

Journal of Logic & Analysis 3:4 (2011) 1–15 ISSN 1759-9008

Uniform liftings of continuous mappings

ALEXANDER P PYSHCHEV

Abstract: We investigate the question of when a continuous mapping between subspaces of nonstandard hulls has a uniform lifting.

2000 Mathematics Subject Classification 03H05, 54J05 (primary); 54C20, 54D20, 54D65 (secondary)

Keywords: nonstandard analysis, nonstandard hull, uniform lifting

1 Introduction

Let \mathcal{H} and \mathcal{H}' be (some) nonstandard hulls of *metric spaces (M, d) and (M', d') respectively and \mathcal{M} a subspace of \mathcal{H} . Following Fajardo and Keisler [6, Definition 4.14], we say that a mapping $f : \mathcal{M} \to \mathcal{H}'$ is *uniformly liftable* if there exists an internal mapping $\phi : M \to M'$ such that for every equivalence class $\mu \in \mathcal{M}$ the image $\phi[\mu]$ is contained in $f(\mu)$; the mapping ϕ in this case is said to be a *uniform lifting* of f. It is easily checked that every uniformly liftable mapping is continuous. The converse is not true:

Example 1.1 Let d be a $\{0, 1\}$ -valued *metric on * \mathbb{N} and let

$$\mathcal{H} = \{\{x\} : x \in {}^*\mathbb{N}\}$$

be the nonstandard hull of $({}^*\mathbb{N}, d)$. (Here and in the following \mathbb{N} denotes the set of nonnegative integers.) It is clear that the mapping $f : \mathcal{H} \to \mathcal{H}$ defined by $f(\{x\}) = \{\chi_{\mathbb{N}}(x)\}$, where $\chi_{\mathbb{N}} : {}^*\mathbb{N} \to \{0, 1\}$ is the characteristic function of \mathbb{N} , is continuous but not uniformly liftable.

By [5, Proposition 4.12] and [6, Corollary 4.8, Theorem 4.18] every continuous mapping $f : \mathcal{M} \to \mathcal{H}'$ defined on a compact set \mathcal{M} is uniformly liftable. More generally, we have the following result: (We assume that our nonstandard universe $(V(\Xi), V(^*\Xi), *)$ is κ -saturated, where κ is an uncountable cardinal.)

Proposition 1.2 Let $f : \mathcal{M} \to \mathcal{H}'$ be a continuous mapping from a subspace \mathcal{M} of the nonstandard hull \mathcal{H} of a *metric space (M, d) around $c \in M$ into the nonstandard hull \mathcal{H}' of a *metric space (M', d') around $c' \in M'$. If \mathcal{M} has a dense subspace of cardinality $< \kappa$ and $|\mathcal{M}| < |V(\Xi)|$, then f is uniformly liftable.

Proof Assume first that *f* is an isometric embedding of \mathcal{M} into \mathcal{H}' . Let *D* be a dense subspace of \mathcal{M} of cardinality $< \kappa$. For every $\mu \in D$ choose $x_{\mu} \in \mu$ and $y_{\mu} \in f(\mu)$. For every $(\mu, n) \in D \times \mathbb{N}$ let $\Psi_{\mu,n}$ be an internal set consisting of all internal mappings $\psi : H \to M'$ with the following properties:

- (i) *H* is a hyperfinite subset of *M* containing x_{μ} ;
- (ii) $\psi(x_{\mu}) = y_{\mu};$
- (iii) $|d'(\psi(x), \psi(y)) d(x, y)| < 1/(n+1)$ for all $(x, y) \in H^2$.

If $F \subseteq D$ is finite, then the mapping $\xi_F : \{x_\mu : \mu \in F\} \to M', \xi_F(x_\mu) = y_\mu$, is in $\Psi_{\mu,n}$ for every $(\mu, n) \in F \times \mathbb{N}$. By κ -saturation there exists a mapping $\psi_0 : H_0 \to M'$ which belongs to the intersection of all $\Psi_{\mu,n}$. Since *D* is dense in \mathcal{M} , by ω_1 -saturation H_0 intersects with every $\mu \in \mathcal{M}$. Since H_0 is hyperfinite, by transfer there exists an internal mapping $r : M \to H_0$ such that

$$d(x, r(x)) = \min\{d(x, y) : y \in H_0\}$$

for every $x \in M$; it follows that $x \in \mu \in \mathcal{M}$ implies $r(x) \in \mu$. It is easily checked that $\phi = \psi_0 \circ r$ is a uniform lifting of some mapping $g : \mathcal{M} \to \mathcal{H}'$. Since g is uniformly liftable, it is continuous. Mappings f and g coincide on D, and since D is dense in \mathcal{M} , we have f = g. Thus ϕ is a uniform lifting of f.

Now we turn to the general case. Since $|\mathcal{M}| < |V(\Xi)|$, there exist isometries $h : \mathcal{M} \to X$ and $h' : f[\mathcal{M}] \to X'$, where metric spaces X and X' are in $V(\Xi)$. Let e and e' denote the canonical embeddings of X and X' into their nonstandard hulls. Let $\psi : \mathcal{M} \to {}^*X$ be a uniform lifting of an isometry $e \circ h : \mathcal{M} \to e[X]$. Since f is continuous, $f[\mathcal{M}]$ has a dense subspace of cardinality $< \kappa$. Therefore, there exists a uniform lifting $\tilde{\psi} : {}^*X' \to \mathcal{M}'$ of an isometry $(e' \circ h')^{-1} : e'[X'] \to f[\mathcal{M}]$. It is clear that

$$\phi = \tilde{\psi} \circ {}^*(h' \circ f \circ h^{-1}) \circ \psi$$

is a uniform lifting of f.

The condition $|\mathcal{M}| < |V(\Xi)|$ in Proposition 1.2 is redundant, see Theorem 1.8 below. See Henson and Moore [11] and Baratella and Ng [2] for some related results in the context of nonstandard hulls of *normed spaces.

