ W . By Theorem 2.1, we
conclude that the standard part ◦f exists.

Let X be a complex manifold and H be a metric on TX ; for simplicity, we will write
|v| instead of H(v) for every v ∈ TX .

Proposition 2.9 The complex manifold X is hyperbolic if and only if every internal
holomorphic map f : ∗∆→ ∗X with f (0) ∈ ns(∗X) verifies |f ′(0)| is bounded.

Proof Suppose that X is hyperbolic and let f : ∗∆→ ∗X be an internal holomorphic
map. Then f is S-continuous in 0. Hence for W an S-neighborhood of f (0), there
exists a standard real 0 < r < 1 such that f (∗∆r) ⊂ W . By the Cauchy formula,
we deduce that |f ′(0)| is bounded. Conversely, if X is not hyperbolic then by the
Royden infinitesimal criterion of hyperbolicity, we conclude that there exist x ∈ X and
a sequence of holomorphic maps fn : ∆→ X such that the sequence (fn(0)) converges
to x and |f ′n(0)| → +∞. Clearly the sequence (fn) induces an internal holomorphic
map F : ∗∆→ ∗X verifying F(0) ∈ ns(∗X) and |F′(0)| is not bounded. -

Remark Proposition 2.9 is a nonstandard translation of the following characteriza-
tion of hyperbolicity which asserts that a manifold X is hyperbolic if and only if X
satisfies the Landau property (see for instance [9]), that is, for each p ∈ X and each W
a relatively compact neighborhood of p, there exists R > 0 such that

sup{|f ′(0)| : f ∈ Hol(∆,X) with f (0) ∈ W} ≤ R.

Corollary 2.10 Let X be a compact manifold. Then X is hyperbolic if and only if
every internal holomorphic map f : ∗∆ −→∗ X satisfies |f ′(0)| is bounded.

We close this section by giving a nonstandard characterization of hyperbolicity in the
compact case

Theorem 2.11 i) Let Y be a relatively compact subspace of a complex space Z .
Then Y is hyperbolically embedded in Z if and only if every internal holomor-
phic map f : ∗∆→ ∗Y has a holomorphic standard part ◦f : ∆→ Z .
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ii) Let X be a compact complex space. Then X is hyperbolic if and only if every
internal holomorphic map f : ∗∆→ ∗X has a holomorphic standard part ◦f :
∆→ X .

This is a nonstandard interpretation of the following standard facts:

i) Let Y be a relatively compact subspace of a complex space Z . Then Y is hy-
perbolically embedded in Z if and only if Hol(∆,Y) is relatively compact in
Hol(∆,Z).

ii) Let X be a compact complex space. Then X is hyperbolic if and only if Hol(∆,X)
is compact.

2.4 Bounded internal holomorphic functions

Similarly, as for the algebra of bounded internal polynomials, we define bO(Cn), the
algebra (over bC) of bounded entire *- holomorphic functions on ∗Cn , by

bO(Cn) = {f ∈ ∗O(Cn) | f (bCn) ⊂ bC}.

Proposition 2.12 Let f ∈ bO(Cn) be a bounded *-holomorphic function on ∗Cn .
Then ◦f , the standard of f exists and is holomorphic on Cn . We have for the zero sets,
◦Z(f ) ⊂ Z( ◦f ) and if ◦f is not constant, then

◦Z(f ) = Z( ◦f ).

Proof The first assertion is a direct consequence of Theorem 2.1. For the second,
the inclusion follows from the S-continuity of f and the S-openness of f implies the
equality.

Let now X be a topological space. We denote by ns(∗X) the set of near-standard
points of ∗X . The knowledge of ns(∗X) is essential to define the standard part map.

We endow C[X1, . . . ,Xn] and O(Cn) with the compact-open topology, that is the
topology of uniform convergence in each compact subset of Cn .

For g ∈ O(Cn), let µ(g) denote the halo of g for the compact-open topology.
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18 A. Khalfallah and S. Kosarew

Lemma 2.13 Let g ∈ O(Cn). Then

µ(g) = {f ∈ ∗O(Cn) | f (x) ≈ ∗g(x) for every x∈ bCn}.

In addition, we have bO(Cn) = ns(∗O(Cn)) and bC[X1, . . . ,Xn] = ns(∗O(Cn)) ∩
C[X1, . . . ,Xn]int .

Proof Let C(Cn,C) denote the set of continuous maps from Cn to C endowed with
the compact-open topology. Let g ∈ C(Cn,C) and µC(g) be the halo of g in ∗C(Cn,C).
Then we have that µC(g) = {f ∈ ∗C(Cn,C) | f (x) ≈ ∗g(x) for every x ∈ bCn}, see
Appendix C: Standard part of a map. Since O(Cn) ⊂ C(Cn,C) is equipped with the
induced topology, then µ(g) = µC(g) ∩ ∗O(Cn) for every g ∈ O(Cn).

It is straightforward to verify that ns(∗O(Cn)) ⊂ bO(Cn), the converse inclusion is
deduced from Proposition 2.12. -

Remark Put bC(Cn,C) := { f ∈ ∗C(Cn,C) | f ( bCn) ⊂ bC} and SC(Cn,C) :=
{f ∈ ∗C(Cn,C) S-continuous on bCn}. Then we have, by Appendix C: Standard part
of a map,

bC(Cn,C) ∩ SC(Cn,C) = ns(∗C(Cn,C)).

For g ∈ O(Cn) let µs(g) denote the halo of g in the topology of simple convergence.
Then

µs(g) = {f ∈ ∗O(Cn) | f (x) ≈ g(x) for every x ∈ Cn}.

Now, we come to the central result of this section

Theorem 2.14 The standard part map defines a ring homomorphism

st : bO(Cn) −→ O(Cn).

Its restriction to the subrings bC[X1, . . . ,Xn] and bsC[X1, . . . ,Xn] are surjective and
we have the following commutative diagram

st
bsC[X1, ...,Xn] −→ O(Cn)

↓ ↓
C[X1, ...,Xn]int −→ (∗C)[[X1, ...,Xn]]

where the vertical arrows are the natural inclusions and the lower horizontal one is the
ring homomorphism θ defined in Proposition 1.1.

Journal of Logic & Analysis 2:9 (2010)



Complex spaces and nonstandard schemes 19

Proof The standard part map "st" is well-defined since we know that bO(Cn) =
ns(∗O(Cn)). It defines a ring homomorphism, because the standard part map is com-
patible with sums and products of complex numbers.

Now, we shall prove that the restriction of "st" to bsC[X1, . . . ,Xn] is surjective. Let
f ∈ O(Cn), so

f =
∑
ν∈Nn

aν Xν .

The sequence (aν)ν∈Nn extends to the internal sequence (aν)ν∈∗Nn . Let N ∈ ∗N∞ .
Truncating f at the order N , we get

fN =
∑
|ν|≤N

aν Xν

and fN is an internal polynomial. Since the partial sums of f converge on each compact
of Cn to f , we have

fN(x) ≈ ∗f (x) for each x∈ bCn

that is, fN ∈ µ(f ) ⊂ bC[X1, . . .Xn]. This shows fN ∈ bsC[X1, . . . ,Xn] and st(fN) = f .

The restriction of the map “st” to bC[X1, . . . ,Xn] can be described explicitly. Let
f ∈ bC[X1, . . . ,Xn], of degree d ∈ ∗N , and f = Σ|ν|≤daν Xν . Then

st(
∑
|ν|≤d

aν Xν) =
∑
ν∈Nn

◦(aν) Xν .

First, it is evident that the power series g(x) := Σν∈Nn ◦(aν) xν defines an entire holo-
morphic function on Cn . In fact, let ε > 0 be a standard positive real, there exists a

finite integer n0 ∈ N, such that |aν |
1
|ν| ≤ ε for each ν ∈ ∗Nn such that n0 ≤ |ν| ≤ d.

Hence, for each standard ν ∈ Nn such that |ν| ≥ n0 , we have ◦|aν |
1
|ν| ≤ ε which

implies that lim sup|ν |→+∞ (◦ | aν |
1
|ν| ) = 0.

Trivially, the standard sequence of complex numbers (◦aν)ν∈Nn extends to an internal
sequence of complex numbers (bn)n∈∗Nn such that for every standard ν , we have bν =
◦aν . By transfer, we get |bν |

1
|ν| ≤ ε for every |ν| ≥ n0 , ν ∈ ∗Nn . The uniform

convergence of g on each compact gives us
∗g(x) ≈

∑
|ν|≤d

bν xν for each x ∈ bCn.

We claim that Σ|ν|≤daν xν ≈ Σ|ν|≤dbν xν for each x∈ bCn . This is equivalent to
Σ|ν|≤d(aν − bν) xν ∈ iC[X1, . . . ,Xn]. But this follows immediately from Proposi-
tion 1.4 which gives a characterization of infinitesimal bounded internal polynomials.
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Indeed, for each standard ν , we have aν ≈ bν and |aν − bν |
1
|ν| ≈ 0 for infinite ν ,

since |aν − bν |
1
|ν| ≤ 2

1
|ν| ε ≤ 2ε for every ν ∈ ∗Nn , n0 ≤ |ν| ≤ d .

2.5 The standard part functor in the affine case

We intend to generalize 2.14 to bounded polynomial algebras, leading to Theorem
2.17.

Let n,m be finite positive integers and ib : bC[X1, . . . ,Xn] ↪→ C[X1, . . . ,Xn]int the
inclusion of the algebra of bounded polynomials into the algebra of internal polyno-
mials.

Proposition 2.15 Let u be a *-homomorphism of ∗C-algebras

u : C[X1, . . . ,Xn]int −→ C[Y1, . . . ,Ym]int

such that u(Xi) = gi ∈ bC[Y1, . . . ,Ym]. Then we have

i) The homomorphism u induces bu : bC[X1, . . . ,Xn] −→ bC[Y1, . . . ,Ym], a homo-
morphism of bC-algebras such that ib ◦ (bu) = u ◦ ib .

ii) The homomorphism bu induces a map st(bu) which is a homomorphism of Stein
algebras between O(Cn) and O(Cm) such that st ◦ (bu) = st(bu) ◦ st.

Proof Let f be an internal polynomial, so f = Σ|ν|≤daν Xν1
1 . . .Xνn

n . Then

u(f ) =
∑
|ν|≤d

aν gν1
1 . . . gνn

n = f (g1, . . . , gn).

Assume now f ∈ bC[X1, . . . ,Xn]. It is clear that u(f ) ∈ bC[Y1, . . . ,Ym] since if
x ∈ bCn then (g1(x), . . . , gn(x)) ∈ bCn and f (g1(x), . . . , gn(x)) ∈ bC.

As usual ◦g1, . . . ,
◦gn stands for the standard parts of g1, . . . , gn . Let h ∈ O(Cn). We

define st(bu) by
st(bu)(h) := h(◦g1, . . . ,

◦gn).

It is immediate that st(bu) defines a homomorphism of Stein algebras between O(Cn)
and O(Cm). Moreover, for every N ∈ ∗N∞ we have st(bu)(h) = ◦(hN(g1, . . . , gn)),
where hN denotes the Taylor expansion up to order N of h. In other words, we get
st(bu) ◦ st = st ◦ (bu) on bC[X1, . . . ,Xn], which was to show. -
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Now we shall define the category of “bounded” polynomial algebras (over C). Objects
are given by bC-algebras of the form bC[X1, . . . ,Xn]/I where n ∈ N and I is an arbi-
trary ideal of bC[X1, . . . ,Xn]. Let A = bC[X1, . . . ,Xn]/I and B = bC[Y1, . . . ,Ym]/J
be two bounded polynomial algebras. A morphism between A and B is given by
bu : bC[X1, . . . ,Xn] −→ bC[Y1, . . . ,Ym], a morphism of bC-algebras induced by a
n-uplets of bounded internal polynomials as in Proposition 2.15 which sends the ideal
I to the ideal J . In this way, we get a category of algebras which we call the category
of bounded polynomial algebras. We note that there exist coproducts in this category.

