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Abstract: We present a way to organize a constructive development of the theory of
Banach algebras, inspired by works of Cohen, de Bruijn and Bishop [15, 14, 4, 19].
We illustrate this by giving elementary proofs of Wiener’s result on the inverse of
Fourier series and Wiener’s Tauberian Theorem. In a sequel to this paper we show
how this can be used in a localic, or point-free, description of the spectrum of a
Banach algebra.
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Introduction

The applications of the theory of Banach algebras to ‘concrete’ theorems in analysis,
such as Wiener’s theorem on the inverse of Fourier series, or Wiener’s Tauberian
Theorem [31], constitute a striking example of the power of abstract methods in
mathematics. The abstract argument is short and easy to grasp, when compared to
Wiener’s explicit constructions. Furthermore, it is highly non-constructive and uses
Zorn’s Lemma. As such, it is a perfect illustration of Hilbert’s defense of the use
of the law of excluded-middle against Brouwer [20]. A natural question is whether
the abstract argument does not contain, in some implicit way, an actual construction.
This question has been analysed and answered by P. Cohen [15]. Closely related are
later works by de Bruijn and van der Meiden [14], and by Bishop and Bridges [4].
Applications of the latter may be found in [6, 7, 10, 11, 8, 12, 9, 29]. Here we
present a slightly different analysis of the non-constructive argument, thus providing
an elementary treatment. Furthermore it allows us, in a sequel to the present paper,
to reformulate some key results of Bishop and Bridges [4] in a localic, or point-free,
setting. This will generalize previous localic treatments of Gelfand theory for C*-
algebras [2, 1, 18].
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2 Thierry Coquand and Bas Spitters

This paper is organised as follows. The first section explains informally the main idea
of the paper. The next section is a detailed presentation of the elementary theory of
Banach algebras. Hopefully it can be readily implemented in type theory using the
framework presented in [27]. This presentation follows ideas presented in [5]. The
remaining sections provide our main applications.

Notation

We use the following conventions, unless otherwise indicated:
A,B for Banach algebras.
a, b, c, . . . for elements of a Banach algebra.
ϕ,ψ for functionals.
ΓR denotes the circle with radius R, Γ is the circle with radius 1.

1 Analysis of the abstract reasoning

Let A be a commutative Banach algebra with unit, and let MFn A be the compact
space of non-zero multiplicative functionals A → C with the weak-* topology. Let
us assume that f in A satisfies ϕ(f ) 6= 0 for all ϕ in MFn A. We want to show that
f is invertible in A. To obtain a contradiction, we assume that f is not invertible.
Then the ideal 〈f 〉 is proper, and hence, using Zorn’s Lemma, included in a maximal
ideal m. This maximal ideal is necessarily closed. Using the Gelfand-Mazur theorem,
the algebra A/m is isomorphic to C. The corresponding multiplicative functional
ϕm : A → A/m is such that ϕm(f ) = 0. This contradicts the hypothesis on f . For
example, the application of this argument to A = l1(Z) gives Wiener’s theorem on
inverse of Fourier series.

Cohen [15] observes that, instead of working with a maximal ideal, one can work
just as well with the closure I of the ideal generated by f . Since x is invertible if
|1 − x| < 1, an ideal contains 1 if and only if its closure contains 1. Finally, the
proof of the Gelfand-Mazur Theorem actually gives a more general result: if A is
a non-trivial Banach algebra, the spectrum of any element u in A is non-empty. A
combination of these remarks eliminates the use of Zorn’s Lemma.

To simplify, we consider the case where A is generated by one element u: for every a
in A and r > 0 there is a polynomial P such that |a−P(u)| < r . The disc algebra [15]
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is such an algebra. In this case the spectrum MFn A can be identified with the spectrum,
σ(u), of u: that is, the set of complex λ such that λ − u is not invertible. Any such
element λ defines a multiplicative functional ϕ(P(u)) := P(λ) on polynomials in u.
If |P(λ)| > |P(u)|, then P(λ)− P(u) is invertible, and hence λ− u is invertible. Since
this is not the case, |P(λ)| 6 |P(u)|, so ϕ can be extended to a multiplicative functional
ϕ(g) := g(λ). Conversely, for ϕ in MFn A,

ϕ(ϕ(u)− u) = ϕ(u)− ϕ(u) = 0.