Our goal is to extend Proposition 1.2 to a more general class of spaces that includes other types of nonstandard hulls, in particular, nonstandard hulls of topological vector spaces [10]. Following Gordon [7], we consider topological spaces obtained as subspaces of quotients of internal sets by $\Pi_1^0(\kappa)$ equivalence relations. (A set is said to be $\Pi_1^0(\kappa)$ (resp. Π_1^0) if it is the intersection of $< \kappa$ (resp. $\le \omega$) internal sets.) If *R* is a $\Pi_1^0(\kappa)$ equivalence relation on internal set *M*, then for every $\mathcal{M} \subseteq M/R$ and every $Z \subseteq M$ we put

$$O_{\mathcal{M}}(Z) = \{ \mu \in \mathcal{M} : \mu \subseteq Z \},\$$
$$\mathrm{st}_{\mathcal{M}}(Z) = \{ \mu \in \mathcal{M} : \mu \cap Z \neq \emptyset \}$$

An easy argument shows that

$$\{O_{M/R}(T): T \subseteq M \text{ is internal}\}$$

is the base of some Hausdorff topology on M/R. (Note that all equivalence classes $\mu \in M/R$ are $\Pi_1^0(\kappa)$ and apply κ -saturation.) We call this topology the *canonical* topology on M/R. It follows from Proposition 2.4 below that this topology is generated by some family of pseudometrics and hence is Tychonoff.

Example 1.3 Let $(\mathcal{H}, d_c^{\circ})$ be the nonstandard hull of *metric space (M, d) around $c \in M$. Then

$$R = d^{-1}(\mu_{\mathbb{R}}(0)) = \bigcap_{n \in \mathbb{N}} \{ (x, y) \in M^2 : d(x, y) < 1/(n+1) \}$$

is a Π_1^0 equivalence relation on M and $\mathcal{H} \subseteq M/R$. We claim that the topology generated by d_c° coincides with that induced by the canonical topology on M/R. Fix $\mu \in \mathcal{H}$ and $x \in \mu$; put

$$b(x,n) = \{ y \in M : d(x,y) < 1/(n+1) \},\$$

$$B(\mu,n) = \{ \nu \in \mathcal{H} : d_c^{\circ}(\mu,\nu) < 1/(n+1) \}.$$

If $T \subseteq M$ is internal and $\mu \subseteq T$, then by ω_1 -saturation there exists $n \in \mathbb{N}$ so that $\mu \subseteq b(x,n) \subseteq T$, and it follows that $\mu \in B(\mu,n) \subseteq O_{M/R}(T) \cap \mathcal{H}$. On the other hand, $\mu \in O_{M/R}(b(x,n+1)) \subseteq B(\mu,n)$ for every $n \in \mathbb{N}$, and the proof of our claim is complete.

Example 1.4 Let (K, τ) be a compact Hausdorff space, $K \in V(\Xi)$. Assume that there exists a base \mathcal{B} of topology τ of cardinality $< \kappa$. It is well-known that *K is the disjoint union of monads $\mu_K(x)$, $x \in K$; let $R = \bigcup_{x \in K} \mu_K(x)^2$ be the corresponding

equivalence relation. Let P denote the family of all pairs $(U, V) \in \mathcal{B}^2$ such that cl $U \subseteq V$, where cl U is the closure of U in K. We have

$$R = \bigcap_{(U,V)\in P} {}^*V^2 \cup {}^*(K \setminus \operatorname{cl} U)^2,$$

therefore, *R* is $\Pi_1^0(\kappa)$. It is easily checked that the mapping *e* defined by $e(x) = \mu_K(x)$ is a homeomorphism of *K* onto ${}^*K/R$ endowed with the canonical topology.

Example 1.5 Let (X, τ) be a Tychonoff space, $X \in V(\Xi)$. Assume that there exists a base \mathcal{B} of topology τ of cardinality $< \kappa$. By [4, Theorem 3.5.2] there exists a compact Hausdorff space (K, τ') containing (X, τ) as a subspace and such that there exists a base of topology τ' of cardinality $< \kappa$. By [4, Theorem 3.5.3] we may also assume that $K \in V(\Xi)$. By the previous example $R_K = \bigcup_{x \in K} \mu_K(x)^2$ is $\Pi_1^0(\kappa)$, therefore, the equivalence relation $R = R_K \cap {}^*X^2$ on *X is also $\Pi_1^0(\kappa)$. For every $x \in X$ we have $\mu_X(x) = {}^*X \cap \mu_K(x)$, hence $\mu_X(x) \in {}^*X/R$. As in the case of compact spaces, the mapping $e : X \to {}^*X/R$, $e(x) = \mu_X(x)$, is a homeomorphism of X onto $\{\mu_X(x) : x \in X\}$.

Example 1.6 Let $E \in V(\Xi)$ be a vector space (over $\mathbb{F} = \mathbb{R}$ or \mathbb{C}) and τ a Hausdorff topology on E such that (E, τ) is a topological vector space. Assume that the filter of neighborhoods of $0 \in E$ has a base \mathcal{B}_0 of cardinality $< \kappa$. Then

$$R = \{(x, y) \in {}^{*}E^{2} : x - y \in \mu_{E}(0)\} = \bigcap_{U \in \mathcal{B}_{0}} \{(x, y) \in {}^{*}E^{2} : x - y \in {}^{*}U\}$$

is a $\Pi_1^0(\kappa)$ equivalence relation on **E*. The nonstandard hull of (E, τ) is a topological vector space $(\hat{E}, \hat{\tau})$ defined by

$$\hat{E} = \{ \mu \in {}^*E/R : \mu \subseteq \operatorname{fin}({}^*E) \},\$$

where

$$\operatorname{fin}(^{*}E) = \{ x \in ^{*}E : \epsilon x \in \mu_{E}(0) \text{ for every } \epsilon \in \mu_{\mathbb{F}}(0) \};$$

the filter of neighborhoods of $\mu_E(0)$ in \hat{E} is generated by the sets $\mathrm{st}_{\hat{E}}(^*U)$, $U \in \mathcal{B}_0$, see Henson [10]. It is easily checked that the nonstandard hull topology $\hat{\tau}$ coincides with that induced by the canonical topology on $^*E/R$. (Apply Lemma 2.5 below.)

For further examples see Luxemburg [12], Henson [9], Gordon [7, 8], Mlček and Zlatoš [13], and Ziman and Zlatoš [14].