We define the full subcategory of bounded polynomial algebras of finite type where
objects are given by bC[X1, . . . ,Xn]/I where I is an ideal generated by finitely many
bounded polynomials. Let Iint := ib(I).C[X1, . . . ,Xn]int denote the ideal associated to
I . Since the ideal I is of finite type then Iint is an internal ideal of C[X1, . . . ,Xn]int .
By our construction, we have the following proposition

Proposition 2.16 There is a natural covariant functor F from the category of bounded
polynomial algebras of finite type (over C) to the category of *-algebras of finite type
over C. This functor is compatible with coproducts.

Now we have developed the necessary tools to prove the main result of this section
which is the construction of the standard part functor from the category of bounded
polynomial algebras to the category of Stein algebras (over C) of finite embedding
dimension.

Theorem 2.17 There is an essentially surjective functor ST , called the standard part
functor, from the category of bounded polynomial algebras to the category of Stein
algebras (over C) of finite embedding dimension

ST : (Bounded polynomial algebras) −→ (Stein algebras).

Proof Let st : bC[X1, . . .Xn] −→ O(Cn) be the ring epimorphism defined in Theo-
rem 2.14. Then ◦I := st(I) is an ideal of O(Cn) and its closure ◦I in O(Cn) gives us
a Stein algebra

ST (bC[X1, . . . ,Xn]/I) := O(Cn)/ ◦I.

Now, let A = bC[X1, . . . ,Xn]/I and B = bC[Y1, . . . ,Ym]/J be two bounded polyno-
mials algebras and bu be the morphism between A and B which is given by n-uplets
of bounded internal polynomials. By Proposition 2.15, st(bu) gives an homomorphism
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of Stein algebras between O(Cn) and O(Cm), satisfying st(bu) ◦ st = st ◦ (bu). Since
st(bu) is continuous, we get

st(bu)(◦I) ⊂ st(◦J).

Setting
ST (bu) : O(Cn)/ ◦I −→ O(Cm)/ ◦J

which is given by st(bu) modulo ◦I , we defined ST on morphisms.

Now, let C = O(Cn)/ a be a Stein algebra. Then a is a closed ideal of O(Cn) gener-
ated by a family (gi)i∈I of entire holomorphic functions over Cn

a =
∑
i∈I

giO(Cn).

For each i ∈ I , let fi ∈ bC[X1, . . . ,Xn] be a bounded internal polynomial such that
◦fi = gi . Define ab the ideal generated by the family (fi)i∈I over bC[X1, . . . ,Xn], that
is

ab =
∑
i∈I

fi bC[X1, . . . ,Xn].

Clearly we have ◦ab = a which implies that ◦ab = a. Hence ST (bC[X1, . . . ,Xn]/ab) =
O(Cn)/ a, which finishes the proof. -

If one wants to treat also the case of Stein algebras which are not necessarily of finite
embedding dimension, one can proceed in the following way: Let X be a Stein com-
plex space. Then there exists an increasing sequence of natural numbers n0 < n1 < ...

and a projective system of holomorphic maps (fk : X → Cnk )k∈N such that

a) the categorical image Yk of fk is a closed complex subspace of Cnk and so we
obtain a projective system (Yk)k of Stein subspaces of (Cnk )k ,

b) for each compact K ⊂ X , there is a k such that fk is an embedding of K ; so
we may consider in particular the map X → lim←Yk as a monomorphism and
lim→O(Yk) as a dense subalgebra of O(X) .

To these data, we can associate an algebra of internal bounded polynomials as follows:
The sequence (n0, n1,, ...) defines an infinite natural number N and so forth the ring of
internal polynomials ∗C[X1, . . . ,XN]. It contains lim→k

bC[X1, . . . ,Xnk ] as a subring.
The projective system (Yk)k defines in an obvious (but non unique) way an ideal in
this subring by fixing in addition an infinite natural number N′ , serving as a degree for
replacing holomorphic functions by internal polynomials. So, we are able to “replace”
the complex space X by a certain type of algebra of internal polynomials. It is not
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difficult (but technical) to give a description in categorical terms of a standard part
functor (which is essentially surjective), defined on this type of algebras and taking
values in the category of Stein algebras. Since we do not need this construction in the
sequel, we omit the details.

2.6 Completions and enlargements

The aim of this section is to compare the notions of completions and enlargements of
topological rings. Let (A, I) be a topological ring and I is an ideal of A which makes
A separated and complete for the I-adic topology, that is

⋂
n>0 In = 0 and A ∼= Â :=

lim← A/ In+1 . Let ( ∗A, ∗I) be an enlargement of the couple (A, I). First, we prove
that the ring ∗A equipped with the ∗I-adic topology is in general not separated since
µ(0) :=

⋂
n>0

∗In , the halo of 0, is not reduced to {0}, which occurs only if 0 is
isolated in A, in other words if the ring A is discrete. Let (∗)A := ∗A/µ(0) denote
the separated ring associated with ∗A. We show that (∗)A is complete for the ∗I-adic
topology.

Before giving the proof, we shall prove first some results in a more general context and
deduce from those the fact mentioned above.

Let A be a ring and ∗A :=
∏
U A be an enlargement of A, where U is a non-principal

ultrafilter on N. Let a be an internal ideal of ∗A.

Theorem 2.18 The canonical homomorphism of rings

θ : ∗A −→ lim
←−

∗A/ an+1

is surjective and its kernel is ∩n>0a
n .

Proof The canonical homomorphism θ is defined by

θ(x) = (xk := x mod ak+1)

Let (xk) be a sequence of elements of ∗A, such that xk+1 − xk ∈ ak+1 . Since the
enlargement ∗A is comprehensive, the sequence (xk) extends to an internal sequence
(xk)k∈ ∗N , indexed by ∗N. Let

C = {k ∈ ∗N | xk+1 − xk ∈ ak+1}.

Then C is an internal subset of ∗N which contains N. Hence, by permanence, there
exists ω0 ∈ ∗N∞ such that

xk+1 − xk ∈ ak+1 for every k ∈ [[1, . . . , ω0]].
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We put y := xω0+1 ∈ ∗A and so we have

y− xk =
ω0∑
l=k

(xl+1 − xl) ∈ ak+1 for every k ∈ N.

Then θ(y) = y mod ak+1 = xk mod ak+1 which proves that θ is surjective. Clearly,
Ker(θ) = ∩n>0a

n .

Finally
∗A/ ∩n>0 an ∼= lim

←−
∗A/ an+1.

This shows that the separated space associated to ∗A for the a-adic topology (i.e ∗A/∩
n>0a

n ) is complete for this topology.

Remark By the permanence principle, we have ∩k>0a
k = ∪k∈ ∗N∞ak and we con-

clude that ∩k>0a
k 6= 0, if and only if, ak+1 6= 0 for each k ∈ N, which is the case if

and only if ak+1 6= 0 for some k ∈ ∗N∞ .

Using elementary proprieties of projective limits, we get

Corollary 2.19 Let A be an I-adic ring. Then we have

i) lim←− ∗A/ ∗In+1 ∼= ∗A/µ(0),

ii) Â ↪→ ∗A/µ(0),

iii) Â ∼= ∗A/µ(0) if and only if A/ In+1 is finite for every n ∈ N.

Proof The first assertion is a direct consequence of Theorem 2.18. For the second
one, by transfer, we have ∗(A/Ik) = ∗A/ ∗Ik . Consider the following sequence of
projective systems (with surjective transition maps)

0 −→ (A/ Ik)k −→ (∗A/ ∗Ik)k −→ (Coker(∗k))k −→ 0.

Taking the projective limit, we obtain the exact sequence

0 −→ lim
←−

A/ Ik+1 −→ lim
←−

∗A/ ∗Ik+1 −→ lim
←−

Coker(∗k+1) −→ 0.

Therefore we get an injective homomorphism of rings Â ↪→ ∗A/µ(0) since Â ∼=
lim←− A/ In+1 and lim←− ∗A/ ∗In+1 ∼= ∗A/µ(0). Furthermore, Â is (via this map)
isomorphic to ∗A/µ(0) if and only if lim←− Coker(∗k+1) = 0 if and only if the mor-
phism ∗k+1 : A/ Ik+1 −→ ∗A/ ∗Ik+1 is an isomorphism for each k ∈ N; that is, if
and only if A/ Ik+1 is finite for every k ∈ N.
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Example 2.20 Let K be a field and A = K[X1, . . . ,Xn] be the ring of polyno-
mials with coefficients in the field K and M be the maximal ideal generated by
(X1, . . . ,Xn). Let ∗A = K[X1, . . . ,Xn]int denote the ring of internal polynomials,
so µ(0) = ∩k>0(X1, . . . ,Xn)k ∗A. The ring ∗A/µ(0) is isomorphic to a ring of power
series in the standard sense Σk≥0aν Xν where aν ∈ ∗K and the sequence (aν)ν∈Nn

forms an initial segment of a hyperfinite sequence in ∗K . Hence, it is evident that
K[[X1, . . . ,Xn]], the ring of power series, is included in ∗A/µ(0). Furthermore, if the
field K is finite then K[[X1, . . . ,Xn]] and ∗A/µ(0) are isomorphic.

3 Affine *-schemes and *-bounded schemes

3.1 Affine *-schemes

We now construct the category of affine nonstandard schemes and later that of “conver-
gent” affine nonstandard schemes (which we call *-bounded schemes), more directly
related to complex spaces. Our approach is self-contained and independent of the pa-
per [2]. There, the authors defined the functor ∗Spec from the category ∗(Rings) the
category of internal rings to ∗(Aff. Sch), the category of internal affine schemes, and
*-affine schemes as the essential image of ∗Spec.

In this section, we equip in particular these objects by a topology and a canonical sheaf
structure. As a consequence, *-affine schemes form a subcategory of the category of
locally ringed spaces.

Let I be an infinite set and let U be a non-principal ultrafilter on I .

The internal spectrum of an internal ring

Since the index set I will be fixed in the sequel, we will write ∗X instead of ∗XI for
the ultraproduct of a system of sets (Xi)i∈I .

Let ∗R =
∏
U Ri be a *-commutative *-ring. Then ∗R is a commutative ring and

Spec(∗R) denotes the (usual) spectrum of ∗R. We define

Specint(∗R) = {J ∈ Spec(∗R) | J is an internal ideal of ∗R} .

By transfer, we easily prove

i) ∗R is an integral domain if and only if {i ∈ I | Ri is an integral domain} ∈ U ,

ii) ∗R is a field if and only if {i ∈ I | Ri is a field} ∈ U .
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As a consequence, we get

Proposition 3.1 With the above notations, we have natural bijections

i) Specint(∗R) ∼=
∏
U Spec(Ri),

ii) Specmaxint(∗R) ∼=
∏
U Specmax(Ri).

In particular, let k be an algebraic closed field, then by the Hilbert Nullstellensatz, we
have Specmaxint(k[T1, . . . ,Tn]int) ' ∗kn .

Let j : Specint(∗R) −→ Spec(∗R) denote the inclusion map.

We endow Specint(∗R) with the induced Zariski topology, defined on Spec(∗R). Hence
closed subsets of Specint(∗R) are given by

V(a) = {J ∈ Specint(∗R) | J ⊃ a}

where a is an ideal of ∗R which may be external.

Let J be an internal ideal of ∗R. We set

int
√

J = {f ∈ ∗R | ∃ n ∈ ∗N , f n ∈ J} .

Then int
√

J is an ideal of ∗R, containing J.