Hence ϕ(u)−u cannot be invertible, that is ϕ(u) ∈ σ(u). The hypothesis on f becomes
f (λ) 6= 0 for all λ in the spectrum of u. The spectrum of u is empty in A/I . Indeed,
the closure of the ideal generated by λ− u contains f (λ)− f = f (λ) (mod I ) which is
invertible, and so λ−u is always invertible (mod I ). Consequently, 1 belongs to I , and
hence f is invertible. The maximal ideal of the abstract argument has been replaced
by the ‘big enough’ ideal I . Essentially, this is the method followed by de Bruijn and
van der Meiden [14], who advocated a point-free approach to the description of the
spectrum of a Banach algebra.

In this way we eliminate the use of Zorn’s Lemma, but the argument is still non-
constructive. Cohen shows that we can follow the proof of Gelfand-Mazur and produce
an actual computation of the inverse of f . Bishop and Bridges’ work is similar [4].
Coquand and Stolzenberg [19] show that in most cases, we can obtain a relatively short
and explicit formula for the inverse.

In this paper we suggest a slightly different constructive argument. It is enough to have
a constructive proof of the following result.

Theorem 1 Let u in A be such that for all λ, λ − u is invertible, and the inverse is
uniformly bounded. Then 1 = 0 in A.

Constructively, we have to state explicitly that the inverse is uniformly bounded. At
first the conclusion seems purely negative, since it says that a ring is trivial. But if
we apply the Theorem to a quotient algebra A/I , the conclusion shows that 1 is in
I . Choosing I to be the closure of 〈f 〉 actually builds an inverse of f , provided we
work constructively. Such use of ‘trivial rings’ occurs often in constructive algebra
[28, 24]. In the applications to Wiener’s Theorems on Fourier series and to the Tauberian
Theorem, we believe that our treatment is simpler than the one in [4]. Moreover, this
theorem has a rather direct proof; for instance, it does not rely on Cauchy’s formula
like the treatment in [15, 4, 19].

This constructive reading does not yet have the ‘elegance’ of the classical proofs, since
we have to deal explicitly with a bound of the inverse. In the sequel to this paper, we
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4 Thierry Coquand and Bas Spitters

explain how to ‘hide’ explicit mentions to this bound, by using a localic, or pointfree,
presentation of the spectrum. In this way we obtain a rather faithful constructive
explanation of the classical arguments.

2 Preliminaries

Most of the material in this section is well-known. We present it here to emphasize its
elementary nature.

2.1 Integration and differentiation with values in a Banach space

We consider a vector space E over the real numbers with an upper real valued semi-
norm: that is, for a in E , |a| is an upper real (open non-empty upper set of rationals)
such that |ra| = |r||a| and |a + b| 6 |a| + |b|. This is an important difference from
Bishop’s treatment, for whom the norm is a Cauchy real.1 The equality in E is such
that |a| = 0 if and only if a = 0 in E .

Let f : [a, b]→ E be a (uniformly) continuous map. We say that f is differentiable if
and only if there exists a continuous f ′ : [a, b]→ E such that for all ε > 0 there exists
η such that

|f (y)− f (x)− (y− x)f ′(x)| 6 ε|y− x| if |y− x| 6 η.

Lemma 1 If |f ′| 6 M on [a, b], then |f (b)− f (a)| 6 M(b−a). In particular, if f ′ = 0
on [a, b], then f (b) = f (a).

Proof For ε > 0 we show |f (b) − f (a)| 6 (M + ε)(b − a), by cutting [a, b] in
subintervals [ai, ai+1] such that |f (ai+1)− f (ai)− (ai+1−ai)f ′(ai)| 6 ε(ai+1−ai).

1The fact that the norm is not a Cauchy real arises constructively if one wants to quotient a
Banach space by a closed subspace which may not be located. This will indeed occur in the
applications.
Another motivation is the interpretation of these results in Banach algebra bundles which we
will discuss in Section 6. In a Banach algebra bundle the function x 7→ |ax| is upper semi
continuous, but generally not continuous; see [22].
Bishop and Bridges [4, p.462] state:‘It would be interesting, and probably non-trivial, to extend
the theory to cover such algebras [where the norm is not a Cauchy real].’
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A normed vector space is complete if every Cauchy approximation converges. A
Banach space is a complete normed vector space. Let E be a Banach space. For
uniformly continuous g : [a, b] → E , we can define the integral

∫ b
a g. We derive the

usual properties. For instance, if |g| 6 M on [a, b], then |
∫ b

a g| 6 M(b− a).