Let *R* (resp. *R'*) be a $\Pi_1^0(\kappa)$ equivalence relation on an internal set *M* (resp. *M'*) and *f* a mapping from $\mathcal{M} \subseteq M/R$ into M'/R'. We say that a mapping $\phi : Z \to M'$ is

a weak uniform lifting of f if ϕ is an internal mapping with $Z = \text{dom } \phi \subseteq M$ such that $\mu \cap Z \neq \emptyset$ and $\phi[\mu \cap Z] \subseteq f(\mu)$ for every $\mu \in \mathcal{M}$. A mapping ϕ is said to be a *uniform lifting* of f if ϕ is a weak uniform lifting of f with $\text{dom } \phi = M$. We say that f is (weakly) uniformly liftable if there exists a (weak) uniform lifting of f. Every weakly uniformly liftable mapping is continuous, see Proposition 4.2 below.

Gordon [7, Theorem 1.2] proved that if R is a $\Pi_1^0(\kappa)$ equivalence relation on an internal set M such that M/R is compact, then every continuous mapping $f: M/R \to \operatorname{fin}({}^*\mathbb{C})/\approx$ is uniformly liftable.

We say that a topological space is κ -separable if it has a dense subspace of cardinality $< \kappa$.

The following are our main results:

Theorem 1.7 Let R (resp. R') be a $\Pi_1^0(\kappa)$ equivalence relation on internal set M (resp. M') and \mathcal{M} a κ -separable subspace of M/R. Then every continuous mapping $f : \mathcal{M} \to M'/R'$ is weakly uniformly liftable. Moreover, a weak uniform lifting $\phi : H \to M'$ of f can be chosen so that $H = \text{dom } \phi$ is a hyperfinite subset of M.

Theorem 1.8 Let R (resp. R') be a $\Pi^0_1(\kappa)$ equivalence relation on internal set M (resp. M') and \mathcal{M} a subspace of M/R. Assume that at least one of the following conditions is satisfied:

- (1) \mathcal{M} is κ -separable and R is Π_1^0 ;
- (2) \mathcal{M} is Lindelöf and R' is Π_1^0 ;
- (3) \mathcal{M} is compact and $\mathcal{M} = M/R$;
- (4) \mathcal{M} is separable and metrizable.

Then every continuous mapping $f : \mathcal{M} \to \mathcal{M}'/\mathcal{R}'$ is uniformly liftable.

Also we show that each of the following conditions (in the context of Theorem 1.8) is not sufficient for the existence of uniform liftings:

- (i) \mathcal{M} is separable and $f : \mathcal{M} \to *[0, 1]/\approx$ is continuous;
- (ii) \mathcal{M} is separable and compact and $f : \mathcal{M} \to \mathcal{M}'$ is a homeomorphism;

see Example 4.6 below.

2 Generating families of *pseudometrics

Let X be an arbitrary set and let U and V be the subsets of X^2 . Recall the following definitions: $U^{-1} = \{(x,y) \in V^2, (x,y) \in U\}$

$$U^{-1} = \{(x, y) \in X^2 : (y, x) \in U\},\$$
$$U[x] = \{y \in X : (x, y) \in U\},\$$
$$V \circ U = \{(x, z) \in X^2 : \text{ there exists } y \in X \text{ so that } (x, y) \in U \text{ and } (y, z) \in V\},\$$
$$U^{(1)} = U, \quad U^{(n+1)} = U^{(n)} \circ U, \quad n \ge 1.$$

By Δ_X we denote the diagonal of *X*.

Lemma 2.1 Let X be a set and $V_0 = X^2, V_1, V_2, ...$ a sequence of sets such that $\Delta_X \subseteq V_n = V_n^{-1} \subseteq X^2$ and $V_{n+1}^{(3)} \subseteq V_n$ for all $n \ge 1$. Then there exists a pseudometric d on X such that $d^{-1}([0, 1/2^n]) \subseteq V_n \subseteq d^{-1}([0, 1/2^n])$ for all $n \ge 1$.

Proof This is an easy corollary of [4, Theorem 8.1.10].

Let *R* be an equivalence relation on internal set *M* and $\{d_{\alpha} : \alpha \in A\}$ a family of *pseudometrics on *M*. We say that *R* is *generated* by $\{d_{\alpha} : \alpha \in A\}$ and that $\{d_{\alpha} : \alpha \in A\}$ is a *generating family* for *R* if

$$R = \{(x, y) \in M^2 : d_{\alpha}(x, y) \approx 0 \text{ for every } \alpha \in A\}.$$

Proposition 2.2 Every $\Pi_1^0(\kappa)$ equivalence relation *R* on internal set *M* has a generating family $\{d_\alpha : \alpha \in A\}$ of *pseudometrics on *M* such that $|A| < \kappa$.

Proof Let \mathcal{U} be an internal set consisting of all internal sets U such that $\Delta_M \subseteq U = U^{-1} \subseteq M^2$. Let $\{U_\alpha : \alpha \in A\} \subseteq \mathcal{U}$ be such that $|A| < \kappa$ and $R = \bigcap_{\alpha \in A} U_\alpha$. We may assume that $\{U_\alpha : \alpha \in A\}$ is closed under finite intersections. Clearly, $R \subseteq \bigcap_{\alpha \in A} U_\alpha^{(2)}$. On the other hand, if $(x, y) \in U_\alpha^{(2)}$ for all $\alpha \in A$, then by κ -saturation

$$R[x] \cap R[y] = \bigcap_{(\alpha,\beta) \in A^2} U_{\alpha}[x] \cap U_{\beta}[y] \neq \emptyset,$$

hence $(x, y) \in R$. It follows that $R = \bigcap_{\alpha \in A} U_{\alpha}^{(2)}$. By κ -saturation for every $\alpha \in A$ there exists $\beta \in A$ such that $U_{\beta}^{(2)} \subseteq U_{\alpha}$. Hence for every $\alpha \in A$ there exists $\gamma \in A$ such that $U_{\gamma}^{(3)} \subseteq U_{\gamma}^{(4)} \subseteq U_{\alpha}$. Let $f : A \to A$ be such that $U_{f(\alpha)}^{(3)} \subseteq U_{\alpha}$ for every $\alpha \in A$.