If J is an internal ideal of ∗R, so J =
∏
U Ji , then int

√
J is internal too and given by

int
√

J =
∏
U
√

Ji . Again by transfer, we conclude that int
√

J is the intersection of all
internal prime ideals containing J; that is,

int
√

J =
⋂

p∈Specint(∗R), p⊃J

p.

We have

Proposition 3.2

i) Let a = ΠUai be an internal ideal of ∗R. Then V(a) is an internal subset of
Specint(∗R) and V(a) = ΠUV(ai) where V(ai) = {J ∈ Spec(Ri) | J ⊃ ai}.

ii) Let a, b be two internal ideals in ∗R. Then int
√

b ⊂ int
√

a if and only if V(a) ⊂ V(b).
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Proof i) Let J = ΠUJi be an internal ideal of ∗R. By transfer, we have J ⊃ a if and
only if {i ∈ I | Ji ⊃ ai} ∈ U which is equivalent to {i ∈ I | Ji ∈ V(ai)} ∈ U .

ii) Let p be an internal ideal containing a. Then p contains int
√

a, hence p ⊃ int
√

b ⊃ b.
The converse is, via transfer, an easy consequence, since V(a) ⊂ V(b) if an only if
{i ∈ I | V(ai) ⊂ V(bi)} ∈ U if and only if

{
i ∈ I |

√
bi ⊂
√

ai
}
∈ U which means

int
√

b ⊂ int
√

a.

We fix f = ΠU fi ∈ ∗R, and put

D(f ) = {p ∈ Specint(∗R) | f 6∈ p} .

Then D(f ) = ΠUD(fi), where D(fi) = {p ∈ Spec(Ri) | fi 6∈ p}.
The sets {D(f ) | f ∈ ∗R} form an internal open base for the induced Zariski topology,
induced by Spec(∗R). For any ideal I in ∗R, we have Specint(∗R)\V(I) = ∪f∈ID(f ).

Since D(f ) are internal subsets of Specint(∗R), we have

Proposition 3.3 Let f = ΠU fi, and g = ΠUgi be two elements of ∗R. Then

i) D(f ) = ∅ if and only if there exists n ∈ ∗N such that f n = 0,

ii) D(f ) ∩D(g) = D(fg) and for each n ∈ ∗N positive, we have D(f n) = D(f ),

iii) D(f ) ⊃ D(g) if and only if g ∈ int
√

(f ), which is equivalent to
{i ∈ I | D(fi) ⊃ D(gi)} ∈ U .

Moreover, we have

Proposition 3.4 Let ∗S = ΠUSi be an internal subset of ∗R. Then ∗S is a mul-
tiplicative subset of ∗R if and only if {i ∈ I | Si is multiplicative in Ri} ∈ U and
∗S−1 (∗R) = ΠUS−1

i Ri .

We consider two examples of internal multiplicative subsets of ∗R

i) Let p = ΠUpi ∈ Specint(∗R) be an internal prime ideal of ∗R. Then ∗R \ p =
ΠURi \ pi is an internal multiplicative subset of ∗R and (∗R)p = ∗S−1(∗R) =
ΠU (Ri)pi .

ii) Let f = ΠU fi ∈ ∗R and ∗S = {f N , N ∈ ∗N}. Clearly ∗S is an internal multi-
plicative subset of ∗R and ∗S = ΠUSi , where Si = {f n

i , n ∈ N}.
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We denote by
∗R[f ] = ∗S−1 (∗R) = ΠU (Ri)fi

the localization of ∗R with respect to ∗S which is an internal ring. Its internal prime
spectrum is given by

Proposition 3.5 Let f ∈ ∗R. Then Specint(∗R[f ]) = D(f ) = Specint(∗R) \ V(f ).

Proof We identify naturally

Specint(∗R[f ]) = Specint(ΠU (Ri)fi) = ΠUSpec((Ri)fi) = ΠUD(fi) = D(f ).

Let ∗Rf denote the localization of the ring ∗R with respect to the multiplicative family
{1, f , f 2,, . . . , f n, . . . , n ∈ N}. Then there is a natural morphism of rings

∗Rf −→ ∗R[f ]

induced by the identity.

Structure sheaf of an internal prime spectrum

Following the classical procedure, we define a sheaf of commutative rings over ∗X :=
Specint(∗R), the internal prime spectrum, equipped with the internal topology of Zariski.
We first define sections and restriction maps on the sets D(f ), f ∈ ∗R, which form a
base for the Zariski topology, induced by that of Spec(∗R). We set

A∗X (D(f )) := ∗R[f ].

Clearly, this defines a presheaf on ∗X , where restriction maps on elements of the base
are given as follows: Let D(f ) ⊃ D(g) which is equivalent to J := {i ∈ I | D(fi) ⊃
D(gi)} ∈ U . There is an internal homomorphism of internal rings

∗ρD(g),D(f ) : ∗R[f ] −→ ∗R[g]

induced by the restriction maps ρD(gi),D(fi) : (Ri)fi −→ (Ri)gi for every i ∈ J . Trivially,
we have ∗ρD(f ),D(f ) = id and ∗ρD(h),D(g)◦∗ρD(g),D(f ) = ∗ρD(h),D(f ) , for D(f ) ⊃ D(g) ⊃
D(h). Consider the collection of internal open sets D(f ), containing p ∈ Specint(∗R).
We put Wp = {D(f ), p ∈ D(f )}. It is a directed set.

Let ∗ρf
p : ∗R[f ] −→ ∗Rp be the canonical internal homomorphism for each p ∈ D(f ).

The following proposition is immediate
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Proposition 3.6 For an internal prime ideal p of an internal ring ∗R, there is a natural
isomorphism of rings

lim
→
∗R[f ] → ∗Rp

where the limit is taken over all f such that p ∈ D(f ).

Proof We can use transfer to prove this by constructing an isomorphism between
lim→ ∗R[f ] and ΠU lim→ (Ri)fi . The last one is internally isomorphic to ΠU (Ri)pi =
∗Rp , where p = ΠUpi ∈ D(f ), so we are done.

We show now, using transfer, that our sheaf is already separated:

Lemma 3.7 Let f ∈ ∗R and D(f ) = ∪α∈AD(fα). Suppose that for a ∈ ∗R[f ]

∗ρD(fα),D(f )(a) = 0 for eachα ∈ A.

Then a = 0.

Proof The element a ∈ ∗R[f ] can be expressed in the form a = g/f m , where m is a
hyperinteger. If J = {h ∈ ∗R | hg = 0}, then J is an internal ideal of ∗R and a = 0
in ∗R[f ] if and only if f ∈ int

√
J = ∩J⊂p∈Specint(∗R)p.

Suppose that a 6= 0 in ∗R[f ] . Then there exists an internal prime ideal p ⊃ J with
f 6∈ p; that is, p ∈ D(f ). We take α ∈ A such that p ∈ D(fα) and ∗ρfα

p ◦ ∗ρD(fα),D(f ) =
∗ρf

p . By assumption, the image of g = f ma in ∗Rp is zero, which means, there exists
b ∈ R \ p such that bg = 0. Hence b ∈ J, which contradicts b ∈ R \ p, since
p ⊃ J.

Definition 3.8 The sheaf of rings associated to the presheaf A∗X , given by

A∗X (D(f )) := ∗R[f ]

on the basis {D(f ) | f ∈ ∗X} of ∗X, will be called the structure sheaf on the internal
spectrum ∗X = Specint(∗R), and denoted by O∗X .

Let θf : ∗R[f ] −→ Γ(D(f ),O∗X) be the canonical map. It is given as follows: For
p ∈ D(f ) and ξ ∈ ∗R[f ] , we have

(
θf (ξ)

)
p

= ∗ρf
p (ξ). So by (3.7), we get

Corollary 3.9 For every f ∈ ∗R, the homomorphism θf : ∗R[f ] −→ Γ(D(f ),O∗X) is
injective.
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Let ∗Rf −→ Γ(D(f ),O∗X) be the homomorphism of rings, given by composing
∗Rf −→ ∗R[f ] and θf . These homomorphisms induce a morphism of sheaves

OSpec(∗R) −→ j∗OSpecint(∗R)

and so we obtain j as a morphism of ringed spaces. The following proposition allows
us to interpret j as an open immersion

Proposition 3.10 The sheaves O∗X and j−1(OSpec(∗R)) are naturally isomorphic.

Proof Applying the functor j−1 to OSpec(∗R) −→ j∗O∗X , we get a morphism of
sheaves j−1OSpec(∗R) −→ O∗X on Specint(∗R). This morphism is an isomorphism
since it gives the identity on stalks at every internal prime ideal of ∗R.

The interplay between the diverse spectra can be summarized as follows :
Let R be a ring and we denote by ∗R = ΠUR its ultrapower. The morphism of rings
∗ : R −→ ∗R induces a continuous map

Spec(∗) : Spec(∗R) −→ Spec(R)

where Spec(∗R) and Spec(R) are equipped with the Zariski topology. We denote by

Specint(∗) : Specint
(∗R) −→ Spec(R)

the restriction of Spec(∗) to Specint(∗R) which carries the induced Zariski topology
of Spec(∗R). Clearly, Specint(∗) is continuous. We should mention that the induced
topology on Specint(∗R) = ∗Spec(R) coincides with the so-called Q-topology since
they have the same basis, given by the *-open subsets D(f ) = ΠUD(fi). The enlarge-
ment construction gives an injective map

∗ : Spec(R) −→ ∗Spec(R)

p 7→ ∗p . This map is not continuous since the restriction of the Q-topology does not
coincide with the initial one. So, it is more natural to work with Specint(∗) on the level
of topological spaces.

Now, we will define the category of affine *-schemes. An object is given by a lo-
cally ringed space (∗X,O∗X) with the underlying topological space ∗X := Specint(∗R)
where ∗R is an internal ring and O∗X = j∗OSpec(∗R) (the mapping j : Specint(∗R) →
Spec(∗R) denotes the inclusion). Let (∗Y,O∗Y ) be another object in the category of
*-affine schemes defined by an internal ring ∗S , that is, ∗Y = Specint(∗S). A mor-
phism between (∗X,O∗X) and (∗Y,O∗Y ) is represented by an internal morphism of
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rings ϕ : ∗S→ ∗R which induces a morphism of locally ringed space as follows: the
restriction of Spec(ϕ) on Specint(∗R) gives a continuous mapping

Specint(ϕ) : Specint(∗R)→ Specint(∗S)

and, by localization, ϕ gives a morphism of sheaves

O∗Y → Specint(ϕ)∗(O∗X).

3.2 Affine *-bounded schemes

There is a natural functor between the category of affine schemes of finite type over C
and the category of Stein spaces. This functor associates for each algebra of finite type
A = C[X1, . . . ,Xn]/(f1, . . . , fq) the Stein algebra O(Cn)/

∑q
i=1 fiO(Cn), where each

polynomial fi is considered as an entire holomorphic function over Cn .

In this section, we will construct the category of affine bounded *-schemes as an “in-
termediate” category between the category of affine schemes of finite type over C and
the category of Stein spaces. This category will be a subcategory of locally ringed
spaces.

Before giving this construction, we recall some facts and notations on the topology of
bCn , the space of bounded points of ∗Cn . The space bCn is an S-closed and S-open
subspace of ∗Cn . A basis for its topology is given by the S-balls S(p, r) = {q ∈
bCn | ◦|q − p| < r}, where p ∈ bCn and r is a positive real standard number. As a
consequence, the standard part mapping

st : bCn → Cn

is continuous and open. Furthermore, we note that the inclusion mapping

i : Cn → bCn

is continuous. If fact, the S-topology coincides with the initial topology which makes
the standard mapping st : bCn → Cn continuous. Finally, we note that if U is S-open,
then ◦U is an open subset of Cn and ◦U = U ∩ Cn .

Let a be an ideal of bC[X1, . . . ,Xn]. Define the variety of a by

V(a) = {x ∈ bCn | f (x) ≈ 0 for each f ∈ a}.