Let G(y) :=
∫ y

a g. Then G : [a, b]→ E is differentiable, and G′ = g.

2.2 Exponential function

A (commutative) Banach algebra A is a Banach space with a ring structure, multipli-
cation ab being such that |ab| 6 |a||b|. In this subsection, we assume moreover that
A has a unit element 1.

Lemma 2 If |1− x| < 1, then x is invertible with inverse
∑

(1− x)n .

Corollary 1 Let I be an ideal. If 1 ∈ I , then 1 ∈ I .

Proof By the previous lemma I contains an invertible element.

We define the exponential of a in A.

ea :=
∑ an

n!
.

The map x 7→ eax defines a function ea : R→ A which is differentiable, e′a = aea and
ea(0) = 1. Furthermore, ea(x + y) = ea(x)ea(y). In fact, these properties define the
exponential function.

Lemma 3 Let f : R→ A be a continuous function such that f (0) = 1 and f (x + y) =
f (x)f (y). Then f is differentiable, and f = ea with a = f ′(0).

Proof We have 1
t

∫ t
0 f → 1 for t→ 0. So we can find t > 0 such that |1− 1

t

∫ t
0 f | < 1.

By Lemma 2, v := 1
t

∫ t
0 f is invertible. Since f (x + y) = f (x)f (y), we obtain

tf (x)v =
∫ t

0
f (x + z)dz =

∫ x+t

x
f .

Hence

tf (x) = v−1
∫ x+t

x
f = v−1

(∫ t+x

0
f −

∫ x

0
f
)
.
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6 Thierry Coquand and Bas Spitters

It follows that f is differentiable and

tf ′(x) = v−1(f (x + t)− f (x)).

Since f (x + y) = f (x)f (y), we have f ′(x + y) = f (x)f ′(y). In particular, writing
a := f ′(0), we have f ′ = af . Defining g by x 7→ f (x)ea(−x), we have g(0) = 1 and

g′(x) = af (x)ea(−x)− af (x)ea(−x) = 0.

By Lemma 1, we have g = 1, and so f = ea .

2.3 Path integration

Let E be a Banach space over of the complex numbers. We say that f : C → E
is differentiable if and only if on each disc ∆r there exists a (uniformly) continuous
function f ′ : ∆r → E such that for all ε > 0 there exists η > 0 such that for
|z′ − z| 6 η ,

|f (z′)− f (z)− (z′ − z)f ′(z)| 6 ε|z′ − z|.

If γ : [0, 1] → E is a differentiable function and f : C → E is a continuous function,
we define

∫
γ f :=

∫ 1
0 f (γ(t))γ′(t)dt . We say that γ is a loop if and only if γ(0) = γ(1).

Lemma 4 If f : C→ E is differentiable and γ : [0, 1]→ C is a loop, then
∫
γ f = 0.

Proof We consider g : [0, 1]→ E defined by

g(s) :=
∫ 1

0
f (sγ(t))sγ′(t)dt.

Then g(1) =
∫

f , g(0) = 0, and g is differentiable. Moreover,

g′(s) =
∫ 1

0
(f (sγ(t)) + sγ(t)f ′(sγ(t)))γ′(t)dt =

∫ 1

0
h′ = h(1)− h(0) = 0,

where h(t) := γ(t)f (sγ(t)). By Lemma 1, g(1) = g(0) = 0. Hence the result.

3 Inverse function

Let A be a unital Banach algebra over the complex numbers.

Lemma 5 Let a be invertible, with inverse b bounded by M . Let c < 1 and |u| 6 c
M .

Then a− u is invertible. Its inverse is bounded by M
1−c .
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Proof The element a − u is invertible if and only if 1 − ub is. Since |u| < c
M and

|b| < M , we have |ub| 6 c. Hence 1 − ub is invertible by Lemma 2. The inverse is
bounded by 1

1−c . The inverse of a− u is bounded by M
1−c .

We conclude that the set of invertible elements is open.

Theorem 2 Let u be in A. If for all z in C, z− u is invertible, with inverse f (z), and
if f is uniformly bounded, then 1 = 0 in A.

Classically the inverse is always uniformly bounded. Moreover, there is a meta-
theorem, the fan rule, that allows us to find a bound in concrete cases. Precisely, if
the inverse is definable in a ‘reasonable’ formal system for Bishop-style mathematics,
then we can find the bound by a mechanical procedure; see for instance [3, p.394][30].
In the applications below we make an effort to be explicit about the bound.2

Proof We have f (z′)− f (z) = (z− z′)f (z)f (z′). Hence f is Lipschitz continuous and
differentiable with f ′ = −f 2 . We consider the circle loop ΓR : t 7→ Re2πit for some
R > |u|. By Lemma 4,

∫
ΓR

f = 0.