Journal of Logic & Analysis 3:4 (2011)

Fix $\alpha \in A$. By ω_1 -saturation there exists an internal sequence $(V_{\nu})_{0 \leq \nu \leq H}$ consisting of elements of \mathcal{U} such that $H \in {}^*\mathbb{N} \setminus \mathbb{N}$, $V_0 = M^2$, $V_1 = U_{\alpha}$, $V_{n+1} = U_{f^{(n)}(\alpha)}$ for every $n \in \mathbb{N} \setminus \{0\}$, and $V_{\nu+1}^{(3)} \subseteq V_{\nu}$ for every $\nu < H$. Put $V_{\nu} = \Delta_M$ for all $\nu > H$. By transfer of Lemma 2.1 there exists a *pseudometric d_{α} on M such that

$$d_{\alpha}^{-1}([0, 1/2^{\nu})_{*\mathbb{R}}) \subseteq V_{\nu} \subseteq d_{\alpha}^{-1}([0, 1/2^{\nu}]_{*\mathbb{R}}), \quad \nu \ge 1.$$

We have $R \subseteq d_{\alpha}^{-1}(\mu_{\mathbb{R}}(0)) \subseteq U_{\alpha}$. It is clear that R is generated by the family $\{d_{\alpha} : \alpha \in A\}$.

Proposition 2.3 Every Π_1^0 equivalence relation on internal set *M* is generated by some *metric *d* on *M*.

Proof Applying Proposition 2.2 with $\kappa = \omega_1$, we obtain a generating family $\{d_n : n \in \mathbb{N}\}\$ for *R*. We may assume that all *pseudometrics d_n take values in *[0, 1] (e.g., we may consider a *pseudometric $\bar{d}_n(x, y) = \min\{d_n(x, y), 1\}\$ instead of d_n). Let $(d_{\nu})_{0 \leq \nu \leq H}$ be an internal extension of $(d_n)_{n \in \mathbb{N}}$ which also consists of *pseudometrics on *M* with values in *[0, 1]. We may assume that d_H is a $\{0, 1\}$ -valued *metric on *M*. Put

$$d(x, y) = \sum_{\nu=0}^{H} d_{\nu}(x, y) / 2^{\nu+1}.$$

Clearly, $d^{-1}(\mu_{\mathbb{R}}(0)) \subseteq R$. On the other hand, if $(x, y) \in R$, then by ω_1 -saturation there exists $K \in {}^*\mathbb{N} \setminus \mathbb{N}$, K < H, so that $\sum_{\nu=0}^{K} d_{\nu}(x, y)/2^{\nu+1} \approx 0$; since then

$$\sum_{\nu=K+1}^{H} d_{\nu}(x, y)/2^{\nu+1} \le 1/2^{K+1} \approx 0,$$

we obtain $d(x, y) \approx 0$.

Assume that an equivalence relation *R* on internal set *M* is generated by the family $\{d_{\alpha} : \alpha \in A\}$ of *pseudometrics. For every $\alpha \in A$ define $d_{\alpha}^{\circ} : (M/R)^2 \to [0, \infty]$ by

$$d^{\circ}_{lpha}(\mu,
u)={}^{\circ}(d_{lpha}(x,y)), \quad x\in\mu,\,y\in
u;$$

it is easily checked that d_{α}° is a $[0, \infty]$ -valued pseudometric on M/R.

Proposition 2.4 Let *R* be a $\Pi_1^0(\kappa)$ equivalence relation on internal set *M* and $\{d_\alpha : \alpha \in A\}$ a generating family of *pseudometrics for *R* with $|A| < \kappa$. Then the topology on *M*/*R* generated by pseudometrics d_α° , $\alpha \in A$, coincides with the canonical topology.

Proof Fix $x \in \mu \in M/R$ and put

$$b(x, n, \alpha) = \{ y \in M : d_{\alpha}(x, y) < 1/(n+1) \},\$$

$$B(\mu, n, \alpha) = \{ \nu \in M/R : d_{\alpha}^{\circ}(\mu, \nu) < 1/(n+1) \}.$$

If $\mu \subseteq T$, where T is an internal subset of M, then since

$$\mu = \bigcap_{(n,\alpha) \in \mathbb{N} \times A} b(x, n, \alpha) \subseteq T$$

by κ -saturation there exists a finite set $F \subseteq \mathbb{N} \times A$ with $\bigcap_{(n,\alpha)\in F} b(x, n, \alpha) \subseteq T$. It follows that

$$\mu \in \bigcap_{(n,\alpha)\in F} B(\mu, n, \alpha) \subseteq O_{M/R}(T).$$

On the other hand, for any finite $F \subseteq \mathbb{N} \times A$ we have

$$\mu \in O_{M/R}\Big(\bigcap_{(n,\alpha)\in F} b(x,n+1,\alpha)\Big) \subseteq \bigcap_{(n,\alpha)\in F} B(\mu,n,\alpha).$$

The result follows.

Lemma 2.5 Let *R* be a $\Pi_1^0(\kappa)$ equivalence relation on internal set *M* and *U* an open in *M*/*R* set containing $\mu \in M/R$. Then there exists an internal set *T* such that $\mu \subseteq T \subseteq M$ and $\operatorname{st}_{M/R}(T) \subseteq U$.

Proof Easy (see the proof of Proposition 2.4).

Lemma 2.6 Let *R* (resp. *R'*) be a $\Pi_1^0(\kappa)$ equivalence relation on internal set *M* (resp. *M'*). Then

$$R \otimes R' = \{((x, x'), (y, y')) \in (M \times M')^2 : (x, y) \in R \text{ and } (x', y') \in R'\}$$

is a $\Pi_1^0(\kappa)$ equivalence relation on $M \times M'$ and the mapping $h : (\mu, \mu') \mapsto \mu \times \mu'$ is a homeomorphism of $(M/R) \times (M'/R')$ onto $(M \times M')/(R \otimes R')$.

Proof Let $\{d_{\alpha} : \alpha \in A\}$ and $\{d'_{\beta} : \beta \in B\}$ be generating families of *pseudometrics for *R* and *R'* respectively with $|A| < \kappa$ and $|B| < \kappa$. Put

$$\rho_{\alpha}((x,x'),(y,y')) = d_{\alpha}(x,y), \quad \alpha \in A,$$

$$\rho_{\beta}'((x,x'),(y,y')) = d_{\beta}'(x',y'), \quad \beta \in B.$$

Journal of Logic & Analysis 3:4 (2011)

Since $R \otimes R'$ is generated by $\{\rho_{\alpha} : \alpha \in A\} \cup \{\rho'_{\beta} : \beta \in B\}$, it is $\Pi^0_1(\kappa)$. Using Proposition 2.4 and noting that

$$\begin{split} \rho_{\alpha}^{\circ}(\mu \times \mu', \nu \times \nu') &= d_{\alpha}^{\circ}(\mu, \nu), \quad \alpha \in A, \\ \rho_{\beta}^{\prime \circ}(\mu \times \mu', \nu \times \nu') &= d_{\beta}^{\prime \circ}(\mu', \nu'), \quad \beta \in B, \end{split}$$

it is easy to check that *h* is a homeomorphism.