Clearly, V(a) is S-closed, since each bounded polynomial is S-continuous. Again, by
S-continuity, we have V(a) = {x ∈ bCn | f (y) ≈ 0 for each f ∈ a , y ∈ µ(x)}.
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Let b be a subset of O(Cn). Define the zero set of b by

Z(b) = {x ∈ Cn | f (x) = 0 for each f ∈ b}.

For each ideal a of bC[X1, . . . ,Xn], we set ◦a = st(a) which is an ideal of O(Cn), its
standard part.

We have the following rules

Proposition 3.11 Let (ai)i∈I be a family of ideals and a,b two ideals all in bC[X].
Moreover, we fix f ∈ bC[X]. Then

i) ∩i∈IV(ai) = V(
∑

i∈I ai),

ii) V(a) ∪ V(b) = V(a ∩ b) = V(ab),

iii) ◦V(a) = Z(◦a) and i−1(V(a)) = Z(◦a),

iv) V(a + iC[X]) = V(a),

v) V(a) ⊂ V(b) if and only if Z(◦a) ⊂ Z(◦b),

vi) V(f ) = ∅ if and only if ◦f (x) 6= 0 for every x ∈ Cn ,

vii) V(f ) = bCn if and only if f∈ iC[X].

Proof The assertions (i), (ii) , (iv), (vi) and (vii) are straightforward. For the assertion
(iii), the inclusion Z(◦a) ⊂ ◦V(a) is obvious. Conversely, since each element f ∈ a

is S-continuous, we have ◦V(a) ⊂ Z(◦a). The same argument about S-continuity
together with (iii) prove (v).

Remark The sets V(a) where a is an arbitrary ideal in bC[X], form the closed subsets
for a Zariski-topology on bCn . From the assertion (iii) of the Proposition 3.11, we
deduce that the inclusion i : Cn → bCn is continuous if both spaces are equipped with
the Zariski-topology.

Now, we construct the structure sheaf of bCn . Let U be a nonempty subset of bCn .
Define

B(U) := {f ∈ C[X1, . . . ,Xn]int | f (x) ∈ bC for each x ∈ U}

and
S(U) := {f ∈ C[X1, . . . ,Xn]int | f (x) ∈ aC for each x ∈ U}

where aC denotes the multiplicative set of appreciable elements of bC; that is,
aC = {x ∈ bC | x 6≈ 0}.
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Trivially, B(U) is an integral domain. We will write S−1B(U) instead of S−1(U)B(U).
The correspondence U 7→ S−1B(U) gives a presheaf of rings over bCn , where U runs
over all S-open subsets in bCn . The restriction maps are evident. Such a presheaf is
clearly separated. We will denote by ObCn its associated sheaf.

Let p ∈ bCn and U be an S-open subset of bCn , containing p. Hence U also contains
µ(p). We have a canonical morphism

ρp
U : S−1B(U) → S−1B(µ(p))

defined by restriction on µ(p).

We shall describe the stalks of our structure sheaf

Lemma 3.12 Let p ∈ bCn and g ∈ ∗O(Cn).

i) If g(µ(p)) ⊂ bC, there exists an S-open subset V , containing p, such that g(V) ⊂
bC.

ii) If g(µ(p)) ⊂ aC, there exists an S-open subset V , containing p, such that g(V) ⊂
aC.

Proof The first assertion is an easy consequence of permanence principle. The second
assertion is deduced from Theorem 2.1 which asserts that there exists a S-open subset
V such that g is S-continuous on V and has a standard part ◦g, which is actually
holomorphic and ◦g(z) 6= 0 for every z ∈ ◦V . In particular, we conclude that g takes
appreciable values on V .

Applying this lemma for internal polynomials, we prove

Proposition 3.13 For every p ∈ bCn , there is a natural isomorphism

ObCn, p → S−1B(µ(p))

between the stalk of ObCn in p and S−1B(µ(p)).

Proof For each S-open U containing p, the morphisms ρp
U are compatible with re-

striction maps and induce, by taking the inductive limit, the morphism

lim
→

S−1B(U) → S−1B(µ(p))

which is actually an isomorphism: the permanence principle gives the injectivity and
surjectivity is a consequence of Lemma 3.12.
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Remark i) Trivially, the assertion in Lemma 3.12 is false for iC, so we have to
distinguish between

mp := { f
g
∈ S−1B(µ(p)) | f (p) ∈ iCn}

the maximal ideal of S−1B(µ(p)) and the ideal of infinitesimal elements

Infp := { f
g
∈ S−1B(µ(p)) | ∃V, S− open : p∈ V, f (z) ∈ iCn, ∀z ∈ V}.

We have S−1B(µ(p))/Infp ∼= OCn,◦p .

ii) Let p∈ bCn and f =
∑
|ν|≤d bν(X − p)ν be an internal polynomial. If b0 and

|bν |
1
|ν| are bounded for each ν such that 0 < |ν| ≤ d , then f ∈ B(µ(p)). This is

a consequence of the estimate, used in the proof of 1.4.

Let U be an S-open. From Theorem 2.1 we deduce that each element f ∈ B(U) (resp.
f ∈ S(U) ) has a standard part mapping ◦f ∈ OCn(◦U) (resp. ◦f ∈ OCn(◦U), ◦f (x) 6= 0
for each x ∈ ◦U ). Using the fact that ◦U = U ∩Cn , we get a morphism of presheaves
stU : S−1B(U) → OCn(U ∩ Cn), given by stU(f/h) =◦ f/ ◦h and which induces a
morphism of sheaves

stU :ObCn(U) → OCn(U ∩ Cn)

Hence, we have the following proposition

Proposition 3.14 The inclusion map i : Cn → bCn induces an epimorphism of
sheaves

ObCn → i∗(OCn)

and so we obtain i as a morphism of ringed spaces.

Proposition 3.15 Let a be an ideal of bC[X1, . . . ,Xn]. Then

Supp(ObCn/aObCn) = V(a).

Proof It is clear that V(a) ⊂ Supp(ObCn/aObCn). Conversely, if x 6∈ V(a) then
there exists f ∈ a such that f (x)∈ aC. Since f is S-continuous, we have f (y)∈ aC
for each y ∈ µ(x), which implies that 1/f ∈ ObCn, x and as a consequence we get
x 6∈ Supp(ObCn/aObCn).
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Now, we are able to define the category of affine *-bounded schemes. An object
is given by a locally ringed space (bX,ObX). The underlying topological space is
defined by bX := V(a)⊂ bCn where a is an ideal of bC[X1, . . . ,Xn] and ObX :=
j−1
b (ObCn/aObCn). The mapping jb: : bX → bCn denotes the inclusion.

Let (bY,ObY ) be another object in the category of affine *-bounded schemes where
bY := V(b)⊂ bCm . A morphism between (bX,ObX) and (bY,ObY ) is represented by a
morphism of bC-algebras,

ub : bC[Y1, . . . ,Ym]→ bC[X1, . . . ,Xn]

sending the ideal b into a. We demand that the morphism ub should lift to an in-
ternal morphism u : C[Y1, . . . ,Ym]int → C[X1, . . . ,Xn]int defined by u(Yi) = gi ∈
bC[X1, . . . ,Xn] for each i ∈ [[1..m]]. Then ub induces a morphism of locally ringed
spaces between (bX,ObX) and (bY,ObY ) as follows: the morphism ub gives an S-
continuous map u′b : bCn → bCm sending bX into bY , defined by

u′b(x) = (g1(x), . . . , gm(x)).

We will denote by
αb : bX → bY

the restriction of u′b on bX . The mapping u′b defines a morphism of sheaves ObCm →
(u′b)∗(ObCn). Finally, we obtain a morphism of sheaves of rings

ObY → αb∗(ObX)

induced by αb .

We state the main result of this section

Theorem 3.16 There is a natural essentially surjective functor

st : (aff ∗ bounded schemes) −→ (Stein spaces)

from the category of affine *-bounded schemes to the category of Stein spaces of finite
embedding dimension.

Moreover, if (bX,ObX) is an affine *-bounded scheme and (X,OX) := st(bX,ObX),
then the inclusion map ib : X→ bX is a monomorphism.

Proof Let (bX,ObX) be an object in the category of affine *-bounded schemes, where
bX := V(a)⊂ bCn . We set

st(bX,ObX) := (X,OX) = (Z(◦a), i−1(OCn/ ◦aOCn))
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where i : Z(◦a)→ Cn denotes the inclusion.

By taking the standard part, the inclusion mapping ib : X → bX induces a surjective
morphism of sheaves

ObX → ib∗(OX).

Let (bY,ObY ) be another object in the category of affine *-bounded schemes where
bY := V(b)⊂ bCm . A morphism u between (bX,ObX) and (bY,ObY ) gives a morphism
between the two associated Stein algebras

st(u) : O(Cm)/ ◦b −→ O(Cn)/ ◦a.

Such a morphism induces a morphism between the Stein spaces (X,OX) and (Y,OY ).

It remains to prove that the functor "st" is essentially surjective. Let X be a Stein
space of finite embedding dimension. Then there exists an ideal a ⊂O(Cn), generated
by a family of entire holomorphic functions (gi)i∈I , such that X = Z(a) and OX =
OCn/ aOCn . For each i ∈ I , let hi be a bounded internal polynomial such that ◦hi = gi .
We put ab =

∑
i∈I hi

bC[X1, . . . ,Xn], bX = V(ab) and ObX := ObCn/abObCn . Clearly,
we obtain st(bX,ObX) := (X,OX).

Theorem 3.17 There is a natural functor between the category of affine schemes of
finite type over C and the category of affine *-bounded schemes.

Proof Each polynomial over C can be regarded as an internal bounded polynomial.
We consider the functor which associates to each algebra of finite type over C, say A =
C[X1, . . . ,Xn]/(f1, . . . , fq), the affine *-bounded scheme bX : = ∗Z(f1, . . . , fq)∩ bCn

and the structural sheaf ObCn/
∑q

i=1 fiObCn . This construction is functorial and gives
us our functor. -

4 Global *-bounded schemes and the standard part functor

4.1 The basic functors

In this section, we want to define a category of global schemes where the affine pieces
are those described in Section 3. This is done via locally ringed spaces and we imme-
diately obtain two new categories, the category of general *-schemes denoted by

(∗ − sch)
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and
(∗b− sch)

that of so-called *-bounded schemes which are more related to complex geometry. The
first one is of a very general nature (that is, a category of schemes over ∗Z) whilst the
second one is a category of schemes over the ring bC of bounded complex numbers.
We note that the structure sheaf of any *-bounded scheme X contains an intrinsic ideal
sheaf InfX of infinitesimal sections which is locally described in Section 3.2.

Our definition of a *-scheme is apriori more general than that of [2] where only finite
coverings by affine pieces are allowed. In order to define the notion of an internal
subspace, we would have to make restrictions on the cardinality of coverings, since
being internal is a global property.

We have an evident functor “associated *-scheme” from the category of algebraic C-
schemes, locally of finite type

(C− schemes lft) −→ (∗b− sch)

which associates to a locally algebraic C-scheme X its *-bounded version bX and
similar at the level of morphisms.

Example 4.1 If Pn
C denotes the n-dimensional projective space over the complex

numbers, then bPn
C can be constructed as the quotient of bCn+1 \ µ(0) by the action

of the multiplicative system of all appreciable complex numbers. Note that the natural
map bPn

C → ∗Pn
C is bijective (n is standard).

Recall that to every affine bounded scheme we associated in Section 3 a Stein com-
plex space (of finite embedding dimension) in a functorial way. By a straightforward
generalisation, we obtain a functor

st : (∗b− sch) −→ (complex spaces)

which we call the standard part functor. We sometimes write also ◦X = st(X) for
the standard part of a bounded scheme X . We may regard ◦X as the “subspace” of
X , defined by the ideal sheaf InfX all infinitesimal sections and so we have a natural
morphism of ringed spaces

◦X → X.