On the other hand, for R big enough, f (z) is equal to
∑ un

zn+1 over ΓR . So
∫

ΓR
f is

equal to
∫

ΓR
dz/z = 2πi. So 1 = 0 in A.

Let I be an ideal of a Banach algebra A. We define a new Banach algebra A/I by taking
the new norm to be: |a|I < r if and only if there exists b in I such that |a − b| < r .
Then a = 0 in A/I if and only if a belongs to the closure of I . By Corollary 1, 1 = 0
in A/I if and only if 1 belongs to I .

We deduce the following method from the previous theorem. To prove that g in A is
invertible, it suffices to find u in A such that for all z in C, z − u is invertible with
bounded inverse in A/〈g〉.

4 Application 1: Wiener’s Theorem on Fourier series

We present Wiener’s theorem on Fourier series; see for instance [25]. The Banach
algebra B := l1(Z) is the completion of the algebra of sequences in CZ of finite support

2Classically, this theorem implies the Gelfand-Mazur Theorem: a Banach algebra A which
is also a field is isomorphic to C . Indeed, from Theorem 2, for each u in A , there exists λ
such that u− λ is not invertible and this implies u = λ .
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8 Thierry Coquand and Bas Spitters

with the convolution product (a ∗ b)n :=
∑

aibn−i and the norm |a| :=
∑
|an|. This

algebra has the Dirac function δ0 as unit. We write u for δ1 . Then u−1 = δ−1 and
for every a, a =

∑
anun . We see that B is simply an algebra of infinite series under

formal multiplication.

For λ in the unit circle Γ, we define a(λ) :=
∑

anλ
n . Then |a(λ)| 6 |a|.

Theorem 3 Let f in B be such that for all λ in Γ, |f (λ)| > ε. Then f is invertible.

Proof Let A := B/〈f 〉. We show that for all λ in C, λ− u is invertible and that the
inverse is uniformly bounded. We can then apply Theorem 2.

If |λ| < 1, then |λu−1| = |λ| 6 r , for some r < 1. Hence,∑
n≥1

(λ/u)n = (1− λu−1)−1 = u(u− λ)−1.

The inverse (u− λ)−1 is bounded by |u−1|(1− r)−1 = (1− r)−1 .

Similarly, if |λ| > 1, then |u/λ| = |1/λ| 6 r for some r < 1. Hence,∑
n>1

(u/λ)n = (1− (u/λ))−1 = u−1(λ− u)−1.

The inverse (λ− u)−1 is bounded by |u|(1− r)−1 = (1− r)−1 .

Now consider the case where λ is close to the circle. Let g be an element of finite
support such that |f − g| < ε/3. Then

|(g(λ)− g)− (f (λ)− f )| = |(g− f )(λ) + (f − g)| 6 2ε/3.

Since f (λ) − f = f (λ) (mod f ), we have that g(λ) − g is invertible (mod f ). By
Lemma 5, we have a uniform bound M on the inverse of g(λ)−g in Γ. Since g(λ)−g
is a polynomial in u, λ−u divides it, say, (λ−u)h = g(λ)−g. So, for all λ in Γ, λ−u
is invertible and the inverse is bounded by M|h|. Without loss of generality, we assume
that M|h| > 1. By Lemma 5, λ− u is invertible for all λ with ||λ| − 1| 6 1/(2M|h|)
and its inverse is bounded by |Mh|/(1− 1

2 ) = 2|Mh|.

Write α := 1/(2M|h|). Then either ||λ| − 1| 6 α or ||λ| − 1| > α/2. In the latter
case, either |λ| 6 1− α

2 or |λ| > 1 + α
2 . We conclude that λ− u is invertible for all

λ in C and its inverse is bounded by

sup{2M|h|, (1− α

2
)−1, (1− (1 +

α

2
)−1)−1}.

Being constructive, this reasoning can be seen as an algorithm that computes an inverse
of f in B.
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5 Application 2: Wiener’s Tauberian Theorem

Let C(R) be the space of continuous functions of compact support. Let L := L1(R)
be its L1 -completion. We define Tx : C(R) → C(R) by Tx(g)(y) := g(x + y). Then
|Tx(g)−Tx(h)| = |g−h|. By extension, we have a continuous function x 7→ Tx(g),R→
L . For all g in L and x in R, |Tx(g)| = |g|. For f in C(R) and g in L , we define

f ∗ g :=
∫

f (x)T−x(g)dx.