The following important lemma will be used without mentioning:

Lemma 2.7 Let $\mathcal{M} \subseteq (M/R) \cap (M/\tilde{R})$, where R and \tilde{R} are $\Pi_1^0(\kappa)$ equivalence relations on internal set M. Then the canonical topologies on M/R and M/\tilde{R} induce the same topology on \mathcal{M} .

Proof Note that $\mathcal{M} \cap O_{M/R}(T) = O_{\mathcal{M}}(T) = \mathcal{M} \cap O_{M/\tilde{R}}(T)$ for every internal $T \subseteq M$.

3 κ -Separable subspaces and weak uniform liftings

Lemma 3.1 Let *R* be a $\Pi_1^0(\kappa)$ equivalence relation on internal set *M* and *M* a subspace of *M*/*R*. If *M* is Lindelöf, then it is κ -separable. If *M* is compact, then $\bigcup \mathcal{M} = \bigcup_{\mu \in \mathcal{M}} \mu$ is a $\Pi_1^0(\kappa)$ set and there exists a hyperfinite set $H \subseteq M$ such that $\mathcal{M} = \operatorname{st}_{M/R}(H)$.

Proof Assume that \mathcal{M} is Lindelöf (resp. compact). Let $\{U_{\alpha} : \alpha \in A\}$ be a family of internal subsets of M^2 such that $|A| < \kappa$ and $R = \bigcap_{\alpha \in A} U_{\alpha}$. We may assume that $U_{\alpha}^{-1} = U_{\alpha}$ for every $\alpha \in A$ and that $\{U_{\alpha} : \alpha \in A\}$ is closed under finite intersections. Choose $x_{\mu} \in \mu$ for every $\mu \in \mathcal{M}$. For every $\alpha \in A$ the sets $O_{\mathcal{M}}(U_{\alpha}[x_{\mu}]), \mu \in \mathcal{M}$, are open in \mathcal{M} and cover \mathcal{M} , therefore, there exists a countable (resp. finite) set $C_{\alpha} \subseteq \mathcal{M}$ with $\mathcal{M} = \bigcup_{\mu \in C_{\alpha}} O_{\mathcal{M}}(U_{\alpha}[x_{\mu}])$.

Put $D = \bigcup_{\alpha \in A} C_{\alpha}$; note that D has cardinality $< \kappa$. We claim that D is dense in \mathcal{M} . Fix $\mu \in \mathcal{M}$ and an open in \mathcal{M} neighborhood U of μ . By Lemma 2.5 there exists an internal set $T \subseteq M$ such that $\mu \subseteq T$ and $\operatorname{st}_{\mathcal{M}}(T) \subseteq U$. By κ -saturation there exists $\alpha \in A$ such that $U_{\alpha}[x_{\mu}] \subseteq T$. There exists $\nu \in C_{\alpha}$ with $\mu \in O_{\mathcal{M}}(U_{\alpha}[x_{\nu}])$. It follows that $x_{\nu} \in U_{\alpha}[x_{\mu}]$ and hence $\nu \in U$. Thus \mathcal{M} is κ -separable.

Now we assume that \mathcal{M} is compact. For every $\alpha \in A$ put $W_{\alpha} = \bigcup_{\mu \in \mathcal{C}_{\alpha}} U_{\alpha}[x_{\mu}]$. Clearly, $\bigcup \mathcal{M} \subseteq W_{\alpha}$. Since \mathcal{C}_{α} is finite, W_{α} is internal. We claim that $\bigcup \mathcal{M} =$

 $\bigcap_{\alpha \in A} W_{\alpha}$. Let $y \in \nu \in (M/R) \setminus \mathcal{M}$. Since \mathcal{M} is closed in M/R, by Lemma 2.5 and κ -saturation there exists $\alpha \in A$ so that $U_{\alpha}[y] \cap \bigcup \mathcal{M} = \emptyset$, hence $y \notin W_{\alpha}$. Thus $\bigcup \mathcal{M}$ is $\Pi_{1}^{0}(\kappa)$.

Since $\{x_{\mu} : \mu \in D\} \subseteq \bigcup \mathcal{M}, |D| < \kappa$, and $\bigcup \mathcal{M}$ is $\Pi^{0}_{1}(\kappa)$, by κ -saturation there exists a hyperfinite set H with $\{x_{\mu} : \mu \in D\} \subseteq H \subseteq \bigcup \mathcal{M}$. Then $\operatorname{st}_{M/R}(H)$ is a closed subset of M/R such that $D \subseteq \operatorname{st}_{M/R}(H) \subseteq \mathcal{M}$; since D is dense in \mathcal{M} , $\operatorname{st}_{M/R}(H) = \mathcal{M}$.

If T and S are internal sets, then by S_{int}^T we denote the internal set consisting of all internal mappings $\phi: T \to S$.

Lemma 3.2 Let *T* be an internal set and *A* a nonempty subset of *T* of cardinality $< \kappa$. Then the space $*[0, 1]_{int}^T/R$, where *R* is generated by *pseudometrics $d_\alpha(x, y) = |x(\alpha) - y(\alpha)|, \alpha \in A$, is compact.

Proof We claim that $[0, 1]_{int}^T/R$ is homeomorphic to $[0, 1]^A$. Clearly, the mapping

$$w: {}^{*}[0,1]_{int}^{I} \to [0,1]^{A}, \quad (w(x))(\alpha) = {}^{\circ}(x(\alpha)),$$

induces an injection $h : {}^{*}[0,1]_{int}^{T}/R \to [0,1]^{A}$. By κ -saturation h is onto. The usual topology on $[0,1]^{A}$ is generated by pseudometrics $\rho_{\alpha}(f,g) = |f(\alpha) - g(\alpha)|$, $\alpha \in A$, and since $d_{\alpha}^{\circ}(\mu,\nu) = \rho_{\alpha}(h(\mu),h(\nu))$, by Proposition 2.4 mapping h is a homeomorphism.

Theorem 3.3 Let \mathcal{M} be a κ -separable subspace of M/R, where R is a $\Pi_1^0(\kappa)$ equivalence relation on internal set M. Then there exists a $\Pi_1^0(\kappa)$ equivalence relation \tilde{R} on M such that M/\tilde{R} is compact and $\mathcal{M} \subseteq M/\tilde{R}$.