The conormal sheaf of this embedding is of particular interest, since it gives us a non
standard interpretation of classical differential forms on ◦X (see Section 6).
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Theorem 4.2 The standard part functor "st" possesses a left adjoint functor b :
(complex spaces)→ (∗b− sch) which associates to every complex space X a natural
*-bounded scheme bX with locally no nontrivial infinitesimal elements. Moreover, the
adjunction morphism id → st ◦ (b) is an isomorphism.

Proof We first describe the functor X 7→ bX locally; that is, for X a finite dimensional
Stein spaces (as in Section 2). As we have seen, there is an affine *-bounded scheme
X such that X ∼= stX. We can now make a natural minimal choice of X where there
are no nontrivial infinitesimal elements in the local rings. In this case, the natural ho-
momorphism OX → (ib)∗OX will be an isomorphism. This construction is evidently
functorial in X , so it globalizes to complex spaces and we get our desired functor. In-
tuitively speaking, we just enlarge X (locally) by its bounded points and conserve at
the same time its structure sheaf.

In order to verify the adjunction property, let X be a *-bounded scheme and Y a
complex space. By applying the functor “st” , we get a functorial map

Hom(bY,X) −→ Hom(Y, st(X))

which is immediately seen to be bijective, since there are locally no nontrivial in-
finitesimal elements in the structure sheaf of bY . The last assertion is an obvious
consequence of our construction.

4.2 DG- algebra resolutions of complex spaces via bounded polynomial
algebras

Sometimes it is useful to replace global (complex) spaces by local simplicial ones. In
the case of algebras (over the rationals), it is sufficient to deal with differential graded
ones.

Let us now consider a differential graded algebra R = ⊕k≤0Rk with differential s
such that R0 is an algebra of bounded polynomials and R is freely generated over
R0 . Then, we can associate to it a Stein algebra in the following way: We may
write R0 = bC[T1, ...,Tn] . Then ST (Coker(R−1 → R0))is, by 2.17, a Stein alge-
bra. This definition is clearly functorial. Since it is evidently possible to construct
DG-resolutions of that type for a given Stein algebra of finite embedding dimension,
we obtain

Proposition 4.3 The above defined functor from the category of free bounded DG-
algebras which are exact in negative degrees, to the category of Stein algebras of finite
embedding dimension is essentially surjective.
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We generalize this fact to the simplicial case. Let M be a totally ordered set and N
the category of non empty finite subsets of M . An object α of N (that is, a non empty
finite subset of M ) is called a simplex. Its dimension is, by definition, card(α) − 1.
The set MorN (α, β) is of cardinality ≤ 1 corresponding to the condition if α ⊂ β

or not. A simplicial object in a category C is a contravariant functor N → C . The
category of all these functors (or N -objects) is denoted by CN . We can show

Proposition 4.4 The functor “standard part in degree zero cohomology” that is de-
fined above, from the category of free bounded DG-N -algebras which are exact in
negative degrees, to the category of Stein N -algebras of simplicialwise finite embed-
ding dimension, is essentially surjective.

For a sketch of the proof, given a simplicial Stein algebra A (simplicialwise of finite
embedding dimension), we proceed in the usual way by induction on the dimension of
simplicies to construct a free DG-algebra resolution Rα such that ◦H0(Rα) = Aα . If
dimα = 0, this has been done. For dimα > 0 we already know the values of the dif-
ferential on all free generators which come from strictly lower dimensional simplicies,
so that we just add some new generators and construct the differential s by descending
induction on the degree of generators in order to obtain exactness in negative degrees
and such that ST (H0(Rα)) = Aα . -

We want to describe another more subtle construction of such resolutions, by imposing
additional assumptions on the resolution type. For this, we fix a complex space X , an
embedding X· ↪→ P· into a simplicial (free) polydisc P· and a free simplicial DG-
algebra resolution (R, s) of OX· of the form R = OP·[ei]i∈I with free generators ei

of strictly negative degrees. The graded simplicial algebra R admits an evident lifting
to the category of simplicial affine bounded algebras. But we cannot extend directly
the identity s2 = 0 to this algebra. Nevertheless, we will obtain it on a suitable
(even maximal) affine subspace Z· ↪→ bP· , after fixing an infinite natural number
N . The definition of Z· is the following: we first lift s to bounded derivation sN on
bR = ObP·[ei]i∈I . Then s2

N(ei) is infinitesimal by construction. Dividing out these
infinitesimal polynomials (over each simplex), we obtain a subspace Z· ↪→ bP· over
which the class of s2

N is zero. In other words, we get a simplicial DG-algebra in
the category of bounded algebras, conserving all original free generators of negative
degree (and not adding any further ones).

Remark The construction above is inspired by deformation theory of complex spaces:
describing all small deformations of X by varying the differential of a fixed DG-
algebra resolution of OX . Moreover, our construction leads us to an obvious definition
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of what should be a deformation of X over local *-bounded algebras, for example al-
gebras of the form bC/a where a is an ideal generated by some infinitesimal complex
numbers. Such nonstandard or Leibniz deformations give an interesting alternative
approach to deformation theory where the meaning of “infinitesimal deformation” be-
comes a metric one.

4.3 Special features of the standard part construction

We give some applications for the passage from the holomorphic to the *-bounded
algebraic context.

Let H be a standard hyperplane in the *-scheme ∗Pn
C . Then the natural inclusion

∗Cn ↪→ ∗Pn
C induced by H , allows us to define the notion of a bounded point in

∗Pn
C \ H . The following theorem shows that we can “compactify” analytic subsets of

Cn in a (non-canonical) way to projective *-schemes

Theorem 4.5 Let X ⊂ Cn be an analytic subset. Then there is a standard hyperplane
H ⊂ ∗Pn

C and a *-projective subvariety X ⊂ ∗Pn
C such that X is the standard part of

X \ H .

Proof Let X be the zero set of a countable family (fj)j∈N of holomorphic functions
on Cn . We fix infinite natural numbers N,M and a hyperfinite family (Fj)0≤j≤M of *-
bounded polynomials of degree ≤ N such that. fj = st(Fj) for j finite. We may assume
that Fj is infinitesimal for j infinite. Next, we homogenize each Fj to a homogeneous
internal (but in general not *-bounded !) polynomial F̃j of degree ≤ N in n + 1
variables. Let X ⊂ ∗Pn

C be defined by the F̃j ’s. Then, by our construction, X has the
desired property.

Theorem 4.6 Let X be an affine algebraic C-scheme such that H2(Xan,Z) = 0. Then
every holomorphic map f : Xan → Pn

C from Xan to a projective space is the standard
part of a *-bounded morphism F : bX →b Pn

C .

Proof By our cohomological assumption, we can lift f to a holomorphic map f̃ :
Xan → Cn+1 \ {0}. By the results of section 2.5, the map f̃ is the standard part of a *-
bounded map F : bX → bCn+1 which avoids necessarily the halo of {0}. By passing
to the quotient (as in 4.1), we get our result.

Journal of Logic & Analysis 2:9 (2010)



Complex spaces and nonstandard schemes 41

Example 4.7 Let f : C → Pn
C be a holomorphic map. By fixing an infinite natural

number N , we may extend f to a morphism fN :b C →b Pn
C of *-bounded schemes

such that st(fN) = f . Moreover, applying homogenization, we can lift fN to a *-
algebraic map ˜fN : ∗P1 → ∗Pn

C which will be a *-bounded morphism if and only if f
is algebraic. In fact, we can define ˜fN : bP1 → bPn

C just as a map, but it will not be
continuous at the point (1 : 0) if f is not algebraic.

We close this section by mentioning a simple fact concerning the standard points of
internal subspaces of nonstandard complex spaces

Theorem 4.8 Let X be a complex space and Y ⊂ ∗X an internal complex subspace
of (finite) codimension k . Then the intersection Y ∩ X is contained in a countable
union of complex subspaces Yn , n ∈ N, of X of codimension k . The same conclusion
holds in the algebraic context.

For the proof, we note that Y = ∗YI for (Yi)i∈I a system of complex subspaces of
codimension k . If we put Y = ∪iYi , then Y ⊂ ∗Y and Y ∩ X ⊂ Y .

5 The Nullstellensatz and nonstandard generic points for com-
plex spaces

In this section, we prove in particular that any maximal ideal of a Stein algebra A is
the vanishing ideal of an eventually nonstandard point. Moreover, we can show that
any prime ideal of A is determined by its nonstandard zero set if and only if it satisfies
a Hilbert Nullstellensatz. We give a large class of examples of prime ideals which are
not determined by their nonstandard zero set and with necessarily empty standard zero
set. Closed ideals in Stein algebras are extensively treated in Forster’s paper [6].

Our notion of a nonstandard zero set of an ideal allows us to interpret generic points
of irreducible complex spaces in a natural geometric way.

5.1 Nonstandard zeros of holomorphic functions and the Nullstellensatz

Let X be a Stein complex space and A := Γ(X,OX) its algebra of global holomorphic
sections. For any ideal I ⊂ A, we define the nonstandard zero set of I by

V(I) := {x ∈ ∗X | ∗f (x) = 0, ∀f ∈ I}.
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Forster proved that the (standard) zero set of a proper closed ideal in a Stein algebra
is non empty. Siu[17] showed that the closedness is essential and gave an example of
an ideal whose variety is empty. We prove that the nonstandard zero set of any proper
ideal is nonempty. This indicates that our definition is an adequate notion of a zero set
in the context of Stein algebras. Let I ( A be a proper ideal. We define the binary
relation P on X × I by P < x, f > if f (x) = 0. The relation P is concurrent: if
f1, . . . , fr ∈ I then there exists x ∈ X such that fi(x) = 0 for each i = 1, . . . , r . Since
∗X is an enlargement of X , there exists x ∈ ∗X such that ∗f (x) = 0 for all f ∈ I and
hence V(I) 6= ∅ (see Appendix B: Concurrence or Saturation Principle).

There is also the dual construction: Let M ⊂ ∗X be any subset. We put

Id(M) := {f ∈ A | ∗f (x) = 0, ∀x ∈ M}

the nonstandard ideal of M in A. These constructions transform an inclusion into the
opposite one. Moreover, we have the following rules: Let (Ir)r∈R be a family of ideals
in A and (Ms)s∈S a family of subsets of ∗X . Then

V(Σr∈RIr) = ∩r∈RV(Ir),

and
V(∩r∈RIr) = V(Πr∈RIr) = ∪r∈RV(Ir)

if R is finite, dually, for “Id”

Id(∪s∈SMs) = ∩s∈SId(Ms),

and
Id(∩s∈SMs) ⊃ Σs∈SId(Ms).

Moreover, for any subset M ⊂ ∗X and any ideal I ⊂ A, we have clearly

V(Id(M)) ⊃ M,

Id(V(I)) ⊃
√

I.

More precisely, for the first one, we show

Proposition 5.1 We have V(Id(M)) = ∩YV(Id(Y)), where the intersection is taken
over all Y ⊂ X closed analytic subsets such that M ⊂ ∗Y .

Proof If Y ⊂ X is analytic, we get Id(∗Y) = Id(Y) and therefore V(Id(∗Y)) =
V(Id(Y)) ⊃ ∗Y . We note that Id(M) = ΣY Id(Y), where the sum is taken over all
Y ⊂ X analytic such that M ⊂ ∗Y , which gives us the desired identity. -
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We want to show that every prime ideal of A is the ideal of a (nonstandard) point of X
if and only if it satisfies a Hilbert Nullstellensatz.

Theorem 5.2 i) Let m be a maximal or a minimal prime ideal of A, then m is of the
form Id({x}),

ii) Let p be a prime ideal of A, then p is of the form Id({x}), if and only if it satisfies
the Nullstellensatz; that is, Id(V(p)) = p.