Then |f ∗ g| 6 |f |∞|g|1 , where | · |∞ denotes the sup-norm. Hence the product f ∗ g
can be defined by extension for f and g both in L . If both f , g are in C(R), so is f ∗ g.

Since

(f ∗ g)(y) = (g ∗ f )(y) =
∫

f (x)g(y− x)dx

for f , g in C(R), this holds also for f , g in L . So, the algebra L with convolution
product is a commutative Banach algebra. (It can be shown that it does not have a unit
element.)

Let g be a continuous function with compact support. We define

ĝ(p) :=
∫

g(x)e−ipxdx.

Let C0(R) denote the set of continuous functions that vanish at infinity. Then ĝ in
C0(R). This is proved first for g ∈ C1(R) by integration by parts, and then for general
g ∈ C(R) by a density argument. Moreover, |ĝ(p)| 6 |g| for all p. It follows that we
can extend the map ·̂ and define ĝ in C0(R) for g in L .

We choose h in L such that ĥ = 1 on [−M,M] and for each ε > 0 there exists η such
that |ĥ| 6 1− η on (−∞,−M − ε] ∪ [M + ε,−∞). For instance, we can use a de la
Vallée Poussin kernel [21].

Theorem 4 If |f̂ | > ε on [−M,M] and g ∗ h = g in L , then f divides g.

Proof Let I be the ideal {k ∗ h − k | k ∈ L}, and let B be the Banach algebra L/I .
Notice that B has h as unit element. We claim that f is invertible in B.

The map α : R→ B defined by α(x) := Tx(h) is continuous. It satisfies α(0) = h and

α(x + y) = Tx+yh [h=1]= Tx+yh ∗ h = Txh ∗ Tyh = α(x) ∗ α(y).
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By Lemma 3 there exists an element u in B such that Tx(h) = eux for all x in R. For
all g in B,

g = g ∗ h =
∫

g(x)T−xhdx =
∫

g(x)e−uxdx.

We show that u−λ is invertible (mod f ) and with bounded inverse. We can then apply
Theorem 2 and deduce that f is invertible in B.

We will consider three cases:

(1) λ = ip for |p| 6 M ;

(2) λ = ip for |p| > M + δ and δ > 0;

(3) λ = r + ip and |r| > δ and δ > 0.

By continuity and Lemma 5 these cases are sufficient.

(1) We claim that ip − u is invertible (mod f ) if |p| 6 M . Indeed, if we take N such
that ∣∣∣∣∫ N

−N
|f | −

∫
|f |
∣∣∣∣ 6 ε

2(1 + |h|)
,

then ∣∣∣∣∫ f (x)(e−ipx − e−ux)dx−
∫ N

−N
f (x)(e−ipx − e−ux)dx

∣∣∣∣ =∣∣∣∣∣
∫

R\[−N,N]
f (x)(e−ipx − e−ux)dx

∣∣∣∣∣ 6∫
R\[−N,N]

|f |(1 + |h|) 6
ε

2
.

Since ∫
f (x)(e−ipx − e−ux)dx = f̂ (p)− f ,

this integral is invertible (mod f ); by hypothesis its inverse is bounded by 1
ε . By

Lemma 5, ∫ N

−N
f (x)(e−ipx − e−ux)dx

is invertible (mod f ). Let g be its inverse. Then |g| 6 1
ε (1− 1

2 ) = 2
ε . Since

e−ipx − e−ux = e−ipx(1− e(ip−u)x),

this integral is divisible by ip− u. It remains to find an explicit bound for the inverse.
For all r , r|1− erx and |1−erx

r | 6 1 + e|r|x , as a simple power series argument shows.
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Consequently, the inverse of ip − u is bounded by 2
ε

∫ N
−N |f (x)|(1 + erx)dx , where

r > |ip− u|.

(2) We claim that ip−u is invertible with bounded inverse for all p such that |p| > M+δ .
Indeed, if we take η > 0 such that |ĥ(p)| 6 1− η and N such that∣∣∣∣∫ N

−N
|h| −

∫
|h|
∣∣∣∣ 6 η

2(1 + |h|)
,

then ∣∣∣∣∫ N

−N
h(x)(e−ipx − e−ux)dx−

∫
h(x)(e−ipx − e−ux)dx

∣∣∣∣ =∣∣∣∣∣
∫

R\[−N,N]
h(x)(e−ipx − e−ux)dx

∣∣∣∣∣ 6∫
R\[−N,N]

|h|(1 + |h|) 6
η

2
.

