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Differentiating Convex Functions Constructively
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Abstract: In classical analysis, both convex functions and increasing functions
[0, 1]→ R are differentiable almost everywhere. We will show that constructively,
while we can prove this for convex functions, we cannot do so for increasing ones.
In doing so we also show that Rademacher’s Theorem and the Alexandrov Theorem
are not constructive.
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Convex functions feature prominently in many areas of mathematics; convex optimisation
alone has too many applications to list. A standard approach to optimising a convex
function is gradient descent, an important algorithm which relies on the fact that
the derivative of every convex function exists almost everywhere. We give a fully
constructive proof of this result for functions on R in the setting of Bishop’s constructive
mathematics (BISH), which is mathematics with intuitionistic logic and (countable)
dependent choice; see Bishop and Bridges [4] for a comprehensive introduction to BISH.
In the tradition of Bishop we work informally, but we would also like to stress that
there are many formal systems capturing the idea of BISH including set-theoretic and
type-theoretic foundations (Aczel and Rathjen [1], Martin-Löf [9]), and these could be
used to straightforwardly formalise our results. Proofs given in BISH have the advantage
of being acceptable in classical mathematics (CLASS), Brouwer’s intuitionism (INT),
and Markov’s Russian school of recursive mathematics (RUSS), Bridges and Richman
[5]. Another advantage of proofs using only intuitionistic logic is that one can extract
algorithms from them. Convex functions, and their applications to mathematical
economics, have recently been investigated in BISH by Berger and Svindland [2, 3].

We highlight a few important differences between studying the real numbers with
classical logic and with intuitionistic logic (even though we define the reals in the
standard way, as Cauchy sequences of rationals say). For real numbers x, y we say that
x is apart from y, written x 6= y, if there exists n ∈ N such that |x− y| > 1/n. In BISH
this is a stronger condition than ¬(x = y): the statement ∀x, y ∈ R : (¬x = y→ x 6= y),
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known as Markov’s principle, is independent of BISH. Another important proposition
that is independent of BISH is the decidability of equality on the reals, known as the
weak limited principle of omniscience:

WLPO: For any real number x , either x = 0 or ¬x = 0.

WLPO is outright false in INT and RUSS, and many formal systems. As a substitute
for the decidability of equality on R (and the stronger decidability of apartness, known
as the limited principle of omniscience (LPO)) we have in BISH that

(1) ∀x, y, z ∈ R : x < y→ (x < z ∨ z < y) .

As a reminder to the reader: a function f : [0, 1]→ R is convex if for all x, y ∈ [0, 1]
with x 6 y and any t ∈ [0, 1] we have that

f (t x + (1− t) y) 6 t f (x) + (1− t) f (y) ;

and f is strictly convex, if this inequality is strict for x < y. Many of the familiar
properties of convex functions can be established constructively with standard (classical)
proofs. For example:

• the class of convex functions is closed under addition and taking maximum;

• if f , g : R→ R are convex and g is non-decreasing, then g ◦ f is convex;

• any local minimum of a convex function is a global minimum;

• the set of (global) minima is convex;

• strictly convex functions have at most one minimum.

Our main result is a constructive proof of:

Proposition 1 If f : [0, 1] → R is convex, then there exists a sequence (ξn)n>1 in
[0, 1] such that if y ∈ [0, 1] is distinct from each ξn , then f is differentiable at y.

The standard classical proof of this goes as follows. For a fixed x ∈ (0, 1) the function

F(h) =
f (x + h)− f (x)

h

is increasing and is bounded above by (f (1)−f (x))/(1−x) (both follow, for example, from
Lemma 3 below). Thus limh→x− F(h), the left limit f ′−(x) of f at x, exists; moreover
f ′− is increasing. Similarly, the right limit f ′+ of f exists and is increasing. Since f ′−, f

′
+

are increasing functions [0, 1]→ R the sets S−, S+ at which they are discontinuous are
each countable. Then f is differentiable at each x /∈ {0, 1} ∪ S− ∪ S+ .
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It can be shown constructively that an increasing, real-valued function on [0, 1] has at
most countably many points of discontinuity (Theorem 5.4 of Diener and Hendtlass
[8]). The problem with the above proof from a constructive stand-point comes before
this: the assertion that limh→x− F(h) exists when F is increasing and is bounded above.
Indeed, it cannot be shown constructively that the left and right derivatives of a (strictly)
convex function exist:

Example 2 Let f : R→ R be given by f (x) = |x| and suppose that f ′− exists. Then
for any x ∈ R either f ′−(|x|) > −1 or f ′−(|x|) < 1. In the first case, if x = 0, then
f ′−(|x|) = −1; whence ¬x = 0. In the second case, if |x| > 0, then f ′−(|x|) = 1; whence
x = 0. Thus the existence of f ′− implies WLPO:

∀x ∈ R : x = 0 ∨ ¬(x = 0)

In the proof of Proposition 1 below we construct the (potential) points of non-
differentiability of f directly.