Proof i) We first treat the case of a maximal ideal. By the Nullstellensatz, we have

∀n ∈ N,∀f1, ..., fn ∈ m⇒ ∃ y ∈ X : fi(y) = 0 ∀i, 1 ≤ i ≤ n.

By the concurrence principle (see the Appendix B: Concurrence or Saturation Princi-
ple), we conclude that there is a point x ∈ ∗X such that m ⊆ Id({x}). Since m is
maximal, we have equality.

ii) First, let p be of the form Id({x}). Then V(p) ⊃ {x}and so Id(V(p)) ⊂ Id({x}) =
p, which finally gives equality. For the converse, we note that it suffices to show

∀n ∈ N, ∀f1, ..., fn ∈ p,∀g1, ..., gn /∈ p⇒ ∃y ∈ X : fi(y) = 0∀i, g1(y) · ... · gn(y) 6= 0

and since g1 · ... · gn /∈ p, we may take n = 1 for the g′is for the verification of this
implication. By applying the concurrence principle, we obtain

∃ x ∈ ∗X : ∀f ∈ p,∀g /∈ p⇒ ∗f (x) = 0, ∗g(x) 6= 0

which means precisely that p = IdX(x). So let now be f1, ..., fn ∈ p and g /∈ p.
Assume that for the usual zero sets we have Z(f1, ..., fn) ⊂ Z(g). Then, we get also
V(f1, ..., fn) ⊂ V(g) and so for the corresponding ideals Id(V(f1, ..., fn)) ⊃ Id(V(g)) 3
g. But, Id(V(f1, ..., fn)) ⊂ Id(V(p)) = p and we would obtain g ∈ p, which is a
contradiction. This shows (ii).

iii) It remains to show that any minimal prime ideal is that of a point. Let p be a prime
ideal. In contrast to the formula above, the following implication is always true

∀n ∈ N,∀g1, ..., gn /∈ p⇒ ∃y ∈ X : g1(y) · ... · gn(y) 6= 0

since it is true for n = 1 and p is prime. By the concurrence principle, we conclude
that there is a point x ∈ ∗X such that

∀g /∈ p⇒ g(x) 6= 0

which means p ⊃ IdX(x), so finally p = IdX(x)by minimality of p.
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Example 5.3 i) Regarding the inclusion A ↪→ ∗A, we obtain certain prime ideals
of A by intersecting just with those of ∗A. In particular, every internal prime
ideal of ∗A gives us one of A (for example, fixing (pi)i , a countable sequence
of closed prime ideals of A).

ii) Assume A to be an integral domain and that we have an “order function” ω :
A \ {0} → ∗N; that is, ω satisfies ω(fg) = ω(f ) + ω(g) and ω(f + g) ≥
inf{ω(f ), ω(g)} as well as ω(1) = 0. Then the subset of A formed by zero and
all elements of infinite ω -order is a prime ideal of A.

iii) Combining the constructions of (i) and (ii), we can immediately construct explic-
itly many prime ideals of the ring of entire holomorphic functions on Cn which
are not ideals of nonstandard points.

We can determine the possible residue fields of a maximal ideal in a Stein algebra

Theorem 5.4 Let A be a Stein algebra (of finite embedding dimension) and m =
Id(x) any maximal ideal of A. We suppose that the used ultrafilter is δ−stable (see
Appendix A: δ -stable ultrafilters). Then the evaluation map χ : A/m→ ∗C in {x} is
an isomorphism of fields if {x} is an infinite point and Im(χ) = C if {x} is bounded.
In the last case, {x} is standard and so m is a closed ideal.

Proof We may assume that A = Γ(Cn,OCn). If {x} is an infinite point, then at least
one coordinate of {x}, say {xk}, is infinite. By projecting to this coordinate, we may
take first n = 1. But in this case, the point can be represented (using δ -stability)
by a sequence in C which tends to ∞. Clearly, here the residue field must be ∗C, by
classical function theory in one complex variable. In this way, we get homomorphisms
of fields κ(xk)→ κ(x)→ ∗C, where the second arrow is induced by evaluation in {x}.
The composition is, by construction, evaluation in ∗C and therefore bijective.

If the point {x} is bounded in ∗Cn , it has a standard part a. Since every holomorphic
function which vanishes in {x}, must also vanish in a, we obtain, by maximality of
m, our result.

We do not know if the δ -stability of the ultrafilter is essential for the above result to
hold. Therefore, we assume this property for the rest of this section.

5.2 On the spectrum of a Stein algebra

Here is the main result of this section
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Theorem 5.5 Let X be a Stein complex space. Then the image of the natural map

IdX : ∗X −→ Spec(Γ(X,OX))

which associates to a point x ∈ ∗X its ideal Id({x}), consists of all prime ideals
satisfying the Nullstellensatz. Moreover, this image contains all maximal, minimal
and all closed prime ideals of Γ(X,OX).

Proof First, we remark that this map is well-defined, by considering the evaluation
homomorphism Γ(X,OX) → ∗C, given by a point x ∈ ∗X . Let p be a prime ideal
in Γ(X,OX). By the results of the last subsection, we only need to treat the case of
closed prime ideals. But such a prime ideal satisfies the usual Nullstellensatz (see [6])
and so in particular the nonstandard one; that is, Id(V(p)) = p. Again, 5.2 gives us our
statement.

Corollary 5.6 Let X be an irreducible Stein complex space. Then there exists a point
x ∈ ∗X such that the evaluation in x

χx : Γ(X,OX) −→ ∗C

is injective. For the field of meromorphic functions, we get

M(X) −→ ∗C,

the induced homomorphism of fields.

Now, we come to study some topological properties of the map IdX . One can define a
topology T on ∗X where V(I) are closed sets for this topology (see section 5.1). For
each f ∈ A = Γ(X,OX), the open set

D(f ) = {x ∈ ∗X, ∗f (x) 6= 0} = ∗{x ∈ X, f (x) 6= 0} = ∗D(f )

is a distinguished open set, the family of distinguished open sets is a basic for the
topology T . Hence T is the S-topology on ∗X when X is equipped with the Zariski
topology where {D(f ), f ∈ A} forms an open base, called the S-Zariski topology on
∗X (see Appendix C Nonstandard Topologies).

Proposition 5.7 Let X be a Stein complex space. Then the natural map

IdX : ∗X −→ Spec(Γ(X,OX))

is continuous for both the S-Zariski topology on ∗X and the Zariski topology on
Spec(Γ(X,OX)).
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Proof For each x ∈ ∗X and f ∈ Spec(Γ(X,OX)), we have f ∈ IdX(x) if and only
if, ∗f (x) = 0. Hence, we get IdX

−1(D(f )) = D(f ), which shows that our map is
continuous.

Definition 5.8 Let X be a complex space and x ∈ ∗X a point. The Zariski closure x
of x in X is the smallest analytic subset Y of X such that x ∈ ∗V for every Zariski-
open V ⊂ Y . If Y ⊂ X is an analytic subset and x ∈ ∗Y , we call x a generic point of
Y if x = Y .

Remark i) The Zariski closure x of x in X is always irreducible.
ii) Note that x may be sometimes the empty set, for example if X = C and x ∈ ∗C

is given be a discrete sequence converging to infinity.

Theorem 5.9 Let X be an irreducible complex space. Then X has always a generic
point. Moreover, for every standard point x ∈ X , there is a generic point of X in the
halo of x (for the usual topology).

Proof Let U1, ...,Un be a finite family of non-empty Zariski open subsets of X . Then,
by the irreducibility of X , the intersection U1 ∩ ... ∩ Un is also non-empty. The con-
currence principle allows us to conclude that there is a point η ∈ ∗X such that η ∈ ∗U
for every non-empty Zariski open subset U of X . This point will be generic for X :
Let Y ⊂ X be any strictly smaller analytic subset such that η ∈ ∗Y . Since we have
η ∈ ∗(X \ Y) too, we get a contradiction. This shows the first part of 5.9.

We refine slightly our argument in order to obtain the second part. Let x be a standard
point of X . We decompose X locally around x ∈ X into irreducible components
X1 ∪ ... ∪ Xr and fix one of them, say X1. In X1 , we consider the subsets of the form
V \Y where V is a (usual) open neighborhood of x in X1 and Y ⊂ V a strictly smaller
closed analytic subset, defined by finitely many holomorphic functions on V . Clearly,
every finite intersection of such subsets is non-empty. By the concurrence principle,
there is a point η ∈ ∗(V \ Y) for every one of our subsets V \ Y . Evidently, η is
bounded and its standard part is x by construction. We claim that η is a generic point
for X . Let Z ⊂ X be a strictly smaller analytic subset. By irreducibility and purity
of dimension of X , we cannot have Z = X1 locally around x . So Z is strictly smaller
than X1 in some neighborhood of x too. We therefore get η ∈ ∗(X \ Z) which means
that η is a generic point for X .

Remark We should mention, in this context, the paper of G.Wallet [19] in which
he shows algebraic versions of the existence of nonstandard generic points by a more
direct method. The case of complex space space germs has already been treated by
A.Robinson in [16].
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6 Differential forms seen in a modern nonstandard way

In this section, we show how differential forms find a natural description in the context
of our *-bounded algebras. We prove in particular that they coincide (in all relevant
cases) with the associated analytic ones.

Let Dn be the subring of the internal polynomials in 2n variables C[X, dX]int =
C[X1, . . . ,Xn, dX1, . . . , dXn]int defined by

Dn := {P ∈ C[X, dX]int |P(x, ξ) ∈ bC for each (x, ξ) ∈ bCn × iCn}.

By Theorem 2.1, it is immediate that the ring Dn is invariant under derivations. Fur-
thermore, each P ∈ Dn can be written as

P(X, dX) = P0(X) +
n∑

i=1

Qi(X, dX)dXi

where P0(X) = P(X, 0) ∈ bC[X1, . . . ,Xn] and Qi ∈ Dn , since Qi(x, ξ) =
∫ 1

0
∂P
∂ξi

(x, tξ) dt .

More generally, let A = bC[X]/a be a *-bounded algebra, using the abbreviation
X = (X1, ...,Xn). We define an infinitesimal version of the diagonal algebra of A by
setting

D(A) := Dn/aDn + δ(a)Dn

where δ(f ) := f (X + dX) − f (X) for any f ∈ bC[X]. Evidently, there is a natural
injective homomorphism of rings A → D(A) and D(..) is a covariant functor which
conserves epimorphisms. The standard part construction gives us an epimorphism

st : D(A) −→ Aan

to the Stein algebra Aan , associated to A. Let IA be the kernel of this map. If A =
bC[X], we simply write In . Clearly, IA contains each D(A)dXi and also Inf (A)D(A)
where Inf (A) denotes, by definition, the kernel of the standard part map A→ Aan .

Definition 6.1 We call the ideal a saturated if the standard part map a → ◦a is
surjective.

Remark i) a is saturated if ◦a is a closed ideal in O(Cn), for example if a is finitely
generated.

ii) If a is a closed subset of bC[X] with respect to the S-topology (inherited and
constructed from the compact-open topology of C(Cn,C)), then a is saturated.

iii) If a is saturated, then the natural mappings iC[X] → Inf (A) and In → IA are
surjective.
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We can show now

Proposition 6.2 i) IA = Inf (A) +
∑n

i=1 D(A) dXi if a is saturated,

ii) for f ∈ bC[X] we have, f (X + dX)− f (X) ∈ In ,

iii) for f ∈ iC[X] we have, f (X + dX)− f (X) ∈ I2
n .

Proof The assertion (i) is clear for A = bC[X], since P ∈ In if and only if P0 ∈
iC[X]. By saturation of a, we can reduce to the case A = bC[X]. For the second one,
we already know that f is S-continuous at each x ∈ bCn . Hence, for every x ∈ bCn

and ξ ∈ iCn , we have f (x + ξ)− f (x) ≈ 0. The third assertion is a consequence of the
stability of iC[X] under partial derivations.