Moreover, ∣∣∣∣∫ h(x)(e−ipx − e−ux)dx
∣∣∣∣ = ĥ(p)− h.

The right hand side is invertible since h is the unit of B and |ĥ(p)| 6 1 − η . Hence∫ N
−N h(x)(e−ipx − e−ux)dx is invertible with inverse bounded by 2

η . As before, the

integral is divisible by ip − u and its inverse is bounded by 2
η

∫ N
−N |h(x)||1 + erx|dx ,

where r > |ip− u|.

We conclude that ip− u is invertible for all p in R and its inverse is bounded by

d :=
2
ε

∫
(|h(x)|+ |f (x)|)(1 + erx)dx,

where r > |ip− u|. By Lemma 5, r + ip− u is invertible for all p in R and all r such
that |r| < 1/2d . The inverse is bounded by 2d .

(3) For λ = r + ip, λ− u divides

(1) 1− e(λ−u)x = 1− eλxTx(h) = 1− e−rxe−ipxTx(h)

and |Tx(h)| is bounded by |h|. For x = log(2|h|)
r ,

|e−rxe−ipxTx(h)| 6 e−rx|h| = 1
2
.

So the right hand side of equation (1) is invertible with inverse bounded by 2e−rx =
2

2|h| = 1
|h| . Hence λ− u has an inverse with bound 1

|h| for |r| > ε.
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12 Thierry Coquand and Bas Spitters

We have finished the proof that for each λ, u−λ is invertible (mod f ) and of bounded
inverse. It follows that we have k such that f ∗ k = h (mod I ). For g in L such that
g ∗ h = g, we have g ∗ I = 0. Hence f ∗ k ∗ g = g, and so f divides g.

Proposition 1 [21, VI.1.13] Let g in L be such that ĝ has compact support. Then
there exists h in L such that g∗h = g. In fact, we can use a de la Vallée Poussin kernel
for h.

We deduce the following version of Wiener’s Tauberian Theorem.

Corollary 2 If f in L is such that f̂ never takes the value 0, then every function g
such that ĝ is of compact support is in the ideal generated by f . Consequently, this
ideal is dense in L .

Proof Any function in L is the limit of functions in L having their Fourier transform
of compact support. We now repeat some facts from Katznelson [21, VI.1.12] whose
proofs are elementary, but slightly too long to repeat here. Define the Fejér kernel Kλ
by Kλ(x) := λK(λx), where K(x) := 1

2π ( sin x/2
x/2 )2 . By the inversion formula,

f (x) =
1

2π

∫
f̂ (t)eitxdt.

Moreover, K̂λ(t) = max(1− |t|λ , 0) and one can derive that for |t| 6 λ,

K̂λ ∗ f (t) = (1− |t|
λ

)f̂ (t)

and equal to 0 otherwise.

Since f ∗ g =
∫

g(x)T−xf dx another way to state this Corollary is the following one.

Corollary 3 Let f be in L such f̂ never takes the value 0. Then the vector space
generated by the functions Txf is dense in L .

Constructively, the hypothesis that f̂ never takes the value 0 should be read as: f̂ is
bounded away from 0 on any compact set.

Journal of Logic & Analysis 2:11 (2010)
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6 Conclusions and Future work

To have a point-free description of the spectrum of a Banach algebra was the goal of the
work of de Bruijn and van der Meiden [14]. The complexity of this description and the
process of finding the proof of the compactness of the spectrum is cited by de Bruijn as
one inspiration for his AUTOMATH project [14, 13]. It would be interesting to have an
actual implementation of our work, following already existing work formalising basic
analysis [27].

The work of Krivine [23] contains several examples similar to Wiener’s results, but
in a ‘real’ framework. One considers respectively l1(N) instead of l1(Z) and L1(R+)
instead of L1(R). It would be interesting to give a constructive interpretation of these
results using the technique presented in [16, 17].

Constructive, and choice-free, results on Banach spaces can be interpreted as results on
Banach sheaves, or equivalently, Banach bundles [26]. Similarly, constructive results
on Banach algebras can be interpreted as results on Banach algebra bundles [22].
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