Proof Let $\{d_{\alpha} : \alpha \in A\}$ be a generating family of *pseudometrics for *R* such that $|A| < \kappa$ (see Proposition 2.2). We may assume that all d_{α} take values in *[0,1]. Let *D* be a dense subspace of \mathcal{M} of cardinality $< \kappa$. Choose $x_{\mu} \in \mu$ for every $\mu \in D$ and put $f_{\alpha,\mu}(x) = d_{\alpha}(x, x_{\mu})$. Let \tilde{R} be a $\Pi_{1}^{0}(\kappa)$ equivalence relation on *M* generated by *pseudometrics

$$\sigma_{\alpha,\mu}(x,y) = |f_{\alpha,\mu}(x) - f_{\alpha,\mu}(y)|, \quad (\alpha,\mu) \in A \times D.$$

Put $\mathcal{F} = {}^*[0,1]_{\text{int}}^M$. Let R' be a $\Pi_1^0(\kappa)$ equivalence relation on ${}^*[0,1]_{\text{int}}^{\mathcal{F}}$ generated by *pseudometrics

$$\rho_{\alpha,\mu}(\phi,\chi) = |\phi(f_{\alpha,\mu}) - \chi(f_{\alpha,\mu})|, \quad (\alpha,\mu) \in A \times D.$$

Journal of Logic & Analysis 3:4 (2011)

By Lemma 3.2 $\mathcal{K} = *[0, 1]_{int}^{\mathcal{F}}/R'$ is compact.

Let $\theta : M \to {}^*[0,1]_{int}^{\mathcal{F}}$ be an internal mapping defined by $(\theta(x))(f) = f(x)$. Then $\mathcal{K}_0 = \operatorname{st}_{\mathcal{K}}(\theta[M])$ is a closed subspace of \mathcal{K} and therefore is compact. Note that $\sigma_{\alpha,\mu}(x,y) = \rho_{\alpha,\mu}(\theta(x),\theta(y))$ for every $(\alpha,\mu) \in A \times D$. Using Proposition 2.4, it is easy to check that θ induces a homeomorphism of M/\tilde{R} onto \mathcal{K}_0 . It follows that M/\tilde{R} is compact.

In order to prove that $\mathcal{M} \subseteq M/\tilde{R}$, note that $(x, y) \in R$ implies $d_{\alpha}(x, x_{\mu}) \approx d_{\alpha}(y, x_{\mu})$ and hence $\sigma_{\alpha,\mu}(x, y) \approx 0$ for every $(\alpha, \mu) \in A \times D$. On the other hand, if $x \in \mu \in \mathcal{M}$ and $y \in M \setminus \mu$, then $d_{\alpha}(x, y) > \epsilon$ for some $\alpha \in A$ and $\epsilon \in \mathbb{R}$, $\epsilon > 0$; since D is dense in \mathcal{M} , there exists $\mu \in D$ such that $d_{\alpha}(x, x_{\mu}) < \epsilon/3$; then $d_{\alpha}(x_{\mu}, y) > \epsilon/2$; therefore, as $\sigma_{\alpha,\mu}(x, y) \not\approx 0$, we have $(x, y) \notin \tilde{R}$.

Corollary 3.4 Let \mathcal{M} be a separable subspace of some nonstandard hull \mathcal{H} of a *metric space (M, d). Then there exists a *metric $\tilde{d} : M^2 \to *[0, 1]$ on M such that the nonstandard hull $\tilde{\mathcal{H}}$ of (M, \tilde{d}) is compact and $\mathcal{M} \subseteq \tilde{\mathcal{H}}$.

Proof Put $\kappa = \omega_1$ in Theorem 3.3 and apply Propositions 2.3 and 2.4.

Corollary 3.5 Let *R* be a $\Pi_1^0(\kappa)$ equivalence relation on internal set *M* and *M* a κ -separable subspace of M/R. Then for every closed in \mathcal{M} set $\mathcal{A} \subseteq \mathcal{M}$ there exists a hyperfinite set $H \subseteq M$ such that $\operatorname{st}_{\mathcal{M}}(H) = \mathcal{A}$.

Proof This follows easily from Theorem 3.3 and Lemma 3.1. \Box

Proof of Theorem 1.7 Since \mathcal{M} is κ -separable and f is continuous, $f[\mathcal{M}]$ is also κ -separable. By Theorem 3.3 there exist $\Pi_1^0(\kappa)$ equivalence relations \tilde{R} and \tilde{R}' on M and M' respectively such that $\mathcal{M} \subseteq M/\tilde{R}$, $f[\mathcal{M}] \subseteq M'/\tilde{R}'$, and such that the spaces M/\tilde{R} and M'/\tilde{R}' are compact. Let F be the closure of f in $(M/\tilde{R}) \times (M'/\tilde{R}')$; since f is continuous, we have $F \cap (\mathcal{M} \times (M'/\tilde{R}')) = f$. Since F is compact, by Lemmas 2.6 and 3.1 there exists a hyperfinite set $\tilde{H} \subseteq M \times M'$ such that

$$\tilde{H} \subseteq \bigcup_{(\mu,\mu')\in F} \mu \times \mu'$$

and $\tilde{H} \cap (\mu \times \mu') \neq \emptyset$ for every $(\mu, \mu') \in F$. Let $H = \operatorname{dom} \tilde{H}$. By transfer there exists an internal mapping $\phi : H \to M'$ such that $(x, \phi(x)) \in \tilde{H}$ for every $x \in H$; it is clear that ϕ is a weak uniform lifting of f.

4 Uniform liftings

Proposition 4.1 Let *R* (resp. *R'*) be a $\Pi_1^0(\kappa)$ equivalence relation on internal set *M* (resp. *M'*), \mathcal{M} a subspace of M/R, and $f : \mathcal{M} \to M'/R'$ a mapping. Consider the following statements:

- (1) *f* is uniformly liftable;
- (2) there exists an extension $\tilde{f}: M/R \to M'/R'$ of f which is continuous at every $\mu \in \mathcal{M}$.

We have (1) \Rightarrow (2) and if M/R and M'/R' are compact, then (1) and (2) are equivalent.