Lemma 6.3 If a is saturated, then we have Inf (A)2 = Inf (A).

Proof By saturation, it is sufficient to treat the case A = bC[X]. Let P =
∑

aνXν ∈
iC[X]. Then a0∈ iC and |aν |

1
|ν|∈ iC, for each 0 < |ν| ≤ d which implies in particular

that aν∈ iC. Setting ε = max0≤|ν|≤d |aν |
1
2 , we have ε∈ iC, Define now

Q =
∑

0≤|ν|≤d

bνXν where bν :=
aν
ε
.

It is easy to prove that b0∈ iC and |bν |
1
|ν|∈ iC, hence Q ∈ iC[X] and P = εQ ∈

(iC[X])2 .

Next, we consider the canonical map δA : A → D(A) which associates to each class
[F] modulo a of a bounded polynomial F ∈ bC[X], the class [δ(F)] in D(A).

Proposition 6.4 The induced mapping δA : A→ IA/I2
A is a derivation.

Proof First, we note that we can reduce immediately to the case A = bC[X]. But
here, it is the usual standard verification.

We remark that IA/I2
A carries a natural Aan -module structure (since annihilated by

Inf (A) ⊂ IA ). So, we make the following definition

Definition 6.5 The *-bounded module of 1-forms is denoted by
bΩA := IA/I2

A.

If A = bC[X], we simply write bΩn .
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By a standard verification, we get

Proposition 6.6 If a is saturated, the natural sequence of A-modules

δ

a/a2 −→ bΩn/a · bΩn −→ bΩA → 0

is exact and the three terms are Aan -modules.

We are able to show the comparison theorem

Theorem 6.7 The natural homomorphism γA : bΩA → ΩAan is always surjective and
bijective if the ideal a is saturated.

Proof We first treat the case A = bC[X] and put I := In . Consider the map ϕ : I →
Γ(Cn,ΩCn) = ⊕iO(Cn)dxi defined by

ϕ(P0 +
n∑

i=1

Qi dXi) =
n∑

i=1

st(Qi)dxi.

This mapping is well-defined since Qi ∈ Dn and we know that ϕ(I2) = 0. We shall
prove that Ker(ϕ) = I2 and that ϕ is surjective.

Let P = P0 +
∑n

i=1 Qi dXi ∈ I such that ϕ(P) = 0, so Qi ∈ I . Hence, Qi =
Qi,0 +

∑n
j=1 Qij dXj where Qi,0 ∈ iC[X]. As a consequence, the polynomial P can be

expressed in the form P = P0 + Σn
i=1Qi,0dXi +

∑n
i,j=1 Qij dXi dXj . By Lemma 6.3, we

deduce that P ∈ I2 .

Now let f (x)dxi be an element of Γ(Cn,ΩCn) and fN ∈ bC[X] such that ◦fN = f .
Consider FN ∈ bC[X] such that ∂iFN = fN . If we set

P(X, dX) := FN(X + dXi)− FN(X)

we obtain P ∈ I and

P(X, dX)− fN(X)dXi = FN(X + dXi)− FN(X)− fN(X)dXi ∈ I2.

In particular we get ϕ(P) = ϕ(fN(X)dXi) = st(fN) dxi = f (x)dxi .

The general case will be a consequence of the functorial properties of both Ω-constructions:
The surjectivity of γA is immediate. If a is separated, then we can use the sequence in
6.6 and bijectivity for A = bC[X] to conclude that of γA .
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Theorem 6.8 Let a be saturated. Then the exact sequence of Aan -modules

0→ IA/Im+1
A → D(A)/Im+1

A → Aan → 0

splits by a natural section s : Aan → D(A)/Im+1
A for any m ∈ N.

Proof Consider the exact sequence of Aan -modules

0→ IA/Im+1
A → D(A)/Im+1

A → Aan → 0.

Let s : Aan → D(A)/Im+1
A be the morphism, defined by s(f ) = F mod Im+1

A , where
F ∈ A such that st(F) = f . This map is well defined: Let F and G be two elements in
A satisfying st(F) = st(G) = f . Then F − G ∈ Inf (A) = Inf (A)m+1 ⊂ Im+1

A . Clearly,
s is a natural section of the quotient map D(A)/Im+1

A → Aan and this implies that the
above sequence of Aan -modules is in fact split exact.

Remark It is possible to globalize our Ω-construction for *-bounded schemes. But
this approach is only satisfactory if the affine pieces are defined by saturated ideals.

Appendix

A Filters and Ideals

A filter is a special subset of a partially ordered set. We start by introducing a filter of
sets which is the most used special case, the partially ordered set is the power set of
some set. Filters play an important role in many fields of mathematics like topology in
where they originated and also lattice theory. In this section, I denotes a nonempty set
and P(I) the set of subsets of I .

Definition A filter on I is a non-empty collection F ⊂ P(I) of subsets of I , satisfying
the following conditions

i) if A,B∈ F , then A ∩ B ∈ F ,

ii) if A ∈ F and A ⊂ B ⊂ I , then B ∈ F .

We say that F is proper if ∅ 6∈ F that is F ( P(I) .

A trivial example of a filter on I is the collection F = {I} that consists only of the set
I itself.
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Let A be a non-empty subset of I . Then the collection F = {X ⊂ I | X ⊃ A} is a
filter on I . It is called the principal filter on I generated by A. In general, if H ⊂ P(I)
has the finite intersection property, that is, the intersection of every nonempty finite
sub-collection of H is non-empty, then there exist the smallest proper filter containing
H , the filter generated by H .

An ultrafilter is a proper filter which satisfies : for any A ⊂ I , one has either A ∈ F or
I \ A ∈ F . It is an easy exercise to prove that F is an ultrafilter on I if and only if it
is a maximal proper filter on I , that is, there is no proper filter F ′on I containing F .
If A = {a}, the principal filter generated by a is an ultrafilter. If I is finite, then every
ultrafilter on I is of this kind. If I is infinite, there exist non-principal filters on I , for
example the filter of all cofinite subsets of I .

The dual notion of a filter is an (ordered) ideal. Let us recall the definition of an ideal
in a power set of some non empty set.

Definition An ideal on I is a non-empty collection J ⊂ P(I) of subsets of I , satisfy-
ing the following conditions

i) if X,Y ∈ J, then X ∪ Y ∈ J,

ii) if Y ∈ J and X ⊂ Y , then X ∈ J.

This definition is that of an ideal in the Boolean ring P(I), expressed in the terms of
the operations union and intersection in the Boolean algebra P(I).
An ideal J on I is called a prime ideal if for every X ⊂ I , either X ∈ J or I \ X ∈ J.
In Boolean algebras, the terms prime ideal and maximal ideal coincide, as do the terms
prime filter and maximal filter.

We note that if F is a filter on I then J = {I \X | X ∈ F} is an ideal, and vice versa,
if J is an ideal on I , then F = {I \ X | X ∈ J} is a filter.

By application of Zorn’s Lemma, one proves that every proper filter on a set I can
be extended to an ultrafilter on I . So if I is infinite, then there exists a non-principal
ultrafilter on I which contains in particular the filter of cofinite sets.

Algebraic description of filters

The following algebraic description of filters on a set I is due to Kochen [12]. Let
I be an index set, and Ki (where i ∈ I ) be a family of commutative fields. We put
R := Πi∈IKi . Then R is a von Neumann regular ring, that is, it satisfies: ∀x ∈ R ∃y ∈ R
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such that x = xyx . Kochen [12] proved that the ideal structure of the ring R can be
described by filters on the set I . We use the following notations: for f ∈ R, let
Z(f ) = {i ∈ I | f (i) = 0}. If a is any ideal in R, we put F(a) := {Z(f ) | f ∈ a}. If
F is a filter on I , we define Id(F) := {f ∈ R | Z(f ) ∈ F}. One verifies easily that
Id(F) is an ideal of R and F(a) is a filter on I .

Theorem The construction above gives a one-one correspondence between the fam-
ily of ideals in R and the family of filters on I . Furthermore, prime ideals correspond to
ultrafilters. If a is an ideal, then R/a ' R/F(a). If a is a prime ideal, then Ra ' R/a.

We want to generalize this to arbitrary commutative rings, instead of fields. We first
consider the case of local rings (Ri,mi)i∈I , each one different from the zero ring. Put
R := Πi∈IRi . For f = (fi)i ∈ R, we define the variety of f by

V(f ) := {i ∈ I | fi ∈ mi}.

If a ⊂ R is an ideal, then F(a) := {V(f ) | f ∈ a} is a filter on I . This follows from
the following facts: take f , g ∈ R, then V(fg) = V(f ) ∪ V(g); there are ε, δ ∈ R, such
that V(εf + δg) = V(f ) ∩ V(g). Moreover, if a ⊂ R is a proper ideal, then F(a) is
proper, too.

There is the dual construction: Let F be a filter on I . We put

Id(F) := {f ∈ R | V(f ) ∈ F}.

Then Id(F) is an ideal of R. If F is proper, then Id(F) is proper too. We note that
both constructions conserve inclusions and we always have

a ⊂ Id(F(a)),

F = F(Id(F)).

One can show

Proposition i) Let m ⊂ R be an ideal. If m is maximal, then F(m) is an ultrafilter
on I .

ii) Let F be a proper filter on I . Then Id(F) is a maximal ideal of R if and only if
F is an ultrafilter on I .

Corollary The mapping

F : Specmax(R) −→ ufil(I)

which associates to every maximal ideal of R its ultrafilter, is well-defined and bijec-
tive.
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We come to the case of not necessarily local (but non zero) rings Ri , i ∈ I . For a
commutative ring A, we define

W(A) :=
∏

m∈Specmax(A)

Am.

Then, we prove

Theorem Every maximal ideal of R := Πi∈IRi is induced by a (not necessarily
unique) maximal ideal of Πi∈IW(Ri); that is, by an ultrafilter on the disjoint union
ti∈ISpecmax(Ri).

For the proof, we take a maximal ideal m of R. Put S := Πi∈IW(Ri). Then we note
that mS is a proper ideal of S . Otherwise 1S would be a finite linear combination of
elements of m. But this implies, by the local-global principle of commutative algebra,
that these elements generate each Ri , and so finally m = R which is impossible. It
follows that mS is contained in at least one maximal ideal of S . We obtain our result
by applying the above proposition.

δ -stable ultrafilters

There are some applications in analysis where particular kinds of ultrafilter are very
advantageous. In [5] Choquet constructed δ -stable ultrafilters, previously called abso-
lutely 1-simple ultrafilters in [4].

Definition [5] We say that an ultrafilter U is δ -stable if (Jn)n∈N is any sequence of
elements of U , there is a set J∞ ∈ U , almost contained in each Jn , so J∞ \ Jn is finite
for each n.

Choquet has shown (see [4], Theorem 6 ) that under the continuum hypothesis, there
exist δ -stable ultrafilters over N.

Stroyan and Luxemburg (see [18], Theorem 7.1.1 p.175) proved that each infinite nat-
ural number λ can be represented by a sequence limλ(j) = +∞. It is straightforward
that this is still valid for infinite positive reals

Theorem If ∗R is a δ - stable ultrapower of R and λ= [λ(j)] ∈ ∗R+
∞ is an infinite

positive real, then there exists a set J∞ ∈ U such that

lim
j→∞, j∈J∞

λ(j) = +∞.
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The standard part of hyperreals

Let U be a non-principal ultrafilter on N and let ∗R the corresponding ultrapower of
R, that is, ∗R = RN/U with (xi) ∼ (yi) if {i ∈ N, xi = yi} ∈ U . Then (∗R,+, ., <)
is an ordered field extension of (R,+, ., <). Elements of ∗R are called (hyper)real
numbers.