We start by noticing that the approximate derivatives of f are increasing.

Lemma 3 If f : [0, 1] → R is a convex function and x, y, x′, y′ ∈ [0, 1] with
x < y 6 x′ < y′ , then

f (y)− f (x)
y− x

6
f (y′)− f (x′)

y′ − x′
.

Proof Suppose that there exist x < y 6 x′ < y′ with

(2)
f (y)− f (x)

y− x
>

f (y′)− f (x′)
y′ − x′

.

Then, by (1), either

f (x′)− f (y)
x′ − y

>
f (y′)− f (x′)

y′ − x′
or

f (y)− f (x)
y− x

>
f (x′)− f (y)

x′ − y
;

without loss of generality, we assume the former.1 Let t = x′−y′/y−y′ . Then x′ =
ty + (1− t)y′ and we have

f (x′)− f (y)
(1− t)(y′ − y)

>
f (y′)− f (x′)

t(y′ − y)

which can be rearranged to give f (x′) > tf (y) + (1− t)f (y′). This contradiction to the
convexity of f proves the result.2

1For the latter case use t = y−x′/x−x′ and rearrange to get an expression for x .
2We remind the reader that in BISH, a 6 b is defined as ¬(a > b); that is as (a > b)→ ⊥ .
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We denote by 2<N the set of finite binary sequences and by 2N that of infinite binary
sequences; for n ∈ N, 2n denotes the set of binary sequences of length n. The length of
a ∈ 2<N is denoted by3 |a| and the empty sequence by 〈〉. For α ∈ 2N and n ∈ N we
write αn for the binary sequence of length n given by restricting α to {0, . . . , n− 1}.
We write α A a to mean that αn = a where n = |a|. For finite binary sequences
a = (a0, . . . , am−1), b = (b0, . . . , bn−1) of length m, n the concatenation a _ b of a
and b is the finite binary sequence (a0, . . . , am−1, b0, . . . , bn−1) of length m + n.

Before a proposition in which we construct a finite sequence of points x1, . . . , xn that
contains all “ε-jumps” in the derivative of f , we need a tiny lemma.

Lemma 4 For all x0, x1 ∈ R and n ∈ N with x0 + x1 < n + 1, there exist n0, n1 ∈ N
such that n = n0 + n1 , x0 < n0 + 1, and x1 < n1 + 1.

Proof Straightforward.

Proposition 5 Let f : [0, 1] → R be a convex function and let ε > 0. Then there
exist x1, . . . , xn ∈ [0, 1] such that if y ∈ (ε, 1− ε) is distinct from each of x1, . . . , xn ,
then there exists δ > 0 such that for all δ′ ∈ (0, δ):

f (y + δ)− f (y)
δ

− f (y)− f (y− δ)
δ

< ε

Proof We inductively construct

• a function a 7→ Ja mapping finite binary sequences to subintervals of [ε, 1− ε],

• functions mr,ml : 2<N → R, and

• binary sequences α1, . . . , αn

such that for all N ∈ N and all a, b ∈ 2<N

(1)
⋃

a∈2N

J◦a = (ε, 1− ε),

(2) 0 < |Ja| 6 (2/3)|a| ,

(3) for all x, y ∈ Ja with x < y

ml(a) 6
f (y)− f (x)

y− x
6 mr(a) ,

(4) mr(a)− ml(a) < (|{ i |αi A a }|+ 1)ε,. and

3We also use | · | to give the cardinality of a finite set and the length of a finite interval, but
no confusion is likely to arise from this.
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(5) if a v b, then Jb ⊆ Ja .

Suppose that we have completed the construction and for each i ∈ {1, . . . , n} let xi be
the unique point in

⋂
n∈N Jαin ; such points exist by (2) and (5). Let y ∈ (ε, 1− ε) with

y 6= xi for each i and let N > 1 be such that |y− xi| > (2/3)N for all i. By (1) there
exists a ∈ 2N such that y ∈ J◦a and by (2) xi /∈ Ja for each i; it then follows from (5)
that |{ i |αi A a }| = 0. Finally it follows from (3), (4) and Lemma 3 that any δ > 0
such that (y− δ, y + δ) ⊂ Ja will satisfy the conclusion of the proposition.

It now remains to detail the construction. To begin the induction we set

J〈〉 = [ε, 1− ε], ml(〈〉) =
f (ε)− f (0)

ε
, and mr(〈〉) =

f (1)− f (1− ε)
ε

and pick n ∈ N such that (n + 1) ε > mr(〈〉) − ml(〈〉); then (1), (2), and (5) hold
trivially, while (3) holds by Lemma 3 and (4) holds by our choice of n.