Proof Assume (1). Let $\phi : M \to M'$ be a uniform lifting of f. Put

 $\Phi = \{(\mu, \mu') \in (M/R) \times (M'/R') : \phi \cap (\mu \times \mu') \neq \emptyset\};$

note that dom $\Phi = M/R$ and $\Phi \cap (\mathcal{M} \times (M'/R')) = f$. Let $\tilde{f} : M/R \to M'/R'$ be an arbitrary mapping such that $\tilde{f} \subseteq \Phi$. Clearly, \tilde{f} is an extension of f. We claim that \tilde{f} is continuous at every $\mu \in \mathcal{M}$. Let U' be an open neighborhood of $f(\mu)$. By Lemma 2.5 there exists an internal set $T' \subseteq M'$ such that $f(\mu) \subseteq T'$ and $\operatorname{st}_{M'/R'}(T') \subseteq U'$. Put $T = \phi^{-1}[T']$. Then $U = O_{M/R}(T)$ is an open neighborhood of μ . Fix $\nu \in U$. There exists $x \in \nu$ such that $\phi(x) \in \tilde{f}(\nu)$. We have $x \in T$, therefore, $\phi(x) \in T'$ and $\tilde{f}(\nu) \in U'$.

Assume (2) and that M/R and M'/R' are compact. Let F be the closure of \tilde{f} in $(M/R) \times (M'/R')$. Since \tilde{f} is continuous at every $\mu \in \mathcal{M}$, we have $F \cap (\mathcal{M} \times (M'/R')) = f$. By Lemmas 2.6 and 3.1 the set

$$\Pi = \bigcup_{(\mu,\mu')\in F} \mu \times \mu'$$

is $\Pi_1^0(\kappa)$. Since dom $\Pi = M$, by κ -saturation there exists an internal mapping $\phi: M \to M'$ such that $\phi \subseteq \Pi$. It is easily checked that ϕ is a uniform lifting of f. \Box

Proposition 4.2 Let *R* (resp. *R'*) be a $\Pi_1^0(\kappa)$ equivalence relation on internal set *M* (resp. *M'*) and \mathcal{M} a subspace of *M*/*R*. Then every weakly uniformly liftable mapping $f : \mathcal{M} \to \mathcal{M}'/\mathcal{R}'$ is continuous.

Proof Let $\phi : Z \to M'$ be a weak uniform lifting of f. Note that $\mathcal{M} \subseteq \operatorname{st}_{M/R}(Z)$. By Propositions 2.2 and 2.4 the canonical bijection

$$h: \mathbb{Z}/(\mathbb{R} \cap \mathbb{Z}^2) \to \operatorname{st}_{M/\mathbb{R}}(\mathbb{Z})$$

is a homeomorphism. Since ϕ is a uniform lifting of $f \circ h : h^{-1}[\mathcal{M}] \to \mathcal{M}'/\mathcal{R}'$, by Proposition 4.1 $f \circ h$ is continuous. Hence f is also continuous.

Lemma 4.3 Let X be a dense subspace of a Hausdorff space \tilde{X} , Y a subspace of a compact Hausdorff space \tilde{Y} , and $f : X \to Y$ a continuous mapping. Then there exists an extension $\tilde{f} : \tilde{X} \to \tilde{Y}$ of f which is continuous at every point of X.

Proof (It is convenient to use nonstandard analysis at every step.) Let F be the closure of f in $\tilde{X} \times \tilde{Y}$. Since X is dense in \tilde{X} and \tilde{Y} is compact, dom $F = \tilde{X}$. Since f is continuous, $F \cap (X \times \tilde{Y}) = f$. Let $\tilde{f} : \tilde{X} \to \tilde{Y}$ be any mapping such that $\tilde{f} \subseteq F$; then \tilde{f} is continuous at every point of X.

Lemma 4.4 Let X be a nonempty closed subspace of metrizable space \tilde{X} . Then there exists a mapping $r : \tilde{X} \to X$ such that r(x) = x for every $x \in X$ and which is continuous at every point of X.

Proof Let *d* be any compatible metric on \tilde{X} . For every $y \in \tilde{X}$ choose $r(y) \in X$ so that $d(y, r(y)) \leq 2d(y, X)$.

Lemma 4.5 Let X be a Lindelöf subspace of a Tychonoff space \tilde{X} and Y a subspace of a compact Hausdorff space \tilde{Y} . Assume that at least one of the spaces X and Y is separable and metizable. Then for every continuous mapping $f : X \to Y$ there exists an extension $\tilde{f} : \tilde{X} \to \tilde{Y}$ which is continuous at every point of X.

Proof In both cases there exist continuous mappings $g: X \to Z$ and $h: Z \to Y$ such that $Z \subseteq [0,1]^{\mathbb{N}}$ and $h \circ g = f$. (Note that every separable metrizable space embeds into $[0,1]^{\mathbb{N}}$.) Since X is Lindelöf, by [1, Corollary 16] for every $n \in \mathbb{N}$ there exists an extension $\tilde{g}_n: \tilde{X} \to \mathbb{R}$ of $g_n = \operatorname{pr}_n \circ g$ which is continuous at every point of X. We may assume that $\tilde{g}_n: \tilde{X} \to [0,1]$. Let $\tilde{g}: \tilde{X} \to [0,1]^{\mathbb{N}}$ be such that $\tilde{g}_n = \operatorname{pr}_n \circ \tilde{g}$ for every $n \in \mathbb{N}$; it is easily checked that \tilde{g} is an extension of g which is continuous at every point of X.

Let *K* be the closure of *Z* in $[0, 1]^{\mathbb{N}}$. By Lemma 4.4 there exists a mapping $r : [0, 1]^{\mathbb{N}} \to K$ such that r(t) = t for every $t \in K$ and which is continuous at every point of *K*. By Lemma 4.3 we obtain an extension $\tilde{h} : K \to \tilde{Y}$ of *h* which is continuous at every point of *Z*. It is clear that $\tilde{f} = \tilde{h} \circ r \circ \tilde{g}$ is an extension of *f* which is continuous at every point of *X*.

Proof of Theorem 1.8 Case (1): By Theorem 1.7 there exists a weak uniform lifting $\psi : H \to M'$ of f such that H is a hyperfinite subset of M. By Proposition 2.3 there exists a *metric d on M with $R = d^{-1}(\mu_{\mathbb{R}}(0))$. Since H is hyperfinite, by transfer there

exists an internal mapping $r: M \to H$ such that $d(x, r(x)) = \min\{d(x, y) : y \in H\}$ for every $x \in M$. It is clear that $\phi = \psi \circ r$ is a uniform lifting of f.