A hyperreal r ∈ ∗R is bounded or finite if |r| < n for some n ∈ N, and infinitesimal if
|r| < 1

n for every n ∈ N, n ≥ 1. Let s ∈ ∗R. We say that r and s are infinitely close
if r − s is infinitesimal. We write r ≈ s in this case. We denote by bR the subring of
∗R of bounded numbers and by iR the ideal of bR of all infinitesimals.

Theorem If ρ is bounded, then there exists a unique real r such that ρ ≈ r .

We call r is the standard part of ρ and write r = ◦ρ or r = st(ρ). The map

st : bR −→ R

is called the standard part map. It is an order preserving homomorphism from the ring
bR onto R. The kernel of “st” is iR and the quotient ring bR/ iR is isomorphic to R.
We restrict “st”, the standard part map, to ∗Q, st∗Q∩bR: ∗Q∩bR −→ R. By density
of Q in R, st∗Q∩bR is surjective and the quotient ∗Q∩bR/∗Q∩iR is isomorphic to R
(the completion of Q).

We mention that Brünjes and Serpé [2] treated the case of a non trivially valued field
(K, |.|) with locally compact completion (K̂, |.|). They proved that ∗Kfin/∗Kinf is iso-
morphic to K̂ , where ∗Kfin denotes the set of finite elements of ∗K and ∗Kinf the set
of infinitesimal elements of ∗K .

B Principles of Nonstandard Analysis

Transfer Principle

The fundamental property of ultraproducts is the following:

Theorem (Łǒs) Let L be a first order language and Ai , i ∈ I be structures for L .
Let U be an ultrafilter on I and ∗A = (Πi∈IAi)/U . Then for any first order formula
ϕ(x1,, . . . , xn) with x1, . . . , xn its only free variables and [a1], . . . , [an] ∈ ∗A, we have
that ∗ϕ([a1], . . . , [an]) is true in ∗A if and only if {i ∈ I : ϕ(a1(i), . . . , an(i)) is true in Ai} ∈
U . In particular, if ϕ is a sentence, then ϕ is true if and only if ∗ϕ is true.
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We present some interesting applications of Łǒs’ Theorem.

i) Let (ki)i∈I be a family of (algebraically closed) fields. Then ∗k , their ultraproduct,
is again a (algebraically closed) field.
If for each prime p, only finitely many ki have characteristic p, then ∗k has
characteristic zero. In particular, if P is an infinite prime in ∗Z, then ∗Z/P∗Z is
a field of characteristic zero. Its algebraic closure is (non-canonically) isomor-
phic to C, because each field is algebraically closed with the same cardinality
which is equal to that of the continuum. In the same manner, one can show that
∗C is (non-canonically) isomorphic to C.

ii) Let (Ai)i∈I be a family of local rings with maximal ideal mi and residue field ki =
Ai/mi . Then ∗A, their ultraproduct, is a local ring with maximal ideal ∗m and
residue field ∗k = ∗A/∗m. In fact, a ring is local if and only if the sum of two
non-units is a non unit.

Permanence Principle

This principle asserts that certain functions can be extended to larger domains than
those over which they are originally defined.

Theorem Let ϕ(x) be an internal formula with the only free variable x . Then

i) If there exists k ∈ N such that ϕ(n) is true for all n ∈ N with k ≤ n, then there
exists K ∈ ∗N \ N such that ϕ(n) is true for all n ∈ ∗N with k ≤ n ≤ K .

ii) If there exists K ∈ ∗N \ N such that ϕ(n) is true for all n ∈ ∗N \ N with n ≤ K ,
then there exists k ∈ N such that ϕ(n) is true for all n ∈ ∗N with k ≤ n ≤ K .

iii) If ϕ(x) holds for each infinitesimal x , then there is a standard r > 0 in R so that
ϕ(b) holds for all b with |b| ≤ r in ∗R.

Corollary (Spillover Principle) Let A be an internal subset of ∗R.

i) If A contains all standard natural numbers, then A contains an infinite natural num-
ber.

ii) If A contains all infinite natural numbers, then A contains a standard natural num-
ber.
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Concurrence or Saturation Principle

This principle provides us with new objects in nonstandard extensions. Let X be an
infinite set and R be a binary relation on X . R is called concurrent if for any finite
subset {x1, . . . , xn} of the domain of R there exists an element y with xi R y for all i
between 1 and n.

Theorem If R is concurrent, then there exists b∈ ∗X such that ∗x(∗R)b for all x ∈
dom R.

This is also called the enlargement property: ∗X is an enlargement of X if every
concurrent relation verifies the enlargement property. Let us consider some examples:

i) R(x, y) : (x ∈ R) ∧ (y ∈ R)(x ≤ y) R is a concurrent relation on R, so there exists
b ∈ ∗R such that x ≤ b for any x ∈ R. Evidently, b is an infinite number.

ii) Let X be a topological space, x ∈ X and ∗X an enlargement of X . Then there
exists an internal open set W in ∗X containing x , such that W ⊂ µ(x).
We denote by Ωx the system of open neighborhoods of x . The binary relation
R defined on Ωx × Ωx defined by R(U,V) if U ⊃ V is concurrent. So, the
enlargement property guarantees the existence of W∈ ∗Ωx such that ∗U ⊃ W ,
for every U ∈ Ωx . In a metric space, one can take W an ∗-ball with x as center
and positive infinitesimal radius.

C Nonstandard Topologies

Topological spaces

Let (X, T ) be a topological space. In the literature, usually two topologies on the
nonstandard extension of ∗X are considered. The first one, called Q-topology, intro-
duced by Robinson [15], has a basis, consisting of elements in ∗T . In fact, by transfer,
elements of ∗T are stable under ∗-finite intersection, hence under finite intersection
and under internal union. Furthermore, ∅ ,∗X∈ ∗T . Elements in the Q-topology are
called Q-open and elements in the base ∗T are called ∗-open subsets of ∗X . A ∗-open
set is clearly Q-open. The converse is false in general: there are external sets which
are open in this topology. Robinson proved that if Y is an internal subset of ∗X , then Y
is Q-open if and only if Y is ∗-open. The second one, called S-topology by Robinson,
has as basis B = {∗U | U ∈ T }. The Q-topology is finer than the S-topology.

Let x ∈ X be a point. The monad of x or halo is the subset µ(x) = ∩U∈T, x∈U
∗U .
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A point y ∈ ∗X is, by definition, near-standard, if there exists x ∈ X such that
y ∈ µ(x). We write y ≈ x in this case. The set of near-standard points of ∗X is
ns(∗X) = ∪x∈X µ(x). Many topological properties of X can be expressed via monads,
so the halos of ∗X encode the topology of X .

For a Hausdorff topological space, we have a standard part map st : ns(∗X) → X
defined as follows: we set st(y)= ◦y = x , for every y ∈ µ(x) and x ∈ X . This
map is well-defined because in the case of Hausdorff spaces, halos of standard points
constitute a disjoint partition of near standard points. Even for a non-Hausdorff space,
we can define the standard part of a set B⊂ ∗X , by setting:

st(B)= ◦B = {x ∈ X | µ(x) ∩ B 6= ∅}.

Under certain cardinality restrictions (expressed via the notion “κ-saturated enlarge-
ment”), standard parts of internal subsets turn out to be always closed. The following
result can be found in the book of Hurd and Loeb ([10] p.117)

Theorem Assume that (X, T ) is a topological space and ∗T is a κ-saturated enlarge-
ment of T with κ > card T .

i) If B is internal subset of ∗X , then st(B) is closed.

ii) If B is internal subset of near-standard points of ∗X , then st(B) is compact.

If X satisfies the first axiom of countability (for example if X is a metric space), one
can use just ℵ1 -saturation.

Metric spaces

Let X be a metric space with distance function ρ and Γ be the set of all open balls B,
where B(x, r) = {y ∈ X | ρ(x, y) < r} for a point x ∈ X and a positive real r . We
describe the monad of a point x∈ ∗X by µ(x) = ∩∗B(x, r) = {y∈ ∗X | ∗ρ(x, y) ≈ 0}.
Obviously, ∗Γ forms a basis for the Q-topology of ∗X . Let p∈ ∗X and r a standard
positive number. We put S(p, r) = {q∈ ∗X | ◦ρ(p, q) < r}. The S-balls give us a
topology in ∗X , which is the S-topology. The space ∗X , endowed with the S-topology
in not Hausdorff. In fact, if x, y∈ ∗X such that x ≈ y and if r > 0 is a standard positive
real, we obtain S(x, r) = S(y, r).

Let (X, ρ), (Y, d) be two metric spaces and f : ∗X → ∗Y be a map from ∗X to ∗Y . Let
x ∈ ∗X be a point. We say that f is S-continuous at x , if f is continuous at x as a map
from ∗X to ∗Y where both sets are equipped with the S-topology, that is, for every

Journal of Logic & Analysis 2:9 (2010)



58 A. Khalfallah and S. Kosarew

standard ε > 0, there exists a standard δ > 0 such that ∗d(f (x), f (y)) < ε for each
y ∈ ∗X , such that ∗ρ(x, y) < δ . There is a simple characterization of S-continuity
of internal maps. If f is an internal map, then f is S-continuous at x if and only if
f (µ(x)) ⊂ µ(f (x)).

Let X be a metric space with distance function ρ. A point p∈ ∗X is called bounded (or
finite) if there exists a standard point q ∈ X such that ∗ρ(p, q) is bounded; that is, there
exists a standard positive real m > 0 such that p ∈ ∗B(q,m). We denote by bd(∗X)
the set of bounded points of ∗X . Robinson proved (see [15] Theorem 4.3.1 p.100) that
a metric space X is bounded if and only if ∗X = bd(∗X). Clearly, we always have
ns(∗X) ⊂ bd(∗X).

Standard part of a map

Let X and Y be two topological spaces. F(X,Y) (resp. C(X,Y)) denotes the set of
all (resp. continuous) maps from X to Y . As usual ns( ∗X) is the set of nearstandard
points and cpt( ∗X) = ∪K⊂X,K compact

∗K is the set of “compact points”.

One of the most powerful tools in nonstandard analysis is taking standard parts of
objects of the nonstandard universe. If Y is Hausdorff, we can define for every f ∈
∗C(X,Y) with f ( ∗x) ∈ ns( ∗X) for all x ∈ X , the standard part function st f : X → Y
by stf (x) := ◦ (f ( ∗x)) . Thus, we have a mapping

st : {f ∈∗ C(X,Y) | f ( ∗x) ∈ ns( ∗Y) ∀ x ∈ X} −→ F(X,Y)

It is known that st f is, in general, not a continuous function.

Theorem Let B be a subset of ∗X and f : B → ∗Y an internal map such that
f (B) ⊂ ns(∗Y) and f is S-continuous on B. Then st f exists and is continuous on ◦B.

We endow C(X,Y) with τ , the compact open topology. Let f ∈ C(X,Y) be a mapping.
We denote by µτ (f ) the halo of f with respect to the compact open topology. One
easily verifies that

µτ (f ) = {g ∈ ∗C(X,Y) | g(x) ≈ ∗f (x) ∀ x ∈ cpt( ∗X)}

If X is locally compact, then cpt( ∗X) = ns( ∗X), hence

µτ (f ) = {g ∈ ∗C(X,Y) | g(x) ≈ ∗f (x) ∀ x ∈ ns( ∗X)}.

Journal of Logic & Analysis 2:9 (2010)
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Theorem Let X,Y be two Hausdorff topological spaces and X locally compact. Then
nsτ ( ∗C(X,Y)) consists of all internal maps sending nearstandard points of ∗X to near-
standard points of ∗Y and which are S-continuous on ns( ∗X).

In particular, nearstandard functions for the compact-open topology are those which
are bounded and S-continuous on ns( ∗X).
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