Now fix a ∈ 2<N and suppose we have done the construction up to and including a.
Write Ja = [s, t] and set q = 2s/3 + t/3, q′ = s/3 + 2t/3,

m0 =
f (q)− f (s)

q− s
, and m1 =

f (t)− f (q′)
t − q′

.

Let k ∈ N be such that:

m1 − m0 < (k + 1)
((
|{ i |αi A a }|+ 1

)
ε− (mr(a)− ml(a))

)
Define p0, . . . , p2k+2 by

pi = q +
q′ − q
2k + 2

i

and set µ1, . . . , µk as:

µi =
f (p2i)− f (p2i−1)

p2i − p2i−1

Further, write µ0 = m0 and µk+1 = m1 .

Since

(µk+1 − µk) + (µk − µk−1) + · · ·+ (µ1 − µ0)

= µk+1 − µ0

< (k + 1)((|{ i |αi A a }|+ 1)ε− (mr(a)− ml(a)))

there exists j ∈ {0, . . . , k} such that:

µj+1 − µj <
(
|{ i |αi A a }|+ 1

)
ε− (mr(a)− ml(a))

Set Ja_0 = [s, p2j+1] and Ja_1 = [p2j, t]; (1) is preserved since p2j < p2j+1 , so Ja =

Ja_0 ∪ Ja_1 , and (2) is preserved since p2j, p2j+1 ∈ [q, q′]. Setting ml(a _ 0) = ml(a),
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mr(a _ 0) = µj+1 , ml(a _ 1) = µj , and mr(a _ 1) = mr(a), (3) holds by Lemma 3.
We now turn to defining the αs. By our choice of j

(mr(a _ 0)− ml(a _ 0)) + (mr(a _ 1)− ml(a _ 1)) < (|{ i |αi A a }|+ 1)ε ;

with x0 = mr(a_0)−ml(a_0)
ε , x1 = mr(a_1)−ml(a_1)

ε , and n = |{ i |αi A a }| we can
apply Lemma 4 to construct n0, n1 ∈ N such that n = n0 + n1 , x0 < n0 + 1, and
x1 < n1 + 1. Extending n0 of { i |αi A a } to a _ 0 and n1 to a _ 1 preserves (4)
and completes the proof.

We are now in a position to give our proof of Proposition 1.

Proof Let S1 = {0, 1} and for each n > 2 apply Proposition 5 with ε = 2−n to
construct x1, . . . , xn and let Sn = {x1, . . . , xn}. Let (ξn)n>1 be an enumeration of⋃
{ Sn | n > 1 } . Let y ∈ [0, 1] be such that y 6= ξn for all n > 1. Since y 6= 0 and

y 6= 1 there exists N > 0 such that y ∈ (2−N , 1− 2−N). For all M > N , since y 6= x
for each x ∈ SM , there exists δ > 0 such that:

f (y + δ)− f (y)
δ

− f (y)− f (y− δ)
δ

< 2−M

Since M > N is arbitrary, it follows from Lemma 3 that f is differentiable at y.

Corollary 6 If f : [0, 1]→ R is convex, then the set of points in [0, 1] at which f is
differentiable is dense.

Proof This is due to a constructive version of Cantor’s Diagonalisation Theorem
(Bishop and Bridges [4, Chapter 2 Theorem 2.19]): if (ξn)n>1 is a sequence in R and
a < b then there exists z ∈ (a, b) such that z 6= ξn for all n ∈ N.

Classically there is no hope to improve upon this result, since one can easily define
a convex function [0, 1] → R that is not differentiable on a dense set. For example,
if (qn)n>1 is an enumeration of all rational points in [0, 1] then one can define an
increasing function:

f (x) =
∑
qi<x

1
2i

Integrating this increasing function we get a convex one g(x) =
∫ x

0 f (t) dt , which is
not differentiable at rational points. Constructively we cannot define f , since it is not
continuous. That means that it could be the case that the assumption of strong continuity
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principles, such as the principle of continuous choice in INT, could prevent this sort of
counterexample. However, we are still able to define g directly:

g(x) =
∞∑

n=1

(x− qn)+

2n

where a+ = max {0, a}. It is easy to see that g is convex as it is the limit of functions,
which are themselves convex as the finite sum of convex functions. Further g is not
differentiable at each qi ∈ Q ∩ (0, 1). We write:

gi(x) =
(x− qn)+

2n , and gi =
∞∑

n=1,n6=i

gn

Both gi, gi are continuous and g = gi + gi . For any 0 < δ < max{qi, 1− qi} we have

g(qi + δ)− g(qi)
δ

− g(qi)− g(qi − δ)
δ

=

(
gi(qi + δ)− gi(qi)

δ
− gi(qi)− gi(qi − δ)

δ

)
+

(
gi(qi + δ)− gi(qi)

δ
− gi(qi)− gi(qi − δ)

δ

)
> 2−i

the first part being > 0 since gi is convex and the second part being = 2−i . Since δ
can be arbitrarily small, g is not differentiable at qi .