Cases (2)-(4): Since \mathcal{M} is κ -separable (apply Lemma 3.1 in cases (2) and (3)), $f[\mathcal{M}]$ is also κ -separable. By Theorem 3.3 there exist $\Pi_1^0(\kappa)$ equivalence relations \tilde{R} and \tilde{R}' on M and M' respectively such that $\mathcal{M} \subseteq M/\tilde{R}$, $f[\mathcal{M}] \subseteq M'/\tilde{R}'$, and such that the spaces M/\tilde{R} and M'/\tilde{R}' are compact. In view of Proposition 4.1, it suffices to check that there exists an extension $\tilde{f} : M/\tilde{R} \to M'/\tilde{R}'$ of f which is continuous at every $\mu \in \mathcal{M}$. In case (3) there is nothing to prove. In cases (2) and (4) we apply Lemma 4.5. In both cases \mathcal{M} is Lindelöf (note that every separable metrizable space is Lindelöf). In case (2) $f[\mathcal{M}]$ is Lindelöf (as a continuous image of Lindelöf space) and M'/R' is metrizable (by Propositions 2.3 and 2.4), therefore, $f[\mathcal{M}]$ is separable and metrizable (as a Lindelöf subspace of metrizable space).

Example 4.6 Let *X* be a separable Tychonoff space which is not Lindelöf [4, Examples 3.8.13]. Assume also that *X* is not almost compact (e.g., consider $X \times \{0, 1\}$ instead of *X*). (A Tychonoff space *X* is said to be almost compact if $|\beta X \setminus X| \leq 1$.) By [3, Theorem 1.3] there exist a Tychonoff space *Y* containing *X* as a subspace and a continuous function $f : X \to \mathbb{R}$ such that there is no extension $\tilde{f} : Y \to \mathbb{R}$ of *f* which is continuous at every point of *X*. By [3, remark on p. 908] we may assume that $f : X \to [0, 1]$. Let *K* be the closure of *X* in βY ; note that *K* is separable and compact. Assume that our nonstandard universe $(V(\Xi), V(^*\Xi), *)$ is κ -saturated with $\kappa > 2^{|\beta Y|}$ and also that $\beta Y \in V(\Xi)$. We claim that the following continuous mappings are not uniformly liftable (see Example 1.4):

$$g: \{\mu_{\beta Y}(x): x \in X\} \to \{\mu_{[0,1]}(r): r \in [0,1]\}, \quad \mu_{\beta Y}(x) \mapsto \mu_{[0,1]}(f(x)),$$
$$h: \{\mu_{\beta Y}(y): y \in K\} \to \{\mu_K(y): y \in K\}, \quad \mu_{\beta Y}(y) \mapsto \mu_K(y).$$

Assume that g is uniformly liftable; using Proposition 4.1, we obtain that there exists an extension $\hat{f} : \beta Y \to [0, 1]$ of f which is continuous at every point of X; then $\tilde{f} = \hat{f}|Y$ is also continuous at every point of X, a contradiction.

If *h* is uniformly liftable, then there exists a mapping $r : \beta Y \to K$ such that r(y) = y for every $y \in K$ and which is continuous at every point of *K*. By Lemma 4.3 there exists an extension $f' : K \to [0, 1]$ of *f* which is continuous at every point of *X*. Define $\tilde{f} : Y \to [0, 1]$ by $\tilde{f} = (f' \circ r)|Y$; it is clear that \tilde{f} is an extension of *f* which is continuous at every point of *X*, a contradiction.

References

- A V Arhangel'skii, Relative topological properties and relative topological spaces, Topology Appl. 70 (1996) 87–99; doi:10.1016/0166-8641(95)00086-0.
- [2] S Baratella, S-A Ng, Fixed points in the nonstandard hull of a Banach space, Nonlinear Analysis 34 (1998) 299–306; doi:10.1016/S0362-546X(98)00571-9.
- [3] A Bella, IV Yaschenko, Lindelöf property and absolute embeddings, Proc. Amer. Math. Soc. 127 (1999) 907–913; doi:10.1090/S0002-9939-99-04568-2.
- [4] **R Engelking**, *General Topology*, Heldermann Verlag, Berlin (1989).
- [5] **S Fajardo**, **H J Keisler**, *Existence theorems in probability theory*, Advances in Math. 120 (1996) 191–257; doi:10.1006/aima.1996.0037.
- [6] S Fajardo, H J Keisler, Neometric spaces, Advances in Math. 118 (1996) 134–175; doi:10.1006/aima.1996.0020.
- [7] EIGordon, Nonstandard analysis and compact abelian groups, Sib. Math. J. 32 (1991) 197–209; doi:10.1007/BF00972766.
- [8] **E I Gordon**, *Nonstandard methods in commutative harmonic analysis*, volume 164 of *Translations of mathematical monographs*, AMS (1997).
- [9] C W Henson, The nonstandard hulls of a uniform space, Pacif. J. Math. 43 (1972) 115–137.
- [10] C W Henson, Infinitesimals in functional analysis, from: "Nonstandard analysis and its applications", (NJ Cutland, editor), London Mathematical Society Student Texts 10, Cambridge University Press (1988) 140–181.
- [11] C W Henson, L C Moore, Nonstandard analysis and the theory of Banach spaces, from: "Nonstandard Analysis–Recent Developments", (A E Hurd, editor), Lecture Notes in Mathematics 983 (1983) 27–112; doi:10.1007/BFb0065334.
- [12] WAJ Luxemburg, A general theory of monads, from: "Applications of Model Theory to Algebra, Analysis and Probability", (WAJ Luxemburg, editor), Holt, Rinehart and Winston (New York) (1969) 18–86.
- [13] J Mlček, P Zlatoš, Some Ramsey-type theorems for countably determined sets, Arch. Math. Logic 41 (2002) 619–630; doi:10.1007/s001530100129.
- [14] M Ziman, P Zlatoš, Hyperfinite dimensional representations of spaces and algebras of measures, Monatsh. Math. 148 (2006) 241–261; doi:10.1007/s00605-005-0375-3.

IICO-UASLP, Av. Karakorum 1470, Lomas 4ta Session, San Luis Potosí SLP, 78210 Mexico appyshchev@hotmail.com

Received: 23 September 2009 Revised: 12 December 2010

Journal of Logic & Analysis 3:4 (2011)