We will, next, present a counterexample to a very similar looking problem as our main
result. Theorem 5.4 of Diener and Hendtlass [8] shows that an increasing function is
continuous at all but countably many points. In classical analysis it is also provable
that an increasing function is differentiable almost everywhere. As the following result
shows there is no hope in proving this constructively, since it implies the sequential
version of WLPO,4 which states that for a binary sequence (λn)n>1 we can decide

∀n ∈ N : λn = 0 ∨ ¬∀n ∈ N : λn = 0 .

It is easy to see that, in WLPO, we can assume that (λn)n>1 is increasing.

Our counterexample also functions as a (Brouwerian) counterexample to Rademacher’s
Theorem [11], which states that if U ⊂ Rn is open and f : U → Rm is Lipschitz

4This sequential version is implied by the real number version. Assuming countable choice
(or even weaker forms of choice, Bridges, Schuster and Richman [6]), the two versions are
actually equivalent. It seems feasible to alter our example, so that it actually implies the real
version, but since the point of the proposition is purely to show that we cannot derive a result,
there seems to be no point in indulging in such subtleties.
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continuous, then f is differentiable almost everywhere. Finally, the function F :
[0, 1] → R defined by F(t) =

∫ t
0 f (x) dx, is a (Brouwerian) counterexample to the

Alexandrov Theorem (Niculescu and Persson [10, Section 3.11]), which states that if
U ⊂ Rn is open and f : U → Rm is convex, then it has a second derivative almost
everywhere.5

Proposition 7 If every (continuous) increasing function f : [a, b]→ R is differentiable
at some point, then WLPO holds.

Proof Consider the sequence of piece-wise linear, uniformly continuous functions
fn : [0, 1]→ R defined by:

fn(x) =

{
i
n if x ∈

[ 2i
2n ,

2i+1
2n

]
i
n + 2

(
x− 2i+1

2n

)
if x ∈

[2i+1
2n , 2i+2

2n

]

10

1

1
n

fn

1
2n

1
2n

We have
∀x ∈ [0, 1] : |x− fn(x)| 6 1

2n
and therefore fn → id uniformly. Now let (λn)n>1 be an increasing binary sequence
and consider:

gn =

{
fm if λn = 1 and λm = 1− λm+1

id if λn = 0

5We should point out that measure theory is a constructively problematic topic, and has to
be treated much more carefully than in the classical approach [4, Chapter 6]. However, we do
assume that any sensible definition of the notion of a property holding almost everywhere on
[0, 1] ought to imply that there is at least on point at which it does hold (the approach in [4,
Chapter 6] does this).
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Using the notation introduced in Diener and Hendtlass [7], gn is just the sequence
λ~ (fn), and is therefore Cauchy.6 It therefore converges uniformly to a limit g. If there
exists n such that λn = 1, then g = fm for some m 6 n and therefore g is differentiable
at every point different from those of the form i

2m , and has a derivative of 0 and 2 at
each such point. If λn = 0 for all n ∈ N, then g = id and is therefore differentiable
everywhere with a derivative of 1. Thus if g is differentiable at any point, then its
derivative cannot be different from 0, 1, or 2. To be more precise the derivative either
lies in (1/3, 5/3) or in (−∞, 2/3) ∪ (4/3,∞). In the second case we must have

¬∀n ∈ N : λn = 0

and in the first case we must have

¬∃n ∈ N : λn = 1 ,

which is equivalent to

∀n ∈ N : λn = 0 .

Since (λn)n>1 was arbitrary, WLPO holds.

Notice that the notion of quasi-convexity, which is classically well studied, and features
prominently in the aforementioned Berger and Svindland [2, 3], is implied by being
increasing. Thus it is not possible to replace “convexity” by “quasi-convexity” in
Corollary 6. By replacing g with g + id in the proof of Proposition 7, we can actually
improve that result to strictly increasing functions. Since every strictly increasing
function is strictly quasi-convex, this shows that Corollary 6 can also not be proven, if
we assume the function to be strictly quasi-convex.

We would like to finish this paper with the following thought. Viewing our two problems
from a classical point of view, there is, of course, a difference between a convex and an
increasing function. While the first is differentiable everywhere but at countably many
points, the second is only differentiable almost everywhere.7 Since the well-known
Cantor function (also known as devil’s staircase function) is continuous, and increasing
but not differentiable on Cantor’s middle third set, which is uncountable, one cannot
prove that an increasing function is differentiable everywhere but at countably many
points. So even classically there is an appreciable difference between the two problems.

6It is also straightforward to prove the Cauchyness directly.
7Since a countable set has measure zero (assuming the usual measure on R), the first

condition is stronger than the second one.
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